The Annals of Applied Probability

2007, Vol. 17, No. 4, 1362-1398

DOI: 10.1214/105051607000000159

© Institute of Mathematical Statistics, 2007

A RENEWAL THEORY APPROACH TO PERIODIC COPOLYMERS
WITH ADSORPTION

BY FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN
AND LORENZO ZAMBOTTI

Universita degli Studi di Padova, Université Paris 7 and Université Paris 6

We consider a general model of a heterogeneous polymer chain fluctu-
ating in the proximity of an interface between two selective solvents. The
heterogeneous character of the model comes from the fact that the monomer
units interact with the solvents and with the interface according to some
charges that they carry. The charges repeat themselves along the chain in
a periodic fashion. The main question concerning this model is whether the
polymer remains tightly close to the interface, a phenomenon called localiza-
tion, or whether there is a marked preference for one of the two solvents, thus
yielding a delocalization phenomenon.

In this paper, we present an approach that yields sharp estimates for the
partition function of the model in all regimes (localized, delocalized and crit-
ical). This, in turn, makes possible a precise pathwise description of the poly-
mer measure, obtaining the full scaling limits of the model. A key point is
the closeness of the polymer measure to suitable Markov renewal processes,
Markov renewal theory being one of the central mathematical tools of our
analysis.

1. Introduction and main results.

1.1. Two motivating models. Let S := {S,},=0,1,... be a random walk, So =0
and S, = Z’}Zl X j, with i.i.d. symmetric increments taking values in {—1, 0, +1}.
Hence the law of the walk is identified by p :=P(X|; =1) =P(X|; = —1) and we
assume that p € (0, 1/2). The case p = 1/2 can be treated in an analogous way,
but requires some notational care because of the periodicity of the walk. We also
consider a sequence w := {wy }neN=(1,2,...} Of real numbers with the property that
wy, = wpy1 for some T € N and for every n, denoting by 7T (w) the minimal value
of T.

Consider the following two families of modifications of the law of the walk,
both indexed by a parameter N € N:
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Pinning and wetting models. For A > 0, consider the probability measure Py
defined by

dP
(1.1) N

N
(S)O(CXp()xZa)n (Sp= 0})

n=1

The walk receives a pinning reward, which may be negative or positive, each time
it visits the origin. By considering the directed walk viewpoint, that is, {(n, S;)}»,
one may interpret this model in terms of a directed linear chain receiving an ener-
getic contribution when it touches an interface. The main question is whether for
large N the typical paths of Py ,, are attracted or repelled by the interface.

There is an extensive literature on periodic pinning and wetting models, the
majority of which is restricted to the 7 = 2 case, for example, [13, 25]; see [15]
for further discussion and references.

Copolymer near a selective interface. In much the same way, we introduce

dPN w

(1.2) (S) x exp (A > o, 51gn(Sn))

n=1

where if S, =0, we set sign(S,) := sign(S,—1)1ys,_,=0y. This convention for
defining sign(0), to be kept throughout the paper, simply means that sign(S,) =
+1,0, —1 according to whether the bond joining S,_; and S, lies above, on or
below the x-axis.

Also in this case, we take a directed walk viewpoint and Py ,, then may be in-
terpreted as a polymeric chain in which the monomer units, the bonds of the walk,
are charged. An interface, the x-axis, separates two solvents, say oil above and wa-
ter below. Positively charged monomers are hydrophobic and negatively charged
ones are instead hydrophilic. In this case, one expects competition between three
possible scenarios: polymer preferring water, preferring oil or undecided between
the two and choosing to fluctuate in the proximity of the interface.

We select [23, 27] from the physical literature on periodic copolymers, keeping
in mind, however, plays that periodic copolymer modeling plays a central role in
applied chemistry and material science.

1.2. A general model. We point out that the models presented in Section 1.1
are particular examples of the polymer measure with Hamiltonian

Hn(©S) =Y Zw 1{sign(S,)= ,}+Zw“’>1s”

i=xln=1

(1.3)
N
+ > 3 Usign(s,)=0)

n=1
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where ™D, 0@ and &© are periodic sequences of real numbers. Observe that
by our convention on sign(0), the last term provides an energetic contribution (of
pinning/depinning type) to the bonds lying on the interface. We use the shorthand
o for the four periodic sequences appearing in (1.3) and will use 7 = T (w) to
denote the smallest common period of the sequences. We will refer to w as to the
charges of our system.

Besides being a natural model, generalizing and interpolating between pinning
and copolymer models, the general model we consider is one which has been con-
sidered on several occasions (see, e.g., [28] and references therein).

Starting from the Hamiltonian (1.3), for a = c (constrained) or a = f (free), we
introduce the polymer measure Py, , on 7N, defined by

exXp(Hn (5))
L

dpPy
(1.4) =(S) = (Lia=fy + Lia=c}1{sy=0}),
dp
where Z“va = E[exp(#n) (Na=f) + Lja=c)1{sy=0))] is the partition function, that
is, the normalization constant. Observe that the polymer measure P}, is invariant
under the joint transformation § — —S, ™D — =D hence, by symmetry, we
may (and will) assume that

| T@
1.5 hy = —— ) _ () > 0.
(15) T(w)g(wn o) z

We also set S :=7Z/(TZ) and for 8 € S, we equivalently write [n] = 8 or n € 8.
Notice that the charges wj, are functions of [r], so that we can write wy,| := w,.

1.3. The free energy viewpoint. The standard statistical mechanics approach
naturally leads to a consideration of the free energy of the model, that is, the limit
as N — oo of (1/N)log 27\, »- It is, however, practical to observe that we can
add to the Hamiltonian #fy a term which is constant with respect to S without
changing the polymer measure. Namely, if we set

N
H(S) == FHn(S) — Y D,
n=1

which amounts to sending w,(,+1) — 0, a),(,

@D — off

-1 )

-b_ w,(,+l)) and ;" —

- (o)

), then we can write

AP0 g SR (S))

(1.6)
dp Z5

(Lia=f + La=c}1{sy=0})

where Z§; , is a new partition function given by

(+1)

~ N
(L) Z§y , = E[exp(H3) (L= + L= Lisy=0))] = Zfy ,, - €~ =1



A RENEWAL THEORY APPROACH TO PERIODIC POLYMER MODELS 1365
At this point, we define the free energy:

1
(1.8) Fp 1= Nli_r)nooﬁlog Zy o
A proof of the existence of such a limit involves standard superadditive arguments,
as well as the fact that the superscript ¢ could be changed to f without changing
the result (see, e.g., [15], but a complete proof, without the use of super-additivity,
is given below).

The principle that the free energy contains the crucial information on the large N
behavior of the system is certainly not violated in this context. In order to clarify
this point, let us first observe that F,, > 0 for every w. This follows by observing
that the energetic contribution to the trajectories that stay positive and come back

to zero for the first time at epoch N is just a)g\?), hence, by (1.7),

0

1 c Wy 1
—logZN’w T—FﬁlogP(Sn>O,n=1,...,N—1,SN=O)

(1.9

=820,
where we have simply used the fact that the distribution of the first return to zero
of S is subexponential [see (2.2) for a much sharper estimate]. This suggests a
natural dichotomy and, inspired by (1.9), we give the following definition.

DEFINITION 1.1. The polymer chain defined by (1.4) is said to be

e localized if F,, > 0;
e delocalized if F,, = 0.

A priori, one is certainly not totally convinced by such a definition. Localization,
as well as delocalization, should be given in terms of path properties of the process:
it is quite clear that the energy # (S) of trajectories S which do not come back
very often (i.e., not in a positively recurrent fashion) to the interface will either be
negative or o(N), but this is far from being a convincing statement of localization.
An analogous observation can be made for delocalized polymer chains.

Nonetheless, with a few exceptions, much of the literature focuses on free en-
ergy estimates. For example, in [5], one can find the analysis of the free energy
of a subset of the class of models we are considering here, and in Section 1.7 of
the same work, it is argued that some (weak) path statements of localization and
delocalization can be extracted from the free energy. We will return to a review of
the existing literature after we have stated our main results, but at this point, we
anticipate that our program is going well beyond free energy estimates.

One of the main results in [5] is a formula for F,,, obtained via large deviations
arguments. We will not give the precise expression now (the reader can find it in
Section 3.2 below), but we point out that this formula is proved here using argu-
ments that are more elementary and, at the same time, these arguments yield much
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stronger estimates. More precisely, there exists a positive parameter §“, given ex-
plicitly and analyzed in detail in Section 2.1, that determines the precise asymptotic
behavior of the partition function (the link between §,, and F,, will be immediately
after the statement).

THEOREM 1.2 (Sharp asymptotic estimates). Fix n € S and consider the as-
ymptotic behavior of ZY; , as N — 0o along [N]=n. Then:

(1) if 82 <1 then Z§, , ~ Cy ,/N'%;
(2) if 82 =1then Z§ ,~C5 ,/N'%;
(3) if 8 > 1then ¥y >0and Zy , ~ C, , exp(FuN),

where the quantities F, C.

o Co.yand C , are given explicitly in Section 3.

Of course, by ay ~ by wemean ay /by — 1. We note that Theorem 1.2 implies
the existence of the limit in (1.8) and that F,, = 0 exactly when 6 < 1, but we
stress that in our arguments, we do not rely on (1.8) to define F,,. We also point out
that analogous asymptotic estimates can be obtained for the free partition function;
see Proposition 3.2.

It is rather natural to think that from such precise estimates one can extract
detailed information on the limit behaviors of the system. This is correct. Notably,
we can consider:

(1) infinite volume limits, that is, weak limits of P,  as a measure on RN;
(2) scaling limits, that is, limits in law of the process S, suitably rescaled, under
Pa
N,w*

Here, we will focus only on (2); the case (1) is considered in [7].

A word of explanation is in order concerning the fact that there appear to be two
types of delocalized polymer chains: those with § = 1 and those with §* < 1. As
we will see, these two cases exhibit substantially different path behavior (even if
both display distinctive features of delocalized paths, notably a vanishing density
of visits at the interface). As will be made clear, in the case §“ < 1, the system
is strictly delocalized in the sense that a small perturbation in the charges leaves
8% < 1 (as a matter of fact, for charges of a fixed period, the mapping w — §% is
continuous), while 8¢ is rather a borderline, or critical, case.

1.4. The scaling limits. The main results of this paper concern the diffusive
rescaling of the polymer measure Py . More precisely, let us define the map

XN RN — ([0, 1]):

X| Nt _ X|Nt]+1 — X|Nt|
iz T (N — LN )=

where || denotes the integer part of - and o := 2p is the variance of X under
the original random walk measure P. Notice that XV (x) is nothing but the linear

xXN(x) = t [0, 1],



A RENEWAL THEORY APPROACH TO PERIODIC POLYMER MODELS 1367

interpolation of {XLNtJ/(Uﬁ)}ze(NN)m[o,l]- For a =f, c we set
0% i =P4 0 (XM)7 L.

Then Qj‘\,’ » 18 @ measure on C([0, 1]), the space of continuous real-valued func-
tions defined on the interval [0, 1], and we want to study the behavior as N — co
of this sequence of measures.

We start by fixing notation for the following standard processes:

e the Brownian motion {B¢}:¢[0,1];

e the Brownian bridge {B:}:<[0,1] between 0 and 0;

e the Brownian motion conditioned to stay nonnegative on [0, 1] or, more pre-
cisely, the Brownian meander {m}.¢[0,1] (cf. [26]) and its modification by a
random flip {mif’)}te[o,l], defined as m‘”) = om, where P(c = 1) =1 —P(o =
—1) = p €[0, 1] and (m, o) are independent;

e the Brownian bridge conditioned to stay nonnegative on [0, 1] or, more pre-
cisely, the normalized Brownian excursion {e; }:¢[0,1], also known as the Bessel
bridge of dimension 3 between 0 and 0; see [26]. For p € [0, 1], {ei”)},e[o,l] is
the flipped excursion defined in analogy with m (P,

e the skew Brownian motion {ng )}Te[o’ 17 and the skew Brownian bridge
{ﬂi” )}16[0’1] of parameter p (cf. [26]) the definitions of which are recalled in
Remark 1.5 below.

We introduce a final process, labeled by two parameters p, g € [0, 1]: consider
a random variable U > [0, 1] with the arcsine law P(U <t) = %arcsin t and
processes BP) m@ as defined above, with (U, 8P, m@) an independent triple.
We then denote by { Bﬁp 4) }ze[0,1] the process defined by

VOB, ift<U,
V1= Umgz)_U)/(l_U), ift>U.

We then have the following theorem, which is the main result of this paper (see
Figure 1).

(1.10) B .=

THEOREM 1.3 (Scaling limits). For every n € S, if N — oo along [N] =n,
then the sequence of measures {QY, ,} on C([0, 1]) converges weakly. More pre-
cisely:

(1) ford® < 1 (strictly delocalized regime), Q?V, », converges to the law of o)

f
®wn) for some parameters Py, , € [0, 1],

and ng, » converges to the law of m
a="f,c;
(2) for 6% =1 (critical regime), Qg\,’ », converges to the law of ,B(pw) and Qg\,’ ©

converges to the law ofB(pw’qw’") for some parameters p, dw,y € [0, 11;
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FI1G. 1. A schematic view of the scaling limits for the constrained endpoint case. While in the
localized regime (top image), on a large scale, the polymer cannot be distinguished from the interface,
in the strictly delocalized regime (bottom image) the visits to the interface are few and are all close
to the endpoints (the sign of the excursion is obtained by flipping one biased coin). In between, there
is the critical case: the zeros of the limiting process coincide with the zeros of a Brownian bridge, as
found for the homogeneous wetting case [6, 9, 171, but this time, the signs of the excursions vary and
they are chosen by flipping independent biased coin. Of course, this suggests that the trajectories in
the localized case should be analyzed without rescaling (this is done in [7]).

(3) for 6 > 1 (localized regime), QY , converges, as N — 00, to the mea-
sure concentrated on the constant function taking the value zero (no need of the
restriction [N] =n).

The exact values of the parameters pfu’n, Po and g, 5 are given in (5.5), (5.7),
(5.17) and (5.19). See also Remarks 5.3, 5.4, 5.7 and 5.8.

REMARK 1.4. It is natural to wonder why the results for §“ < 1 may depend
on [N] € S. First, we stress that only in very particular cases is there effectively a
dependence on 1 and we characterize these instances precisely; see Section 2.3. In
particular, there is no dependence on [N] for the two motivating models (pinning
and copolymer) described in Section 1.1 and, more generally, if &, > 0. How-
ever, this dependence on the boundary condition phenomenon is not a pathology,
but rather a sign of the presence of first-order phase transitions in this class of
models. Nonetheless, the phenomenon is somewhat surprising since the model is
one-dimensional. This issue, which is naturally clarified when dealing with the
infinite volume limit of the model, is treated in [7].
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REMARK 1.5 (Skew Brownian motion). We recall that B(") (resp. (7)) is a
process such that |B”)| = |B| (resp. |8P’| = |B]) in distribution, but in which
the sign of each excursion is chosen to be +1 (resp. —1) with probability p
(resp. 1 — p) instead of 1/2. Observe that for p = 1, we have BV = |B|, V) =
18], mY = m and eV = ¢ in distribution. Moreover, B!/? = B and 8!/? = B in
distribution. Notice also that the process B(P-9) differs from the p-skew Brownian
motion B only for the last excursion in [0, 1], whose sign is 41 with probabil-
ity ¢ instead of p.

1.5. Motivations and a survey of the literature. From an applied viewpoint, the
interest in periodic models of the type we consider appears to be at least twofold:

(1) On one hand, periodic models are often (e.g., [13, 23]) motivated as carica-
tures of the quenched disordered models, like those in which the charges are a
typical realization of a sequence of independent random variables (e.g., [1, 4,
15, 28] and references therein). In this respect, periodic models may be viewed
as weakly inhomogeneous, and the approximation of strongly inhomogeneous
quenched models by periodic ones, in the limit of large period, gives rise to
very interesting and challenging questions. We believe that if the precise de-
scription of the periodic case that we have obtained in this work highlights
the limitations of periodic modeling for strongly inhomogeneous systems (cf.,
in particular, the anomalous decay of quenched partition functions along sub-
sequences pointed out in [16], Section 4 and our Theorem 1.2), it is at the
same time an essential step toward understanding the large period limit, and
the method we use in this paper may allow a generalization that yields infor-
mation on this limit.

(2) On the other hand, as mentioned above, periodic models are absolutely nat-
ural and of direct relevance in applications, for example, when dealing with
molecularly engineered polymers; [24, 27] provide a sample of the theoretical
physics literature, but the applied literature is extremely vast.

From a mathematical standpoint, our work may be viewed as a further step in
the direction of:

(a) extending to the periodic setting precise path estimates obtained for homoge-
neous models;

(b) clarifying the link between the free energy characterization and the path char-
acterization of the different regimes.

With reference to (a), we point out the novelty with respect to the work on ho-
mogeneous models [6, 9, 17, 23]. Although the basic role of renewal theory tech-
niques in obtaining the crucial estimates has already been emphasized in [6, 9], we
stress that the underlying key renewal processes that appear in our inhomogeneous
context are not standard renewals, but rather Markov renewal processes (cf. [2]).
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Understanding the algebraic structure leading to this type of renewal is one of the
central points of our work; see Section 3.1.

We also point out that the Markov renewal processes appearing in the criti-
cal regime have step distributions with infinite mean. Even for ordinary renewal
process, the exact asymptotic behavior of the Green function in the infinite mean
case has been a long-standing problem (cf. [14] and [20]) solved only recently
by Doney in [10]. The extension of this result to the framework of Markov re-
newal theory (that we consider here in the case of a finite-state modulating chain)
presents some additional problems (see Remark 3.1 and Appendix A) and, to our
knowledge, has not been considered in the literature. In Section 5, we also give an
extension to our Markov renewal setting of the beautiful theory of convergence of
regenerative sets developed in [12].

A final observation is that, as in [6], the estimates we obtain here are really
sharp in all regimes and our method goes well beyond the case of random walks
with jumps %1 and 0, to which we restrict our attention for the sake of conciseness.

With reference to (b), we point out that in the models we consider, there is a va-
riety of delocalized path behaviors which are not captured by the free energy. This
is suggestive also in view of progressing in the understanding of the delocalized
phase in the quenched models [16].

1.6. Outline of the paper. 'The remainder of the paper is organized as follows.

e In Section 2, we define the basic parameter 6 and analyze the dependence of
our results on the boundary condition [N] = 7.

e In Section 3, we clarify the connection with Markov renewal theory and obtain
the asymptotic behavior of ZIC\,’ »and Z va > Proving Theorem 1.2.

e In Section 4, we present a basic splitting of the polymer measure into zero level
set and excursions and discuss the importance of the partition function.

e In Section 5, we compute the scaling limits of P, , proving Theorem 1.3.

e Finally, the appendices contain the proofs of some technical results.

2. A closer look at the main results.

2.1. The order parameter §°. A remarkable feature of our results (see Theo-
rem 1.2 and Theorem 1.3) is the fact that the properties of the polymer measure
are essentially encoded in a single parameter §¢ that can be regarded as the order
parameter of our models. This subsection is devoted to defining this parameter,
but we first need some preliminary notation.

We start with the law of the first return to zero of the original walk:

(2.1) 71 :=inf{n > 0:§,, =0}, K@) :=P(r1 =n).
It is a classical result [11], Chapter XII.7 that
(2.2) 3 lim 732K (n) =: cx € (0, 00).

n—>od
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The key observation is that by the T -periodicity of the charges w and by the defi-
nition (1.5) of &, we can define an S x S matrix X, g by means of the following
relation:
n
(2.3) Y (05—t = —2 — nDhe + Zpuy) -
n=ni+1

We have thus decomposed the above sum into a drift term and a fluctuating term,
where the latter has the remarkable property of depending on n; and ny only
through their equivalence classes [n1] and [n3] in S. We can now define three
basic objects:

e fora, B eSand e N, we set

O | (~©O) _ (+1)
wg + (@ —wg ),
ife=1,¢ecp—a,

(2.4) Dy (€)= a)l(BO) + log[%(l +exp(—Lhy, + 2o p))],
if¢>1,0ep—a,
0, otherwise;

e for x € N, we introduce the S x S matrix M g) 8 (x) defined by

25) M 5(x) 1= e®# K ()1 (xepa);
e summing the entries of M® over x, we obtain an S x S matrix that we call B“:
(2.6) Bygi= My (x).

xeN

The meaning of these quantities will become clear in the next subsection. For now
we stress that they are explicit functions of the charges @ and of the law of the
underlying random walk (to ease notation, the w-dependence of these quantities
will often be dropped).

Observe that By g is a finite-dimensional matrix with positive entries, hence
the Perron—Frobenius theorem (see, e.g., [2]) implies that B, g has a unique real
positive eigenvalue (called the Perron—Frobenius eigenvalue) with the property
that it is a simple root of the characteristic polynomial and that it coincides with
the spectral radius of the matrix. This is exactly our order parameter:

2.7) 3 := Perron—Frobenius eigenvalue of B“.

2.2. A random walk excursions viewpoint. In this subsection, we are going to
see that the quantities defined in (2.4) and (2.5) emerge in a natural way from the
algebraic structure of the constrained partition function va’ »- Let us reconsider
our Hamiltonian (1.3): its specificity is due to the fact that it can be decomposed in
an efficient way by considering the return times to the origin of S. More precisely,
we define

70 =0, Tj41 =inf{n > 7;: S, =0}
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for j € N and we set ty = sup{k:7x < N}. We also set T; = 7; — 7;1 and of
course {7};j=12,.. is, under P, an i.i.d. sequence. By conditioning on 7 and in-
tegrating on the up—down symmetry of the random walk excursions, one easily
obtains the following expression for the constrained partition function:

LN

VAT E[H exp(¢ﬁj71]’[rj](rj —Tji_1)); Ty = N}
j=1

2.8

(2.8) L

N
=2 > [TME @ =10
k=1 to,...,tx €N j=l1
O=:tg<t1<---<ty:=N
where we have used the quantities introduced in (2.4) and (2.5). This formula
shows in particular that the partition function ZIC\L » 1s a function of the entries
of M®.
We stress that the algebraic form of (2.8) is of crucial importance. It will be

analyzed in detail and exploited in Section 3 and will be the key to the proof of
Theorem 1.2.

2.3. The regime w € . In this subsection, we look more closely at the depen-
dence of our main result (Theorem 1.3) on the boundary condition [N] = n. It is
convenient to introduce the subset & of charges defined by

(2.9) P ={0:8” <1,h,=0,3a, B: 4z # 0},

where we recall that &, and X, g have been defined respectively in (1.5) and (2.3).

The basic observation is that if w ¢ &, the constants pg, ,, pfo’,], Pw and gy
actually have no dependence on 1 and all take the same value, namely 1 if 2, > 0
and 1/2 if h, = 0 (see Remarks 5.3, 5.4, 5.7 and 5.8). The results in Theorem 1.3
for 6 < 1 may then be strengthened in the following way:

PROPOSITION 2.1. If w ¢ P, then the sequence of measures {Qﬁl\/,w} on
C ([0, 1]) converges weakly as N — oo. In particular, setting pe, := 1 if hy > 0
and pe = % if hy, = O:

(1) for8® < 1 (strictly delocalized regime), ng’ » converges to the law of m (Pe)
and QY , converges to the law of e®o);

(2) for §“ =1 (critical regime), ng, » converges to the law of B®) gnd Q‘I:V, ©
converges to the law of f®.

This stronger form of the scaling limits holds, in particular, for the two moti-
vating models of Section 1.1, the pinning and the copolymer models, for which w
never belongs to &. This is clear for the pinning case, where, by definition, £ =0,
while the copolymer model with 4, = 0 always has §* > 1, as we will prove in
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Appendix B. However, we stress that there do exist charges o (necessarily belong-
ing to &) for which there is indeed a dependence on [N] = 1 in the delocalized
and critical scaling limits. This interesting phenomenon may be understood in sta-
tistical mechanics terms and is analyzed in detail in [7].

3. Sharp asymptotic behavior for the partition function. In this section,
we are going to derive the precise asymptotic behavior of Z%,  and Z}f\, >+ iD par-
ticular, proving Theorem 1.2. The key observation is that the study of the partition
function for the models we are considering can be seen as part of the framework
of the theory of Markov renewal processes; see [2], Chapter VIL.4.

3.1. A link with Markov renewal theory. The starting point of our analysis
is equation (2.8). Let us call a function N x S x S5 (x,a, B) = Fyp(x) 20 a
kernel. For fixed x € N, F. .(x) is an S x S matrix with nonnegative entries. Given
two kernels F' and G, we define their convolution F x G as the kernel defined by

B (FxGap(x):=Y_ Y Fay(MGyp—y)=Y [F() Gx—yag,
yeNyeS yeN

where - denotes matrix product. Then, since, by construction, My g(x) = 0if [x] #
B — a, we can write (2.8) in the following way:

Z80= Z > Mt -...- M(N = ti—Dlow)

= t,...,trkeN
0<tl< <tg:=N

(3.2) -~
= > M0, (N,
k=1

where F*" denotes the n-fold convolution of a kernel F with itself (the n = 0 case
is, by definition, [F*O]a,ﬁ(x) = 1(g=a)1(x=0)). In view of (3.2), we introduce the
kernel

o.¢]
(3.3) Zap(n) =Y [M*]y p(n)

k=1
so that Z§, = Zjo),(n(N) and, more generally, Z_; o, = Zk),(n)(N — k),
k < N, where we have introduced the shift operator for k € N,

6r RS > RS, Ok = Cik1+8> B eS.

Our goal is to determine the asymptotic behavior as N — oo of the kernel
Z,5(N) and hence of the partition function Z . To this end, we introduce an im-
portant transformation of the kernel M that exp101ts the algebraic structure of (3.3):
we suppose that §° > 1 (the case §“ < 1 requires a different procedure) and set for
b > 0 (cf. [2], Theorem 4.6)

Ab (x) := My p(x)e™™
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Let us denote by A(b) the Perron—Frobenius eigenvalue of the matrix ), AZ’ 8 (x).
As the entries of this matrix are analytic and nonincreasing functions of b, A(b) is
analytic and nonincreasing too, hence strictly decreasing, because A(0) =4§“ > 1
and A(oco) = 0. Therefore, there exists a single value F,, > 0 such that A(F,) =1
and we denote by {¢y}«, {§4 }o the Perron—Frobenius left and right eigenvectors of
> Asf‘)ﬂ (x), chosen to have (strictly) positive components and normalized in such
a way that }_, £y&y = 1 (the remaining degree of freedom in the normalization is
immaterial). We then set

(34) Fa.p(x) = My g(x)eFox g_ﬁ

and observe that we can rewrite (3.2) as

E o0
(3.5)  Zgpn) = exp(Fwn)an, p(n)  where Uy p(n) =Y [ p(n).
k=1
The kernel Uy, g(n) has a basic probabilistic interpretation that we now describe.
Notice first that by construction, we have Zﬂ’ La,p(x) =1, thatis, I" is a semi-
Markov kernel (cf. [2]). We can then define a Markov chain {(Ji, Tx)} on S x N
by

(3.6) Pl(Jr+1, Te1) = (B, )|, T) = (@, y)] =T, p(x)

and we denote by P, the law of {(Jk, Tx)} with starting point Jy = o (the value
of Ty plays no role). The probabilistic meaning of Uy, g(x) is then given by

o.¢]
(3.7 Uap(n) =Y Po(T1+-+ Tk =n,Ji=p).

k=1
We point out that the process {tx }x>0 defined by 7o :=0 and 74 := 114 - -+ T} un-
der the law P, is what is called a (discrete) Markov renewal process (cf. [2]). This
provides a generalization of classical renewal processes since the increments {7}
are not i.i.d. but rather are governed by the process {J;} in the way prescribed
by (3.6). The process {Ji} is called the modulating chain and it is indeed a genuine
Markov chain on S, with transition kernel } .y ¢ g(x), while in general, the
process {7y} is not a Markov chain. One can view t = {1} as a (random) subset
of N. More generally, it is convenient to introduce the subset

(3.8) = U (wh BeS,
k>0:J,=P

so that equation (3.7) can be rewritten as

(3.9) Uy p(n) =Py (n € P).

This shows that the kernel Uy g(n) is really an extension of the Green function
of a classical renewal process. In analogy with the classical case, the asymptotic
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behavior of Uy, g(n) is sharply linked to the asymptotic behavior of the kernel I',
that is, of M. To this end, we notice that our setting is a heavy-tailed one. More
precisely, for every «, 8 € S, by (2.2), (2.5) and (2.4), we have
lim xs/zMa,ﬂ(x)
X—> 00
[x]=B—a
(3.10) o
CK%(l + exp(Za,p)) exp(w/(g)), if hy, =0,

= L =
“f cK%exp(a)fgo)), if hy > 0.

The rest of this section is devoted to determining the asymptotic behavior of
Uq,p(n) and hence of Z, g(n), in particular, proving Theorem 1.2. For conve-
nience, we consider the three regimes separately.

3.2. The localized regime (6° > 1). If * > 1 then necessarily F,, > 0. Notice
that } , 'y g(x) > 0, so that in particular the modulating chain {J;} is irreducible.
The unique invariant measure {vy }, is easily seen to be equal to {{4&q}-

Let us compute the mean u of the semi-Markov kernel I":

owi= Z vaaFa,ﬁ(x)= Z er_waé'aMa,ﬁ(x)fﬁ

a,BeSxeN o,BeSxeN
oA

—% S (0, OO)

b=F,

(for the last equality, see, e.g., [5], Lemma 2.1). We can then apply the Markov
renewal theorem (cf. [2], Theorem VIL.4.3) which in our periodic setting gives
. Vg
(3.11) 3 Iim Uypx)=T—.
X—>00 Iu/
[x]=p—«
By (3.5), we then obtain the desired asymptotic behavior:

(3.12) Zy.p(x) NEaCﬁEGXp(FM), x— 00, [x]=8—a,

and for « = [0] and B = 1, we have proven part (3) of Theorem 1.2, with Cain =
50471 T/

3.3. The critical case (° = 1). Inthis case, F, = 0 and equation (3.4) reduces
to

§
(3.13) Top(x) = My p(x)2L.
Ea
The random set t# introduced in (3.8) can be written as the union 7/ =
Ukzo{'f/fi }, where the points {r,f }k=0 are taken in increasing order, and we set
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Tk’8 = r,f 1 r,f} for k£ > 0. Notice that the increments {Tkﬁ } correspond to sums of
the variables {7;} between the visits of the chain {J;} to the state §: for instance,
we have

T =Tes1+ + T,
k:=inflk > 0: Jy = B}, £ :=inflk > k : Jy = B}.
Equation (3.6) then yields that {Tk’3 }k>0 1s an independent sequence under P, and
that for £ > 1, the variables Tk’g have the same distribution q’3 (n) = Pa(Tlﬂ =n)
that does not depend on «. In general, the variable Toﬁ has a different law,
q@P (n) =Py (T =n).

These considerations yield the following crucial observation: for fixed « and 8,
the process {‘L’f }k>0 under [P, is a (delayed) classical renewal process, with typical
step distribution ¢#(-) and initial step distribution ¢‘*#) (). By (3.9), Uy g(n) is
nothing but the Green function (or renewal mass function) of this process; more
explicitly, we can write

(3.14) Ug.p(x) = (q“’“’” * Z(q%*")(x»

n=0
Of course, ¢*# plays no role in the asymptotic behavior of Uy, g(x). The key
point is rather the precise asymptotic behavior of ¢# (x) as x — oo, x € [0], which
is given by
1
. Ca La,yéy >0,
Cpsp ;

as is proved in detail in Appendix A. The asymptotic behavior of (3.14) then fol-
lows by a result of Doney (cf. [10], Theorem B):

rl ] =
—, xX—> o0, [x]=F—«
2meg JVx
(the factor T2 is due to our periodic setting). Combining equations (3.5), (3.15)
and (3.16), we finally get the asymptotic behavior of Z, g(x):

2
(B.17)  Zgpx)~ = Salp ! x— 00, [x]=8—a.

27 ZV’V/ SyLy &y ﬁ’
Taking o = [0] and B = 1, we have the proof of part (2) of Theorem 1.2.

Bix)~ P —
(3.15) q" (x) 7 where cg :=

(3.16) Up.p(x) ~

REMARK 3.1. We point out that formula (3.15) is quite nontrivial. First, the
asymptotic behavior x 3/2 of the law of the variables Tlﬂ is the same as that of
the 7;, although Tlﬂ is the sum of a random number of the nonindependent vari-
ables (7;). Second, the computation of the prefactor cg is by no means an obvious
task (we stress that the precise value of ¢ is crucial in the proof of Proposition 5.5
below).
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3.4. The strictly delocalized case (5 < 1). We prove that the asymptotic be-
havior of Z g(x) when §“ < 1 is given by

-1 -1 1
Zop(x)~([(1=B)"'L(1—-B) ]a,ﬁ)3—/2,
(3.18) *
x—>o00,[x]=8—qa,

where the matrices L and B have been defined in (3.10) and (2.6). In particular,
taking « = [0] and 8 =1, (3.18) proves part (1) of Theorem 1.2 with

Co,y=[0=B) "L —B) o,
To start with, it is easily checked by induction that for every n € N,

(3.19) D Mg p(x) = [B"]a.p.

xeN

Next, we claim that, by (3.10), for every o, 8 € S,

k—1
(3.20) 3 lim M p(0) =Y [BT-L-BEDT] L
[x]=p—a i=0

We proceed by induction on k. The k = 1 case is just equation (3.10) and we have
that

x/2

M V) =3 (M) - M (x = y) + M(x = y) - M™ ()

y=1
(strictly speaking this formula is true only when x is even, however the odd x case
is analogous). By the induction hypothesis, equation (3.20) holds for every k <n
and, in particular, this implies that (23 M *"]a, g(xX)}ren 18 a bounded sequence.
Therefore, we can apply the dominated convergence theorem and using (3.19), we
get

: 3/2 1
= xlggo 3/ [M*(n+ )]ot,ﬂ(x)
[x]=p—«a
n—1 ) .
= Z(Ba,y M[B'-L- B(”_l)_’]y’ﬂ + La,y[B*n]y,,B>
Y
n

i=0
=>[B"-L-B" 'lap.
i=0

Our purpose is to apply the asymptotic result (3.20) to the terms of (3.5) and we
need a bound to apply the dominated convergence theorem. We are going to show
that

(3.21) Mg p(x) < CKO[B g
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for some positive constant C and for all «, 8 € S and x, k € N. We again proceed
by induction: for the k = 1 case, thanks to (3.10), it is possible to find C such that
(3.21) holds (this fixes C once and for all). Now, assuming that (3.21) holds for all
k < n, we show that it also does for kK = n (we suppose, for simplicity, that n = 2m
is even, the odd n case being analogous). We then have (also assuming that x is
even, for simplicity)

x3/2[M*2m]a,,g(x)
x/2
=23 Y M ey (NXPIM], p(x — y)
y=1yeS
x/2
<2:22Cm* Y 3 [IM*™ay ()[B™y.p < C2m)’[B*1a.p,
y=1yeS

where we have applied (3.19), and (3.21) is proved.

The r.h.s. of (3.21) is summable in k because the matrix B has spectral ra-
dius 8% < 1. We can thus apply the dominated convergence theorem to (3.5) using
(3.20) and we obtain (3.18) by

oo k—1
xll)ngo x3/2Za,,3(x) = Z Z[B’ L - B(k_l)"]a’ﬂ
[x]=B—«a k=1i=0

=[1=B)""L-(1=B) .
This concludes the proof of Theorem 1.3.

3.5. The free partition function. We now want to compute the asymptotic be-
havior of the free partition function. In particular, we have the following:

PROPOSITION 3.2 (Sharp asymptotic estimates, free case). As N — oo,
[N]=n, we have:

(1) for §% < 1 (strictly delocalized regime), ZlfV’ 0™~ C ;,1; /N1/2;

(2) for 8 = 1 (critical regime), Z}; , ~ C5-h;

(3) for 6® > 1 (localized regime), Z?,,w ~ C;g exp(Fy,N),

where C,, é ,C ;,1; and C}; 5 are explicit positive constants, depending on w and 1.

PROOF. Conditioning on the last zero of S before epoch N, we have the useful
formula

N
(3.22) ZY =27 ,P(N —1t)exp(Py, (N — 1)),
t=0
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where P(n) :==P(t; >n) =72, K(k) and

(3.23) D p(L) 1= log[%(l +exp(—Lhe + Za.8)) L= 1)1 (eep—a),

which differs from @ in not having the terms of interaction with the interface
[cf. (2.4)]. _
Since the asymptotic behavior of P (£) exp(®q, 5(£)) will be also needed, we set

Lopi= lim  VeP@)e®r®

{—o0,lef—a

_ {CK(I + exp(Zq,p)), if hy, =0,
CK, if hy, > 0,

(3.24)

as it follows easily from (3.23) and from the fact that P(£) ~ 2cg/ Vil as € — 0.
For the rest of the proof, we consider the different regimes separately.

The strictly delocalized case. Notice that
N—k

N'Y2ZY b0 = Zi i+ ON2P(N — k — 1) exp(Ppap, v (N — k — 1)),
t=0

By (3.24), we then obtain

o
(3.25) EINli_r)nooNl/zzlfV—kﬂkw = Ziitk1 O Lryg =10 — B) L.

Nen 1=0
since
o0 xR0 o
(3260 Y Zay =) > M 0)=) B}, =[U—B) ay.
t=0 t=0k=0 k=0
The critical case. For N enandk <N,
N—k _
Z koo =2 2 Zikly OO P(N —k — 1) exp(®y, (N —k —1)).
Y t=0

By the previous results and using (3.24), we obtain that for every k € N,
T (¢,L.,) /1 dt
2m (¢, L&) Jo t12(1—n)l/?
T (¢ L.y
=&~ :

2 (¢, L§)

where we denote the canonical scalar product in RS by (-, -):

@)= @aVa. @, Y RS

a€eS

3 lim Zf -
Ny Nk ko &[k]

(3.27)
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The localized case. By (3.22),
—F,N ~f
e ZN k6w

N—k

= ¢ FolN > Zigv—n(N —k — ) P(t) exp(®ry—r, (v (1))
t=0

N—k
=e Tk NN e TPl P(1)[exp(Dy vy (1D)e TN D Z L (N — k= 1)
yeS =0

Since, by (3.12), the expression in brackets converges as N — co and N € [¢]+ v,
we obtain

. — — T > — X
3 lim e F“’NZf\,_k’gkaE[k]e ka(—zze Fth(t)exp(QD%,?(t))gy).

N—o00
Nep yeSt=0

Observe that the term in parentheses is just a function of n. [J

4. A preliminary analysis of the polymer measure. In this section, we give
some preliminary material which will be used in Section 5 for the proof of the
scaling limits of our models. We are going to show that the core of the polymer
measure is encoded in its zero level set and that the law of the latter is expressible in
terms of the partition function. This explains the crucial importance of the partition
function for the study of Py .

We start by giving a very useful decomposition of P}, . The intuitive idea is
that a path (S,),<n can be split into two main ingredients:

e the family (7x)x=0,1,... of returns to zero of S (defined in Section 2.2);
o the family of excursions from zero (Siyv,_,:0 <i < T — Tk—1k=1,2,....

Moreover, since each excursion can be either positive or negative, it is also use-
ful to separately consider the signs of the excursions oy := sign(Sy,_,+1) and
the absolute values (ex (i) := |Si4r,_,|:i =0, ..., % — 1x—1). Observe that these
are trivial for an excursion with length 1: in fact, if 1z = tx—; + 1, then oz =0
and e;(0) = ex (1) = 0.

Let us first consider the returns (7i)x<,, under P?v, »» Where we recall the defin-
ition (y = supf{k: tx < N}. The law of this process can be viewed as a probability

measure P?v,w on the class of subsets of {1,..., N}: indeed, for A C {1,..., N},
writing

4.1) A={n,.... 14} O=:t9g<t;i <---<fja <N,

we can set

4.2) Pi.o(A) =Py (T =t i <uy).

From the definition (1.6) of P}, and from the strong Markov property of P, we
then have the following basic lemma:
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LEMMA 4.1. With the notation of (4.1), for A C{1,...,N} if a = c, then
pf\,’w(A) # 0 if and only if t| o) = N and, in this case,

|A]

7¢ HM[ti—l],[fi](li —ti-1),
N,w j=1

4.3) PY.o(A) =

while for a =f,

|Al

. 1

Pi.o(A) = f—[l_[ My 1,10 — fi—l)]
ZN,w i=1

4.4)

x P(N = tia)) exp(Pps 1, v1 (N — 1))

Thus the law of the zero level set is explicitly given in terms of the kernel

My g(n) and the partition function Z}, . The following two lemmas [that again
follow from definition (1.6)] show that condltlonally on the zero level set, the signs
are independent and the excursions are just the excursions of the unperturbed ran-
dom walk S under P. This shows that the zero level set is indeed the core of the
polymer measure P?v, ©

LEMMA 4.2. Conditionally on {in,(Tj)j<.y}, under P?V,w’ the signs
(01)k<iy+1 form an independent family. For k < iy, the conditional law of oy
is specified as follows:

o ifty =144 t4_1, then oy =0;
o if iy > 14 t3_1, then o} can take the two values +£1, with
1
1+ exp{—(tx — %—1ho + Zi5_i1[w])

4.5) Py (o =+1ln, (T)j<y) =

For a =f{, when 1, < N, there is a last incomplete excursion in the inter-
val {0, ..., N}, whose sign o,,y1 is also specified by (4.5), provided we set
Ty+1:=N.

LEMMA 4.3. Conditionally on {in,(Tj)j<iy,(0))j<iy+1}, the excursions
(ex(-))k<iy+1 form an independent family under P?v, - For k <1y, the conditional
law of ey (-) on the event {tx—1 = Lo, T = £1} is specified for f = (fi)i=0,....e;,—¢,
by

Py o(ex() = flin. (T)) j<uy» (0)) j<iy+1)
(4.6) :P(S,' :fl‘ii :0,...,31 —K0|Si >0:i= 1,...,31 —Eo— 1,

St,—to=0).
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For a =1, when 1,,, < N, the conditional law on the event {t,,, ={ < N} of the
last incomplete excursion e,y 41(-) is specified for f = (fi)i=o,..,.N—¢ by

wn Py o(ey+1() = flin, (T)) j<iy» (0)) j<iy+1)
' —PS;=fi:i=0,....,N—£|S;>0:i=1,...,N —¢).

We stress that Lemmas 4.1, 4.2 and 4.3 fully characterize the polymer measure
P - It is worth stressing that, conditionally on (7x)ien, the joint distribution of
(o j’, ej) j<iy does not depend on N. In this sense, all the N-dependence is con-
tained in the law pj; , of the zero level set. This fact will be exploited in the next
section.

5. Proof of Theorem 1.3 and Proposition 2.1. In this section, we show that
the measures P}, , converge under Brownian rescaling, proving Theorem 1.3 and
Proposition 2.1. The results and proofs closely follow those of [9] and we shall
refer to this paper for several technical lemmas; for the tightness of (Q7v, ) NeN
in C([0, 1]), we refer to [8].

LEMMA 5.1. For any w and a = c,f, the sequence (Q?v,w)NeN is tight
in C([0,1]).

Hereafter, we separately consider the three regimes 6 > 1, §“ < 1 and §“ = 1.

5.1. The localized regime (6 > 1). We prove point (3) of Theorem 1.3. By
Lemma 5.1, it is enough to prove that P‘;V’w(|X,N| >¢g) — 0 for all ¢ > 0 and
t € [0, 1] and one can obtain this estimate explicitly. We point out, however, that in
this regime, one can avoid using the compactness lemma and can obtain a stronger
result by elementary means: observe that for any k,n € N such that n > 1 and
k+n < N, we have

PY . (Sk = Skn =0, Sgpi #0fori=1,...,n—1)

_ 120+ exp(T (@) — o))
< =

n,0rw

(5.1
=: Ky (n),

and that this holds both for a = ¢ and a = f. Inequality (5.1) is obtained by us-
ing the Markov property of S both in the numerator and the denominator of the
expression (1.6) defining P}, , (-) after having bounded Z?v, » from below by in-
serting the event Sy = Sy, = 0. Of course, lim,_, 5, (1/n) log I?k(n) = —F,, uni-
formly in k [notice that I?HT(n) = fk(n)]. Therefore, if we fix ¢ > 0, by the
union bound, we obtain (recalling that {7;}; and (y were defined in Section 2.2),
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for some ¢ > 0,

P?\’,a)(. max T —tj—1 > (I +e)logN/Fw)
J

=1,2,...,ty

> > Ki(n)

k<N—(1+¢&)logN/F, n>(14+¢)log N/F,

<N Z max  Ki(n)
n>(14+¢)logN/F, k=0,....T—1

A

C
<—.
=ve

Let us start with the constrained case. Notice that P}, (dS)-a.s. we have
T,y = N and hence max <, T; — Tj_1 = max,—i,.. N |Sul, since [S,11 — S| < 1.
We then immediately obtain that for any C > 1/F,,,

(5.2) lim P?V,w( maxN [S,] > ClogN) =0,
n e

N—o0

)

which is, of course, a much stronger statement than the scaling limit of point (3)
of Theorem 1.3. If we instead consider the measure Pf\,’ »» the length of the last
excursion must also be taken into account; however, an argument very close to the
one used in (5.1) also yields that the last excursion is exponentially bounded (with
the same exponent) and the proof of point (3) of Theorem 1.3 is complete.

5.2. The strictly delocalized regime (6° < 1). We prove point (1) of Theo-
rem 1.3 and Proposition 2.1. We set, for € {1, ..., N},

Dy :=inflk=1,...,N:k>t, S =0},
G;:=sup{lk=1,...,N:k<t, Sy =0}

The following result shows that in the strictly delocalized regime, as N — oo, the
visits to zero under P, = tend to be very few and concentrated at a finite distance
from the origin if a =f and from 0 or N if a =c.

LEMMA 5.2. Ifd8% < 1, there exists a constant C > 0 such that for all L > 0,

limsup[PY, ,(Gy > L)+ P, ,(Gnj2 > L)+ P ,(Dyj2 <N —L)]

N—o00

<cL7'/2,

PROOF. We consider, for example, P?v,w(G N2 = L). Using Lemma 4.1 to
compute this probability, recalling definition (3.5) of the kernel Z, g(n) and using
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(3.18), we obtain

LN/2] N
M. 121z — X)Z . v (N = 2)
P?v,a)(GN/zzL): Z Z0.1x1 (%) Z [x],[z] > [111][ ]
x=L z=|N/2)+1 0,[N1(N)
LN/2] N
< C|N3/? Z £ 32 Z (z—x) 32N +1—7)32
x=L =|N/2]+1
=< CzL_l/2

for some positive constants Cy and C3, and the proof is complete. [

The signs. Since the zeros are concentrated near the boundary, to complete the
proof it is enough to argue as in the proof of Theorem 9 in [9]. More precisely, by
Lemma 5.2, for large N, the typical paths of Pj{,’ » are essentially made up of one
big excursion whose absolute value converges in law to the Brownian excursion
{er}teq0.1) for a = ¢ and to the Brownian meander {m; };¢[o,1] for a = { by standard
invariance principles (cf. [18] and [3]). Therefore, to complete the proof, we only
have to show the existence the limit (as N — oo along [N] = n) of the probability
that the process (away from {0, 1}) lives in the upper half-plane. In the general
case, we have different limits, depending on the sequence [N] =n andona =f, c,
while if w ¢ &, all such limits coincide.

We start with the constrained case. Given Lemma 5.2, it is sufficient to show
that

(5.3) 3 lim Py ,(Sny2 >0) =:p, -
N—o00 ’ ’
Nen
Formula (5.3) follows from the fact that
Py »(Sn2 > 0)
Yy ¥ Zo.0() g 5(y = X)Ma,p(y = 0)ZpN)(N — )
Zo,(N1(N) ’

a,BESx<N/2y>N/2

where for all z € Nand «, 8 € S, we set
1 .
1 +exp(—zhy + Zap)’

(5.4) Pap(@) =
see (4.5). By the dominated convergence theorem and by (3.10) and (3.26), we get

3 1im N2 3 3 Zoa(®)og 5 (v = )M p(y = 1)Zp (N = y)

NN_;;O x<N/2y>N/2

=[(1—B) " oack 3 exp(wy)[(1 = B)'1g..
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By (3.18), it then follows that (5.3) holds true with

(5.5) ¢ Zapl=B)oack(1/2) exp(@y)(1 - B) 1,
. pa),r] = [(l _ B)—IL(l _ B)_I]O,r] .

REMARK 5.3. Observe that by (3.10):

e if i, > 0, then in (5.5), the denominator is equal to the numerator, so that
P, , = 1 forall n;

e if 1, =0and ¥ =0, then in (5.5), the denominator is equal to twice the numer-
ator, so that pg, , = 1/2 for all n;

e in the remaining case, that is, if w € 2, then in general, pgw depends on 7.

Let us now consider the free case. This time, it is sufficient to show that
. f . f
(5.6) EINh_I)nOOPN,a)(SN >0) =: Py, -
Nen
However, we can write

Pl (Sh>0=> >

@ x<N

and by using (3.22), (3.26) and (3.24), we obtain that (5.6) holds with

Zo,a(x) - (1/2)P(N — k)
Zf
N,w

pf — Za[(l - B)_IN]O,oeCK
@ [(1—B)~'Llo,y

(5.7)

REMARK 5.4. Again, observe that by (3.24):

e if i, > 0, then in (5.7), the denominator is equal to the numerator and p{w =1
for all n;

e if i, =0and ¥ =0, then in (5.7), the denominator is equal to twice the numer-
ator, so that pgw =1/2 for all n;

e in the remaining case, that is, if w € &, the in general, pgw depends on 7 and is
different from pg, , .

The proof of point (1) of Theorem 1.3 and Proposition 2.1 is then concluded.

5.3. The critical regime (§° = 1). We prove point (2) of Theorem 1.3 and
Proposition 2.1. As in the previous section, we first determine the asymptotic be-
havior of the zero level set and then pass to the study of the signs of the excursions.
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The zero level set. We introduce the random closed subset A%, of [0, 1] de-
scribing the zero set of the polymer of size N rescaled by a factor 1/N:

P(AY =A/N)=p} ,(A),  AC{0,....N};

recall (4.2). Let us denote by F the class of all closed subsets of RT := [0, +00).
We are going to impose on F a topological and measurable structure so that we
can view the law of A% as a probability measure on ¥ and can study the weak
convergence of A}

We endow F with the topology of Matheron (cf. [21] and [12], Section 3)
which is a metrizable topology. To define it, we associate to a closed subset
FC R* the compact nonempty subset F of the interval [0, /2] defined by
F := arctan(F U {+o00}). The metric p(-, -) we introduce on F is then

(5.8) p(F,F):= max{supd(t, F'), sup d(t', ﬁ)}, F,F e F,
teF t'eF’

where d(s, A) :=inf{|t — s|,t € A} is the standard distance between a point and
a set. The r.h.s. of (5.8) is the so-called Hausdorff metric between the compact
nonempty sets F, F’.

Thus, by definition, a sequence {F},}, C ¥ converges to F' € ¥ if and only if
p(Fy,, F) — 0. This is equivalent to requiring that for each open set G and each
compact K C RT,

FNG#2 = F,NG#  eventually,
(5.9)
FNK=09 — F,NK = eventually.

Another necessary and sufficient condition for F,, — F is thatd(¢, F;,) —> d(t, F)
for every t e RT.

This topology makes ¥ a separable and compact metric space [21], Theo-
rem 1-2-1, in particular, a Polish space. Endowing ¥ with the Borel o -field, we
have that the space M {(F) of probability measures on ¥ is compact with the
topology of weak convergence.

The crucial result is the convergence in distribution as N — oo of the random
set A% toward the zero set of a Brownian motion for a = f or of a Brownian bridge
fora =c.

PROPOSITION 5.5. If§® =1, then as N — 00,
(5.10) Al = {r€[0,1]:B(t) =0},
(5.11) Ay = {tel0,1]:8()=0}.
The proof of Proposition 5.5 is achieved by comparing the law of A‘;\, and A%,

with the law of a random set &R defined as follows. With the notation introduced
in Section 3.1, we introduce the rescaled random set Ry :

Ry :=range{r;/N,i >0} =1/N C R
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under P[g). Notice that for any A = {r1,...,74/} C{l,..., N}, we have (setting
to:=0)

Proj(r N{L,....,N}=A)
(5.12)

|A] £
[1141]
= |:H M[ti—l]»[ti](ti - ti—l):| Qt|A|(N - tlAl) - )
Pl §10]

where Q4 (1) 1= 34 Yoo i1 Tap(s).

The key step in proving Proposition 5.5 is given by the following lemma whose
proof uses the theory of regenerative sets and their connection with subordinators;
see [12].

LEMMA 5.6. The random set Ry converges in distribution to {t > 0: B(t) =
0}.

PROOF. Recalling the definition (3.8) of 78, we introduce the random set
{R[’i, :=range{ty /N :k >0, Ji=B}=1P/N, B €S,

under Ppoj. Notice that Ry = Ug {Rf, We divide the rest of the proof into two
steps.

Step 1. This is the main step: we prove that the law of Rl‘i, converges to the
law of {t > 0: B(¢t) = 0}. For this, we follow the proof of Lemma 5 in [9]. Let
{P(t)};>0 be a Poisson process with rate y > 0, independent of (Tiﬂ)izo. Then
oy = [Tl’g 4+ 4 Tl’f(t)] /N is a nondecreasing right-continuous process with inde-
pendent stationary increments and oo = 0, that is, o = (0;);>¢ is a subordinator.
By the standard theory of Lévy processes, the law of o is characterized by the
Laplace transform of its one-time distributions,

E[exp(—Ao1)] = exp(—1¢n (1)), 2=0,1=0,

for a suitable function ¢y : [0, 00) — [0, 00), called the Lévy exponent, which has
a canonical representation, the Lévy—Khinchine formula (see, e.g., (1.15) in [12]):

on (M) = f( . )(1 — e YyPTP /N eds) =y Y (1 — exp(—rn/N))gP ().
»00 n=1

We denote the closed range {o; : ¢ > 0} of the subordinator o by ﬁfi, Then, fol-
lowing [12], ﬁg is a regenerative set. Moreover, .Rﬁ, = Toﬁ /N + ﬁg

Notice now that the law of the regenerative set ﬁf, is invariant under the change
of time scale o; —> o, for ¢ > 0 and, in particular, independent of y > 0. Since
¢n —> c¢n under this change of scale, we can fix y = yy such that ¢pn (1) =1
and this will hereafter be implicitly assumed. Then, by Proposition (1.14) of [12],

the law of ﬁﬁ, is uniquely determined by ¢y .
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The asymptotic behavior of ¢# given in (3.15) easily yields ¢y (1) — A1/? =
Dpy(A) as N — oo. It is now a matter of applying the result in [12] Section 3,
to obtain that ﬁg converges in law to the regenerative set corresponding to ®pgyy.

However, by direct computation, one obtains that the latter is nothing but the zero
level set of a Brownian motion, therefore ﬁl’i, = {t € [0, 1]: B(¢) = 0}. From the
fact that Toﬂ /N — 0 a.s., the same weak convergence for Rf, follows immediately.

Step 2. Notice that Ry = g {Rﬁ is the union of nonindependent sets. There-

fore, although we know that each .Rg converges in law to {t > 0: B(¢) =0}, it is
not trivial that R converges to the same limit. We start by showing that for every
positive ¢ > 0, the distance between the first point in R, after ¢ and the first point

in ﬁfi, after ¢ converges to zero in probability. More precisely, for any closed set
F C [0, c0), we set

(5.13) di(F) :=inf(F N (¢, 00))

and we claim that for all @, B e Sand ¢t > 0, |d;(R};) — d,(ﬁf,ﬂ — 0 in probabil-

ity.
Recalling (3.14) and the notation introduced there, we can write, for all € > 0,

Proy(di (RY) > dz(ﬂ )+€)

[Nt] 00 00
=YY Uy» Y. q"Pwr Y ¢PPw.
v y=0 z=|Nt]—y+1 w=|Ne¢]

Arguing as in the proof of (3.15), it is easy to obtain the bound ¢%% (w) <
Ciw™/? and by (3.16), we have Up,,, (y) < C2y~"/2, with Cy, C; positive con-
stants. Therefore,

Pjo) (dz(!R“ ) > dy(RR) +¢)

t/T
N1/2 (_/ /t })/TdZ/ dw Y172 3/2w3/2>

for some positive constant C3, having used the convergence of the Riemann sums
to the corresponding integral. The same computations can be performed where «
is exchanged with g, hence the claim is proved.

Now, notice that d; (R N) minges d; (RY;) and since S is a finite set, we also
have that |d;(Ry) — d; (R N)| — 0 in probability for any fixed § € S. Since we
already know that J%ﬁ, converges weakly to the law of {r > 0: B(¢) = 0}, the anal-
ogous statement for Ry follows by standard arguments. More precisely, let us
look at (Ry, Rg) as a random element of the space ¥ x ¥ : by the compactness

of ¥, it suffices to take any convergent subsequence (R, , R,’?n) = (B, ¢) and
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show that P(*8 # €) = 0. However, we can write
B£e=J JUd(B) —d(©)| > 1/n}
teQt neN

by the right-continuity of ¢ — d; and, by the portmanteau theorem, we have

Pioj(1di (B) — di(€)| > 1/n) < limsup Pjoj(|d; (Ry) — dz(ﬁg)l >1/n)=0
N—o0

because |d;(Ry) — d,(ﬁf,ﬂ — 0 in probability. [

PROOF OF PROPOSITION 5.5: EQUATION (5.11). First, we compute the

Radon-Nikodym derivative fy of the law of A% N[0, 1/2] with respect to the law

of R)/* := Ry N[0, 1/2], using (4.3) and (5.12). For F = {1;/N,...,1/N} C

[0,1/2] with 0 =: 19 < #; < --- < #; integer values, the value of fy at ,7?]1\,/2 =F

depends only on g12(F') and is given by

Snn/a Misim (0 = 10 Zim. (N —n) &

fn(g12(F) = fy(t/N) =

Zo,(NY(N) Q1 (N /2 — 1) )
where for any closed set ' C [0, 00), we set
(5.14) g (F) :=sup(F N[O, r]).

By (3.17), for all ¢ > 0 and uniformly in g € [0, 1/2 — €],

[LENvg (T2/ Q) G/ (6 LENT ™ [o 2y~ 12 (1 — y — )72 dy
(T2/(27)) Eolin (¢ LENT (ILE ling1/Enen2(1/2 — )~ 1/
&0
&[N

JI2
=1_4 =:r(g).
-8

If ¥ is a bounded continuous functional on ¥ such that W(F) = W(F N
[0,1/2]) for all F € ¥, then setting Zp :={t € [0,1]: B(t) =0} and Zg :={r €
[0, 1]: B(¢) = 0}, we get

E[W(Zp)] =E[V(Zp)r(g1/2(ZB))];

see formula (49) in [9]. By Lemma 5.6 and the asymptotic behavior of fy,, we
obtain

Iy~

N—o0

E[W (AS)] = E[W (R ) £5 (812 (RN N —° E[W(Zp)r (81/2(Z5))]
=E[W(Zp)],

that is, A% N[0, 1/2] converges to Zg N[0, 1/2]. Notice now that the distribution of
the random set {1 —7:¢ € A N[1/2, 1]} under Pf\,’ » 18 the same as the distribution
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of A% N[0, 1/2] under Pﬁ\,@, where w(;] := w;ny—i]. Therefore, we obtain that
AG N[1/2, 1] converges to Zg N [0, 1/2] and the proof is complete.

PROOF OF PROPOSITION 5.5: EQUATION (5.10). By conditioning on the last
zero, from (4.3) and (4.4), we see that if W is a bounded continuous functional
on ¥, then

N c
k Z ~
E[\I!(Ag\,)] = Z E| W ( —A) ko P(N — k) exp(Pp),(N)(N — k).
N zf
k=0 N,w

We denote by B a Brownian bridge over the interval [0, 7], that is, a Brownian mo-
tion over [0, 7] conditioned to be 0 at time 7, and we set Zgr := {s € [0, 7]: Bl(s) =
0} 4 tZg. By (5.11), it follows that if k/N — ¢, then the random set %Az con-
verges in distribution to Zg:. Then, applying (3.17) and (3.27), we obtain, as
N — oo along [N]=n,

N k 7¢ 5 -
E[WAD] = Y ) l(ke},)E[\IJ<NAz>} Zlf* P(N —k)exp(®,.,(N —k))

k=0 Y N,w
1 1
lT_z 504')/ ~z,n
7T 2 (8, LE) §(T/2)(¢, L.p) /{5, LE)
= E[W(Zp)].

Since the result does not depend on the subsequence [N] = 5, we have indeed
proven that ,A)‘;V converges in distribution to Zp. [

The signs. In order to conclude the proof of point (2) of Theorem 1.3 and
Proposition 2.1 in the critical case (§“ = 1), we closely follow the proof given in
Section 8 of [9]. Having already proven the convergence of the zero level set, we
only have to paste the excursions (recall Lemmas 4.2 and 4.3). The weak conver-
gence under diffusive rescaling of e;(-) for k <y toward the Brownian excur-
sion e(-) and of the last excursion e, 41 (-) for a = f toward the Brownian meander
m(-) has been proven in [18] and [3], respectively. It then only remains to focus on

the signs.
We start with the constrained case: we are going to show that for all ¢ € (0, 1),
(5.15) 3 lim P§ ,(Sin) > 0) = po,
N—oo ’

and that the limit is independent of ¢. We point out that we should actually fix the
extremities of the excursion embracing ¢, that is, we should rather prove that
Nli—r>nooP5V’w(SLtNJ >0|G;n)/N €(a—e¢,a), D;n)/N € (b,b+ 8))
(5.16)
== pa),
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for a <t < b and ¢ > 0 (recall the definitions of G; and D; in Section 5.2), but in
order to lighten the exposition, we will stick to (5.15), since proving (5.16) requires
only minor changes.

We have, recalling (5.4),

Py o (Siny > 0)
Yy ¥ Z0.0(X) g g (y = X)Mo g (y — X)Zp (N1 (N — y)
Zo,(N1(N) '

a,Bx<[tN]y>|tN]

By the dominated convergence theorem and by (3.17),

3 lim N2 3" 3 Zou(0)pd g (v — X)Map(y — x)Zp 5 (N — y)
N—oo ’
x<[tN]y>|[tN]

Nen
_Lr : 3 af T2\ Eobaply 1 O
_ﬁ/o dx/; dy[x(y —x)°(1 —y)] (Z) mclgiexp(wﬂ );
see (3.10). We obtain that (5.15) holds with

 Yaplack(1/2)exp(of)ss

B (¢, LE) ‘

REMARK 5.7. Observe the following. By (3.10):

(5.17) Pw:

e if i, > 0, then in (5.17), the denominator is equal to the numerator so that
Pow=1;

e if 1, =0, and ¥ = 0 then in (5.17), the denominator is equal to twice the nu-
merator so that p, = 1/2.

Let us now consider the free case. We are going to show that for all ¢ € (0, 1],

(1 2arcsinﬁ) +2arcsin\/f
T

: f
Jim Py, (Sivy > 0) = Po+ Qo

[Nl=n
(5.18) .
=Dy, (1),

where p,, is the same as above [see (5.17)], while g, ; is defined in (5.19) be-
low. We again stress that we should actually fix the values of G|;y; and D,y
as in (5.16), proving that the limiting probability is either p,, or g, , according
to whether D|;,y| < N or D|;n; > N, but this will be clear from the steps below.
Formula (5.18) follows from the fact that

Pl o (Sivy > 0)

=2 > 2

a,Bx<[tN]y>|[tN]

Zo.a(0) g (y = )Map(y =) Ziy_, 4,

f
ZN,w
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Z, a(x),Oa (N —x)P(N — x)exp(Ppy), [N](N—X))
+Z Z = Zf

o x<|tN]

Letting N — oo with [N] = n, by (3.27), the first term in the r.h.s. converges to

! dx T éOé‘a
/o x1/2/ (y—x)3/2 Z T227(¢, LE)

1
X K3 exp(w (0))

Ep(T/2)(¢, L., n) (¢, L§)
(¢, L§) &(T/2)(¢. L.y)

(1 2 arcsin ﬁ)
b4

‘pa)a

while the second term converges to

/, de L Tl &LE)
0 XI2(1—x)2T & 27 (¢, L&) X &(T/2)(¢. L..,)
2arcs1n\[ CK ZV é’y
7 (. L)

Therefore, we obtain (5.18) with

CK Zy é‘]/

5.19 w.n = "~ .
( ) Qw,n <§,L.,n>

REMARK 5.8. We observe that, by (3.24):

e ifh,>0,orif h,=0and X =0, thenpw 77(t)_qa,n_pwforalltandn,
¢ in the remaining case, that is, if € &, in general, pw »(t) depends on ¢ and 7.

Now that we have proven the convergence of the probabilities of the signs of
the excursion, in order to conclude the proof of point (2) of Theorem 1.3 and
Proposition 2.1, it is enough to use the excursion theory of Brownian motion. For
the details, we refer to the proof of Theorem 11 in [9]. [

APPENDIX A: AN ASYMPTOTIC RESULT

In this appendix we will to prove that equation (3.15) holds true, but we first
need some preliminary notation and results.

Given an irreducible T x T matrix Qq g with nonnegative entries [22], its
Perron—Frobenius eigenvalue (= spectral radius) will be denoted by Z = Z(Q)
and the corresponding left and right eigenvectors (with any normalization) will be
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denoted by {¢y}, {£4}. We recall that ¢, &, > 0. Being a simple root of the charac-
teristic polynomial, Z(Q) is an analytic function of the entries of Q, and

(A.1) B_Z:ﬁ

004, (£, 6)
Hence, Z(Q) is a strictly increasing function of each of the entries of Q.
Now, let O denote the transition matrix of an irreducible, positive recurrent
Markov chain and let us introduce the matrix Q) and the vector (), defined by

(0D, 5= Quplipzr),  [07], = L=y

By monotonicity, z(QW) < z(Q) = 1 for all y. We can then define the geometric
series
o0

(1— Q(y))—1 — Z(Q(y))k_
k=0
The interesting point is that, for every fixed y, the vector o > [(1 — Q)1 1y
is (a multiple of) the left Perron—Frobenius eigenvector of the matrix Q. Similarly,
the vector o — [(1 — QW))~1. Qla,y is (a multiple of) the right Perron—Frobenius
eigenvector of Q. More precisely, we have

(A2) [(1 - Q(y))—l]y’a = :_“, [(1- Q(V))_1 0], =1L
v

where {v,} is the unique invariant law of the chain, that is, >, vy Oy, g = vg and
>« Vo = 1. Equation (A.2) can be proven by exploiting its probabilistic interpre-
tation in terms of the expected number of visits to state o before the first return to
site y; see [2], Section 1.3.

Next we turn to our main problem. We recall, for convenience, the notation
introduced in Sections 3.1 and 3.3. The process {tx}x>0 where 7o =0 and 7} =
T1 4+ - - -+ Ty is a Markov renewal process associated with the semi-Markov kernel
[,y (n) [defined in (3.13)] and {Ji}x>0 is its modulating chain. We denote by
Pg the law of {(Ji, T¢)}xk>0 with starting point Jo = B and we set £ := inf{k >
0:Jr =pB}. qﬁ (x) then denotes the law of 7, under Pg and we want to determine
its asymptotic behavior.

We anticipate that the notation is necessarily quite involved, but the basic idea
is simple. By the periodic structure of the kernel T, it follows that ¢# (x) is zero if
[x] # 0. On the other hand, when [x] = [0], by summing over the possible values
of the index ¢ and using equation (3.6), we obtain

P () =Pg(r1 =x, 1 =)

o0
(A.3) + Y PpJi #B:1<i <k, Jig1 =B, Tks1 = X)
k=1

WK

((CP) 5 1) 500,

k=0
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where we have introduced the kernel F(’8 ) (x) := Tg,y (X)L 2p) that gives

the law of the steps with index k < £. Looking at (A.3), we set Va,y(x) =
>, #B)y*ky, . (x) and we can write

A4 P =(VPxD), 0= Z VPl px = y).
yeSy=0

The asymptotic behavior of ¢# (x) can be extracted from the above expression.
To this end, we need to know both the asymptotic behavior as n — oo and the sum

over n € N of the two kernels I, g(n) and Vﬁ(ﬂ y) (n) appearing in the r.h.s.

e By (3.13) and (3.10), as n — oo along [n] = § — y we have

o~

Ly -~ §
(A.5) Typ)~ 35,  where L, gi=Lyz-".
n &y
Moreover, the sum over n € N gives
3
(A.6) Y Typn)=B, - L=Byy.
neN s

e For the asymptotic behavior of the kernel V#) := Z,CC’OZO(F(/S))*]‘ , We can ap-
ply the theory developed in Section 3.4 for the case §“ < 1 because the matrix
Y reN Féﬂ)), (x) is just [E(ﬂ)]a,y by (A.6) (we recall the convention [Q(ﬁ)]a,y =
Qu,y1(y2p) for any matrix Q) which has Perron-Frobenius eigenvalue strictly
smaller than 1. Since

n—oo,[nl=y—a,

we can apply (3.18) to obtain the asymptotic behavior as n — oo, [n] =« — y:

1

~ 1= 5 —1
(A7) Vaym ~ (1= BP)"LP = BD) ], )75

On the other hand, for the sum over n € N, an analog of (3.19) yields

(A-8) S Vb= [(B®],, =[0-B")"],,.
neN k=0

As equations (A.5) and (A.7) show, both kernels V# and I have an n~3/? tail.
From (A.4), it then follows that as x — oo along [x] =0,

qﬁ<x>~z{(zv,s%)rmm+v,;é;<x>(2ry,ﬁ<n>)}.

yeS \neN neN
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It now suffices to apply (A.8), (A.5), (A.7) and (A.6) to see that, indeed, qﬂ (x) ~
cp /x3/2 as x — 0o along [x] = 0, where the positive constant cg is given by

SEn-1 7 SEn-1 7 SEn-1 7
cp= [(1 _ B(ﬁ)) 'L]ﬁ,ﬂ + [(1 _ B(ﬂ)) LB, (1 _ B(,B)) . B]ﬂ,ﬂ

Using the fact that [(1 — B»)~!. B]g g = 1, which follows from (A.2) applied to
the matrix Q = B, we can rewrite the above expression as

Cﬁ=[(1—§(ﬁ))_1L (1 B(,B)) IBﬂ__ Z va wy
ayeS

where {1y }q is the invariant measure of the matrix B and the second equality again
follows from (A.2). However, from (A.6) it is easily seen that {v,} = {{4&x} and
recalling the definition (A.5) of L, we finally obtain the expression for cg given in
equation (3.15):

(A9) cp=

Z;a ay &y

APPENDIX B: A LOCALIZATION ARGUMENT

Cﬂé

Let us give a proof that for the copolymer near a selective interface model,
described in Section 1.1, the charge w never belongs to & [see (2.9) for the defin-
ition of $#]. More precisely, we will show that if 4, =0 and X £ 0, then 6* > 1.
That is, the periodic copolymer with zero-mean, nontrivial charges is always lo-
calized. As a matter of fact, this is an immediate consequence of the estimates on
the critical line obtained in [5]. However, we want to give here an explicit proof,
both because it is more direct and because the model studied in [5] is built over
the simple random walk measure, corresponding to p = 1/2 with the language of
Section 1, while we consider the case p < 1/2.

We recall that, by (A.1), the Perron-Frobenius eigenvalue Z(Q) of an irre-
ducible matrix Q is increasing in the entries of Q. We also point out a result proved
by Kingman [19]: if the matrix Q = Q(¢) is a function of a real parameter ¢ such
that all the entries Qy g(7) are log-convex functions of ¢ [i.e., t > log Qy g(t) is
convex for all «, 8], then ¢ — Z(Q(t)) is also a log-convex function of ¢.

Next, we come to the copolymer near a selective interface model: with reference

to the general Hamiltonian (1.3), we are assuming that a)(o) = w’(10) Oand i, =0
[where h,, was defined in (1.5)]. In this case, the integrated Hamiltonian ®4 g(¢)
[see (2.4)] is given by

B 2(0) = 0, if¢=1lorl¢p—a,
o p(6) = 10g[%(1 + exp(Zq,p))]. if¢>1andfepB —a.

We recall that the law of the first return to zero of the original walk is denoted by
K () [see (2.1)] and we introduce the function g : S — R™ defined by

qv):= ) K&

xeN,[x]=y
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[notice that Zy q(y) = 1]. The matrix By g defined by (2.6) then becomes

1 +exp(Za.p))q (B — o),

B.1 By g = if B —a #[1],
D o K1)+ 5(1+exp(Zaat1) - (g1 — K (1)),
if B —a=[1].

By (2.7), to prove localization, we must show that the Perron—Frobenius eigenvalue
of the matrix (By,g) is strictly greater than 1, that is, Z(B) > 1. Applying the
elementary convexity inequality (1 4+ exp(x))/2 > exp(x/2) to (B.1), we get

exp(Za,5/2)q (B — )

(B.2)  Bup=Bap:= K (1) +exp(Za,a+111/2) - (g([1D) — K (1))
if B—a=[1].

By hypothesis, Xy, g, # 0 for some g, By, therefore the inequality above is
strict for ¢ = ag, B = Bp. We have already observed that the Perron—-Frobenius
eigenvalue is a strictly increasing function of the entries of the matrix, hence
7z(B) > Z(E). Therefore, it only remains to show that Z(E) > 1 and the proof
will be complete.

Again, an elementary convexity inequality applied to the second line of (B.2)
yields

(B.3) Bup > Bop :=exp(c(B —a)Za.5/2) - q(f — ),
where
1, ity #[1],
c(y):=1{ 9D - K1) £ — 1
oy tr=tl

We will prove that z(B) > 1. Observe that by setting vy := X[0],o» WE Can write
Xo,p = 2(01,p — L0}« = VB ~ Va-
We then make a similarity transformation via the matrix Ly, g := exp(vg/2)1(g=q),
getting
Cap=I[L-B-L " gp=exp((c(B—a)—1)Zep/2) q(B —a)
= exp(dZa,a+111(g-a=1)) -9 (B — @),

whEre we have introduced the constant d := —K(1)/(2¢g([1])). Of course,
Z(B) = z(C). Also, notice that by the very definition of ¥, g, we have Xy o4[1] =

((xjr][)l] — wéil[)l], hence the hypothesis A, = 0 yields }_,cs(Zq. a+117) = 0.
Thus we are finally left with the task of showing that Z(C) > 1, where Cy g is

an S x S matrix of the form

Co,p = exp(Wal(p—o=1)) - q(B — @), where Y we =0, q(y)=1.
o v

w
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To this end, we introduce an interpolation matrix

Ca,p(t) :=exp(t - wol(p—a=1)) - q(B — @),

defined for ¢ € R, and notice that C(1) = C. Let us denote by n(¢) := Z(C(t)) the
Perron—Frobenius eigenvalue of C(¢). As the entries of C(¢) are log-convex func-
tions of z#, it follows that n(¢) is also log-convex, therefore in particular, convex.
Moreover, n(0) = 1 [the matrix C(0) is bistochastic] and using (A.1), one easily
checks that %n(t)l,zo = 0. Since, clearly, n(¢) > 0 for all r € R, by convexity, it
follows that, indeed, n(z) > 1 for all + € R and the proof is complete.
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