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BOUNDED SOLUTIONS TO BACKWARD SDE’S WITH JUMPS FOR
UTILITY OPTIMIZATION AND INDIFFERENCE HEDGING

BY DIRK BECHERER

Imperial College, London

We prove results on bounded solutions to backward stochastic equations
driven by random measures. Those bounded BSDE solutions are then applied
to solve different stochastic optimization problems with exponential utility in
models where the underlying filtration is noncontinuous. This includes re-
sults on portfolio optimization under an additional liability and on dynamic
utility indifference valuation and partial hedging in incomplete financial mar-
kets which are exposed to risk from unpredictable events. In particular, we
characterize the limiting behavior of the utility indifference hedging strategy
and of the indifference value process for vanishing risk aversion.

1. Introduction. A prominent stochastic control problem in stochastic fi-
nance is the utility maximization problem, where the objective is to maximize
by optimal investment the expected utility from future wealth. Another problem
is the valuation and hedging of contingent claims in incomplete markets. Here the
task is to determine jointly a suitable notion of dynamic valuation and an optimal
partial hedging strategy such that both are consistent with no-arbitrage theory. The
utility indifference approach combines the two aforementioned problems and has
recently attracted a lot of interest. Because of many recent publications on this ap-
proach, we refrain from giving yet another survey on the topic and the literature,
but refer for introductions with more comprehensive references to the articles by
Fittelli [11], Delbaen et al. [8], Becherer [2] and Mania and Schweizer [21]. In
this article, we obtain solutions for the exponential utility maximization problem
under an additional liability, both on the primal and on the dual level, and for the
utility indifference valuation and hedging problem in a financial market model that
permits for nontradable risk from unpredictable events. This event risk can involve
both the nonpredictable time of an event and a possibly nonpredictable event size.
An example is provided by the jump times and sizes of a marked point process.
In such a model, we obtain limiting results for vanishing risk aversion for both the
dynamic utility indifference value process and for the corresponding indifference
hedging strategy. Typical areas of application may be models from the areas of
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credit risk or from insurance, where doubly marked point processes are commonly
used to model the occurrence and size of default or insurance losses.

Our main mathematical means to solve these optimization problems are results
on backward stochastic equations (BSDEs) with jumps, which are derived in the
first part of the paper. BSDEs are generally known to be useful for studying prob-
lems in mathematical finance (see [9]), but have been mainly used in continuous
settings thus far. Broadly, BSDEs can describe optimality equations from dynam-
ical programming; this is similar to the familiar Hamilton–Jacobi–Bellman equa-
tions, but more general in that BSDEs can also cover non-Markovian situations.
The second part of the paper shows how the solutions to our two stochastic op-
timization problems with exponential utility can be described explicitly in terms
of our BSDE solutions. Our incomplete market framework does not necessitate
the underlying filtration to be continuous, but allows for noncontinuous martin-
gales and nonpredictable stopping times; this motivates the first contribution of
the paper on BSDEs that are driven by a Brownian motion and a random measure.
Building on results of Tang and Li [24] and Barles, Buckdahn and Pardoux [1], we
derive existence, uniqueness and continuity results for bounded solutions to such
BSDEs when the generator possesses a certain monotonicity. This extends previ-
ous results on square integrable solutions to solutions with more integrability and
with a possibly nonhomogeneous random measure, making them amendable to the
subsequent applications.

Our second contribution is the solution, by an application of our BSDE results,
of the two aforementioned exponential utility optimization problems in a model
with nonpredictable jump risk. The articles by Rouge and El Karoui [22], Hu,
Imkeller and Müller [14] and Mania and Schweizer [21] are closely related to
this part of of paper. While their framework basically covers continuous filtra-
tions, the prime example being the Brownian filtration, the present paper works
in a setting with random measures which allows the modeling of risk from non-
predicable events. We moreover characterize the limit of the indifference hedging
strategy for vanishing risk aversion; this complements a recent result by Mania
and Schweizer [21] for continuous filtrations, and our analysis shows how a ran-
dom measure component in the BSDE provides the natural means to solve simi-
lar problems in the presence of unpredictable jump risk. Another contribution is
the method of proof which derives the solution to our optimization problems di-
rectly from our existence and uniqueness results for bounded BSDEs with random
measures. Having proven existence and uniqueness of a suitable BSDE solution,
we can employ the martingale optimality principle to solve the (primal) optimal
stochastic control problems directly. This is more in the spirit of the work by
Rouge and El Karoui [22] and Hu, Imkeller and Müller [14], whereas Mania and
Schweizer [21] derive existence and uniqueness for their specific BSDEs from the
given existence of optimal solutions, ensured by duality results of Kabanov and
Stricker [16]. By continuity results for BSDEs with jumps, we obtain the asymp-
totic behavior of the solution to the indifference valuation and hedging problem
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for vanishing risk aversion. The limit corresponds to risk minimization under the
minimal entropy martingale measure.

The paper is organized as follows. Section 2 establishes the general framework,
assuming the existence of a stochastic basis carrying a Brownian motion and a
compensated integer-valued random measure that possess a weak predictable rep-
resentation property. Section 3 derives existence, uniqueness and continuity results
for bounded solutions of BSDEs with jumps whose generator may not satisfy the
usual global Lipschitz condition. Section 4 applies these results to study the ex-
ponential utility maximization problem with an additional liability and the utility
indifference valuation and hedging problem.

2. Framework and preliminaries. This section sets out the notation and the
assumptions that are supposed to hold in the sequel.

We start with a stochastic basis (�,F ,F,P ) with a finite time horizon T < ∞
and a filtration F = (Ft )t∈[0,T ] satisfying the usual conditions of right continu-
ity and completeness, such that we can and do take all semimartingales to have
right continuous paths with left limits. For simplicity, we assume that F0 is trivial
and F = FT . Conditional expectations with respect to Ft (and P ) are denoted by
Et [·] = EP

t [·]. On this stochastic basis, let W = (Wt) be a d-dimensional standard
Brownian motion and let µ denote an integer-valued random measure

µ(dt, de) = (
µ(ω,dt, de)|ω ∈ �

)
on ([0, T ] × E,B([0, T ]) ⊗ E) with compensator

ν := νP (dt, de)

under P , where E := R
�\{0} is equipped with its Borel σ -field E := B(E). Define

the measure P ⊗ ν on (�̃, F̃ ) := (� × [0, T ] × E,F ⊗ B([0, T ]) ⊗ E) by

P ⊗ ν(B̃) = E

[∫
[0,T ]×E

IB̃(ω, t, e)ν(ω, dt, de)

]
, B̃ ∈ F̃ ;(2.1)

this is called the measure generated by ν. Let P denote the predicable σ -field on
� × [0, T ] and define

P̃ := P ⊗ E .

A function on �̃ that is P̃ -measurable is called predictable. We suppose that ν is
equivalent to a product measure λ ⊗ dt with a density ζ such that

ν(ω,dt, de) = ζ(ω, t, e)λ(de) dt,(2.2)

where λ is a σ -finite measure on (E,E) satisfying
∫
E 1 ∧ |e|2λ(de) < ∞, and

where the density ζ is a P̃ -measurable, bounded, nonnegative function such that
for some, constant cν ,

0 ≤ ζ(ω, t, e) ≤ cν < ∞, P ⊗ λ ⊗ dt-a.e.(2.3)
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Clearly, (2.2) implies that ν({t} × E) = 0 for all t , and ν([0, T ] × E) ≤ cνT λ(E).
For a predicable function U on �̃, the integral process with respect to µ (anal-

ogously for ν) is defined as

U ∗ µt(ω) =


∫
[0,t]×E

U(ω, s, e)µ(ω,ds, de), if finitely defined,

+∞ otherwise.

We recall that for any predictable function U , the process U ∗ ν is a predictable
process, while the process U ∗ µ is an optional process, and that E[|U | ∗ µT ] =
E[|U | ∗νT ]. If (|U |2 ∗µ)1/2 is locally integrable, then U is integrable with respect

to µ̃ = µ − ν, and U
(P)∗ µ̃ is defined as the purely discontinuous local martingale

(under P ) with jump process (
∫
E Uµ({t}, de))t . If, moreover, the process |U |2 ∗ ν

is integrable, then U is integrable with respect to µ̃, and U ∗ µ̃ = U ∗ (µ − ν) is a
square integrable, purely discontinuous martingale with predictable quadratic vari-
ation 〈U ∗ (µ − ν)〉 = |U |2 ∗ ν. If the increasing process |U | ∗ µ (or, equivalently
|U |∗ν) is locally integrable, then U is µ̃-integrable and U ∗ µ̃ = U ∗µ−U ∗ν. We
refer to [15] for details on (integer-valued) random measures and stochastic inte-
grals and note that our assumptions on µ and ν imply that Ŵ = 0 in Section II.1.d
of [15].

We assume that, with respect to F and P ,

W and µ̃ have the weak property of predictable representation.(2.4)

This means that every square integrable martingale M has a representation

M = M0 + Z · W + U ∗ µ̃ := M0 +
∫

Z dW + U ∗ µ̃,(2.5)

where Z and U : �̃ → R are predictable processes such that E[∫ T
0 |Z|2 dt] < ∞

and E[|U |2 ∗ νT ] < ∞, that is, both stochastic integrals are in the space H2 of
square integrable martingales. We next provide several cases of interest where (2.4)
holds:

EXAMPLE 2.1. (1) Let W be a Brownian motion and let N be an independent
Poisson point process. Then W and the compensated measure µ̃N of the jump
measure µN of N , that is µN(dt, de) := ∑

s∈(0,T ] δ(s,	Ns)(dt, de)I{	Ns 
=0}, have
the representation property (2.4) with respect to the usual filtration F

(W,N) gener-
ated by them.

(2) More generally, let (Xt)t∈[0,T ] be a marked point process, that is, a process
whose paths are RCLL step functions with only a finite number of jumps (i.e., X

can be represented as X = x0 + ∑
i ξi1[[Ti,T ]] with x0 ∈ R

� and with random times
Ti ∈ (0,∞] such that Ti ↑ ∞ and 0 < Ti < Ti+1 on {Ti < ∞} for all i, where all
marks ξi are R

�-valued random variables with {ξi = 0} = {Ti = ∞}). Let W be a
Brownian motion independent of X and let F := F

(W,X) denote the usual filtration
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generated by X and W . Let µ := µX := ∑
i δ(Ti ,ξi )(dt, de)I{Ti≤T } and let ν denote

the compensator, being the same under F
X and F. Then W and µ̃ have property

(2.4) with respect to F. To see this, note that both W and µ̃ have the representation
property with respect to their own filtrations (see [13], Theorems 13.19, 5.52).
By strong orthogonality, each martingale M with MT = IAIB for A ∈ F W

T and
B ∈ F X

T can be represented as in (2.5). This implies (2.4), since the linear span of
random variables like 1A1B is dense in L2(FT ).

(3) Let X be a (time-homogenous) Lévy process with X0 = 0 and predictable
characteristics (α,β, ν). Then the continuous martingale part Xc and the compen-
sated jump measure µ̃X = µX −ν of X have the representation property (2.5) with
respect to the filtration F

X; see [13], Theorems 13.44 and 13.49. If Xc does not
vanish (i.e, β 
= 0), then there is a constant C ∈ (0,∞) such that W := Xc/C is a
Brownian motion.

(4) Suppose W and µ̃ have the representation property (2.4) under P . Let P ′
be a probability measure absolutely continuous (or equivalent) to P with density
process (Zt )t∈[0,T ]. Then the P ′-Brownian motion W ′ := W − ∫

(Z−)−1 d〈Z,W 〉
and the P ′-compensated jump measure µ̃′ = µX − νP ′

have the representation
property (2.4) with respect to (�,F,P ′); see Theorem 13.22 in [13]. This offers
plenty of scope to build models where W and ν are not independent from the
previous examples.

3. Backward stochastic differential equations with jumps. For ease of ex-
position, all results in this section are formulated with P representing some generic
probability measure.

REMARK 3.1. The results of the present section will be used in the sequel
with different equivalent measures taking the role of P . This causes no problems
when these measures, the corresponding Brownian motions and the compensators
for µ satisfy the same assumptions as imposed on P , W and ν (cf. Example 2.1 4).
It will be made clear on those occasions with respect to which measure the results
and notation are to be used.

Let us fix some notation:

• Sp,k with 1 ≤ p ≤ ∞ denotes the space of R
k-valued semimartingales

(Yt )t∈[0,T ] with ‖Y‖Sp := ‖ supt∈[0,T ] |Yt |‖Lp < ∞.

• L2,k
T (L2,k×d

T ) denotes the space of P -predictable processes Z taking values in
R

k (Rk×d ) with ‖Z‖L2
T

:= (E[∫ T
0 |Zt |2 dt])1/2 < ∞. This norm is equivalent to

the norm ‖Z‖β := ‖(eβtZt )t∈[0,T ]‖L2
T

for β ∈ R.

• L2,k
ν denotes the space of P̃ -predictable functions U : �̃ → R

k with

‖U‖L2
ν
:=

(
E

[∫ T

0

∫
E

|Ut(e)|2ν(dt, de)

])1/2

< ∞.
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Assumptions (2.2) and (2.3) imply that the space L2,k
ν = L2(P̃ ,P ⊗ ν;R

k)

includes the space L2,k
λ×dt = L2(P̃ ,P ⊗ λ ⊗ dt;R

k).
• L0(E , λ;R

k) denotes the space of measurable functions with the topology of
convergence in measure. It will be convenient to define for u,u′ ∈ L0(E , λ : Rk),

‖u − u′‖t :=
(∫

E
|u − u′|2ζ(t, e)λ(de)

)1/2

.(3.1)

For U ∈ L2,k
ν , ‖Ut‖t < ∞ holds P ⊗ dt-a.e. as E[∫ ‖Ut‖2

t dt] = ‖U‖2
L2

ν
.

To simplify notation we will omit dimension indices like k when they are clear
from the context. But in later sections we shall refer in our notation to the under-
lying probability measure when it is different from P .

For a given data tuple (B,f ), which consists of a random variable B and a suit-
able generator function ft (y, z, u) = f (ω, t, y, z, u), we are interested in finding a
triple (Y,Z,U) of processes in a suitable space such that

YT = B and dYt = −ft (Yt−,Zt ,Ut ) dt +Zt dWt +
∫
E

Ut(e)µ̃(dt, de)(3.2)

for t ∈ [0, T ]. Equation (3.2) can be written in integrated form as

Yt = B +
∫ T

t
fs(Ys−,Zs,Us) ds −

∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)µ̃(ds, de),(3.3)

with t ∈ [0, T ]. Such a triple (Y,Z,U) is called a solution to the backward sto-
chastic differential equation (3.2) or (3.3).

Proposition 3.2 ensures existence and uniqueness of the BSDE solution in an
L2-sense for our setting with a nonhomogeneous compensator ν. Admitting ν to be
nonhomogeneous allows more interesting mutual dependencies to occur between
the tradable and nontradable risk factors in our later applications. For the homo-
geneous case with ζ ≡ 1 in (2.2), the result was shown in Lemma 2.4 of [24]; see
also Theorem 2.1 in [1]. It is straightforward to generalize the established fixed
point method of proof to the present setting, hence we leave details to the reader.

PROPOSITION 3.2. Let B ∈ L2(FT ,P ;R
k) and suppose that the function

f :� × [0, T ] × R
k × R

k×d × L0(E , λ;R
k) → R̄

k

is P ⊗ B(Rk) ⊗ B(Rk×d) ⊗ B(L0(E , λ;R
k))-measurable, satisfies ft (0,0,0) ∈

L2,k
T and that there exists a constant Kf ∈ [0,∞) such that

|ft (y, z, u) − ft (y
′, z′, u′)| ≤ Kf (|y − y′| + |z − z′| + ‖u − u′‖t )(3.4)

holds P ⊗ dt-a.e. for all y, y′ ∈ R
k , z, z′ ∈ R

k×d , and u,u′ ∈ L0(E , λ;R
k) [in

particular, the left-hand side of (3.4) is supposed to be finite when the right-hand
side is finite]. Then there exists a unique (Y,Z,U) in S2,k × L2,k×d

T × L2,k
ν which

solves the BSDE (3.2).
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The next continuity result generalizes Proposition 2.2 from [1] to a conditional
estimate, which reduces to the unconditional estimate from [1] for τ = 0. Let
us remark that f could take nonfinite values for some u ∈ L0, but (3.4) implies
that for all (Y,Z,U) in S2,k × L2,k×d

T × L2,k
ν , the process (f (Y−,Z,U)) is finite

P ⊗ dt-a.e. Hence, the δf term in (3.5) is well defined P ⊗ dt-a.e.

PROPOSITION 3.3. Let (B,f ) and (B ′, f ′) be data satisfying the assumptions
of Proposition 3.2, with solutions (Y,Z,U) and (Y ′,Z′,U ′) in S2,k × L2,k×d

T ×
L2,k

ν , respectively. Denote (δB, δf ) = (B − B ′, f − f ′) and let (δY, δZ, δU) =
(Y − Y ′,Z − Z′,U − U ′). Then there exists a constant c = c(T ,Kf ′) < ∞ de-
pending on T and Kf ′ such that

Eτ

[
sup

u∈[[τ,T ]]
|δYu|2 +

∫ T

τ
|δZs |2 ds +

∫
]]τ,T ]]×E

|δUs |2ν(ds, de)

]
(3.5)

≤ cEτ

[
|δB|2 +

∫ T

τ
|δfs(Ys−,Zs,Us)|2 ds

]
< ∞

holds for all stopping times τ ≤ T . If, moreover, the random variable δB and the
process (δf (Y−,Z,U)) are bounded, then

∫
δZ dW and δU ∗ µ̃ are BMO(P )-

martingales.

Noting that the BSDE has a trivial solution for vanishing data, one sees that
estimate (3.5) with τ = t implies the useful a priori estimate

Et

[
sup

t≤u≤T

|Yu|2 +
∫ T

t
|Zs |2 ds +

∫
(t,T ]×E

|Us |2ν(ds, de)

]
(3.6)

≤ cEt

[
|B|2 +

∫ T

t
|fs(0,0,0)|2 ds

]
< ∞.

PROOF OF PROPOSITION 3.3. We extend the argument from [1]. Applying
Itô’s formula to |δY |2 yields that, for t ∈ [0, T ],

|δYt |2 − |δB|2 +
∫ T

t
|δZs |2 + ‖δUs‖2

s ds

− 2
∫ T

t
δYs−

(
fs(Ys−,Zs,Us) − f ′(Y ′

s−,Z′
s,U

′
s)

)
ds(3.7)

= −2
∫ T

t
δYs−δZs dWs −

∫ T

t

∫
E

2δYs−δUs + (δUs)
2µ̃(ds, de).

Using the integrability of (δY, δZ, δU) ∈ S2,k × L2,k×d
T × L2,k

ν and the assump-
tions imposed on f and f ′, the left-hand side of equation (3.7) can be dominated
in absolute value by an integrable random variable, uniformly in t . Hence, the
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stochastic integrals on the right-hand side are in the martingale space H1 and
their increments vanish in conditional expectation. Using this fact, the inequality
2Kab ≤ 2K2a2 + b2/2 (K,a, b ∈ R) and the Lipschitz condition on f ′ yields, for
any stopping time τ ≤ T and u ∈ [0, T ], that

Eτ

[
|δYτ∨u|2 +

∫ T

τ∨u
|δZs |2 + ‖δUs‖2

s ds

]

= Eτ

[
|δB|2 +

∫ T

τ∨u
|δfs(Ys−,Zs,Us)|2 ds.

+ c

∫ T

τ∨u
|δYs |2 ds + 1

2

∫ T

τ∨u
|δZs |2 + ‖δUs‖2

s ds

]
with τ ∨ u := max(τ, u) and c denoting a constant depending on T and Kf ′ . By
the conditional Fubini result of Lemma A.1 (with σ = τ ) and Gronwall’s lemma,
at this point we nearly obtain the desired inequality (3.5), but with a supu∈[0,T ]
outside the conditional expectation. From the BSDE that δY satisfies, we have

|δYτ∨u| ≤ Eτ∨u

[
|δB| +

∫ T

τ
|fs(Ys−,Zs,Us) − f ′

s (Y
′
s−,Z′

s,U
′
s)|ds

]
,

for u ∈ [0, T ]. Taking the supremum over u ∈ [0, T ] on both sides and ap-
plying Doob’s inequality to the supremum of the (Fτ∨u)u∈[0,T ]-martingale on
the right-hand side yields that Eτ [supu∈[[τ,T ]] |δYu|2] is dominated by the term

cEτ [|δB|2 + ∫ T
τ |δfs(Ys−,Zs,Us)|2 + |f ′

s (Ys−,Zs,Us) − f ′
s (Y

′
s−,Z′

s,U
′
s)|2 ds]

with some constant c depending on T . Estimate (3.5) now follows from the Lip-
schitz property of f ′ and the previous estimate.

Finally, if δB and (δft (Y−,Z,U))t are bounded, then it follows from its BSDE
that δY is bounded, and that the left-hand side of (3.5) is bounded by a con-
stant, uniformly in τ . Hence, the integral processes

∫
δZ dW and δU ∗ µ̃ are

BMO-martingales; see Theorem 10.9.4 in [13]. �

For future reference, we state the following simple but useful result:

LEMMA 3.4. Let Y ∈ S∞ and B ∈ L∞. Suppose that Z is a P -predictable
process and U is a P̃ -predictable function which are integrable in the sense of
local martingales with respect to W and µ̃, respectively, and f (ω, t, y, z, u) is a
product-measurable function such that f (Y−,Z,U) is in L∞(P ⊗ dt) and that
(Y,Z,U) solves the BSDE (3.2) with data (B,f ). Then the stochastic integrals∫

Z dW and U ∗ µ̃ are both BMO(P )-martingales. In particular, Z ∈ L2
T and

U ∈ L2
ν .

PROOF. Being a bounded martingale, the process
∫

Z dW + U ∗ µ̃ is in
BMO(P ). By the characterization of BMO-martingales (see [13], Theorem 10.9),
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the claim then follows from (i) the observation that the quadratic covariation of∫
Z dW and U ∗ µ̃ vanishes, so that the quadratic variation of each addend is dom-

inated by the quadratic variation of the sum, and (ii) from the fact that the jumps
of U ∗ µ̃ are the jumps of Y , hence bounded. �

In our later applications of BSDEs, the Lipschitz condition (3.4) on the gen-
erator f will not be satisfied, and more than square integrability of Y will be
needed. To this end, we show that, basically, a monotonicity property (3.11) of
the generator with respect to the jumps, together with bounded terminal data, en-
sures existence of a bounded solution to the BSDE (3.2). Let us emphasize that
for BSDEs with jumps, a comparison result does not, in general, hold under the
assumptions of Proposition 3.2; see the example in [1]. Therefore, we can not infer
the existence of a bounded solution for bounded terminal data by such means. For
BSDEs without jumps that are driven solely by Brownian motions and which have
quadratic generators that may not be globally Lipschitz, existence results were ob-
tained in [18].

For the remainder, we consider the one-dimensional case with k = 1 and gener-
ator functions f :� × [0, T ] × R

1 × R
1×d × L0(E , λ;R) → R̄ of the form

ft (y, z, u) =
{

f̂t (y, z, u) +
∫
E

gt (u(e))ζ(t, e)λ(de), if finitely defined,

+∞, otherwise,
(3.8)

where f̂ and g satisfy conditions which, although f does not, in general, satisfy the
assumptions of Proposition 3.2, still ensure existence and uniqueness of a BSDE
solution whose components Y and U are furthermore bounded.

THEOREM 3.5. Let k = 1. Assume that B ∈ L∞ is bounded, λ(E) < ∞ is
finite, and that f has the form (3.8) where f̂ satisfies all assumptions from Propo-
sition 3.2 ( for f ). Assume additionally that there exist K1,K2 ∈ [0,∞) such that

|f̂t (y, z, u)| ≤ K1 + K2|y| holds P ⊗ dt-a.e. for all y, z,u,(3.9)

and that g :�×[0, T ]×R → R in (3.8) is a P ⊗B(R)-measurable function such
that

u �→ gt (u) is locally Lipschitz in u, uniformly in (ω, t), and(3.10)

gt (u) ≤ −u = +|u| for u ≤ 0,
P ⊗ dt-a.e.(3.11)

gt (u) ≥ −u = −|u| for u ≥ 0,

Then there exists a unique solution (Y,Z,U) in S∞ ×L2
T ×L2

ν to the BSDE (3.2),
where Y ∈ S∞ is bounded and U is bounded P ⊗ ν-a.e.

Moreover, if (B ′, f ′) is another tuple of data satisfying the assumption of this
theorem with solution (Y ′,Z′,U ′) ∈ S∞ ×L2

T ×L2
ν , then estimate (3.5) of Propo-

sition 3.3 still holds. In particular, estimate (3.6) still holds.
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Under the assumptions of this theorem, one can thus choose representatives for
Y and U which are bounded on �×[0, T ] and �̃, respectively. Before proving the
theorem, let us give an example of a generator function which will reappear in the
later applications to mathematical finance.

EXAMPLE 3.6. For α ∈ (0,∞), let g(ω, t, u) = gt (u) := 1
α
eαu − u − 1

α
and

f̂ := 0. Then f from (3.8) satisfies the assumptions of Theorem 3.5.

PROOF OF THEOREM 3.5. By hypothesis, there exists K3 ∈ [0,∞) such that
|B| ≤ K3. Define a truncation-boundary function b : [0, T ] → R

+ by

b(t) :=


K3 + K1(T − t), when K2 = 0,

K3e
K2(T −t) + K1

K2

(
eK2(T −t) − 1

)
, when K2 > 0,

(3.12)

and a truncation function

κ(t, y) := min
(
max

(
y,−b(t)

)
,+b(t)

)
.(3.13)

Then define f̃ :� × [0, T ] × R × R
d × L0(E , λ;R

1) → R̄ by

f̃ (ω, t, y, z, u) = f̂
(
ω, t, κ(t, y), z, κ(t, y + u) − κ(t, y)

)
+

∫
E

gt

(
κ
(
t, y + u(e)

) − κ(t, y)
)
ζ(t, e)λ(de)

when the right-hand side is finite, and by +∞ elsewhere. Using (3.13), the lo-
cal Lipschitz property of g and the fact that λ(E) < ∞, one can verify by the
Schwartz inequality that f̃ satisfies the assumptions of Proposition 3.2. We note
that one could find examples of λ, if λ(E) were not finite, where the Lipschitz
condition (3.4) would not be met by f̃ for f from Example 3.6. Let (Y,Z,U) ∈
S2 × L2

T × L2
ν denote the unique solution for the BSDE with generator f̃ . For

Ỹt := κ(t, Yt ), let

Ũt (e) := κ
(
t, Yt− + Ut(e)

) − κ(t, Yt−),

which represents the jump size of Ỹ . We will show below that

the processes Y and Ỹ are indistinguishable and
(3.14)

U = Ũ holds P ⊗ ν-a.e.

By definition, |Ỹt | ≤ b(t) ≤ b(0) and |Ũt (e)| ≤ 2b(t) ≤ 2b(0) are bounded uni-
formly in t . Clearly, (3.14) implies that Y = Ỹ in S2 ⊂ L2

T and U = Ũ in L2
ν ,

hence
∫

f̃t (Yt−,Zt ,Ut ) dt = ∫
f̃t (Ỹt−,Zt , Ũt ) dt and U ∗ µ̃ = Ũ ∗ µ̃.

Admitting result (3.14) for a moment, it follows that the solution (Y,Z,U) of
the BSDE with generator f̃ also solves the BSDE with f , and that Y is in S∞
and U has a bounded representative Ũ in L2

ν . To show uniqueness, let (Y ′,Z′,U ′)



BOUNDED BSDE WITH JUMPS FOR UTILITY OPTIMIZATION 2037

be a another solution to the BSDE with f , with Y ′ bounded. Similarly as with
Ũ for U , one can find a bounded representative for U ′ in L2

ν , for example,
bounded by 2‖Y ′‖S∞ , using the fact that

∫
E |U ′

t (e)|µ({t}, de) = |	Y ′
t | ≤ 2‖Y ′‖S∞ .

By taking K3 larger when necessary, say K3 ≥ 2‖Y ′‖S∞ , one can assume that
|Y ′|, |U ′| ≤ K3. But then both (Y,Z,U) and (Y ′,Z′,U ′) solve the BSDE also
with generator f̃ , and by the uniqueness result from Proposition 3.2 applied to
f̃ , the two solutions must coincide. Finally, the validity of estimate (3.6) and the
validity of the estimate from Proposition 3.3 follow from the observation that the
BSDE solutions to (f,B) and (f ′,B ′) also solve the BSDEs with the correspond-
ing truncated generators f̃ and f̃ ′.

To complete the proof, it remains to show (3.14). To prove |Yt | ≤ b(t) for all t ,
we first consider the upper bound. Fix t ∈ [0, T ] and let

τ := inf{s ∈ [t, T ]|Ys ≤ b(s)}.
Then Ys ≥ b(s) for (ω, s) ∈ [[t, τ [[, and one has Yτ ≤ b(τ) with τ ≤ T , since
YT ≤ K3 = b(T ). Since (Y,Z,U) solves the BSDE with f̃ , it follows that

Yt = Et

[
Yτ +

∫ τ

t
f̃ (s, Ys−,Zs,Us) ds

]
≤ Et

[
Yτ +

∫ τ

t
K1 + K2b(s) ds

+
∫ τ

t

∫
E

gs

(
κ
(
s, Ys− + U(e)

) − κ(s, Ys−)
)
µ(ds, de)

]
≤ Et

[
Yτ +

∫ τ

t
K1 + K2b(s) ds + gτ

(
κ(τ,Yτ ) − κ(τ,Yτ−)

)]
≤ Et

[
Yτ +

∫ τ

t

(
K1 + K2b(s)

)
ds + b(τ) − Yτ

]
≤ Et

[∫ τ

t

(
K1 + K2b(s)

)
ds + b(τ)

]
= b(t);

this uses the fact that G ∗ µ̃ = G ∗ µ − G ∗ ν is a martingale for

Gs := gs

(
κ
(
s, Ys− + U(e)

) − κ(s, Ys−)
)
,

since |Gs | ∗ ν ≤ c(|Us | ∧ 2b(s)) ∗ ν is integrable (see [15], II.1.28–30), where
c < ∞ denotes a local Lipschitz constant for g. We have further used the fact that∫

]]t,τ ]]×E
Gsµ(ds, de) = ∑

s∈]]t,τ ]]
gs

(
κ(s, Ys) − κ(s, Ys−)

)
1(	Ys 
=0),

with all summands vanishing on s ∈]]t, τ [[ except possibly at s = τ , where

gτ

(
κ(τ,Yτ ) − κ(τ,Yτ−)

) ≤ κ(τ,Yτ−) − κ(τ,Yτ ) ≤ b(τ) − Yτ .
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This shows the upper bound Yt ≤ b(t) for any t . The lower bound Yt ≥ −b(t)

is proved similarly by using τ := inf{s ∈ [t, T ]|Ys ≥ −b(s)}. Since Y has
RCLL-paths, it follows that Y and Ỹ are indistinguishable processes. Hence,

0 = ∑
t∈(0,T ]

(
	(Yt − Ỹt )

)2 =
∫ T

0

∫
E

(
U(e) − Ũ (e)

)2
µ(dt, de) = (U − Ũ )2 ∗ µT ,

implying that E[(U − Ũ )2 ∗ µT ] = E[(U − Ũ )2 ∗ νT ] vanishes. This establishes
the second part of (3.14). �

4. Applications in exponential utility optimization. This section applies the
previous results to solve two prominent optimization problems with exponential
utility. We start with the expected utility maximization problem with an additional
liability, and proceed afterwards to the utility indifference valuation and hedging
problem.

4.1. The financial market framework. Within the general framework of Sec-
tion 2, we now introduce a financial market model. In this section, the measure
P represents the objective “true world” probability measure. All assumptions and
notation of the present subsection remain valid for the remainder of Section 4, in
addition to those of the general framework.

The market contains a riskless numeraire asset as well as d risky assets, whose
discounted price processes S = (Si

t )t∈[0,T ], i = 1, . . . , d , evolve in (0,∞)d accord-
ing to the stochastic differential equation

dSt = diag(Si
t )i=1,...,dσt (ϕt dt + dWt) =: �t dŴt , t ∈ [0, T ],

(4.1)
S0 ∈ (0,∞)d,

where ϕ is a predictable from R
d -valued dt-integrable process, and σ is an

R
d×d -valued predictable process such that σt is invertible P ⊗ dt-a.e. and inte-

grable with respect to

Ŵ := W +
∫

ϕt dt,(4.2)

and we define �t := (diag(Si
t )i=1,...,d )σt . We suppose that

the market price of risk process ϕ is bounded P ⊗ dt-a.e.(4.3)

The solution S to (4.1) is given by the stochastic exponential

Si
t = Si

0E

(∫ d∑
j=1

σ
ij
t (ϕj dt + dW

j
t )

)
t

= Si
0E

((∫
σt dŴt

)i)
t

, t ∈ [0, T ].
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The notation Ŵ is reminiscent of the fact that Ŵ is a Brownian motion with respect
to the so-called minimal martingale measure

dP̂ := E

(
−

∫
ϕt dW

)
T

dP .(4.4)

By (4.4), it follows that

the compensator of the random measure µ under P̂ equals ν,(4.5)

that is, it equals the compensator under P , up to indistinguishability. We assume

λ(E) < ∞,(4.6)

such that ν([0, T ] × E) is bounded by (2.2) and (2.3).
For any S-integrable R

d -valued process ϑ , the gains process from trading ac-
cording to a strategy to hold ϑ shares of risky assets S is given by

∫
ϑ dS =∫

θ dŴ , where

θ(ϑ) := �trϑ and ϑ(θ) = (�tr)−1θ(4.7)

provides a bijection between ϑ and θ . Because the parameterization with respect
to θ eases notation and facilitates later formulas, we will use relation (4.7) to pa-
rameterize our strategies in terms of θ in the sequel.

In Section 4.2 below, we are going to consider an investor who wants to maxi-
mize the exponential utility with risk aversion α > 0 from his terminal wealth. For
such an investor, we define the set of available trading strategies

� := �(P,α)(4.8)

as follows. Let � consist of all R
d -valued, predictable, S-integrable processes θ

which meet the following integrability requirements under P :

EP

[∫ T

0
|θt |2 dt

]
< ∞(4.9)

and {
exp

(
−α

∫ τ

0
θt dŴt

)∣∣∣τ ∈ T

}
is a uniformly P -integrable family(4.10)

of random variables, with T denoting the set of all stopping times τ ≤ T . Con-
ditions (4.9) and (4.10) correspond to those in [14]; see their Definition 1 and
subsequent remarks. Condition (4.9) excludes arbitrage possibilities like doubling
strategies from �, as explained below, and the exponential condition (4.10) fits
rather naturally with the exponential preferences of our investor. We will also show
that it transforms in a “good” way under a change to the minimal entropy martin-
gale measure; see part (3) of Remark 4.5.

Let Pe := {Q ∼ P |S is a local Q-martingale} denote the set of all equivalent
local martingale measures. The market is free of arbitrage in the sense that there
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exists at least one measure in Pe, namely P̂ , that has finite relative entropy with
respect to P , thus

Pf := {Q ∈ Pe|H(Q|P) < ∞} 
= ∅.(4.11)

Also, the set �, whose strategies can give rise to wealth processes unbounded from
below, does not contain arbitrage strategies, since

∫ T
0 θ dŴ ≥ 0 with θ ∈ � implies

that
∫

θ dŴ = 0. In fact, dP̂ /dP and (
∫ T

0 |θ |2 dt)1/2 are in L2(P ) by (4.3), (4.4)
and (4.9). So, Hölder’s inequality yields that (

∫ T
0 |θ |2 dt)1/2 is in L1(P̂ ), hence∫

θ dŴ is in the martingale space H1(P̂ ). The claim thus follows.
The market model is in general incomplete because we only assume the weak

representation property (2.4) and do not assume a continuous or Brownian filtra-
tion. Despite the invertibility of the volatility matrix σ , there will in general be
several martingale measures having different compensators for the random mea-
sure µ, which represents some nontradable risk factors related to nonpredictable
events such as the jump times and sizes of a marked (doubly) Poisson process.
If µ is nontrivial, one can also see directly that there exist purely discontinuous
martingales under any Q in Pe which cannot be represented as stochastic integrals
with respect to the continuous process S.

As contingent claims, we consider European claims payable at time T whose
payoff is described by a bounded random variable B ∈ L∞ := L∞(P ). This in-
tegrability assumption is the same as in the articles [22], [14] and [21] which are
closely related to the subsequent analysis, and it fits comfortably into the duality
setting from [8].

4.2. Exponential utility maximization. We are going to consider the problem
of maximizing the expected utility from terminal wealth at time T for the expo-
nential utility function x �→ − exp(−αx) with risk aversion parameter α ∈ (0,∞).
We will later compare results for different levels of risk aversion and, to this end,
we emphasize that most quantities in the sequel depend on α. But notational refer-
ences to α are omitted where α is clear from the context, as in most proofs.

Recalling our parameterization (4.7) of strategies, the solution of the problem
of maximizing the expected exponential utility from terminal wealth

V
B,α
t (x) := V B

t (x)

:= ess sup
θ∈�(P,α)

EP
t

[
− exp

(
−α

(
x +

∫ T

t
ϑ(θ) dS − B

))]
(4.12)

= exp(−αx) ess sup
θ∈�(P,α)

EP
t

[
− exp

(
−α

(∫ T

t
θ dŴ − B

))]
from (Ft -measurable) capital x ∈ R at time t ∈ [0, T ] by optimal future invest-
ments under an additional liability B will be described by the following BSDE
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under P :

Yt = B +
∫ T

t
−Zsϕs − |ϕ|2

2α
ds

+
∫ T

t

∫
E

(
exp(αUs(e))−1

α
− Us(e)

)
ζ(s, e)λ(de) ds(4.13)

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)µ̃(ds, de), t ∈ [0, T ].
The linear dependence of the generator in (4.13) on Z can be removed by a change
of measure from P to P̂ from (4.4). By Theorem 12.29 of [13], the integral with re-
spect to µ̃ remains unaltered by this change of measure because of the unchanged
compensator (4.5). Hence the BSDE (4.13) transforms to the following BSDE un-
der the measure P̂ :

Yt = B +
∫ T

t
−|ϕ|2

2α
ds

+
∫ T

t

∫
E

(
exp(αUs(e)) − 1

α
− Us(e)

)
ζ(s, e)λ(de) ds(4.14)

−
∫ T

t
Zs dŴs −

∫ T

t

∫
E

Us(e)µ̃(ds, de), t ∈ [0, T ].

THEOREM 4.1. The solution to the utility maximization problem (4.12) with
risk aversion α > 0 and liability B ∈ L∞ is described by the unique solution

(YB,ZB,UB) := (YB,α,ZB,α,UB,α) ∈ S∞(P̂ ) × L2
T (P̂ ) × L2

ν(P̂ )

to the BSDE (4.14) under P̂ [solving (4.13) under P , with (YB,ZB,UB) being in
S∞(P ) × L2

T (P ) × L2
ν(P )]. The optimal value function V

B,α
t (x) and the optimal

strategy are given by

V
B,α
t (x) = −e−αx exp(αYB

t ) = −e−αx exp(−α(−YB
t )),(4.15)

θB := θB,α := ZB + 1

α
ϕ ∈ �(P,α).(4.16)

Moreover,
∫

θB
t dWt is in BMO(P ).

In the sense of (4.15), −YB can be considered as the exponential time-t-certain
equivalent wealth, and YB as the time-t-certain liability, which are equivalent to
the gains (and losses) arising from both the future optimal investment and from the
terminal liability.

PROOF OF THEOREM 4.1. Let us note that (Ŵ , ν) under P̂ fits into the setting
of Section 3. The proof then proceeds in several steps.
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First, Theorem 3.5 ensures the existence of the unique (bounded) solution
(Y,Z,U) in S∞(P̂ ) × L2

T (P̂ ) × L2
ν(P̂ ) to the BSDE (4.14) under P̂ , with U

being bounded P ⊗ ν-a.e. and
∫

Z dŴ being in BMO(P̂ ), by Lemma 3.4. By
Theorem 3.6 in [17] and (4.4) it follows that

∫
Z dW ∈ BMO(P ) ⊂ H2(P ) and

Z ∈ L2
T (P ). Hence, (Y,Z,U) also solves BSDE (4.13) under P , with the integra-

bility claims for Y and U under P following from their a.s. boundedness.
By the Doléans–Dade formula, or direct computation, one obtains

E

(∫ ∫
E

exp(αUs(e)) − 1µ̃(ds, de)

)
t

= exp
(∫ t

0

∫
E

αUs(e)µ̃(ds, de)

−
∫ t

0

∫
E

exp(αUs(e)) − 1 − αUs(e)ν(ds, de)

)
.

By the BSDE (4.14), equality (4.2) and by Itô’s formula it follows that

− exp
(
−α

(
Y0 +

∫ t

0
θ dŴ − Yt

))
(4.17)

= − exp
(
−α

∫ t

0
θ − Z dŴ + 1

2

∫ t

0
|ϕ|2 dt

)
× E

(∫ ∫
exp(αUs(e)) − 1µ̃(ds, de)

)
t

= −e(α2/2)
∫ t

0 |θ−Z−ϕ/α|2 dtE

(
−α

∫
θ − Z dW

)
t

× E

(∫ ∫
exp(αUs(e)) − 1µ̃(ds, de)

)
t

= −e(α2/2)
∫ t

0 |θ−Z−ϕ/α|2 dt

× E

(
−α

∫
θ − Z dW +

∫ ∫
exp(αUs(e)) − 1µ̃(ds, de)

)
t

,(4.18)

for any θ ∈ �, t ∈ [0, T ], where (4.18) uses Yor’s formula. For any θ ∈ �,

the stochastic exponential in (4.18) (t ∈ [0, T ]) is a P-martingale.(4.19)

To see the latter, note that condition (4.10) in the definition of � and the bound-
edness of Y imply that the term in (4.17) is a uniformly integrable family for
t ∈ [0, T ]. Since the ordinary exponential factor in (4.18) is monotone and clearly
bounded away from zero, the stochastic exponential in (4.18) is a uniformly inte-
grable local martingale, hence (4.19).

By (4.18) and (4.19), the process from (4.18) is a supermartingale for all θ ∈ �

and a martingale for θB = Z + ϕ/α. This implies optimality of θB , provided that



BOUNDED BSDE WITH JUMPS FOR UTILITY OPTIMIZATION 2043

we can show θB is in �. To this end, observe that
∫

θB dŴ is in BMO(P̂ ), since∫
Z dŴ and

∫
ϕ dŴ are by Lemma 3.4 and (4.3). Since dP/dP̂ ∈ Lp(P̂ ) for any

1 ≤ p < ∞,
∫ T

0 |θB |2 dt is in L1(P ) by Hölder’s inequality. This yields (4.9),
while (4.10) follows from (4.19) and the fact that Y ∈ S∞. Moreover,

∫
θB dW is

in BMO(P ) by Theorem 3.6 in [17].
Taking the conditional expectation of the utility of the optimal terminal wealth

and using the martingale property of the process (4.18) for θ = θB finally
yields (4.15). �

We have solved the primal utility maximization problem directly by using the
classical (super-)martingale verification argument to show optimality of the can-
didate solution. To link our results to the martingale duality results, let us recall
from [8] (cf. [2] or [21]) that the primal exponential utility maximization problem
with liability B is related to the dual problem of finding, for a given α > 0,

QE,B = arg max
Q∈Pf

{αEQ[B] − H(Q|P)}.(4.20)

For B = 0, this means finding the minimal entropy martingale measure
QE := QE,0, while QE,B can be shown to minimize the relative entropy H(Q|PB)

with respect to dPB := const exp(αB)dP over the set Pf .
The next theorem describes the density process for the solution QE,B to the

dual problem as an ordinary and also as a stochastic exponential, explicit in terms
of the ingredients of the related BSDE. Furthermore, it describes the compensator
of ν under QE,B . The density process of QE,B turns out to be

Z
E,B
t := exp

(
−α

(
YB

0 +
∫ t

0
θB dŴ − YB

t

))
= E

(
−

∫
ϕ dW +

∫ ∫
E

exp(αUB
s (e)) − 1µ̃(ds, de)

)
t

(4.21)

= E

(
−

∫
ϕ dW

)
t

E

(∫ ∫
E

exp(αUB
s (e)) − 1µ̃(ds, de)

)
t

,

with YB , UB and θB from Theorem 4.1; the equalities hold by (4.17) and (4.18)
for θ = θB . We note that even the ordinary exponential form does not follow im-
mediately from existing duality results in [8] and elsewhere, since our definition
of the strategy set � involves only integrability assumptions under the objective
measure P ; this differs from the variants of � studied in [8].

THEOREM 4.2. Suppose the assumptions of Theorem 4.1 hold. Then the den-
sity process with respect to P of the solution QE,B ∈ Pf to the dual problem (4.20)
is given by ZE,B from (4.21). Furthermore, Ŵ is a QE,B -Brownian motion, and
the compensator of µ under QE,B is given by

νQE,B

(dt, de) = exp(αUB(e))ν(dt, de).(4.22)
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PROOF. We apply the verification theorem from [12] to identify the solution to
the dual problem. To this end, we must validate that Z

E,B
T satisfies three conditions.

First, it is clear from Theorem 4.1 and (4.19) that ZE,B is a strictly positive density
process, and the BSDE for YB implies that

Z
E,B
T = exp

(
−α

(
YB

0 +
∫ T

0
θB dŴ − B

))
.(4.23)

Define

dQ̄ := Z̄T dP for Z̄ := ZE,B.

By the stochastic exponential form of the density process from (4.21) and Gir-
sanov’s theorem, it follows that Ŵ is a Q̄-Brownian motion and that

ν̄(dt, de) := exp(αUB(e))ν(dt, de)(4.24)

is the Q̄-compensator of µ. The first claim is standard. For the second claim, let w

denote an P̃ -predictable function on �̃ such that |w| ∗ µ is locally Q̄-integrable.
The latter is equivalent to |w| ∗ µ being locally P -integrable, since Z̄ and 1/Z̄ are
both locally bounded due to the boundedness of U . By the form (4.21) of Z̄ and
the BSDE for YB , it follows that 	Z̄t equals∫

E
Z̄t−

(
exp(αUB(e)t ) − 1

)
µ({t}, de) = 	

((
Z̄−(exp(αUB) − 1)

) ∗ µ
)
t .

By integration by parts and Propositions II.1.28 and 30 in [15], it follows that

d
(
Z̄(w ∗ µ)

)
t = d(Z̄−w) ∗ µt + (w ∗ µt−) dZ̄t + 	Z̄t	(w ∗ µt)

= d(Z̄− exp(αUB)w) ∗ µt + (w ∗ µt−) dZ̄t ,

d
(
Z̄(w ∗ ν̄)

)
t = d

(
Z̄

(
(w exp(αUB)) ∗ ν

))
t

= d(Z̄− exp(αUB)w) ∗ νt + (
(w exp(αUB)) ∗ νt−

)
dZ̄t + 0.

By subtracting the two processes and using the fact that ν is the P -compensator
of µ, one obtains that w ∗ µ − w ∗ ν̄ is a local Q̄-martingale. Hence, ν̄ is the
compensator of µ under Q̄ by Theorem II.1.8 of [15].

Denoting µ̄ = µ− ν̄ and recalling the compensator relation (4.24), we have (see
Theorem 12.28 from [13]) that under a change of measure,

U
P̂∗ µ̃ = U

Q̄∗ µ̄ + (
U

(
exp(αU) − 1

)) ∗ ν,(4.25)

with U being integrable with respect to µ̄ such that U ∗ µ̄ is a local martingale
under Q̄. Hence, it follows from the BSDE (4.14) under P̂ that (YB,ZB,UB) is
also a bounded solution to the following BSDE under Q̄:

Yt = B −
∫ T

t
Zs dŴs −

∫ T

t

∫
E

Us(e)µ̄(ds, de) +
∫ T

t

−|ϕ|2
2α

ds

(4.26)

+
∫ T

t

∫
E

(
exp(αUs(e)) − 1

α
− Us(e) exp(αUs(e))

)
ζ(s, e)λ(de) ds.
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Lemma 3.4 ensures integrability of (YB,ZB,UB) under the change of measure.
By (4.16), it follows that

∫
θB dŴ is a Q̄-BMO-martingale, since∫

ZB dŴ is a Q̄-BMO-martingale(4.27)

and ϕ is bounded. This is the second condition needed. For the third, note
that Lemma 3.4 and the BSDE (4.14) under P̂ imply that

∫
ZB dŴ , and hence∫

θB dŴ , is in BMO(P̂ ). By the John–Nirenberg inequality, we conclude that there
is some ε > 0 such that exp(ε

∫ T
0 θB dŴ ) is in Lp(P̂ ) for some p > 1. Since φ is

bounded, dP/dP̂ = E(
∫

φ dŴ)T is in Lq(P̂ ) for any q ∈ [1,∞), so

exp
(
ε

∫ T

0
θB dŴ

)
is in L1(P )(4.28)

by Hölder’s inequality. By (4.23), (4.27) and (4.28), all three conditions for the
verification result from [12] (cf. Proposition 3.5 in [2]) are satisfied, implying that
Q̄ is the optimal measure QE,B and Z̄ = ZE,B is its density process. �

REMARK 4.3. Let us point out some connections to the pioneering work
in [6, 7]. In Sections 1.3 and 12, the authors study a model with jump risk that
can be accommodated in our general framework [see Example 2.1(2) and (4)] it
involves a single risky asset price following a geometric Brownian motion and one
additional unpredictable (default) event with an intensity. They showed how the
solution to the exponential utility problem can be derived from a certain BSDE
under special, partially restrictive, assumptions, and noted in particular that a rig-
orous general existence result for a (sufficiently nice) solution to the key BSDE
was not yet available. The present paper contributes to the analysis of the problem
posed in [6, 7] as follows. By Theorem 4.1, the process Lt := exp(αYB

t ) > 0 de-
scribes the maximal expected utility at time t up to a deterministic factor, and our
BSDE results ensure existence of a unique solution YB to the BSDE (4.14). By
Itô’s formula, the BSDE for YB [or (4.21)] implies that L satisfies the BSDE

dLt = 1

2

(
Lt−|φt |2 + |�̂t |2

Lt−

)
dt + �̂ dŴ +

∫
E

�̃t µ̃(de, dt)

(4.29)

= 1

2Lt−
|Lt−φt + �̂t |2 + �̂ dW +

∫
E

�̃t µ̃(de, dt),

with LT = exp(αB), where �̂ := αL−ZB and �̃ := L−(exp(αUB(e)) − 1). Equa-
tion (4.29) corresponds to the key BSDEs (131) and (132) in [7], and our BSDE
for Y corresponds, up to multiplication by a constant, to their BSDE (136). The
form of the BSDE (4.29) could also be motivated by the dual problem (4.20), using
the fact that the density process of any Q ∈ Pf is a stochastic exponential driven
by W and µ̃ by (2.5) and following [6].

As already mentioned, the article [21] in some sense takes an opposite route by
proving in a quite general model that existence and uniqueness for the particular



2046 D. BECHERER

BSDE corresponding to the exponential utility problem can be derived from the
general duality results on the existence and structure of the solution to the expo-
nential optimization problem in [8, 16].

4.3. Dynamic utility indifference valuation and hedging. In the same way
as [21], we define the utility indifference value πt := πt(B;α) process for the
claim B under risk aversion α at any time t ∈ [0, T ] as the implicit solution of the
equation

V
0,α
t (x) = V

B,α
t (x + πt), x ∈ R,(4.30)

which relates the maximal expected utility functions of the optimization problems
with and without (B = 0) a terminal liability. For exponential utility, it is clear
from (4.12) that the solution π to (4.30) does not depend on x. One should note
that the notion “indifference value” is not uniform throughout the literature. In
more classical terms, πt can be described as the offsetting variation of current
wealth at time t that compensates the investor for taking on the future liability B;
see [10] for an exposition and references to the economic theory of value.

The utility indifference hedging strategy ψ(B;α) is defined as the difference of
the respective optimal investment strategies,

ψ := ψ(B;α) := θB,α − θ0,α.(4.31)

Let µ̃E := µ − νE where

νE(dt, de) := exp(αU0,α(e))ζ(t, e)λ(de) dt =: ζE(t, e)λ(de) dt(4.32)

denotes the compensator of µ under the minimal entropy martingale measure
QE ≡ QE,0, that is, QE,B for B = 0. It it clear from (4.20) that QE does not
depend on α. To see how this can be reconciled with (4.21), multiply by α the
BSDE (4.14) from which U0,α comes and use the uniqueness of the solution to
conclude that αY 0,α = Y 0,1, αZ0,α = Z0,1 and αU0,α = U0,1, then note that the
QE,0-density (4.21) depends on αU0,α .

For the remainder of this section, let us fix the claim B ∈ L∞ so we can ease the
notation by omitting references to B in some indices. The next theorem shows that
the solution to the utility indifference pricing and hedging problem is characterized
by the following single BSDE under the entropy minimal martingale measure QE :

Yt = B +
∫ T

t

∫
E

(
exp(αUs(e))

α
− 1

α
− Us(e)

)
ζE(t, e)λ(de) dt

(4.33)

−
∫ T

t
Zs dŴs −

∫ T

t

∫
E

Us(e)µ̃
E(dt, de), t ∈ [0, T ].

THEOREM 4.4. The solution π and ψ to the dynamic utility indifference val-
uation and hedging problem for a claim B ∈ L∞ under risk aversion α > 0 is
described by the unique solution

(YE,ZE,UE) := (YE,α,ZE,α,UE,α) ∈ S∞(QE) × L2
T (QE) × L2

ν(Q
E)
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to the BSDE (4.33) under QE . The utility indifference value process is

πα = YB,α − Y 0,α = YE,α(4.34)

and the indifference hedging strategy is

ψα = ZB,α − Z0,α = ZE,α,(4.35)

where Y 0, YB,Z0 and ZB are given by the BSDE solutions from Theorem 4.1 with
terminal data B and 0, respectively.

At this point, a comment on a related result in [21] is instructive. Comparing
the above BSDE to the one in equation (4.9) of [21] for a general filtration, one
sees that the λ-integral part of the generator in our BSDE (4.33) corresponds to
the compensator for the sum of jumps that appears in the BSDE in [21]. This
sum is expressed directly in terms of jumps of Y and therefore its compensator
“makes it very hard to derive any properties.” In our setting, on the other hand,
the jump-related part of the generator can be explicitly expressed in terms of the
integrand process U and the QE-compensator νE of µ; see (4.32). This form is
highly amenable to further analysis as the subsequent results demonstrate.

PROOF OF THEOREM 4.4. Let us first note that L2
ν(Q

E) equals L2
νE (QE),

since the density exp(αU0,α) of νE with respect to ν is bounded from above and
away from zero, and that (Ŵ , νE) with QE fits into the setting of Section 3.

It follows directly from Theorem 4.1 and equations (4.30) and (4.31) that πα =
YB − Y 0 and ψα = ZB − Z0. It further follows from Theorem 4.1 that

(δY, δZ, δU) := (YB − Y 0,ZB − Z0,UB − U0)

is the unique solution to the following BSDE (under P̂ ):

δYt = B −
∫ T

t
δZs dŴs −

∫ T

t

∫
E

δUs(e)µ̃(ds, de)

+
∫ T

t

∫
E

(
exp(α U0

s (e))
exp(αδUs(e)) − 1

α
(4.36)

− δUs(e)

)
ζ(s, e)λ(de) ds,

with t ∈ [0, T ]. Recalling relation (4.32) and Theorem 12.28 from [13], a argument
similar to that used for (4.25) yields that under a change of measure,

δU
P̂∗ µ̃ = δU

QE

∗ µ̃E + (
δU

(
exp(αU0) − 1

)) ∗ ν.(4.37)

Thereby, one can rewrite (4.36) to obtain a BSDE under QE with a stochastic
integral δU ∗ µ̃E . The remaining terms give rise to a different generator such that
(δY, δZ, δU) is a solution to the BSDE (4.33) under QE , and by our BSDE results,
such a solution is unique. �
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REMARK 4.5. As consequences of Theorem 4.4, we can observe several im-
portant and interesting properties of π and ψ . For instance:

(1) The utility indifference value process π is a QE-supermartingale since the
generator in the BSDE (4.33) is nonnegative.

(2) The BSDE characterization of the solution implies that if (πt ) and (ψt )

denote the solution from Theorem 4.4 with respect to claim B at maturity T , then
(πt∧τ )t∈[0,T ] and (ψt1[[0,τ ]](t))t∈[0,T ] provide the indifference solution with re-
spect to the claim πτ at stopping time τ ≤ T . In this sense, the exponential utility
indifference valuation and hedging approach is time consistent.

(3) Combining the results from Theorems 4.1 and 4.4, it is seen that π and ψ

are the solution to a single optimization problem in the sense that

− exp(απα
t ) = ess sup

θ∈�(QE,α)

E
QE

t

[
− exp

(
−α

(∫ T

t
θ dŴ − B

))]
(4.38)

and the optimal strategy is attained by ψα ∈ �(QE,α), with �(QE,α) being de-
fined like � = �(P,α) from (4.8), but with QE taking the role of P . This shows
that the chosen definition of � transforms in a “good” way, and characterizes the
solution (πα,ψα) to the utility indifference problem as the optimal solution to a
single (primal) exponential utility optimization problem posed with respect to the
minimal entropy measure QE and over the set �(QE,α) that is defined, consis-
tently, with respect to QE . The latter, rather subtle, aspect of this statement appears
to be new in the literature, while the general message from (4.38) corresponds to
Proposition 3 in [21].

(4) The result of Theorem 4.4 implies, in combination with arguments from the
proof of Theorem 4.2, that the utility indifference value process πα is a (bounded)
martingale under a suitable equivalent martingale measure Q̂B in Pe that depends
on B and α. This confirms in our model framework an interesting observation
made in [7, 6]; see the remark following their Proposition 27 in [7]. Thus far, it
appears to be an open question to what extend such a property holds in general.

To prove it in our model, let h(u) := ∑∞
k=2(αu)k−1/k!. Then h is a

continuous function R → R with h(u) > −1 on R and h(0) = 0 such that
uh(u) = (exp(αu) − 1)/α − u, and the stochastic exponential E(h(UE) ∗ µ̃E) is a
martingale. The latter follows by Theorem 3.1 of [20] (or by Remark 3.1 in [17])
whose integrability condition is met because the compensator of
((1 + h(UE)) log(1 + h(UE)) − h(UE)) ∗ µ is bounded by the boundedness of U

and λ(E). Hence,

dQ̂B := E
(
h(UE) ∗ µ̃E)

T dQE

defines a probability measure. By the same Girsanov-type arguments as were
used in the proof of Theorem 4.2, it follows that Ŵ remains a Brownian mo-
tion under Q̂B , while the compensator of µ under Q̂B becomes νQ̂B

(dt, de) =
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(h(UE(e)) + 1)νE(dt, de). By the same change-of-measure argument as used for
(4.25) and (4.26), it follows from the BSDE (4.33) that (YE,ZE,UE) is also the
bounded solution to the following BSDE under Q̂B :

YE
t = B −

∫ T

t
ZE

s dŴs +
∫ T

t

∫
E

UE
s (e)µ̃B(ds, de),(4.39)

where µ̃B := µ − νQ̂B
denotes the compensate measure under Q̂B . Since YE

is bounded, it is clearly a martingale, and both stochastic integrals in (4.39) are
BMO(Q̂B) martingales by Lemma 3.4.

Alternative proofs of some of the properties above, and others, in different or
more general models, can be found in the literature; see [21] and the references
therein.

4.4. Asymptotics for vanishing risk aversion. Finally, we prove that the util-
ity indifference price and the indifference hedging strategy converge for vanishing
risk aversion, in a suitable sense, to the conditional expectation process of B and
to the risk-minimizing strategy for B under the minimal entropy martingale mea-
sure QE . This shows that such a convergence of the strategy, which has, to our
best knowledge, thus far only been shown in [21] under the assumption of a con-
tinuous (Brownian) filtration, also holds in a setting like ours where the filtration
is noncontinuous in that it allows for noncontinuous martingales. On this basis,
one could conjecture that an asymptotic relation of this type should hold in gen-
eral. We note that the convergence results of Section 4.4, that have been stated for
vanishing risk aversion, could alternatively also be formulated for vanishing claim
volume, by using a volume-scaling property for exponential utility (cf. Section 3
in [2]). This relates this article to a very interesting recent work of Kramkov and
Sirbu [19] on the asymptotic of utility-based hedging strategies for small claim
volumes. Unlike the present article, [19] does not investigate exponential utility
but considers utility functions whose domain is the positive real half line.

Using suggestive notation anticipating Theorem 4.6, we denote by
(YE,0,ZE,0,UE,0) from S∞(QE) × L2

T (QE) × L2
ν(Q

E) the solution to the
BSDE (4.40) with zero generator under QE , with t ∈ [0, T ],

Y
E,0
t = B −

∫ T

t
ZE,0

s dŴs −
∫ T

t

∫
E

UE,0
s (e)µ̃E(ds, de).(4.40)

It follows from this decomposition that ZE,0 corresponds to the globally risk-
minimizing strategy under the measure QE (more precisely, to its risky asset’s
part) and that YE,0 is the associated valuation process (cf. [4]). For details on risk-
minimization and relations to mean-variance hedging, see [23].

THEOREM 4.6. Let (πα,ψα,UE,α) = (YE,α,ZE,α,UE,α) ∈ S∞ ×L2
T ×L2

ν

denote the BSDE solution (under QE) from Theorem 4.4 to the indifference pricing
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and hedging problem for risk aversion α ∈ (0,∞). Then there is a constant C =
C(B) < ∞ such that

EQE

τ

[
sup

u∈[[τ,T ]]
|πα

u − YE,0
u |2 +

∫ T

τ
|ψα − ZE,0|2 ds

(4.41)

+
∫
]]τ,T ]]×E

|UE,α − UE,0|2νE(ds, de)

]
≤ α2C,

for all α ∈ (0,1] and all stopping times τ ≤ T . Hence,

sup
t∈[0,T ]

|πα
t − Y

E,0
t |2 ≤ α2C for α ∈ (0,1]

lim
α↓0

∫
ψα dŴ =

∫
ZE,0 dŴ in BMO(QE),(4.42)

lim
α↓0

UE,α ∗ µ̃E = UE,0 ∗ µ̃E in BMO(QE).

In particular, limα↓0 supt∈[0,T ] |πα
t − Y

E,0
t | = 0 in L∞, and

lim
α↓0

∫
ψα dŴ =

∫
ZE,0 dŴ in H2(QE),

(4.43)
lim
α↓0

UE,α ∗ µ̃E = UE,0 ∗ µ̃E in H2(QE).

We note that the upper bound for α in (0,1] is arbitrary in (4.41); the same result
would hold for any finite bound other than 1, possibly with a different constant
C < ∞.

PROOF OF THEOREM 4.6. Let (YE,α,ZE,α,UE,α) ∈ S∞ × L2
T × L2

ν , for
each α, denote the BSDE solution from Theorem 4.4 which describes the solu-
tion to the indifference pricing and hedging problem. It follows, by applying (un-
der QE) the estimate from Theorem 3.5 to the BSDE (4.33) and using Jensen’s
inequality, that there is a constant c not depending on α such that

EQE

τ

[
sup

u∈[[τ,T ]]
|YE,α

u − YE,0
u |2

+
∫ T

τ
|ZE,α − ZE,0|2 ds +

∫
]]τ,T ]]×E

|UE,α − UE,0|2νE(ds, de)

]

≤ cEQE

τ

[∫ T

τ

∫
E

∣∣∣∣ 1

α
exp(αUE,α

s (e)) − 1

α
− UE,α

s (e)

∣∣∣∣2ζE(t, e)λ(de) dt

]
for all α ∈ (0,1]. Since |UE,α| is bounded uniformly in α, for instance by
2b(0) from (3.12), the integrand |(exp(αUE,α

s (e))− 1)/α −UE,α
s (e)|2 is bounded
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P ⊗ ν-a.e. by const · α2 < ∞ for α ∈ (0,1], and as ζE is bounded and λ(E) is fi-
nite, there is a constant C < ∞ such that the right-hand side of the above inequality
can be bounded by Cα2 for all α ∈ (0,1] and τ . This yields (4.41)–(4.43), by let-
ting τ = 0 to obtain (4.43) and by using the characterization of BMO-martingales
for (4.42); see Chapter 10 in [13]. �

4.5. Examples. This section outlines some areas where the general indiffer-
ence results from Section 4 can be applied, and points out further connections to
some closely related contributions in the literature.

One area of application involves incomplete stochastic volatility models. Con-
sider, for instance, an increasing pure jump Lévy process L without drift (i.e.,
a pure jump subordinator) and an independent Brownian motion W . Let F :=
F

(W,L) = F
W+L and let the price S of the single risky asset evolve as

dSt = Stγt (Yt−) dt + Stσt (Yt−) dWt, S0 = s ∈ (0,∞)
(4.44)

dYt = −KYt + dLt , Y0 = y ∈ (0,∞) and K ∈ (0,∞),

for suitable P ⊗B((0,∞))-measurable functions γ,σ :�×[0, T ]× (0,∞) → R,
with σ > 0. If L is of finite activity and | γt

σt
(Yt−)| is bounded, this fits comfortably

into the framework of Section 4.1 with µ := µL and ν(dt, de) = λ(de) dt where λ

denotes the Lévy measure of L. Moreover, we can dispense with the independence
assumption, for example, by a change to a new measure with dP new/dP old =
E((ζ − 1) ∗ (µ − ν))T for a predictable bounded function ζ ≥ 0 such that the
compensator of µ becomes dνnew = ζ dνold and hence can depend on the history
of (W,L); see Example 2.1. In [5], the density process of the minimal entropy
martingale measure QE has been derived for a model like (4.44) with a specific
Markovian choice of γ and σ . Their results are both more and less general than
ours. While they, for example, impose only a certain integrability on the market
price of risk and do not require that L is of finite activity, our framework can
deal with other (also non-Markovian) choices of γ and σ and does not require
the independence of the driving processes W and L under the objective measure.
Moreover, we also obtain the density process of the optimal measure QE,B for the
dual problem if there is an additional liability B 
= 0.

Another application may be a “regime-switching” model

dS/S = γ (ηt−) dt + σ(ηt−) dW

where the local drift and volatility of S are modulated by the state of a continu-
ous finite-state Markov chain (ηt )t∈[0,T ], independent of W , and where the claim
B could depend on the joint evolution of (S, η). Under suitable assumptions on
γ,σ , this fits well into the framework of Section 4 with µ := µη. Depending on
the interpretation of η, say as an economic regime or a credit state, one arrives at
an incomplete stochastic volatility model or at a model with tradable market risk
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and additional nontradable default risk. Again, the independence assumption be-
tween η and W could be considerably relaxed and mutual dependencies between
η and S can be introduced; see [3] for a Markovian model of such type with utility
indifference solutions in PDE-form that compare nicely to our BSDEs, and see
[4] for similar results on risk-minimization that correspond to the limiting case for
vanishing risk aversion from Section 4.4.

Another interesting area of application involves valuation and hedging problems
for a portfolio of insurance policies (or of defaultable securities). To this end, it is
common to consider a cumulative loss process Lt = ∑

i ξi1[[Ti,T ]](t) with random
times 0 < T1 < T2 < · · · where Ti models the time of the ith insurance claim (or
default event) and the random variable ξi > 0 may represent the size of claim i

(or the loss fraction times the notional). Suppose that µ := µL has a compensator
ν of the form (2.2)–(2.3) with respect to its usual filtration F

L, and that W is a
Brownian motion independent of L. By Example 2.1(2), µ̃ = µ − ν and W then
have the representation property (2.4) with respect to F := F

(W,L). This fits into
our framework, and Section 4 describes the utility indifference solution for claims
B ∈ L∞ that can depend on the joint history of L and S from (4.1), the latter
process being driven by W . In the context of default risk, it should furthermore be
interesting to also consider situations where the timing (Ti) of losses and possibly
also the loss sizes (ξi) are stochastically related to the evolution of some common
factors which can be hedged partially (via S or Ŵ , resp.). To this end, dependencies
between W and L (µ) can again be introduced by a suitable change of measure (see
Example 2.1) such that the compensator ν of µ = µL can depend by its density
ζ on the past evolution of the loss process L and of the financial market prices S;
see (2.2). This permits, for example, self-exciting features of L (µ). Our results
can describe the utility indifference solution in a model with both default timing
risk (via Ti) and additional, possibly nonpredictable, recovery risk (via ξi ). In the
latter aspect, this goes beyond the results of [3], even for the Markovian case.

APPENDIX: CONDITIONAL FUBINI

This appendix provides a specific version of a conditional Fubini theorem. It
may be folklore, but we have not found a reference elsewhere proving the specific
result that we need.

LEMMA A.1. Suppose (Xt) is a F ⊗ B([0, T ])-measurable process with
right continuous paths on a stochastic basis (�,F , (Ft )t∈[0,T ],P ) with T < ∞
such that (Xt |t ∈ [0, T ]) is uniformly integrable. Let u ∈ [0, T ] and let σ, τ be
stopping times with σ ≤ τ ≤ T . Then there exists a measurable function

Fτ :
(
� × [0, T ],Fτ ⊗ B([0, T ])) → (

R̄,B(R̄)
)

such that Fτ (·, t) is a version of 1[[σ∨u,T ]](t)Eτ [Xt ] for each t , and

Eτ

[∫ T

σ∨u
Xt dt

]
=

∫ T

σ∨u
Fτ (·, t) dt =

∫ T

σ∨u
Eτ [Xt ]dt.
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PROOF. By suitable scaling, we may assume T = 1. We first show the claim
for σ = 0 and u = 0. For n ∈ N, define Fn

τ :� × [0, T ] → R, by

Fn
τ (ω, t) := Eτ

[
X(j+1)/2n

]
(ω) for t ∈

[
j

2n
,
j + 1

2n

)
,

using the same version of Eτ [X(j+1)/2n] for all t ∈ [j/2n, j + 1/2n), and let
Fn

τ (ω,T ) := Eτ [XT ](ω) for the terminal time T = 1. Then Fn
τ is Fτ ⊗B([0, T ])-

measurable. Using right continuity of paths and uniform integrability, the condi-
tional dominated convergence theorem yields that Fn

τ (t) = Eτ [Xqn(t)] → Eτ [Xt ]
a.s., since qn(t) := (�t2n� + 1)/2n ↘ t for each t ∈ [0, T ) when n → ∞. Hence,
Fτ (ω, t) := lim supn Fn

τ (ω, t) provides the required measurable version.
By uniform integrability of X, E[∫ T

0 |Fτ (·, t)|dt] ≤ E[∫ T
0 |Xt |dt] is finite. By

Fubini’s theorem, t �→ Fτ (t,ω) is for a.a. ω integrable with respect to the Lebesgue
measure, and

∫ T
0 Fτ (t,ω)dt is Fτ -measurable. Finally, again by Fubini’s theorem,

we obtain

E

[
IA

∫ T

0
Xt dt

]
=

∫ T

0
E[1AFτ (·, t)]dt = E

[
1A

∫ T

0
Fτ (·, t) dt

]
(A.1)

for any A ∈ Fτ , which yields the claim for the case σ,u = 0. With Fτ from
above, we construct the solution for u ∈ [0, T ] and σ ≤ τ as follows. Let X̃ :=
1[[σ∨u,T ]]X, and define F̃τ (ω, t) := 1[[σ∨u,T ]](t)Fτ (ω, t). Noting that
1[[σ∨u,T ]](t) = 1[[σ,T ]](t)1[u,t](t) ∈ Fσ ⊂ Fτ , one sees that F̃ is Fτ ⊗ B([0, T ])-
measurable, F̃τ (·, t) is a version of 1[[σ∨u,T ]](t)Eτ [Xt ] = Eτ [X̃t ] for all t and a
Fubini argument like (A.1), but with X̃ and F̃τ , completes the proof. �
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