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COVARIANCE APPROXIMATION FOR LARGE MULTIVARIATE
SPATIAL DATA SETS WITH AN APPLICATION TO

MULTIPLE CLIMATE MODEL ERRORS1

BY HUIYAN SANG2, MIKYOUNG JUN3 AND JIANHUA Z. HUANG2,4

Texas A&M University

This paper investigates the cross-correlations across multiple climate
model errors. We build a Bayesian hierarchical model that accounts for the
spatial dependence of individual models as well as cross-covariances across
different climate models. Our method allows for a nonseparable and nonsta-
tionary cross-covariance structure. We also present a covariance approxima-
tion approach to facilitate the computation in the modeling and analysis of
very large multivariate spatial data sets. The covariance approximation con-
sists of two parts: a reduced-rank part to capture the large-scale spatial depen-
dence, and a sparse covariance matrix to correct the small-scale dependence
error induced by the reduced rank approximation. We pay special attention
to the case that the second part of the approximation has a block-diagonal
structure. Simulation results of model fitting and prediction show substan-
tial improvement of the proposed approximation over the predictive process
approximation and the independent blocks analysis. We then apply our com-
putational approach to the joint statistical modeling of multiple climate model
errors.

1. Introduction. This paper addresses the problem of combining multiple cli-
mate model outputs while accounting for dependence across different models as
well as spatial dependence within each individual model. To study the impact of
human activity on climate change, the Intergovernmental Panel on Climate Change
(IPCC) is coordinating efforts worldwide to develop coupled atmosphere-ocean
general circulation models (AOGCMs). Various organizations around the world
are developing state-of-the-art numerical models and currently 20+ climate mod-
els are available. A growing body of literature also exists that studies multiple cli-
mate model outputs [e.g., Tebaldi et al. (2005); Furrer et al. (2007); Jun, Knutti and
Nychka (2008a, 2008b); Smith et al. (2009); Sain and Furrer (2010); Christensen
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and Sain (2010); Sain, Furrer and Cressie (2011)]. One important research prob-
lem of interest regarding these climate model outputs is to investigate the cross-
correlations across climate model errors [Tebaldi and Knutti (2007); Jun, Knutti
and Nychka (2008a, 2008b); Knutti et al. (2010b)]. Climate models are constantly
copied and compared, and successful approximation schemes are frequently bor-
rowed from other climate models. Therefore, many of the climate models are de-
pendent to some degree and thus may be expected to have correlated errors. For
similar reasons, we may expect correlations to be higher between the models de-
veloped by the same organization. Indeed, Jun, Knutti and Nychka (2008a, 2008b)
quantified cross-correlations between pairs of climate model errors at each spatial
location and the results show that many climate model errors have high corre-
lations and some of the models developed by the same organizations have even
higher correlated errors. Note that throughout the paper, we use the terminology
“error” rather than “bias” to describe the discrepancy between the climate model
output and the true climate. The reason is that we consider the “error” as a stochas-
tic process rather than a deterministic quantity.

In this paper we build a joint statistical model for multiple climate model er-
rors that accounts for the spatial dependence of individual models as well as
cross-covariance across different climate models. Our model offers a nonseparable
cross-covariance structure. We work with a climate variable, surface temperature,
from multiple global AOGCM outputs. We include several covariates such as lati-
tude, land/ocean effect, and altitude in the mean structure. The marginal and cross-
covariance structure of climate model errors are modeled using a spatially varying
linear model of co-regionalization (LMC). The resulting covariance structure is
nonstationary and is able to characterize the spatially varying cross-correlations
between multiple climate model errors. Our modeling approach complements in
many ways the previous work of Jun, Knutti and Nychka (2008b). Jun, Knutti
and Nychka (2008b) used kernel smoothing of the products of climate model er-
rors to obtain cross-correlations and did not formally build joint statistical models
for multiple climate model outputs. One direct product of our model is a contin-
uous surface map for the cross-covariances. Our Bayesian hierarchical modeling
approach also provides uncertainty measures of the estimations of the spatially
varying cross-covariances, while it is a challenging task to achieve for the ker-
nel smoothing approach. In Jun, Knutti and Nychka (2008b) they fit each climate
model error separately to a univariate regression model before obtaining the ker-
nel estimate of cross-correlations. They only considered land/ocean effect in the
covariance structure. In our approach, we not only include the land/ocean effect
but also altitude and latitude in the cross-covariance structure of the climate model
errors. As a statistical methodology, joint modeling is more efficient in estimating
model parameters. Moreover, our approach is able to produce spatial prediction or
interpolation and thus is potentially useful as a statistical downscaling technique
for multivariate climate model outputs.
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The naive implementation of our modeling approach faces a big computational
challenge because it requires repeated calculations of quadratic forms in large in-
verse covariance matrices and determinants of large covariance matrices, needed
in the posterior distribution and likelihood evaluation. This is a well-known chal-
lenge when dealing with large spatial data sets. Various methods have been pro-
posed in the literature to overcome this challenge, including likelihood approxima-
tion [Vecchia (1988); Stein, Chi and Welty (2004); Fuentes (2007); Caragea and
Smith (2007)], covariance tapering [Furrer, Genton and Nychka (2006); Kaufman,
Schervish and Nychka (2008)], Gaussian Markov random-field approximation
[Rue and Tjelmeland (2002); Rue and Held (2005)] and reduced rank approxi-
mation [Higdon (2002); Wikle and Cressie (1999); Ver Hoef, Cressie and Barry
(2004); Kammann and Wand (2003); Cressie and Johannesson (2008); Banerjee
et al. (2008)]. Most of these methods focus on univariate processes. One of the
exceptions is the predictive process approach [Banerjee et al. (2008)]. Although
the predictive process approach is applicable to our multivariate model, it is not
a perfect choice because it usually fails to accurately capture local, small-scale
dependence structures [Finley et al. (2009)].

We develop a new covariance approximation for multivariate processes that im-
proves the predictive process approach. Our covariance approximation, called the
full-scale approximation, consists of two parts: The first part is the same as the
multivariate predictive process, which is effective in capturing large-scale spatial
dependence; and the second part is a sparse covariance matrix that can approx-
imate well the small-scale spatial dependence, that is, unexplained by the first
part. The complementary form of our covariance approximation enables the use
of reduced-rank and sparse matrix operations and hence greatly facilitates com-
putation in the application of the Gaussian process models for large data sets.
Although our method is developed to study multiple climate model errors, it is
generally applicable to a wide range of multivariate Gaussian process models in-
volving large spatial data sets. The full-scale approximation has been previously
studied for univariate processes in Sang and Huang (2010), where covariance ta-
pering was used to generate the second part of the full-scale approximation. In
addition to the covariance tapering, this paper considers using block diagonal co-
variance for the same purpose. Simulation results of model fitting and prediction
using the full-scale approximation show substantial improvement over the predic-
tive process and the independent blocks analysis. We also find that using the block
diagonal covariance achieves even faster computation than using covariance taper-
ing with comparable performance.

Our work contributes to the literature of statistical modeling of climate model
outputs. Despite high correlations between the errors of some climate models, it
has been commonly assumed that climate model outputs and/or their errors are in-
dependent of each other [Giorgi and Mearns (2002); Tebaldi et al. (2005); Green,
Goddard and Lall (2006); Furrer et al. (2007); Smith et al. (2009); Furrer and Sain
(2009); Tebaldi and Sansó (2009)]. Only recently, several authors have attempted
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to build joint models for multiple climate model outputs that account for the de-
pendence across different climate models. For example, Sain and Furrer (2010)
used a multivariate Markov random-field (MRF) approach to analyze 20-year av-
erage precipitation data from five different regional climate model (RCM) outputs.
They presented a method to combine the five RCM outputs as a weighted aver-
age and the weights are determined by the cross-covariance structure of different
RCM outputs. Sain, Furrer and Cressie (2011) built multivariate MRF models for
the analysis of two climate variables, precipitation and temperature, from six en-
semble members of an RCM (three ensemble members for each climate variable).
Their model is designed for what they call simple ensembles that resulted from
the perturbed initial conditions of one RCM, not for multiple RCMs. Unlike our
approach, the MRF models are best suited for lattice data, and it might be difficult
for their approach to incorporate covariates information into the cross-covariance
structure. Christensen and Sain (2010) used the factor model approach to integrate
multiple RCM outputs. Their analysis is done at each spatial location indepen-
dently and, thus, the spatial dependence across grid pixels is not considered in the
analysis. We believe our modeling and computational method provides a flexible
alternative to these existing approaches in joint modeling of climate model outputs.

The remainder of the paper is organized as follows. In Section 2 we detail the
motivating data set of climate model errors and present a multivariate spatial pro-
cess model to analyze the data. Section 3 introduces a covariance approximation
method to address the model fitting issues with large multivariate spatial data sets.
In Section 4 we present a simulation study to explore properties of the proposed
computational method. The full analysis of the climate errors data is then offered
in Section 5. Finally, we conclude the paper in Section 6.

2. Data and the multivariate spatial model.

2.1. Data. Our goal is to build a joint statistical model for multiple climate
model errors. By climate model error, we mean the difference between the cli-
mate model output and the corresponding observations. We use surface tempera-
ture (unit: K) with global coverage obtained from the AOGCM simulations as well
as the observations. The observations are provided by the Climate Research Unit
(CRU), East Anglia, and the Hadley Centre, UK MetOffice [Jones et al. (1999);
Rayner et al. (2006)]. The data (both climate model outputs and observations) are
monthly averages given on a regular spatial grid (the resolution is 5◦ × 5◦). A list
of the climate models used in this study is given in Table 1. These climate mod-
els are developed by different modeling groups worldwide, under the coordination
of the IPCC, and they use common initial conditions. Each model has their own
grid resolution. We consider the 30 year interval 1970–1999 and due to the lack
of observations near the polar area, we only consider temperature data taken be-
tween latitude 45◦ S and 72◦ N, with the full longitude ranging from 180◦ W to
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TABLE 1
The names of modeling groups, country, IPCC I.D. and resolutions of the IPCC model outputs used

in the study. The resolution of the observations is 5◦ × 5◦

Resolution
Group Country IPCC I.D. (longitude × latitude)

1 US Dept. of Commerce/NOAA/Geophysical USA GFDL-CM2.0 2.5◦ × 2◦
Fluid Dynamics Laboratory

2 US Dept. of Commerce/NOAA/Geophysical USA GFDL-CM2.1 2.5◦ × 2◦
Fluid Dynamics Laboratory

3 Hadley Centre for Climate Prediction UK UKMO-HadCM3 3.79◦ × 2.47◦
and Research/Met Office

4 Hadley Centre for Climate Prediction UK UKMO-HadGEM1 1.875◦ × 1.24◦
and Research/Met Office

5 LASG/Institute of Atmospheric Physics China FGOALS-g1.0 2.81◦ × 3◦

180◦ E. We still have missing observations at a few pixels and we impute by tak-
ing the average of the spatially neighboring cells (all eight neighboring cells if all
are available). We study climatological mean state in the sense that we first get a
seasonal average temperature (e.g., an average of the monthly temperature from
December to February) and then average it over 30 years. We denote this 30 year
average of Boreal winter temperature by DJF.

As mentioned earlier, we calculate model errors by taking the difference be-
tween climate model outputs and actual observations. However, as shown in Ta-
ble 1, the climate model outputs and the observations are at different spatial grid
resolutions. Since the observations have the coarsest grid, we use the bilinear in-
terpolation of the model output to the observational grid. That is, at each grid pixel
(in the observation grid), we use the weighted average of model outputs at the four
nearest pixels in the model output grid. Figure 2 displays pictures of the climate
model errors for the five climate models listed in Table 1. First note that the errors
of model 5 are significantly larger in the higher latitudes and in the Himalayan area
compared to the errors of the other models. The climate model error maps exhibit
quite similar patterns among the models developed by the same group, although
the errors for model 1 in the mid-latitude area of the Northern Hemisphere appear
to be larger in magnitude compared to those of model 2. All the models have larger
errors in the Northern Hemisphere and the errors are large over the high altitude
area and high latitude area.

We focus on climate model errors in this paper. Since the climate model error is
defined as the difference between a climate model’s output and the corresponding
observations (we use the observation minus the model output), we are effectively
building a joint model for multiple climate model outputs with the observations
as their means (although we have to be careful about the sign of the fixed mean
part). It would be tantalizing to build an elaborate joint statistical model of mul-
tiple climate model outputs as well as the observations directly at their original
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spatial grid resolutions. This direct modeling approach would require a statistical
representation of the true climate and of the climate model outputs, both of which
are challenging tasks. It would be hard to model the true climate in a reasonably
complex way and the characteristics of observation errors and model errors may
not be simple. Therefore, we do not pursue this direction in this paper.

2.2. Multivariate spatial regression models. Let Y(s) = (Y1(s), . . . , YR(s))T

be an R × 1 response vector along with a p × R matrix of regressors X(s) =
(X1(s), . . . ,XR(s)) observed at location s ∈ D, where D is the region of interest.
For our application, Yi(s) represents the error of climate model i at location s for
i = 1, . . . ,5, Xi(s) the corresponding covariates, and D represents the surface of
the globe. We consider the multivariate spatial regression model

Y(s) = XT (s)β + w(s) + ε(s), s ∈ D ⊆ R
d,(1)

where β = (β1, . . . , βp)T is a p × 1 column vector of regression coefficients, w(s)
is a multivariate spatial process whose detailed specification is given below, and
the process ε(s) = (ε1(s), . . . , εR(s))T models the measurement error for the re-
sponses. The measurement error process is typically assumed to be spatially in-
dependent, and at each location, ε(s) ∼ MVN(0,�ε), where MVN stands for the
multivariate normal distribution, and �ε is an R × R covariance matrix.

As a crucial part of model (1), the spatial process w(s) = (w1(s), . . . ,wR(s))T

captures dependence both within measurements at a given site and across the sites.
We model w(s) as an R-dimensional zero-mean multivariate Gaussian process:
w(s) ∼ MVN(0,�w(·, ·)), where the cross-covariance matrix function of w(s) is
defined as �w(s, s′) = [Cov(wr(s),wr ′(s′))]Rr,r ′=1. For any integer n and any col-
lection of sites S = (s1, . . . , sn), we denote the multivariate realizations of w(s)
at S as an nR × 1 vector w = (wT (s1), . . . ,wT (sn))

T , which follows an nR × 1
multivariate normal distribution w ∼ MVN(0,�w), where �w = [�w(si , sj )]ni,j=1
is an nR × nR matrix that can be partitioned as an n × n block matrix with the
(i, j)th block being the R × R cross-covariance matrix �w(si , sj ). In the multi-
variate setting, we require a valid cross-covariance function such that the resultant
nR × nR covariance matrix, �w, is positive definite.

There have been many works on the construction of flexible cross-covariance
functions [Mardia and Goodall (1993); Higdon, Swall and Kern (1999); Gaspari
and Cohn (1999); Higdon (2002); Ver Hoef, Cressie and Barry (2004); Gelfand
et al. (2004); Majumdar and Gelfand (2007); Gneiting, Kleiber and Schlather
(2010); Jun (2009); Apanasovich and Genton (2010)]. The model in Mardia and
Goodall (1993) assumes separable cross-covariance functions. Higdon (2002) em-
ploys discrete approximation to the kernel convolution based on a set of pre-
specified square-integrable kernel functions. The model in Gneiting, Kleiber and
Schlather (2010) is isotropic and the covariance model requires the same spa-
tial range parameters when there are more than two processes. The model of
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Apanasovich and Genton (2010) is developed to model stationary processes and
its extension to nonstationary processes is not obvious.

We adopt the LMC approach [Wackernagel (2003); Gelfand et al. (2004)] which
has recently gained popularity in multivariate spatial modeling due to its rich-
ness in structure and feasibility in computation. Suppose that U(s) = [Uq(s)]q=1:Q
is a Q × 1 process with each Uq(s) independently modeled as a univariate
spatial process with mean zero, unit variance and correlation function ρq(·, ·).
The cross-covariance function of U(s) is a diagonal matrix that can be written
as �u(s, s′) = ⊕Q

q=1 ρq(s, s′), where
⊕

is the direct sum matrix operator [e.g.,
Harville (2008)]. The LMC approach assumes that w(s) = A(s)U(s), where A(s)
is an R × Q transformation matrix, that is, nonsingular for all s. For identifiability
purposes and without loss of generality, A(s) can be taken to be a lower-triangular
matrix. It follows that the constructed cross-covariance function for w(s) under
this model is �w(s, s′) = A(s)�u(s, s′)AT (s′). An alternative expression for the
cross-covariance function is �w(s, s′) = ∑Q

q=1 aq(s)aT
q (s′)ρq(s, s′), where aq(s) is

the qth column vector of A(s). The cross-covariance matrix for the realizations w
at n locations S can be written as a block partitioned matrix �w with n×n blocks,
whose (i, j)th block is A(si )�u(si , sj )AT (sj ). We can express �w as

�w =
[

n⊕
i=1

A(si )

][
Q⊕

q=1

ρq(si , sj )

]n

i,j=1

[
n⊕

i=1

AT (si )

]
= A�uAT ,(2)

where A is a block-diagonal matrix with n × n blocks whose ith diagonal block
is A(si ),

⊕Q
q=1 ρq(si , sj ) is a Q × Q diagonal matrix with ρq(si , sj )’s as its diag-

onals, and �u is an (n × n)-block partitioned matrix with �u(si , sj ) as its (i, j)th
block.

For our climate model application, we utilize the multivariate model (1). Here,
we have R = 5 since five climate model errors are considered. In the LMC model,
the number of latent processes, Q, can take a value from 1 to R. When Q < R, the
multivariate process is represented in a lower dimensional space and dimension-
ality reduction is achieved. In this paper, our goal is to obtain a rich, constructive
class of multivariate spatial process models and, therefore, we assume a full rank
LMC model with Q = R = 5. We do not include the spatial nugget effect ε in
the model. For the regression mean, XT (s)β , we use p = 8 covariates: Legendre
polynomials [Abramowitz and Stegun (1964)] in latitude of order 0 to 4 with sine
of latitude as their arguments, an indicator of land/ocean (we give 1 if the domain
is over the land and 0 otherwise), longitude (unit: degree), and the altitude (alti-
tude is set to be zero over the ocean). We scale the altitude variable (unit: m) by
dividing it by 1000 to make its range comparable to other covariates. Our covari-
ates specification is similar to Sain, Furrer and Cressie (2011) except that we use
multiple terms for latitude effects in order to have enough flexibility to capture the
dependence of the process on the entire globe.
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For each location s, we model A(s) as a 5 × 5 lower triangular matrix. Two
model specifications for A(s) are considered. In one specification, we assume the
linear transformation to be independent of space, that is, A(s) = A. Thus, we have
A(s) = [aij ]i,j=1:5 with aij being nonzero constants for 1 ≤ i ≤ j ≤ 5 and aij = 0
for i > j . To avoid an identifiability problem, we let aii > 0 for i = 1, . . . ,5. If
the Uq(s) are stationary, this specification results in a stationary cross-covariance
structure. In particular, if the Uq(s) are identically distributed, this specification re-
sults in a separable cross-covariance structure similarly to Sain and Furrer (2010).
In the second specification, we assume that A(s) vary over space. Specifically, the
(i, j)th entry of A(s), aij (s), is modeled as aij (s) = XT

A(s)ηij for 1 ≤ i ≤ j ≤ 5,
where XA(s) is a 5×1 covariate vector at location s and consists of Legendre poly-
nomials in latitude of order 0 to 2, an indicator of land/ocean, and the scaled alti-
tude. The dimension of ηij is 5 × 1. This specification induces nonstationary and
nonseparable cross-covariance structure. Note that, similar to the first specifica-
tion, to avoid an identifiability problem, we let aii(s) = |XT

A(s)ηii | for i = 1, . . . ,5.
Gelfand et al. (2004) proposed to model each element of A(s) as a spatial process,
but in practice such an approach is usually computationally too demanding to be
used for large scale problems. Moreover, there might be identifiability problems if
we do not constrain some of the elements in A(s). Thus, we do not consider this
option in our paper. For the correlation function of each latent process Uq(s), we
consider a Matérn correlation function on a sphere, where the chordal distance is
used. For any two locations on the globe (Li, li), i = 1,2, where Li and li denote
latitude and longitude, respectively, the chordal distance is defined as

ch((L1, l1), (L2, l2))

= 2Rearth

{
sin2

(
L1 − L2

2

)
+ cosL1 cosL2 sin2

(
l1 − l2

2

)}1/2

.

Here Rearth is the radius of the Earth. Jun, Knutti and Nychka (2008b) showed
that the maximum likelihood estimates of the smoothness parameters for all of the
climate models in Table 1 (except for model 4) are close to 0.5. Therefore, we fix
the smoothness parameter values for all the processes in U to be 0.5 and this is the
same as using an exponential correlation function for each Uq(s).

3. Model implementation and covariance approximation.

3.1. Model fitting. We adopt a Bayesian approach that specifies prior distri-
butions on the parameters. Posterior inference for the model parameters is im-
plemented by model fitting with Gibbs samplers [Gelfand and Smith (1990)]
and Metropolis–Hastings updating [Gelman et al. (2004)]. We set β to have a
p-dimensional multivariate normal distribution prior with large variances. The
prior assignment for the covariance parameters for each Ui depends upon the spe-
cific choice of the correlation functions. In general, the spatial range parameters
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are weakly identifiable, and, hence, reasonably informative priors are needed for
satisfactory MCMC behavior. We set prior distributions for the spatial range pa-
rameters relative to the size of their domains, for instance, by setting the prior
means to reflect one’s prior belief about the practical spatial range of the data. For
the LMC setting with a constant A, we may assign truncated normal priors with
positive value support or inverse gamma priors with infinite variances for the di-
agonal entries, and normal priors for other entries. For the spatially varying LMC
setting, the priors for the coefficients ηij are normal distributions with large vari-
ances.

Given n locations in the set S = {s1, . . . , sn}, the realization of the response vec-
tor at these locations can be collectively denoted as Y = (Y(s1)

T , . . . ,Y(sn)
T )T ,

and the corresponding matrix of covariates is X = (X(s1), . . . ,X(sn))
T . The data

likelihood can be obtained easily from the fact that Y ∼ MVN(Xβ,�w +In ⊗�ε),
where �w is given by (2). Generically denoting the set of all model parame-
ters by �, the MCMC method is used to draw samples of the model parame-
ters from the posterior: p(�|Y) ∝ P(�)P (Y|�). Assuming the prior distribution
of β is MVN(μβ,�β), the posterior samples of β are updated from its full con-

ditional MVN(μβ|·,�β|·), where �β|· = [�−1
β + X

T (�w + In ⊗ �ε)
−1

X]−1, and

μβ|· = �β|·XT (�w + In ⊗ �ε)
−1

Y. All the remaining parameters have to be up-
dated using Metropolis–Hastings steps.

Spatial interpolation in the multivariate case allows one to better estimate one
variable at an unobserved location by borrowing information from co-located
variables. It is also called “cokriging” in geostatistics. The multivariate spa-
tial regression model provides a natural way to do cokriging. For example, un-
der the Bayesian inference framework, the predictive distribution for Y(s0) =
[Yi(s0)]i=1:p at a new location s0 is a Gaussian distribution with

E[Y(s0)|�,Y] = XT (s0)β + h(s0)(�w + In ⊗ �ε)
−1(Y − Xβ)

and

Cov[Y(s0)|�,Y] = �w(s0, s0) + �ε − h(s0)(�w + In ⊗ �ε)
−1hT (s0),

where h(s0) = [�w(s0, si)]i=1:n is the R × nR cross-covariance matrix between
w(s0) and {w(si ), i = 1, . . . , n}.

The computationally demanding part in the model fitting is to calculate the
quadratic form of the inverse of the nR × nR matrix �w + In ⊗ �ε , whose com-
putational complexity is of the order O((nR)3). This computational issue is of-
ten referred to as “the big n problem.” In our climate model application, we have
1,656 locations for each of the five climate models, that is, n = 1,656 and R = 5.
Although the inversion of the matrix can be facilitated by the Cholesky decomposi-
tion and linear solvers, computation remains expensive when nR is big, especially
for the spatially varying LMC models which involve a relatively large number of
parameters and hence require multiple likelihood evaluations at each MCMC itera-
tion. We introduce covariance approximation below as a way to gain computational
speedup for the implementation of the LMC models.
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3.2. Predictive process approximation. In this subsection we review the mul-
tivariate predictive process approach by Banerjee et al. (2008) and point out its
drawbacks to motivate our new covariance approximation method. The predic-
tive process models consider a fixed set of “knots” S ∗ = {s∗

1, . . . , s∗
m} that are

chosen from the study region. The Gaussian process w(s) in model (1) yields an
mR random vector w∗ = [w(s∗

i )]mi=1 over S ∗. The Best Linear Unbiased Predictor
(BLUP) of w(s) at any fixed site s based on w∗ is given by w̃(s) = E{w(s)|w∗}.
Being a conditional expectation, it immediately follows that w̃(s) is an optimal
predictor of w(s) in the sense that it minimizes the mean squared prediction error
E{‖w(s) − f(w∗)‖2} over all square-integrable (vector-valued) functions f(w∗) for
Gaussian processes, and over all linear functions without the Gaussian assump-
tion. Banerjee et al. (2008) refer to w̃(s) as the predictive process derived from the
parent process w(s).

Since the parent process w(s) is an R-dimensional zero-mean multivariate
Gaussian process with the cross-covariance function �w(s, s′) = Cov(w(s),w(s′)),
the multivariate predictive process has a closed-form expression

w̃(s) = Cov(w(s),w∗)Var−1(w∗)w∗ = Cw(s, S ∗; θ)C∗−1
w (θ)w∗,(3)

where Cw(s, S ∗; θ) = [�w(s, s∗
1; θ), . . . ,�w(s, s∗

m; θ)] is an R × mR cross-
covariance matrix between w(s) and {w(s∗), s∗ ∈ S ∗}, and C∗

w(θ) = [�w(s∗
i , s∗

j ;
θ)]mi,j=1 is the mR × mR cross-covariance matrix of w∗ = [w(s∗

i )]mi=1 [see, e.g.,
Banerjee, Carlin and Gelfand (2004)].

The multivariate predictive process w̃(s) is still a zero mean Gaussian pro-
cess, but now with a fixed rank cross-covariance function given by �w̃(s, s′) =
Cw(s, S ∗; θ)C∗−1

w (θ)CT
w(s′, S ∗; θ). Let w̃ = [w̃(si )]ni=1 be the realization of w̃(s)

at the set S of the observed locations. It follows that w̃ ∼ MVN(0,�w̃), where
�w̃ = Cw(S, S ∗; θ)C∗−1

w (θ)CT
w(S, S ∗; θ), and Cw(S, S ∗; θ) is an nR × mR ma-

trix that can be partitioned as an n × 1 block matrix whose ith block is given by
Cw(si , S ∗; θ).

Replacing w(s) in (1) with the fixed rank approximation w̃(s), we obtain the
following multivariate regression model:

Y(s) = XT (s)β + w̃(s) + ε(s),(4)

which is called the predictive process approximation of model (1). Based on this
approximation, the data likelihood can be obtained using Y ∼ MVN(Xβ, Cw(S,

S ∗; θ)C∗−1
w (θ)CT

w(S, S ∗; θ)) + In ⊗ �ε). When the number of knots m is chosen
to be substantially smaller than n, computational gains are achieved since the like-
lihood evaluation that initially involves inversion of nR×nR matrices can be done
by inverting much smaller mR × mR matrices.

The multivariate predictive process is an attractive reduced rank approach to
deal with large spatial data sets. It encompasses a very flexible class of spatial
cross-covariance models since any given multivariate spatial Gaussian process
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with a valid cross-covariance function would induce a multivariate predictive pro-
cess. Since the predictive process is still a valid Gaussian process, the inference
and prediction schemes for multivariate Gaussian spatial process models that we
described in Section 3.1 can be easily implemented here.

However, the predictive process models share one common problem with many
other reduced rank approaches: They generally fail to capture local/small scale
dependence accurately [Stein (2008); Finley et al. (2009); Banerjee et al. (2010)]
and thus lead to biased parameter estimations and errors in prediction.

To see the problems with the multivariate spatial process w(s) in (1), we con-
sider the following decomposition of the parent process:

w(s) = w̃(s) + (
w(s) − w̃(s)

)
.(5)

We call w(s) − w̃(s) the residual process. The decomposition in (5) immediately
implies a decomposition of the covariance function of the process w(s):

�w(s, s′) = �w̃(s, s′) + (
�w(s, s′) − �w̃(s, s′)

)
,(6)

where �w(s, s′) − �w̃(s, s′) is the cross-covariance function of the residual pro-
cess w(s) − w̃(s). Note that for any arbitrary set of n locations S , �w − �w̃ =
[�w(si , sj )]ni,j=1 − [�w̃(si , sj )]ni,j=1 is the conditional variance–covariance matrix
of w given w∗, and hence a nonnegative definite matrix. Using the multivariate
predictive process to approximate w(s), we discard the residual process �w − �w̃
entirely and thus fail to capture the dependence it carries. This is indeed the fun-
damental issue that leads to biased estimation in the model parameters.

To understand and illustrate the issue with the predictive process due to ignoring
the residual process, we consider a univariate stationary Gaussian process and we
remark that the multivariate predictive process shares the same problems. Assume
the covariance function of the parent process is Cw(s, s′) = σ 2ρw(s, s′), where
ρw(s, s′) is the correlation function and σ 2 is the variance, that is, constant over
space. Assume τ 2 is the nugget variance. The variance of the corresponding predic-
tive process at location s is given by σ 2

w̃
(s) = σ 2ρT

w(s, S ∗)ρ−1
w (S ∗, S ∗)ρw(s, S ∗),

where ρw(s, S ∗) is the correlation vector between w(s) and {w(s∗), s∗ ∈ S ∗}, and
ρw(S ∗, S ∗) is the correlation matrix of the realizations of w(s) at the knots in the
set S ∗. From the nonnegative definiteness of the residual covariance function, we
obtain the inequality σ 2

w(s) ≥ σ 2
w̃
(s). Equality holds when s belongs to S ∗. There-

fore, the predictive process produces a lower spatial variability. Banerjee et al.
(2010) proved that there are systematic upward biases in likelihood-based esti-
mates of the spatial variance parameter σ 2 and the nugget variance τ 2 using the
predictive process model as compared to the parent model. Indeed, the simulation
results in Finley et al. (2009) and Banerjee et al. (2010) showed that both σ 2 and τ 2

are significantly overestimated especially when the number of knots is small. Our
simulation study to be presented in Section 4 also shows that predictive processes
produce biased estimations of model parameters in the multivariate spatial case.
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3.3. Full-scale covariance approximation. Motivated by the fact that discard-
ing the residual process ε̃(s) = w(s) − w̃(s) is the main cause of the problem as-
sociated with the multivariate predictive process, we seek to complement the mul-
tivariate predictive process by adding a component that approximates the residual
cross-covariance function while still maintaining computational efficiency. We ap-
proximate the residual cross-covariance function by

�ε̃(s, s′) = [�w(s, s′; θ) − �w̃(s, s′; θ)] ◦ K(s, s′),(7)

where ◦ denotes the Schur product (or entrywise product) of matrices, and the
matrix-valued function K(s, s′), referred to as the modulating function, has the
property of being a zero matrix for a large proportion of possible spatial location
pairs (s, s′). The zeroing property of the modulating function implies that the re-
sulting cross-covariance matrix is sparse and, thus, sparse matrix algorithms are
readily applicable for fast computation. We will introduce below modulating func-
tions that have zero value when s and s′ are spatially farther apart. For such choices
of the modulating function, the effect of multiplying a modulating function in (7)
is expected to be small, since the residual process mainly captures the small scale
spatial variability.

Combining (6) with (7), we obtain the following approximation of the cross-
covariance function:

�†
w(s, s′) = �w̃(s, s′) + �ε̃(s, s′).(8)

Note that the first part of the cross-covariance approximation, �w̃, is the result
of the predictive process approximation and should capture well the large scale
spatial dependence, while the second part, �ε̃ , should capture well the small scale
spatial dependence. We refer to (8) as the full-scale approximation (FSA) of the
original cross-covariance function.

Using the FSA, the covariance matrix of the data Y from model (1) is approxi-
mated by

�Y = �w̃ + �ε̃ + In ⊗ �ε,(9)

where �w̃ = Cw(S, S ∗; θ)C∗−1
w (θ)CT

w(S, S ∗; θ), and �ε̃ = [�ε̃(si , sj ; θ)]ni,j=1.
The structure of the covariance matrix (9) allows efficient computation of the
quadratic form of its inverse and its determinant. Using the Sherman–Woodbury–
Morrison formula, we see that the inverse of �Y can be computed by

(�w̃ + �ε̃ + In ⊗ �ε)
−1 = (�ε̃ + In ⊗ �ε)

−1 − (�ε̃ + In ⊗ �ε)
−1Cw(S, S ∗)

× {C∗
w + Cw(S, S ∗)T (�ε̃ + In ⊗ �ε)

−1Cw(S, S ∗)}−1(10)

× Cw(S, S ∗)T (�ε̃ + In ⊗ �ε)
−1.
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The determinant is computed as

det(�w̃ + �ε̃ + In ⊗ �ε)

= det{C∗
w + Cw(S, S ∗)T (�ε̃ + In ⊗ �ε)

−1Cw(S, S ∗)}(11)

× {det(C∗
w)}−1 det(�ε̃ + In ⊗ �ε).

Notice that �ε̃ + In ⊗ �ε is a sparse matrix and C∗
w + Cw(S, S ∗)T (�ε̃ + In ⊗

�ε)
−1Cw(S, S ∗) is an mR ×mR matrix. By letting m be much smaller than n and

letting �ε̃ + In ⊗�ε have a big proportion of zero entries, the matrix inversion and
the determinant in (10) and (11) can be efficiently computed. These computational
devices are combined with the techniques described in subsection 3.1 for Bayesian
model inference and spatial prediction.

Now we consider one choice of the modulating function, that is, based on a local
partition of the domain. Let B1, . . . ,BK be K disjoint subregions which divide
the spatial domain D. The modulating function is taken to be K(s, s′) = 1K×K

if s and s′ belong to the same subregion, and K(s, s′) = 0K×K otherwise. Voronoi
tessellation is one option to construct the disjoint subregions [Green and Sibson
(1978)]. This tessellation is defined by a number of centers c = (c1, . . . , ck), such
that points within Bi are closer to ci than any other center cj , j 
= i, that is, Bi =
{s : ‖s − ci‖ ≤ ‖s − cj‖, j 
= i}. Our choice of a Voronoi partitioning scheme is
made on the ground of tractability and computational simplicity. We would like to
point out that our methodology is not restricted to this choice and any appropriate
partitioning strategy for the spatial domain could be adopted. Since the modulating
function so specified will generate an approximated covariance matrix with block-
diagonal structure, this version of the FSA method is referred to as the FSA-Block.

The FSA-Block method provides an exact error correction for the predictive
process within each subregion, that is, �†

w(s, s′) = �w(s, s′) if s and s′ belong to
the same subregion, and �†

w(s, s′) = �w̃(s, s′) if s and s′ belong to different sub-
regions. Unlike the independent blocks analysis of spatial Gaussian process mod-
els, the FSA can take into account large/global scale dependence across different
subregions due to the inclusion of the predictive process component. Unlike the
predictive process, the FSA can take into account the small scale dependence due
to the inclusion of the residual process component. An interesting special case of
the FSA-Block is obtained by taking n disjoint subregions, each of which contains
only one observation. In this case, ε̃(s) is reduced to an independent Gaussian pro-
cess, that is, �ε̃(s, s) = �w(s, s) − �w̃(s, s), and �ε̃(s, s′) = 0 for s 
= s′. In fact,
this special case corresponds to the modified predictive process by Finley et al.
(2009), that is, introduced to correct the bias for the variance of the predictive pro-
cess models at each location. Clearly, our FSA-Block is a more general approach
since it also corrects the bias for the cross-covariance between two locations that
are located in the same subregion.

For the FSA-Block, the computation in (10) and (11) can be further simplified.
Assuming the set of observed locations is grouped by subregions, that is, S =
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{SB1, . . . , SBK
}, the nR × nR matrix �ε̃ becomes a K × K block diagonal matrix

with the kth diagonal block

Cw(SBk
, SBk

) − Cw(SBk
, S ∗)C∗−1

w (θ)CT
w(SBk

, S ∗), k = 1, . . . ,K,

and, thus, �ε̃ +In ⊗�ε is a K ×K block diagonal matrix. The inversion and deter-
minant of this block diagonal matrix can be directly computed efficiently without
resorting to general-purpose sparse matrix algorithms if the size of each block is
not large.

The computational complexity of the FSA-Block depends on the knot intensity
and the block size. If we take equal-sized blocks, then the computational complex-
ity of the log likelihood calculation is of the order O(nm2R3 + nb2R3), where m

is the number of knots and b is the block size. This is much smaller than the orig-
inal complexity of O(n3R3) without using covariance approximation. Moreover,
the computational complexity of the FSA can be further reduced using parallel
computation by taking advantage of the block diagonal structure of �ε̃ .

An alternative choice of the modulating function in (7) is to use a positive
definite function, that is, identically zero whenever ‖s − s′‖ ≥ γ . Such a func-
tion is usually called a taper function and γ is called the taper range. The re-
sulting FSA method is referred to as the FSA-Taper. In the univariate case, any
compactly supported correlation function can serve as a taper function, includ-
ing the spherical and a family of Wendland functions [see, e.g., Wendland (1995);
Wendland (1998); Gneiting (2002)]. Sang and Huang (2010) studied the FSA-
Taper and demonstrated its usage for univariate spatial processes. For the multi-
variate processes considered in this paper, the modulating function K(s, s′) can
be chosen as any valid multivariate taper function. One such choice is the ma-
trix direct sum of univariate taper functions, that is, K(s, s′) = ⊕R

r=1Kr(s, s′;γr),
where Kr is a valid univariate taper function with the taper range γr used for
the r th spatial variable, and different taper ranges can be used for different vari-
ables. This cross-independent taper function will work well with the FSA if the
cross dependence between co-located variables can be mostly characterized by
the reduced rank process w̃. Using this taper function, the cross-covariance ma-
trix of the residual process, �ε̃ , can be transformed by row and column permu-
tations to a block-diagonal matrix with R diagonal blocks, whose r th diagonal
block is an n × n sparse matrix with the (i, j)-entry being Cov(ε̃r (si ), ε̃r (sj )) =
{Cov(wr(si ),wr(sj ))− Cov(w̃r (si ), w̃r (sj ))}Kr(si , sj ;γr), where w̃r (s) is the re-
duced rank predictive process for the r th spatial variable and ε̃r (s) is the residual
process for the r th spatial variable. If we take the same taper range for each spa-
tial variable, the computational complexity of the log likelihood calculation is of
the order O(nm2R3 + ng2R), where g is the average number of nonzero entries
per row in the n × n residual covariance matrix [Cov(ε̃r (si ), ε̃r (sj ))]ni,j=1 for the
r th spatial variable. This is a substantial reduction from the original computational
complexity of O(n3R3) without using the covariance approximation.
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Use of the FSA involves the selection of knots and the local partitioning or ta-
pering strategy. Given the number of knots, we follow the suggestions by Banerjee
et al. (2010) to use the centers obtained from the K-means clustering as the knots
[e.g., Kaufman and Rousseeuw (1990)]. A careful treatment of the choice of knot
intensity m and the number of partitions K or the taper range γ will offer good
approximation to the original covariance function. Apparently, a denser knot inten-
sity and larger block size or larger taper range will lead to better approximation,
at higher computational cost. In principle, we will have to implement the analysis
over different choices of m and K or γ to weigh the trade-off between inference ac-
curacy and computational cost. We have used the Euclidean distance and taken m

to be 225, K to be 36, and γ to be 10 for the spherical taper function in our simula-
tion study, and used the chordal distance and taken m to be 200 and K to be 10 in
the real application and have found that such choices work well. A full discussion
of this issue will be undertaken in future work.

4. Simulation results. In this section we report results from a simulation
study to illustrate the performance of the FSA approach and compare it with the
predictive process approach and the independent blocks analysis. The computer
implementation of all the approaches used in this simulation study and the analy-
sis of multiple climate models in the following section were written in Matlab and
run on a processor with dual 2.8 GHz Xeon CPUs and 12 GB memory.

In this simulation study we generated n = 2,000 spatial locations at random
from the square [0,100] × [0,100]. The data generating model is a bivariate LMC
model with a constant 2 × 2 lower triangular transformation matrix A,

Y(s) = AU(s) + ε(s),(12)

where ε(s) ∼ MVN(0, τ 2I2), and U(s) = [Uq(s)]q=1,2 is a 2 × 1 process with two
independent components, each of which is a univariate spatial process with mean
zero, unit variance and exponential correlation function. The range parameters for
U1(s) and U2(s) are φ1 = 10 (i.e., such that the spatial correlation is about 0.05
at 30 distance units) and φ2 = 20, respectively. The diagonal elements of A are
a11 = 1 and a22 = 0.5, and the nonzero off-diagonal element of A is a21 = 0.5. We
set the nugget variance τ 2 = 0.01.

Given these data, we used the Bayesian MCMC approach to generate sam-
ples from the posterior distributions of the model parameters. We assigned
Unif(1, dmax/3) priors to the range parameters φ1 and φ2, where dmax is the max-
imum distance of all pairs. The diagonal elements of A and τ 2 were assumed
to have the inverse gamma distribution with the shape parameter 2 and the scale
parameter 1, IG(2,1), as priors. We assigned a normal prior with large variance
for a21.

We compared the model fitting results from four covariance approximation
methods: the predictive process, the independent blocks approximation, the FSA-
Block and the FSA-Taper. As a benchmark for our comparison, we also fit the orig-
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TABLE 2
The mean and the standard deviations (in parentheses) of the model parameters for the full

covariance model, the predictive process approximation, the independent blocks
approximation, the FSA-Block and the FSA-Taper

Model φ1 φ2 a11 a12 a22 τ 2

True 10 20 1 0.5 0.5 1.00e–2
Full model 10.47 (1.02) 22.07 (4.69) 0.99 (0.05) 0.51 (0.03) 0.52 (0.05) 1.01e–2 (3.90e–4)
Predictive process 13.32 (2.32) 22.71 (7.35) 1.22 (0.08) 0.66 (0.05) 0.49 (0.06) 0.15 (3.46e–3)

m = 225
Independent blocks 4.47 (0.99) 4.94 (1.16) 3.56 (0.39) 1.44 (0.28) 1.96 (0.14) 8.97e–3 (1.18e–3)

k = 36
FSA-Block 11.36 (2.21) 21.17 (5.24) 1.02 (0.09) 0.53 (0.05) 0.49 (0.05) 1.10e–2 (9.00e–4)

m = 225, k = 36
FSA-Taper 14.89 (1.90) 29.92 (7.41) 1.05 (0.07) 0.58 (0.04) 0.50 (0.05) 8.36e–3 (1.07e–3)

m = 225, γ = 10

inal full covariance model without using a covariance approximation. For the pre-
dictive process approximation, we used m = 225 knots. For the independent blocks
approximation, we used K = 36 blocks. For the FSA-Block, we used m = 225
knots and K = 36 blocks. For the FSA-Taper, we used m = 225 and a spherical ta-
pering function with taper range γ = 10. The number of blocks for the FSA-Block
and the taper range for the FSA-Taper are selected such that these two FSA meth-
ods lead to comparable approximations for the small scale residual covariance. For
the above methods, the knots were chosen as the centers from the K-means clus-
tering, and the blocks were taken as equal-sized squares that form a partition of
the [0,100] × [0,100] region.

Table 2 displays the Bayesian posterior means and the corresponding posterior
standard deviations for the model parameters under each approach. We observe
that the diagonal values of A, the range parameter of U1, and the nugget variance
τ 2 are all overestimated by the predictive process. We also notice large biases of
the parameter estimates using independent blocks approximation. The FSA-Block
provides the most accurate parameter estimation among all the methods.

To gauge the performance on model fitting for different approaches, we used the
deviance information criterion [DIC, Spiegelhalter et al. (2002)], which is easily
calculated from the posterior samples. From Table 3, we observe that the bench-
mark full covariance model has the smallest DIC score, indicating the best model
fitting. The FSA-Block approach gives a slightly larger DIC score than the full
model, while the predictive process and the independent blocks approximation
yield significantly larger DIC scores than the FSA and the full model. This result
shows that the FSA performs much better than the predictive process and indepen-
dent blocks approximation in terms of model fitting.

To compare the methods in terms of prediction performance, we computed
the mean square prediction errors (MSPE) based on a simulated test data set of
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TABLE 3
DIC scores and MSPEs for the full covariance model, the predictive process approximation, the

independent blocks approximation, the FSA-Block and the FSA-Taper. MSPE-Random is based on a
test data set of 200 locations that are randomly selected from [0,100] × [0,100]. MSPE-Hole is

based on a test data set of size 200 that consists of 160 randomly selected locations from
[0,100] × [0,100] and 40 random locations within two circles: {(x, y);x2 + (y − 90)2 < 30}

and {(x, y); (x − 50)2 + (y − 50)2 < 35}

Predictive Independent
process blocks FSA-Block FSA-Taper

Full model m = 225 K = 36 m = 225, K = 36 m = 225, γ = 10

DIC 871 2357 3791 918 1547
MSPE-Random 0.12 0.17 0.14 0.12 0.12
MSPE-Hole 0.16 0.26 0.26 0.18 0.18

200 locations using the previously simulated data set with observations at 2000
locations as the training set. We experimented with two different kinds of test
sets: one set consists of 200 locations randomly selected from [0,100] × [0,100]
and another consists of 160 randomly selected locations from [0,100] × [0,100]
and 40 random locations within two circles: {(x, y);x2 + (y − 90)2 < 30} and
{(x, y); (x − 50)2 + (y − 50)2 < 35}. The second interpolation scenario is com-
mon in practice where missing data often correspond to sizable gaps/holes.

From Table 2, we see that both the FSA-Block and the FSA-Taper methods lead
to much more accurate predictions than the predictive process and the independent
blocks approximation. In the scenario of predicting for missing gaps/holes, the
advantage of using the FSA approach over the other two approximation approaches
is more significant.

To compare the computation efficiency of the covariance approximations for
larger data sets, we repeated the simulation study when the number of spatial
locations in the training set is increased to 5,000 and the number of locations
in the test set to 1,000. We measured the MSPE and the associated computa-
tional time based on the prediction at the 1,000 test locations. The test set con-
sists of 800 randomly sampled locations from [0,100] × [0,100] and 200 loca-
tions randomly selected within two circles: {(x, y);x2 + (y − 90)2 < 30} and
{(x, y); (x − 50)2 + (y − 50)2 < 35}. The MSPE for each model was obtained
by plugging in the true parameter values into the BLUP equation. Pairs of the
MSPE and the computational time were obtained by varying the knot intensity for
the predictive process model, block size for the independent blocks approxima-
tion, knot intensity and block size for the FSA-Block approach, and knot intensity
and taper range for the FSA-Taper approach. Figure 1 shows that both the FSA-
Taper and the FSA-Block methods outperform the predictive process in terms of
their computational efficiency for making predictions. The independent blocks ap-
proximation yields much larger MSPE than the other three approaches given the
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FIG. 1. The MSPE versus time plot for the simulation study in Section 4 under the predictive pro-
cess (circle), the FSA-Block (plus) and the FSA-Taper (star).

same computational time and we decided not to include its results in Figure 1. It
is also noticeable that the required computational time of the FSA-Block approach
to obtain the same MSPE is much less than that of the FSA-Taper approach. For
this reason, we used the FSA-Block approach to analyze the climate errors data in
Section 5.

We acknowledge that performance for the approximation approaches may de-
pend on the characteristics of spatial data, such as sample size, pattern of sam-
pling locations, spatial smoothness and spatial correlation range. To investigate
the effect of spatial correlation range on the performance of the FSA approach,
we conducted two other experiments: one with small range parameters φ1 = 5
and φ2 = 10, and the other with large range parameters φ1 = 30 and φ2 = 60. In
the case of small spatial ranges, the independent blocks approximation performed
better than the predictive process, while the FSA performed similarly to the inde-
pendent blocks analysis. In the case of large spatial ranges, the predictive process
performed similarly to the FSA and both methods performed significantly better
than the independent blocks approximation. These two experiments indicate that
both the predictive process and the independent blocks approximation have their
modes of successes and failures. Under their failure modes, to achieve accurate
model inference and prediction, one has to use either a significantly large rank
number m for the predictive process or a very small number of blocks K for the
independent blocks approach, therefore, the computational advantages associated
with a small m and a large K would disappear. In contrast, by the combining of a
small m and a large K, the FSA-Block flexibly accommodates data sets with either
large scale or small scale spatial variations while still maintaining the computa-
tional efficiency.

5. Application result. To build a joint model that accounts for the cross-
covariance structure of the multiple climate model errors, we fit and compared two
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versions of the LMC models, corresponding to spatially fixed and spatially varying
transformation matrices, as described in Section 2.2. The LMC model specification
depends on the ordering of the response variables because of the lower triangular
specification of the transformation matrix. When applying the LMC model to the
five climate model errors, we tried a few orderings of climate models and found
that different orderings may produce different values of parameters but they pro-
duced fairly consistent estimates of variances and cross-correlations. Therefore,
we chose to present the results based on the order given in Table 1.

We applied the FSA-Block approach to facilitate the computation. We used 225
knots selected by the K-means clustering algorithm and divided the study region
into 10 regions for subsequent analysis. We assumed the exponential spatial corre-
lation function for each Uq(s), and assigned a uniform prior U(50,4,500) for each
of the spatial range parameters given that the maximum chordal distance between
any two locations is 12,757 km. For each of the coefficients β in the regression
in model (1), we assumed independent normal priors with mean 0 and variance
1,000. For the LMC model with a constant A, we assumed the diagonal entries to
have truncated normal distributions ranging from 0 to ∞ and diagonal entries to
have normal distributions, with their means being the empirical estimates of A and
variances 1,000. For the spatially varying LMC model with A(s), we assumed that
the intercepts of the coefficients ηij in the regression model for A(s) have normal
distributions, with their means being the empirical estimates of A and variances
being 1,000. We set normal priors with mean 0 and variance 1,000 to the other
coefficients of ηij . For each model, we ran 3,000 iterations of MCMC to collect
posterior samples after a burn-in period of 1,000 iterations, thinning every third
iteration.

The DIC scores of two specifications for A were compared, one with a con-
stant A and the other with spatially varying A depending on polynomials of lat-
itude, land/ocean effect and altitude, as detailed in Section 2.2. The DIC score
for the model with a spatially varying A(s) is 9,901, which is much smaller than
the score of 11,975 for the model with a constant A. This suggests that the spa-
tially varying LMC model performs significantly better than the model with a con-
stant A, as we expected. From now on, we present results based solely on the
spatially varying LMC model.

Figure 2 shows the estimated mean structure and its standard deviations ob-
tained from the posterior samples. It is interesting to note a clear distinction be-
tween model 5 and the rest of the models; for model 5, the estimated means are
negative with large magnitudes over high altitude areas, whereas the rest gives
large positive values for the estimated mean structure over high latitude areas.
This finding is consistent with the result in Jun, Knutti and Nychka (2008b) [note
that the model numbers in this paper and the model numbers in Jun, Knutti and
Nychka (2008b) are different, although all the models used in this paper are also
used in Jun, Knutti and Nychka (2008b)]. Recall that the model error is calcu-
lated by subtracting the model output from the observation. The above result sug-
gests that models 1–4 may underestimate the mean state of the surface temperature
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FIG. 2. The first column shows the surface maps of climate model errors. The second and the third
columns show the estimated mean structure of each climate model error and the associated standard
deviations.

over the high-altitude and high-latitude regions, and model 5 may overestimate the
mean state over the high-altitude area. The estimated mean structure and its asso-
ciated standard deviations are quite similar for the models developed by the same
groups—models 1 and 2 from the GFDL group of NOAA, and models 3 and 4
from the Hadley Centre in the UK. The spatial patterns of the associated standard
deviations for those pairs are also quite similar. For all the models, altitude is re-
sponsible for the dominant effects in the fixed part of the process and we also see
some effects of latitude, although longitude does not seem to be significant in the
mean structure. Models 3–5 seem to have large errors in the high-latitude and sea-
ice area. The indicator for the land and the ocean is not significant for the mean
structure. This may be due to the fact that we already include altitude as a covariate
(altitude is positive over the land and zero over the ocean).
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FIG. 3. Surface maps of the estimated standard deviations of each climate model (left column) and
the associated standard deviations (right column).

Given the posterior samples of the model parameters, we draw samples of the
cross-covariance matrix at each location s based on �w(s, s) = A(s)AT (s). The
diagonals of �w(s, s) are the variances of the climate model errors at location s.
Figure 3 shows the maps of standard deviations for each model error and the stan-
dard deviations of the standard deviations obtained from the posterior samples.
The patterns throughout all 5 models are quite consistent; high standard deviations
at high altitudes, and standard deviations are higher over the land than over the
ocean. For models 1 and 3, latitude seems to be a significant factor. For all the
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models, given the values of the posterior sample standard deviations of the stan-
dard deviations, the spatial patterns that we observe (such as high variances over
high altitude or high latitude area) are statistically significant and are not due to
random variations in the data. The sea-ice region is one of the places that models
in general have trouble. Although we do not have a factor for sea-ice region in the
model, we see high standard deviations around sea-ice area. This may be due to
the interaction between latitude and the indicator for the land and the ocean. As we
expected, model 5 has significantly larger values of standard deviations, especially
in high-altitude areas, compared to the rest of the models. The standard deviations
of the error of model 5 over the Himalayan area are more than 10. Their associated
posterior sample standard deviations are also quite large. Overall, we observe that
standard deviations of model errors are slightly higher over the land than over the
ocean.

Now we discuss the estimates of cross-correlations of different climate model
errors. Figure 4 gives the spatial maps of cross-correlations between each pair
of climate model errors, obtained from the posterior samples. The corresponding
standard deviation of the estimated cross-correlations using the posterior samples
are given in Figure 5. In both figures, we use the same color scale across pairs
of models to make the comparison easier. First, notice that overall the correlation
between models 1 and 2, two models developed by the GFDL group of NOAA,
is the highest. For models 1 and 2, overall the correlation values are strikingly
high and the associated standard deviation values are close to zero. The maximum
correlation value over the entire domain is 0.769, the average of correlations over
the ocean is 0.732 with the standard deviation 0.017, and the average over the
land is 0.639 with the standard deviation 0.021. Jun, Knutti and Nychka (2008b)
also report the highest level of cross-correlation for this pair of models. The cross-
correlations between models 3 and 4 (two models developed by the Hadley Centre
in the UK) are not as high as those between models 1 and 2 and they are com-
parable to the cross-correlations between any one of the models 1 and 2 and any
one of the models 3 and 4. In addition, the cross-correlation structure between
models 1 and 2 shows different spatial patterns compared with that between mod-
els 3 and 4. Models 1 and 2 have quite small correlation over high-altitude area,
meaning that the two models disagree over high-altitude areas, whereas models 3
and 4 have consistently large correlations over the entire domain. For models 3
and 4, the average of correlations over the land and the ocean are both slightly
larger than 0.4. Cross-correlations between model 5 and the rest of the models are
quite small in magnitude and the patterns are consistent for all the 4 pairs. Corre-
lations between model 5 and the rest of the models are quite small over the land,
over high latitudes in the Northern Hemisphere and over low latitude area in the
Southern Hemisphere. From these maps, it is clear that model 5 is significantly
different from the rest of the models and this agrees with the result in Jun, Knutti
and Nychka (2008b). In many pairs of models, we see clear effects of the indicator
for the land and the ocean, and the latitude.
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FIG. 4. Surface maps of the estimated cross-correlation for each pair of climate model errors.

In addition to the cross-correlations at the same location, our method allows us
to examine both marginal and cross-covariances/correlations between two differ-
ent locations, based on the posterior samples. Given that the cross-correlations at
the same location are quite different over the land and the ocean, we examined the
spatial correlations against spatial distance over the land and the ocean separately.
Figure 6 gives both marginal and cross-correlations against chordal distance (unit:
km) for pairs of models based on the 1,656 observational grid points. Since we
adopted exponential spatial correlation functions for the latent spatial processes
Uq(s)’s in the LMC model with the lower triangular structure for A(s), the fit-
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FIG. 5. Standard deviation of the estimated cross-correlation for each pair of climate model errors
in Figure 4.

ted correlation function for model 1 is isotropic. We also note that marginally the
model errors 2, 3 and 4 give similar spatial correlation structures over the land and
the ocean, while model 5 shows mild discrepancy between the correlations over
the land and the ocean. Moreover, the spatial correlation structure of model 5 ex-
hibits a slower spatial decay compared with the rest of the climate model errors.
Models developed by the same group (i.e., pairs 1 and 2, and 3 and 4) give similar
spatial cross-correlation structure for both over the land and over the ocean. The
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FIG. 6. Spatial correlations for pairs of model errors against chordal distance (unit: km). Due to
the nonstationarity of the correlation structure, we display the correlation in the following way. For
each pair of model errors, we first obtain a 1,656 × 1,656 cross (or marginal)-correlation matrix
given from the posterior mean of the correlations. Then we calculate the averages, the 10th and the
90th percentiles of the correlations within each bin, with 30 equally spaced bins from distance 0
to 5,000 km, separately over the land and the ocean. Solid lines connect the binned averages and
dashed lines connect the 10th and the 90th percentiles.
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FIG. 7. Correlation maps and the associated standard deviation maps between models 1 and 3.
The upper panel shows the maps using the FSA-Block approach and the bottom panel shows the
maps using the predictive process.

cross-correlations between model 5 and the rest of the models are close to zero
over the land, while those over the ocean are significantly different from zero.

As in Jun, Knutti and Nychka (2008b) and Sain, Furrer and Cressie (2011), we
can perform the analysis for the summer season average of Northern Hemisphere
(JJA, June–July–August average) in the same way that we did for the DJF averages.
We do not include those results for brevity of the paper.

We have also implemented the spatially varying LMC using the predictive pro-
cess with the same knots as the FSA (m = 200) for comparison purposes. The
DIC score of the predictive process model is 35,526, which is much larger than
the DIC score of 9,901 of the FSA model, indicating that the FSA model has a
better model fitting for the data. We did not observe significant difference in the
estimations for the spatial range parameters. We present in Figure 7 the correlation
maps between models 1 and 3 to illustrate the difference between the results of the
two approaches. Although, for this real data analysis, the true correlations between
models 1 and 3 are unknown, the results obtained from the FSA approach seem to
be more reasonable than those from the predictive process. For instance, the map
using the FSA approach clearly shows that the correlations over the ocean are in
general higher than the correlations over the land, as expected based on previous
studies. The map using the predictive process fails to show this pattern. The poor
performance of the predictive process in this example might be due to the inade-
quate number of knots and hence can be remedied by increasing the knots intensity.
However, increasing the number of knots will greatly increase the computational
time of the predictive process.
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6. Discussion. We built a joint spatial model for multivariate climate model
errors accounting for their cross-covariances through a spatially varying LMC
model. To facilitate Bayesian computation for large spatial data sets, we devel-
oped a covariance approximation method for multivariate spatial processes. This
full-scale approximation can capture both the large scale and small scale spatial
dependence and correct the bias problem of the predictive process.

Our empirical results confirmed that pairs of climate models developed by the
same group have high correlations and climate models in general have correlated
errors. We also showed that some climate models are very different from other
climate models and, thus, the cross-correlations between them are quite small.

In principle, we could combine multiple climate model outputs as a weighted
linear combination, along the same lines as Sain and Furrer (2010), based on our
modeling approach rather than the Bayesian Gaussian MRF model described in
Section 4 of Sain and Furrer (2010). However, recently there have been several
papers that raise concerns about the practice of combining multiple climate model
outputs through model weighting or ranking [see, e.g., Knutti et al. (2010b); Knutti
(2010); Weigel et al. (2010)]. The main concern is the difficulty of interpreting the
weighted average of climate models physically. Knutti et al. (2010a) suggest that
if model ranking or weighting is applied, both the quality metric and the statisti-
cal framework used to construct the ranking or weighting should be recognized.
To determine what is the best quality metric in weighting or ranking the climate
models is a challenging problem.

We focus on the climate model errors in this paper. It would be interesting to
build more elaborate joint models of multiple climate model outputs as well as
observations at their original spatial grid resolutions. To follow this path, we need
to have a statistical representation of the true climate, which is very challenging.
One possibility is to model the observation as the truth, with measurement errors
assumed with a simple covariance structure. However, this assumption might not
be realistic considering the relatively complex nature of biases and errors in the
climate observations.

In this paper we addressed only the spatial aspect of the problem and we applied
our methodology to the mean state of the climate variable. It would be interesting
to extend our approach to spatio-temporal problems and, in particular, to consider
the climate model outputs in their original time scale of monthly averages or annual
averages for studying the trend of the climate model errors.
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