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SYSTEMATIC SCAN FOR SAMPLING COLORINGS1

BY MARTIN DYER, LESLIE ANN GOLDBERG AND MARK JERRUM

University of Leeds, University of Warwick and University of Edinburgh

We address the problem of sampling colorings of a graph G by Markov
chain simulation. For most of the article we restrict attention to proper
q-colorings of a path on n vertices (in statistical physics terms, the one-
dimensional q-state Potts model at zero temperature), though in later sections
we widen our scope to general “H -colorings” of arbitrary graphs G. Existing
theoretical analyses of the mixing time of such simulations relate mainly to
a dynamics in which a random vertex is selected for updating at each step.
However, experimental work is often carried out using systematic strategies
that cycle through coordinates in a deterministic manner, a dynamics some-
times known as systematic scan. The mixing time of systematic scan seems
more difficult to analyze than that of random updates, and little is currently
known. In this article we go some way toward correcting this imbalance. By
adapting a variety of techniques, we derive upper and lower bounds (often
tight) on the mixing time of systematic scan. An unusual feature of system-
atic scan as far as the analysis is concerned is that it fails to be time reversible.

1. Introduction. Many models in statistical physics come under the heading
of “spin systems.” Such a system is specified by a graph G, in our case finite. Con-
figurations of the system are assignments of “spins” to the vertices of G. There are
assumed to be q possible spins, and, hence, potentially qn configurations, where
n is the number of vertices of G, though some of these configurations may be il-
legal. Each configuration has an energy that comes from summing, over all edges
of G, the interaction energies between adjacent spins. These energies specify a
probability distribution, called the Boltzmann distribution, on configurations. The
Potts model and the hard-core lattice gas model are examples of spin systems.

In this paper for consistency with previous literature, we shall refer to spins as
colors and to configurations as states. Sampling from the Boltzmann distribution
is a challenging computational task. Often, the only feasible way of going about
it is to simulate a suitable random “dynamics” on configurations. The dynamics
has the property of converging to a stationary distribution which is the Boltzmann
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distribution. This is usually straightforward to arrange. The hard part is proving
that the dynamics is “rapidly mixing,” that is, converges rapidly to stationarity.

Identifying the vertices of G with the integers {1,2, . . . , n}, we may think of
the state space as having coordinates. There is a substantial body of literature con-
cerned with bounding mixing time (i.e., time to convergence to near-stationarity) of
systems such as those described above. Almost all this theoretical work relates to
random single-site updates, which choose a random coordinate for updating at each
transition. We shall refer to this strategy as Glauber dynamics. (The term “Glauber
dynamics” appears not to have a precise agreed meaning. Here we are using the
term to signify single site updates performed in a random sequence. These are
certainly aspects of the dynamics first considered by Glauber [18].) However, ex-
perimental work is often carried out using systematic strategies that cycle through
coordinates in a deterministic manner, a dynamics we refer to as systematic scan
(or just “scan” for short). The mixing time of systematic scan seems more difficult
to analyze that that of Glauber, and little is currently known.

In this paper we take some first steps in analyzing systematic scan for spin sys-
tems. Our setting will be very simple; indeed, for the most part, we will restrict
attention to proper q-colorings of a path of n vertices (in statistical physics terms,
the one-dimensional q-state Potts model at zero temperature). To compensate for
the simple setting, we provide tight (i.e., matching within a constant factor) upper
and lower bounds on mixing time. Measuring mixing time in terms of the num-
ber of updates of individual vertices (so that one scan equates to n updates), we
show that when q = 3, mixing occurs in �(n3 logn) updates, whether Glauber dy-
namics or systematic scan is used; while when q ≥ 4, mixing occurs in �(n logn)

updates, again independently of whether Glauber or scan is used. Our main tools
are harmonic analysis [29], path coupling [6] and disagreement percolation [28].

Later in the paper we considerably widen the setting from usual proper color-
ings to general H -colorings (also known a graph homomorphisms), but staying
at first with the path as the underlying graph. H -colorings model arbitrary spin
systems with symmetric “hard” constraints. We show that, for any H , Glauber
mixes in O(n5) updates and scan in O(n6) updates. The former bound is un-
likely to be tight, and the latter even less so. The method here is that of canonical
paths [10, 27].

Finally, we consider H -colorings of a general graph G, and compare the mixing
times of scan and Glauber. We show that, for any H , these are within a polynomial
factor of each other (in terms of total number of individual updates performed),
at least when G is of bounded degree. The question of whether scan can ever be
faster than Glauber, or vice versa, remains a tantalizing open problem. The only
situation where a gap is known is the rather uninteresting one that arises when
G is the empty graph, where Glauber requires �(n logn) updates [13], while scan
clearly mixes in one sweep.
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1.1. Previous work. Amit [3] has investigated systematic scan in the context
of sampling from multivariate Gaussian distributions. In this instance, one iter-
ation of systematic scan applies a “heat-bath” update to each coordinate axis in
turn. Amit precisely calculates the spectral gap of the scan operator and, hence,
bounds the mixing time. He also estimates the spectral gap of a similar process on
perturbed Gaussian distributions.

In another application of systematic scan—this time more combinatorial in na-
ture and slightly closer to the one studied here—Diaconis and Ram [8] consider
the problem of generating random elements of a finite group. The systematic scan
Metropolis algorithm cycles through the generators in order, and flips coins to de-
cide whether or not to multiply by each generator in turn. The random update
algorithm chooses one of the n generators uniformly at random at each step. For
the symmetric group, they show that the systematic scan algorithm mixes in �(n)

scans, so consideration of �(n2) selections of generators is necessary and suffi-
cient for mixing. They consider two different scanning strategies from [17]—the
same results hold for both strategies. Matching results (in terms of the number of
generators considered) are given by Benjamini et al. [5] for the random update
strategy. Diaconis and Ram also consider the hypercube and the dihedral group.
For the hypercube, they show that �(n logn) updates are necessary and sufficient,
whether one is doing random updates or systematic scan. For the dihedral group,
both strategies take �(n) updates. Diaconis and Ram point out that careful analy-
sis of rates of convergence for the Metropolis algorithm is completely open in
nongroup cases.

For a brief review of other work on systematic scan, consult Diaconis and
Ram [8], Section 2b.

2. Definitions and notation. The variation distance between distributions
θ1 and θ2 on � is

dTV(θ1, θ2) = 1
2

∑
i

|θ1(i) − θ2(i)| = max
A⊆�

|θ1(A) − θ2(A)|.

For a discrete ergodic Markov chain M with transition matrix P and stationary
distribution π , and a specified initial state x, the mixing time (as a function of the
deviation ε from stationarity) is

Mixx(M, ε) = min
{
t > 0 : dTV

(
P t(x, ·),π(·))≤ ε

}
.

The mixing time of M is Mix(M, ε) = maxx Mixx(M, ε).
Suppose G is an undirected graph with vertex set {1, . . . , n}. To avoid trivial-

ities, we assume n > 3. We consider q-colorings of G, where q ≥ 3. Formally,
a coloring σ is a vector σ = (σ1, . . . , σn) in which σi ∈ {0, . . . , q − 1} denotes the
color of vertex i. A coloring is proper if adjacent vertices receive different colors.
�+ = {0, . . . , q − 1}n is the set of all colorings (proper and improper), while � is
the set of all proper colorings.
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A Markov chain with state space � starts at a coloring σ(0) and visits a se-
quence of colorings σ(0), σ (1), . . . . We often use τ to denote a coloring (when we
need two names). The two Markov chains that we study are as follows:

• MGl (Glauber): Choose vertex v uniformly at random; do Metropolis(v).
• M→ (Systematic scan): For v := 1 to n, do Metropolis(v).

The procedure Metropolis(v) used in both of the above dynamics performs as fol-
lows: A color c is chosen uniformly at random. A proposed new coloring is formed
by recoloring vertex v with color c. This proposed move is accepted if and only if
color c is not used at any neighbor of v.

Let PGl be the transition matrix of MGl and Let P→ be the transition matrix
of M→. It will be convenient in our proofs to consider reverse systematic scan:

• M← (Reverse scan): For v := n down to 1, do Metropolis(v).

Let P← be the transition matrix of M←. Observe that M← is the time reversal
of M→, since P→(σ, σ ′) = P←(σ ′, σ ) for all σ,σ ′ ∈ �.

Let M be any discrete Markov chain with transition matrix P , stationary distri-
bution π and state space �. Define the optimal Poincaré constant of M by

λ(M) = inf
f : �→R

EM(f, f )

varπ(f )
,

where the inf is over all nonconstant functions from � to R and the Dirichlet form
is given by

EM(f, f ) = 1
2

∑
x,y∈�

π(x)P (x, y)
(
f (x) − f (y)

)2
and

varπ(f ) = ∑
x∈�

π(x)
(
f (x) − Eπf

)2 = 1
2

∑
x,y∈�

π(x)π(y)
(
f (x) − f (y)

)2
.

If M is time-reversible with respect to π [i.e., π(σ)P (σ, τ ) = π(τ)P (τ, σ )], then
the eigenvalues of P are real and can be written 1 = β0 ≥ β1 ≥ · · · ≥ β|�|−1 ≥ −1.
Then λ(M) is is equal to 1 − β1.

Some of our rapid-mixing proofs will use the method of path coupling [6]. In
our path-coupling proofs, we will define partial couplings on the set S, which will
always be the set of pairs of colorings that differ on a single vertex.

For most of the paper we consider the case in which G is a path going left to
right from vertex 1 to vertex n. Kenyon and Randall [24] have shown that, for
every q , the block dynamics, which updates a sufficiently large constant-length
path at each step, mixes in time O(n logn). Our results show that this upper bound
holds for single-site dynamics for q ≥ 4, but not for q = 3.

In our analysis for q = 3 we will study two auxiliary Markov chains on state
space ϒ = {−1,1}n−1. A configuration X ∈ ϒ is a vector X = (X1, . . . ,Xn−1).
The corresponding Markov chain evolves as X(0),X(1), . . . . The next section
generalizes this framework.
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3. The analysis technique for q = 3. The following develops an idea of
Wilson [29] for lower bounding the convergence rate of certain types of Markov
chains.

Let M be a finite ergodic Markov chain with transition matrix P and state space
ϒ ⊆ Z

m. (This is a more general setting than our current application demands, but
it is the natural one in which to develop the ideas.) Suppose there exists a matrix A

such that E[X(1)|X(0)] = AX(0) for all X(0) ∈ ϒ . (The method may still be ap-
plicable when we have only an affine dependence here. For provided A − I is in-
vertible, an affine dependence E[X(1)] = AX(0)+ b can be reduced to one of the
required form by moving the origin in ϒ . In particular, E[X(1)] = AX(0) + b is
the same as E[X(1)+ c] = A(X(0)+ c) for b = (A− I )c.) We will assume that A

has real eigenvalues, though it is possible to extend the method to complex eigen-
values. We may further assume that A has only nonnegative eigenvalues, since
otherwise we can consider the two-step chain M2 = (ϒ,P 2) which converges ex-
actly twice as fast. Now let λ be any eigenvalue of A, with left eigenvector w.
Then,

E[wX(t)|X(0)] = wAtX(0) = λtwX(0).(1)

Let �t = wX(t). To obtain the strongest lower bound, we choose λ to be the
largest eigenvalue such that there exist x, y ∈ ϒ with wx �= wy. Then we choose
X(0) = arg maxx |wx|. Since w is defined only to scalar multiples, we may assume
wX(0) > 0. It follows from (1) that λ ≤ 1. Otherwise lim supt→∞ E[�t ] = ∞,
contradicting the finiteness of M. If λ = 1, we have E[�t ] = �0 for all t . But
�t ≤ �0, so we must have �t = �0 for all t . Using ergodicity of M, this implies
wx = wy for all x, y ∈ ϒ , contradicting our choice of λ. Thus, λ < 1 and, hence,
limt→∞ E[wX(t)] = 0. If X(∞) denotes (a r.v. with) the equilibrium distribution,
it follows that E[wX(∞)] = 0.

We will now consider the quantities E[�t |�t−1] and var(�t |�t−1). Definitions
of conditional expectations and variances can be found in [11] (pages 190–198).
We will use the fact that var(Y ) = E[var(Y |X)] + var(E[Y |X]) (page 198). Sup-
pose that E[var(�t |�t−1)] ≤ ρ for all t > 0, and let ν = ρ/(1 − λ2). Now using
E[�t |�t−1] = λ�t−1 and var(�0) = 0,

var(�t) = E[var(�t |�t−1)] + var(E[�t |�t−1])
= E[var(�t |�t−1)] + var(λ�t−1)

= E[var(�t |�t−1)] + λ2 var(�t−1)(2)

≤ ρ + λ2 var(�t−1)

≤
t−1∑
i=0

λ2iρ < ρ/(1 − λ2) = ν.

Instead of (2), Wilson uses ν = R/2γ , where γ = 1 − λ and E[(�t −
�t−1)

2|�t−1] ≤ R. The calculation to justify this is longer, and the conclusion
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is not valid for all λ. However, since ρ ≤ R and usually λ = o(1), (2) implies
Wilson’s bound asymptotically, but, in general, they are incomparable. Now, using
Chebyshev’s inequality,

Pr

(
�t < λt�0 −

√
2ν

ε

)
<

1

2
ε and Pr

(
�∞ >

√
2ν

ε

)
<

1

2
ε.

Thus, dTV(�t ,�∞) ≤ 1 − ε only if λt�0 < 2
√

2ν/ε. [We will abuse the notation
dTV(·, ·) for variation distance by extending it to random variables.] The latter
inequality holds only if

t >
ln(

√
ε/8�0/

√
ν )

ln(1/λ)
≥ λ ln(

√
ε/8�0/

√
ν )

1 − λ
.

Setting ε = 1
2 , we find that

Mix
(
M,

1

2

)
≥ λ ln(�0/4

√
ν )

1 − λ
.(3)

We say that a Markov chain is monotone with respect to a partial order ≤ on its
state space if two realizations X(t) and Y(t) of it may be coupled so that X(0) ≥
Y(0) implies X(t) ≥ Y(t) for all t ∈ N. We refer to such a coupling as a “monotone
coupling.” Suppose M is monotone with respect to the product partial order ≤
on R

m, that is, the partial order defined by x ≤ y if and only if xi ≤ yi for all
i ∈ {1, . . . ,m}. If the weight vector w > 0 (in the product order), we can use it
to bound the mixing time from above. Let us re-scale w so that mini wi = 1. Let
d(x, y) =∑m

i=1 wi |xi − yi | for x, y ∈ ϒ . Then d is a metric, since w > 0. Now
consider x, y ∈ ϒ with x ≥ y and let X(t), Y (t) be a monotone coupling with
X(0) = x and Y(0) = y. Since X(t) ≥ Y(t),

E
[
d
(
X(t), Y (t)

)]= E
[
w
(
X(t) − Y(t)

)]= wA
(
X(t − 1) − Y(t − 1)

)
= λw

(
X(t − 1) − Y(t − 1)

)= λd
(
X(t − 1), Y (t − 1)

)
.

So

dTV
(
X(t), Y (t)

)≤ Pr[X(t) �= Y(t)]
≤ E

[
d
(
X(t), Y (t)

)]
(4)

≤ λtd
(
X(0), Y (0)

)≤ 2λt�0,

where the final step is by the triangle inequality. Thus, dTV(X(t), Y (t)) ≤ ε holds,
provided t ≥ ln(2�0/ε)/ ln(1/λ), that is, provided t ≥ ln(2�0/ε)/(1 − λ).

We would like to draw a similar conclusion when x and y are incompara-
ble. We can do so provided the state space contains states � and ⊥ satisfying
⊥ ≤ z ≤ � for all z ∈ ϒ . In this case, Pr(X(t) �= Y(t)|X(0) = x,Y (0) = y) ≤
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Pr(X(t) �= Y(t)|X(0) = �, Y (0) = ⊥) so we can apply (4) starting from X(0) = �
and Y(0) = ⊥. Thus,

Mix(M, ε) ≤ ln(2�0/ε)/(1 − λ).(5)

When ν is sufficiently small with respect to �0, the upper bound (5) and the lower
bound (3) agree to within a constant factor on the time to reach variation dis-
tance 1

2 , say.

3.1. Bounding E[var(�t |�t−1)]. In order to use the technique in Section 3,
we have to find a ρ such that E[var(�t |�t−1)] ≤ ρ, where the expectation is
over �t−1.

For this, let Zt = �t − �t−1. Then

E[var(�t |�t−1)] = E[var(�t−1 + Zt |�t−1)]
= E[var(Zt |�t−1)]
= E

[
E[Z2

t |�t−1] − (E[Zt |�t−1])2]
≤ E

[
E[(�t − �t−1)

2|�t−1]]
≤ max

�t−1
E[(�t − �t−1)

2|�t−1].

We will use the above inequality to find a suitable ρ.

3.2. A benchmark example. We illustrate the technique by applying it to a
simple example whose analysis was also given in the Introduction to [8]. Consider
mixing on the cube {−1,+1}m of the chain which changes the sign of a uniform
random coordinate with probability 1

2 . Then

E[Xi(t + 1)] = (1 − 1/m)Xi(t),

so A = (1 − 1/m)I , and all its eigenvalues are equal to (1 − 1/m). We may
choose an arbitrary w, say, the vector (1,1, . . . ,1). Then we can take ρ = 2, so
ν = 2m/(2 − 1/m) ≤ 2m. Taking X(0) = w, �0 = m, and the lower bound (3) for
mixing time is 1

2m lnm − O(m). This chain is monotone, and the upper bound (5)
is m lnm + O(m).

4. Glauber dynamics for q = 3 mixes in �(n3 logn) updates. Let G be a
path going left to right from vertex 1 to vertex n. Recall that � is the set of all
proper colorings of G.

4.1. Analysis of a related Markov chain. Let σ be a coloring in �. Note that,
for every i ∈ {1, . . . , n − 1}, we either have σi+1 = σi + 1 (mod 3) or σi+1 =
σi − 1 (mod 3). We can associate σ with a vector X ∈ ϒ = {−1,1}n−1. Xi is 1
if σi+1 = σi + 1 (mod 3) and Xi = −1 otherwise. (Note that three colorings are
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mapped to the same configuration X—given σ1 and X, the coloring σ can be
recovered.)

The Markov chain MGl can be associated with a Markov chain M±
Gl on ϒ . The

moves of M±
Gl (from configuration X) are as follows. Choose r ∈ {1, . . . , n} uni-

formly at random. If r = 1 (resp. r = n), then either, with probability 1
3 , change the

sign of X1 (resp. Xn−1) or, with the complementary probability, do nothing. Oth-
erwise (i.e., if 1 < r < n) then either, with probability 1

3 , exchange Xr−1 and Xr

or, with the complementary probability, do nothing.
In this section we analyze the mixing rate of M±

Gl. Note that this chain is
monotone with respect to the usual partial order on ϒ . Then straightforward cal-
culations give

E[X(t + 1)] = AX(t) where A = I − 1

3n
B

and

B =



3 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 3


.

Note that A is symmetric so has all real eigenvalues. Moreover, A is nonnegative
and irreducible, so its largest eigenvalue λ has a positive eigenvector w. The eigen-
vectors are identical to those of B , and λ = (1 − λ′/3n), where λ′ is the smallest
eigenvalue of B . The “generic” row gives the equation

−wi−1 + 2wi − wi+1 = λ′wi,(6)

the form of which suggests a simple harmonic oscillation. So we will try the solu-
tion wi = cn sin(αi + β), where cn is a positive scaling factor to be chosen later.
Substituting in (6) gives λ′ = 2(1 − cosα) = 4 sin2(α/2). We also have the two
“boundary conditions”

3w1 − w2 = λ′w1, −wn−2 + 3wn−1 = λ′wn−1.(7)

The first equation in (7) gives sin(α +β) = − sinβ , that is, β = −α/2. The second
then gives sin((n − 1

2)α) = − sin((n − 3
2)α), so (n − 1

2)α = 2π − (n − 3
2)α, that

is, α = π/(n − 1). Thus,

wi = cn sin
(

π(i − 1/2)

n − 1

)
> 0, i = 1, . . . , n − 1,

and w = (wi) is the (positive) eigenvector corresponding to the largest eigenvalue.
Our upper bound on mixing time requires wi ≥ 1, for all 1 ≤ i ≤ n− 1, and we set
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cn ∼ 2n/π to achieve this. (The symbol “∼” denotes asymptotic convergence as
n → ∞.)

Now, if we let w0 = wn = 0, we may take

ρ = 2 max
1≤i≤n

(wi − wi−1)
2 = 2(w2 − w1)

2 ∼ 8.

Also, λ = 1 − 4 sin2(π/(2n − 2))/3n, so 1 − λ ∼ π2/3n3. Hence, ν ∼ 12n3/π2.
Taking X(0) to be the all 1’s vector,

�0 = cn

n−1∑
i=1

sin
(

π(i − 1/2)

n − 1

)

= cnIm

[
n−1∑
j=1

exp
(

iπ(j − 1/2)

n − 1

)]

= cncosec
(

π

2(n − 1)

)
∼
(

2n

π

)2

,

where i = √−1 in the second equality and the final equality follows from simpli-
fying the geometric series as follows. For � = iπ/(n − 1), the sum is equal to

e−�/2
(

e� − e�n

1 − e�

)
= −2

exp(iπ/2(n − 1)) − exp(−iπ/2(n − 1))

= i

sin(π/2(n − 1))
.

Substituting for λ, �0 and ν in the mixing time lower bound, (3) yields
Mix(M±

Gl,
1
2) ≥ 3

2π−2n3 lnn − O(n3). Also (for any positive ε), the upper bound
(5) is Mix(M±

Gl, ε) ≤ 3π−2n3(2 lnn + ln ε−1) + O(n3). In summary, the mixing
time of M±

Gl is �(n3 logn).

4.2. Distance measures and a lower bound for Glauber dynamics. We will
use two distance measures to analyze the Glauber-dynamics Markov chain MGl.
First, we define the distance d1(σ, τ ) for σ ∈ � and τ ∈ � follows. Let X be the
member of ϒ associated with σ and Y be the member of ϒ associated with τ .
Let d1(σ, τ ) = Ham(X,Y ), where Ham(X,Y ) is the Hamming distance between
X and Y , which is the number of indices i such that Xi �= Yi .

Using distance measure d1, the lower bound from Section 4.1 applies directly
to MGl. Thus, we obtain the following theorem.

THEOREM 1. Let G be the n-vertex path, and let q = 3. Then a lower bound
on the mixing time of the Markov chain MGl on the state space � is given by
Mix(MGl,

1
2) ≥ 3

2π−2n3 lnn + O(n3).
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In order to upper-bound the mixing time of MGl, we will also define a second
distance measure.

Give the vertices 1, . . . , n weights λ1, . . . , λn, respectively. These weights are
positive rationals. Denote by S ⊂ �×� the set of all pairs of states (colorings) that
differ at a single vertex (i.e., are Hamming distance 1 apart). If (σ, τ ) ∈ S differs
at vertex i, then let φ(σ, τ ) = λi . Define the function d2 on � × � as follows. For
each pair (σ, τ ) ∈ � × �, let

d2(σ, τ ) = min
ω(0),...,ω(k)

k−1∑
j=0

φ
(
ω(j),ω(j + 1)

)
,(8)

where the minimum is over all paths σ = ω(0), . . . ,ω(k) = τ such that each
ωj ∈ � and each pair (ω(j),ω(j + 1)) ∈ S. A path ω(0), . . . ,ω(k) satisfying (8)
is referred to as a geodesic path from σ to τ .

In our couplings, we will want to be able to bound the expected change in the
distance d2. In order to do this, we use height functions. A height function h cor-
responding to a proper coloring σ is a vector in Z

n satisfying the following prop-
erties:

1. For every vertex i, hi ≡ i (mod 2).
2. For every vertex i, hi ≡ σi (mod 3).
3. For every edge (i, i + 1), |hi − hi+1| = 1.

The height function is unique up to an additive constant. We define the distance
between two height functions, h and h∗, to be

d(h,h∗) = ∑
i∈{1,...,n}

|hi − h∗
i |λi

2
.

Let H(σ ) denote the set of height functions corresponding to coloring σ .

LEMMA 2. For any pair of colorings (σ, τ ) ∈ � × �,

d2(σ, τ ) = min
h∈H(σ ),h∗∈H(τ )

d(h,h∗).

PROOF. To show that

d2(σ, τ ) ≥ min
h∈H(σ ),h∗∈H(τ )

d(h,h∗),

consider a geodesic path from σ to τ . Let h′(0) be any height function in H(σ )

and let h′(0), . . . , h′(k) be the sequence of height functions corresponding to the
geodesic path. Now

min
h∈H(σ ),h∗∈H(τ )

d(h,h∗) ≤ d
(
h′(0), h′(k)

)
≤

k−1∑
i=0

d
(
h′(i), h′(i + 1)

)= d2(σ, τ ).
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To show that

d2(σ, τ ) ≤ min
h∈H(σ ),h∗∈H(τ )

d(h,h∗),

consider any h ∈ H(σ ) and h∗ ∈ H(τ ). A “height-function transformation”
(see [20]) either takes a local maximum of a height function and pushes it down by
two or takes a local minimum and pushes it up by two. We can show that there is
a sequence h = h(0), . . . , h(k) = h∗ of height-function transformations transform-
ing h into h∗ that chooses each vertex v only |hv −h∗

v|/2 times. (This can be proved
by induction on

∑
v |hv − h∗

v|. See Lemma 4.3 of [20].) Now let ω(0), . . . ,ω(k)

be the sequence of colorings corresponding to h(0), . . . , h(k). Note that

k−1∑
j=0

φ
(
ω(j),ω(j + 1)

)≤ d(h,h∗).

Thus, d2(σ, τ ) ≤ d(h,h∗). �

4.3. An upper bound for Glauber dynamics. Our upper bound comes from a
two-stage argument. In the first stage we observe the evolution of MGl, not directly,
but via the auxiliary Markov chain M±

Gl. We know from Section 4.1 that the latter
mixes in time �(n3 logn). Each state of M±

Gl corresponds to q states of MGl, so at
this point we know that MGl has mixed modulo a cyclic permutation of colors. In
the second stage we show, using the d2 metric, that two colorings σ and τ differing
by such a permutation may be coupled in a further O(n3) steps. The first stage
gives the coupling a head start in the sense that σ and τ are already quite close
in the d2 metric. Omitting the first stage and running the d2-coupling in isolation
would yield only an O(n5) bound on mixing time.

Recall that d1 is Hamming distance on ϒ . Suppose (σ (0), τ (0)) ∈ �×�. Then

Pr
(
d1
(
σ(t), τ (t)

)≥ 1
)≤ E

(
d1
(
σ(t), τ (t)

))
.

Applying (4) to the analysis in Section 4.1, the right-hand side is at most
2λt�0, where �0 = �(n2) and 1 − λ ∼ π2/2n3. So for some t ′ = O(n3 logn),
we will have d1(σ (t ′), τ (t ′)) = 0, with probability at least 39

40 . By Lemma 2,
d1(σ (t ′), τ (t ′)) = 0 implies that d2(σ (t ′), τ (t ′)) = 0 or d2(σ (t ′), τ (t ′)) =∑

i∈{1,...,n} λi .
Now choose weights λ1 = λn = 1/2 and λ2 = · · · = λn−1 = 1. We use path

coupling on pairs (σ (0), τ (0)) ∈ S. Starting with such a pair, run t ′ steps to get
(σ (t ′), τ (t ′)). With probability at least 39/40, d1(σ (t ′), τ (t ′)) = 0, in which case
either σ(t ′) = τ(t ′) or d2(σ (t ′), τ (t ′)) = n−1. If the former holds, we are done, so
suppose the latter. We now carry on from (σ (t ′), τ (t ′)) using the identity coupling
(i.e., to say the coupling that chooses the same vertex in both copies, and proposes
the same color c in both). We will show in Section 4.3.1 below that, if we take
any (σ, τ ) ∈ � × � and produce (σ ′, τ ′) by one step of the identity coupling, then



196 M. DYER, L. A. GOLDBERG AND M. JERRUM

E[d2(σ
′, τ ′)] ≤ d2(σ, τ ). Thus, Dt = d2(σ (t ′ + t), τ (t ′ + t)) is a super-martingale

with D0 = n−1. In Section 4.3.2 below, we will define a quantity V = �(1/n) and
show that, for all t and all values of Dt other than 0, E[(Dt+1 −Dt)

2|Dt ] ≥ V . Let
B = 10n, and let T be the first time at which either (a) Dt = 0 (i.e., coupling oc-
curs), or (b) Dt ≥ B . Note that T is a stopping time. Define Zt = (B − Dt)

2 − V t ,
and observe (see [25]) that Zt∧T is a sub-martingale, where t ∧T denotes the min-
imum of t and T . Let p be the probability that (a) occurs. By the optional stopping
theorem E[DT ] ≤ D0, so (1−p)B ≤ E[DT ] ≤ D0 and p ≥ 1−D0/B ≥ 9

10 . Also,
by the optional stopping theorem,

pB2 + (1 − p)E[(B − DT )2|DT ≥ B] − V E[T ]
= E[(B − DT )2] − V E[T ] = E[ZT ]
≥ Z0 = (B − D0)

2 > 0.

Since |Dt − Dt−1| ≤ 2, (1 − p)E[(B − DT )2|DT ≥ B] ≤ 4 < pB2 so E[T ] ≤
(2pB2)/V . Conditioning on (a) occurring, it follows that E[T |DT = 0] ≤ 2B2/V .
Hence, Pr(T > 20B2/V |DT = 0) ≤ 1

10 . So, if we now run the identity coupling
for 20B2/V = O(n3) steps, then σ and τ will fail to couple with probability at
most 1

40 + 2 × 1
10 < 1

4 . Thus, we have shown the following.

THEOREM 3. Let G be the n-vertex path, and let q = 3. Consider the Markov
chain MGl on the state space �. Then Mix(MGl,

1
4) = O(n3 logn).

We can boost the coupling probability in the usual way to bound Mix(MGl, ε)

for ε ≤ 1/4.

4.3.1. The coupling breaks even. Recall from Section 4.3 that λ1 = λn = 1
2

and λ2 = · · · = λn−1 = 1.

LEMMA 4. Suppose (σ, τ ) ∈ S differs at vertex i. Obtain (σ ′, τ ′) by one step
of the identity coupling. Then E[d2(σ

′, τ ′)] ≤ d2(σ, τ ).

PROOF. Recall that n > 3. There are three cases.
Suppose i ∈ {1, n}. Then E[d2(σ

′, τ ′)] − 1
2 is equal to

− 2

3n
λ1 + 1

3n
λ2 = 0.

The first term in the sum comes from the two colors which could be chosen at
vertex i, causing coupling. The second term comes from the one bad color which
could be chosen at i’s neighbor, causing one of the height functions to change by 2.

Suppose i ∈ {2, n − 1}. Then E[d2(σ
′, τ ′)] − 1 is equal to

2

3n
λ1 − 2

3n
λ2 + 1

3n
λ3 = 0.
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Suppose i ∈ {3, . . . , n − 2}. Then E[d2(σ
′, τ ′)] − 1 is equal to

1

3n
λi−1 − 2

3n
λi + 1

3n
λi+1 = 0. �

We can conclude from Lemma 4 by path-coupling that, if we take any
(σ, τ ) ∈ � × � and produce (σ ′, τ ′) by one step of the identity coupling, then
E[d2(σ

′, τ ′)] ≤ d2(σ, τ ).

4.3.2. Lower bounding V . Let w = mini λi = 1
2 . Start with σ and τ such that

σ �= τ . We will identify a vertex z and a color C such that, if we obtain σ ′ from σ

by trying C at z and we obtain τ ′ from τ by trying C at z, then d2(σ
′, τ ′) ≤

d2(σ, τ )−w. Since (z,C) is chosen with probability 1/(3n), we get V = w2/(3n).
Our method is this. Given σ and τ , choose h ∈ H(σ ) and h∗ ∈ H(τ ) such that

d2(σ, τ ) = d(h,h∗). Construct h′ from h by applying the choice (z,C) (to be spec-
ified presently) in h and construct h′∗ from h∗ by applying the same choice (z,C)

in h∗. We will show that d(h′, h′∗) ≤ d(h,h∗) − w so d2(σ
′, τ ′) ≤ d(h′, h′∗) ≤

d2(σ, τ ) − w.
Without loss of generality, assume that there is a vertex v such that hv > h∗

v .
Let m = maxv hv − h∗

v > 0 and let R = {v|hv − h∗
v = m}. By construction, R is

nonempty.

Case 1. R is the whole line. Let z be any local maximum in h and let C be
the color that is not used at z or at its neighbors in h. z is also a local maximum
in h∗ (since R is the whole line), but C is used either at z or at its neighbors in h∗.
(The unique color C′ that is not used either at z or its neighbors in h∗ must be
different from C, since σ �= τ .) Choose (z,C). Then h′

z = hz − 2. But h′∗
z = h∗

z .
So d(h,h∗) − d(h′, h′∗) = λz.

Case 2. There is a vertex z ∈ R, all of whose neighbors are in R. Note that all
edges from z to R in h go down (i.e., height decreases along these edges). Also,
all edges from z to R in h∗ go up. Thus, z is a local maximum in h and a local
minimum in h∗. Let C be the color that is not used at z or at its neighbors in h.
Choose (z,C). Then h′

z = hz − 2. Since z is a local minimum in h∗, h′∗
z ≥ h∗

z .
Also, h′

z ≥ h′∗
z since we choose the same color in both copies. Thus, d(h,h∗) −

d(h′, h′∗) ≥ λz.

Case 3. There is a vertex z ∈ R which has a neighbor w ∈ R and a neighbor
r ∈ R. Note that the edge from z to r goes the same direction (up or down) in h

as in h∗. Suppose first that it goes down. Then z is a local maximum in h. Let
C be the color that is not used at z or at its neighbors in h. Choose (z,C). Then
h′

z = hz − 2. Also, h′∗
z = h∗

z (since z has a neighbor below and a neighbor above,
and won’t be recolored in h∗). Thus, d(h,h∗) − d(h′, h′∗) ≥ λz.

Suppose instead that the edge from z to r goes up. Then z is a local minimum
in h∗. Let C be the color that is not used at z or at its neighbors in h∗. Choose
(z,C). Then h′∗

z = h∗
z + 2 and h′

z = hz so d(h,h∗) − d(h′, h′∗) ≥ λz.
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5. Systematic scan for q = 3 mixes in �(n2 logn) sweeps. As in Section 4
we consider the path G with vertices 1 through n with q = 3 colors. We consider
the dynamics M→.

5.1. Analysis of a related Markov chain. As in Section 4.1 the Markov chain
M→ can be associated with a Markov chain M±→ on ϒ . Each move of M±→ starts
with a configuration X ∈ ϒ and makes n moves of the chain M±

Gl from Section 4.1
corresponding to the choices r = 1, r = 2, . . . , r = n (in order).

Consider the transition from configuration X to configuration X′ corresponding
to one step of M±→. Let X̃i denote the label (±1) of vertex i in the intermediate
configuration which is obtained after the choices r = 1, r = 2, . . . , r = i. Then

E[X̃1] = 1
3X1,

E[X̃i] = 2
3Xi + 1

3E[X̃i−1], i = 2, . . . , n − 1,

E[X′
i] = 2

3E[X̃i] + 1
3Xi+1, i = 1, . . . , n − 2,

E[X′
n−1] = 1

3E[X̃n−1].
Solving these gives

E[X′
1] = 2

9X1 + 1
3X2,

E[X′
i] = 2

3i+1 X1 +
i∑

j=2

4

3i+2−j
Xj + 1

3
Xi+1, i = 2, . . . , n − 2,

E[X′
n−1] = 1

3n
X1 +

n−2∑
j=2

2

3n+1−j
Xj + 2

9
Xn−1.

So the matrix

A =



2

9

1

3
0

2

27

4

9

1

3
0

2

81

4

27

4

9

1

3
0

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
2

3n−1

4

3n−2

4

3n−3

4

3n−4 · · · 4

9

1

3
1

3n

2

3n−1

2

3n−2

2

3n−3 · · · 2

27

2

9



.

Here A is not symmetric, but is nonnegative and irreducible, so has a positive
eigenvector w corresponding to its (real) largest eigenvalue λ. Now w,λ satisfy
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the equations

λw1 = 2

9
w1 +

n−2∑
j=2

2

3j+1 wj + 1

3n
wn−1,

λwi = 1

3
wi−1 +

n−2∑
j=i

4

3j−i+2 wj + 2

3n−i+1 wn−1, i = 2, . . . , n − 2,

λwn−1 = 1
3wn−2 + 2

9wn−1.

These can be simplified by subtracting one-third of the (i + 1)st equation from the
ith for i = 2, . . . , n − 2, and one-sixth the second from the first, giving

λw2 − (6λ − 1)w1 = 0,(9)

λwi+1 − (3λ − 1)wi + wi−1 = 0, i = 2, . . . , n − 2,(10)

−3wn−2 + (9λ − 2)wn−1 = 0.(11)

If λ is close to 1, the form of (10) suggests a slightly damped harmonic oscillation,
so we will try a solution of the form wi = cne

γ i sin(αi + β), where cn > 0 is a
constant, depending on n, that can be chosen later. Substituting this in (10) and
equating coefficients of sin(αi + β), cos(αi + β) gives

λ = e−2γ and cosα = (3e−γ − eγ )/2,
(12)

that is, eγ = √
3 + cos2 α − cosα.

[The second of these follows from sin(x + y) = sinx cosy + cosx siny and
sin(x − y) = sinx cosy − cosx siny and the third used the quadratic formula with
the choice cosα ≥ 0.] Then (9) and (11) give

sin(2α + β)

sin(α + β)
= cosα + cot(α + β) sinα = 6e−γ − eγ(13)

and

sin((n − 2)α + β)

sin((n − 1)α + β)
= cosα − cot

(
(n − 1)α + β

)
sinα = 9e−γ − 2eγ

3
.(14)

Using (12) to eliminate γ in (13) and (14) gives

tan(α + β) = sinα

2 cosα + √
3 + cos2 α

and

tan
(
(n − 1)α + β

)= −3 sinα

2 cosα + √
3 + cos2 α

,
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implying

tan
(
(n − 1)α + β

)= −3 tan(α + β) and
(15)

tanα = 4 tan(α + β)/
(
1 − 3 tan2(α + β)

)
.

To see the second of these equalities, note that the left-hand equation on the previ-
ous line is equivalent to

tan
(
α + β

)= sinα

2 cosα +
√

4 cos2 α + 3 sin2 α

using cos2 α + sin2 α = 1. But this is equal to

tanα

2 + √
4 + 3 tan2 α

.

Now solve this for tanα. The equalities in (15) imply

π − (n − 1)α − β = arctan
(
3 tan(α + β)

)
,

α = α + β + arctan
(
3 tan(α + β)

)
.

The first of these uses tan(π − x) = − tan(x) and the second uses tan(x + y) =
(tanx + tany)/(1 − tanx tany), with x = α + β and y = arctan(3 tan(α + β)). So
finally we have

α = π

n − 1
,

tanβ = −3 tan
(
β + π

n − 1

)
,

eγ =
√

3 + cos2
(

π

n − 1

)
− cos

(
π

n − 1

)
.

Note that β is the solution of a trigonometric equation, but it is easily checked that
−π/(n − 1) < β < 0. Hence, w > 0, corresponding to the largest eigenvalue λ

of A. Asymptotically, we have

α ∼ π/n, β ∼ −3π/4n, γ ∼ π2/4n2, so 1 − λ ∼ π2/2n2.(16)

We also need to set cn ∼ 4n/π to achieve wi ≥ 1, for all 0 < i < n. If we take
X(0) to be the all 1’s vector, then it is easy to check that �0 ∼ 8n2/π2.

Next we need to estimate ρ, the bound on the variance of �t , given �t−1.
In the case of Glauber dynamics, the range of �t was O(1), which provided
a crude bound ρ = O(1). For scan, however, the range of possible values of
�t is O(n), which yields only ρ = O(n2): too weak for our purposes. Intu-
itively, however, since �t is, roughly speaking, a sum of n nearly independent
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r.v.’s each of variance O(1), the variance of �t ought to be O(n). This is in-
deed the case. In fact, we prove something stronger in the form of a large devia-
tion result for �t . Before doing that, let’s complete the remainder of the proof.
Assuming ρ = O(n), we have ν = O(n3). Now, from (3), the lower bound is
Mix(M±→, 1

2) ≥ π−2n2 lnn − O(n2). Since the sweep is also monotone, (5) gives

the upper bound Mix(M±→, ε) ≤ 4π−2n2 lnn + 2n2

π2 ln ε−1 + O(n2). It may be ob-

served that the bounds for M±
Gl are both about n times these quantities, so there

is no evidence that the scan gives a significant speed-up. However, there will be a
considerable saving in random number generation.

It only remains to show ρ = O(n). Recall that ρ is an upper bound on
E[var(�t |�t−1)], where �t = wX(t). Also, for i ∈ {1, . . . , n−1}, wi = (4n/π)×
exp(γ i) sin(αi + β), where γ , α and β are given asymptotically in (16). Let
w0 = wn = 0. Our first observation, which is similar to the one used in the analysis
of Glauber dynamics, is

max
1≤i≤n

|wi − wi−1| = O(1).(17)

To see that (17) holds, first note that 1 ≤ exp(γ i) = 1 + O(1/n). Using the se-
ries expansion of sine, we find that w1 = O(1) and wn−1 = O(1). Now, for
i ∈ {2, . . . , n − 1}, note that

wi − wi−1 ≤ 4n

π

(
1 + O(1/n)

)
sin(αi + β) − 4n

π
sin
(
α(i − 1) + β

)
≤ O(1) sin(αi + β) + 4n

π

(
sin(αi + β) − sin

(
α(i − 1) + β

))
.

The first term is O(1) because sine is bounded. Since the derivative of sine is at
most 1 (in absolute value), the difference between the two sines in the second term
is at most α, so the second term is also O(1).

Let ω1,ω2, . . . ,ωn denote the sequence of swap/no-swap decisions made by
systematic scan in transforming X(t − 1) to X(t). That is, ω1 is the indicator r.v.
for the event that the sign of position 1 is flipped, ωi (for i ∈ {2, . . . , n − 1}) is
the indicator r.v. for the event that positions i − 1 and i are exchanged, and ωn is
the indicator r.v. for the event that the sign of position n is flipped. The ωi ’s are
independent Bernoulli random variables with parameter 1/3. Given X(t − 1), the
configuration X(t) is a r.v. in ω1,ω2, . . . ,ωn. Let ωn+1 = 0. Consider the Doob
martingale Z0,Z1, . . . ,Zn obtained by revealing the swap/no-swap decisions in
sequence:

Z0 = E[wX(t)], Z1 = E[wX(t)|ω1],
Z2 = E[wX(t)|ω1,ω2], . . . ,Zn = E[wX(t)|ω1,ω2, . . . ,ωn].

All of Z0, . . . ,Zn are conditioned on X(t − 1). Notice that Z0 = E[�t |X(t − 1)]
and Zn = �t . We will show below that |Zi−1 − Zi | = O(1), for all 1 ≤ i ≤ n. It
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follows from the Azuma–Hoeffding inequality [4] (see also [21], Chapter 2.4) that

Pr
(|�t − E[�t ]| > h

√
n
)= Pr

(|Zn − Z0| > h
√

n
)≤ exp(−�(h2)).

Let C = maxi |Zi−1 − Zi |. Then we get ρ = O(n) since

E[var(�t |�t−1)]
=∑

ξ

Pr
(
X(t − 1) = ξ

)
E
[(

�t − E[�t |X(t − 1) = ξ ])2|X(t − 1) = ξ
]

≤ max
ξ

E
[(

�t − E[�t |X(t − 1) = ξ ])2|X(t − 1) = ξ
]

= max
ξ

E[(Zn − Z0)
2|X(t − 1) = ξ ]

≤ nmax
ξ

�C√
n �∑

h=1

h2 Pr
(|Zn − Z0| ∈ ((h − 1)

√
n,h

√
n
)|X(t − 1) = ξ

)

≤ n

�C√
n �−1∑

h=0

(h + 1)2 exp(−�(h2)) = O(n).

Finally, we must argue that |Zi−1 − Zi | = O(1). First, note that

|Z1 − Z0| = ∣∣E[wX(t)|ω1] − E[wX(t)]∣∣
≤ ∣∣E[wX(t)|ω1 = 1] − E[wX(t)|ω1 = 0]∣∣,

and the right-hand side is at most∣∣∣∣∣
n−1∑
k=0

Pr
(
(ω2, . . . ,ωk+2) = (1, . . . ,1,0)

)

× (
E[wX(t)|1,1, . . . ,1,0] − E[wX(t)|0,1, . . . ,1,0])∣∣∣∣∣,

where the conditioning specifies the values of ω1, . . . ,ωk+2. The relevant proba-
bility is at most 3−k . To get an upper bound, we move the absolute value inside the
summation and maximise over ωk+3, . . . ,ωn, obtaining

|Z1 − Z0| ≤
n−1∑
k=0

3−k max
ωk+3,...,ωn

∣∣E[wX(t)|1,1, . . . ,1,0,ωk+3, . . . ,ωn]

− E[wX(t)|0,1, . . . ,1,0,ωk+3, . . . ,ωn]
∣∣

=
n−1∑
k=0

3−k2wk+1,
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since the difference in sign propagates to position k + 1 and then stops. By (17),
this is O(1). Similarly, |Zn − Zn−1| = O(1). Now consider i ∈ {2, . . . , n − 1}.
Mimicking the analysis above, we find that |Zi − Zi−1| is at most

n−i∑
k=0

3−k max
ωi+k+2,...,ωn

T ,

where T is the absolute value of

E[wX(t)|ω1, . . . ,ωi−1,1,1, . . . ,1,0,ωi+k+2, . . . ,ωn]
− E[wX(t)|ω1, . . . ,ωi−1,0,1, . . . ,1,0,ωi+k+2, . . . ,ωn],

which is at most 2|wi+k − wi−1|, so

|Zi − Zi−1| ≤
n−i∑
k=0

3−k2|wi+k − wi−1|,

which is O(1) by (17).

5.2. A lower bound for systematic scan. We will use distance measures
d1 and d2 from Section 4.2. Using distance measure d1, the lower bound from
Section 5.1 applies directly to M→. Thus, we have the following:

THEOREM 5. Let G be the n-vertex path, and let q = 3. Then a lower bound
on the mixing time of the Markov chain M→ on the state space � is given by
Mix(M→, 1

2) ≥ π−2n2 lnn − O(n).

5.3. An upper bound for systematic scan. As in Section 4.3, we find that,
for some t ′ = O(n2 logn), we will have d1(σ (t ′), τ (t ′)) = 0 with probability at
least 39

40 .
Now choose the following weights. Let λ1 = 1

4 , λ2 = · · · = λn−1 = 1 and
λn = 3

4 .
We now use path coupling on pairs (σ (0), τ (0)) ∈ S. Start with such a pair, run

t ′ steps to get (σ (t ′), τ (t ′)). With probability at least 39/40, d1(σ (t ′), τ (t ′)) = 0.
Either σ(t ′) = τ(t ′) or d2(σ (t ′), τ (t ′)) = n − 1. Suppose the latter. We now carry
on from (σ (t ′), τ (t ′)) using the identity coupling. We show in Section 5.3.1 that,
if we take any (σ, τ ) ∈ � × � and produce (σ ′, τ ′) by one scan using the iden-
tity coupling, then E[d2(σ

′, τ ′)] ≤ d2(σ, τ ). Thus, Dt = d2(σ (t ′ + t), τ (t ′ + t)) is
a super-martingale with D0 = n − 1. In Section 5.3.2, we define V = 1/27 and
show that, for all t and all values of Dt other than 0, E[(Dt+1 −Dt)

2|Dt ] ≥ V . Let
B = 10n, and let T be the first time at which either (a) Dt = 0 (i.e., coupling oc-
curs), or (b) Dt ≥ B . Note that T is a stopping time. Define Zt = (B −Dt)

2 −V t ,
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and observe, as in Section 4.3, that Zt∧T is a sub-martingale. Let p be the prob-
ability that (a) occurs. As in Section 4.3, applying the optional stopping theorem
to DT gives p ≥ 9

10 . Also, as before,

pB2 + (1 − p)E[(B − DT )2|DT ≥ B] − V E[T ] > 0.

Since |Dt − Dt−1| ≤ 2n, (1 − p)E[(B − DT )2|DT ≥ B] ≤ 4n2 < pB2 so E[T ] ≤
(2pB2)/V . Conditioning on (a) occurring, it follows that E[T |DT = 0] ≤ 2B2/V .
Hence, Pr(T > 20B2/V |DT = 0) ≤ 1

10 . So, if we now run the identity coupling
for 20B2/V = O(n2) steps, then σ and τ will fail to couple with probability at
most 1

40 + 2 × 1
10 < 1

4 . Thus, we have shown the following:

THEOREM 6. Let G be the n-vertex path, and let q = 3. Consider the Markov
chain M→ on the state space �. Then Mix(M→, 1

4) = O(n2 logn).

We can bound Mix(M→, ε) for ε ≤ 1/4 by boosting the coupling probability in
the usual way.

5.3.1. The coupling breaks even. Recall that the vertices of the path G are
labeled 1, . . . , n going from left to right.

LEMMA 7. Suppose that σ and τ differ at vertex i < n and agree to the right
of vertex i. Obtain σ ′ and τ ′ by scanning left to right, starting at vertex i +1, doing
the identity coupling. Then

E[d2(σ
′, τ ′)] − d2(σ, τ ) ≤ 1

2 .

PROOF. Choose h ∈ H(σ ) and h∗ ∈ H(τ ) such that d2(σ, τ ) = d(h,h∗). Let
h′, h′∗ be the transformed height functions produced by the scan. If v = i + � for
� ∈ {1, . . . , n− i −1}, then the probability that vertex v is changed by the coupling
is (1

3)�. If there is a change, then one of the height functions changes by 2, so the

change in d(h′, h′∗) is 1. For v = n, the probability that v changes is (1
3)

n−i−1 2
3 .

The change to d(h′, h′∗) in this case is 3
4 . Thus,

E[d2(σ
′, τ ′)] ≤ E[d(h′, h′∗)]

= d(h,h∗) +
n−i−1∑
�=1

(
1

3

)�

+ 2

3

3

4

(
1

3

)n−i−1

= d(h,h∗) + 1/3 − (1/3)n−i

1 − 1/3
+ 1

2

(
1

3

)n−i−1

= d(h,h∗) + 1

2
. �
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LEMMA 8. Suppose that σ and τ differ only at vertex 1. Obtain σ ′ and τ ′ by
scanning left to right, starting at vertex 1, doing the identity coupling. Then

E[d2(σ
′, τ ′)] ≤ 1

4 .

PROOF. With probability 2
3 , the first vertex agrees, so σ ′ = τ ′. With probabil-

ity 1
3 , the first vertex is left unchanged. Thus (using Lemma 7), E[d2(σ

′, τ ′)] ≤
1
3(1

4 + 1
2). �

LEMMA 9. Suppose that σ and τ differ only at vertex 2. Obtain σ ′ and τ ′ by
scanning left to right, starting at vertex 1, doing the identity coupling. Then

E[d2(σ
′, τ ′)] ≤ 1.

PROOF. Say that σ starts 2 0 2 and τ starts 2 1 2. Consider the coupling of first
vertex:

• With probability 2
3 :

The first vertex is made to disagree, for example, σ now starts 2 0 2 but τ starts
0 1 2.
The coupling of the second vertex in this case is as follows:
– With probability 1

3 :
The second vertex is made to agree, for example, both become 1. In this case,
E[d2(σ

′, τ ′)] = 1
4 .

– With probability 2
3 :

The second vertex is unchanged. In this case, E[d2(σ
′, τ ′)] ≤ 1

4 + 1 + 1
2 = 7

4 .
• With probability 1

3 :
The first vertex is unchanged. By analogy to the proof of Lemma 8, E[d2(σ

′,
τ ′)] ≤ 1

3(1 + 1
2) = 1

2 .

Adding it all up, E[d2(σ
′, τ ′)] ≤ 2

3(1
3 · 1

4 + 2
3 · 7

4) + 1
3 · 1

2 = 1. �

LEMMA 10. Let 2 < i < n. Suppose that σ and τ differ only at vertex i. Ob-
tain σ ′ and τ ′ by scanning left to right, starting at vertex 1, doing the identity
coupling. Then

E[d2(σ
′, τ ′)] ≤ 1.

PROOF. Say that vertices i − 2, . . . , i + 1 of σ are 1 2 0 2 and of τ are 1 2 1 2.
Consider the coupling of vertex i − 1:

• With probability 1
3 :

Vertex i − 1 is made to disagree, so σ now starts 1 2 0 2 but τ starts 1 0 1 2. By
analogy with the proof of Lemma 9, E[d2(σ

′, τ ′)] ≤ 1
3 · 1 + 2

3(1 + 1 + 1
2) = 2.
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• With probability 2
3 :

Vertex i − 1 is unchanged. By analogy with the proof of Lemma 8, E[d2(σ
′,

τ ′)] ≤ 1
3(1 + 1

2) = 1
2 .

Adding it all up, E[d2(σ
′, τ ′)] ≤ 1

3 · 2 + 2
3 · 1

2 = 1. �

LEMMA 11. Suppose that σ and τ differ only at vertex n. Obtain σ ′ and τ ′ by
scanning left to right, starting at vertex 1, doing the identity coupling. Then

E[d2(σ
′, τ ′)] ≤ 3

4 .

PROOF. Say that vertices n − 2, . . . , n of σ are 0 2 0 and of τ are 0 2 1.
Consider the coupling of vertex n − 1:

• With probability 1
3 :

Vertex n − 1 is made to disagree, so σ now ends with 0 1 0 and τ with 0 2 1.
The coupling of vertex n (the last) in this case is as follows:
– With probability 1

3 :
The last vertex is made 0, with resulting cost 1.

– With probability 1
3 :

The last vertex is unchanged, with resulting cost 1 + 3
4 = 7

4 .
– With probability 1

3 :
The last vertex becomes 2 in σ , with resulting cost 1+2 · 3

4 = 5
2 . (The claimed

final cost is witnessed by the sequence of transitions 0 1 2 → 0 1 0 → 0 2 0 →
0 2 1.)

• With probability 2
3 :

Vertex n−1 is unchanged. Now with probability 2
3 , vertex n will agree and with

probability 1
3 , it will be unchanged. Thus, E[d2(σ

′, τ ′)] ≤ 1
3 · 3

4 = 1
4 .

Adding it all up, E[d2(σ
′, τ ′)] ≤ 1

3(1
3 · 1 + 1

3 · 7
4 + 1

3 · 5
2) + 2

3 · 1
4 = 3

4 . �

Lemmas 8, 9, 10 and 11 show that if (σ, τ ) ∈ S and we obtain σ ′ and τ ′
by scanning left to right, starting at vertex 1, doing the identity coupling, then
E[d2(σ

′, τ ′)] ≤ d2(σ, τ ). By path coupling, we find that if we take any (σ, τ ) ∈
� × � and we produce (σ ′, τ ′) by one scan using the identity coupling, then
E[d2(σ

′, τ ′)] ≤ d2(σ, τ ).

5.3.2. The coupling has enough variance (lower bounding V ). Recall that
w = mini λi . Suppose σ �= τ . In Section 4.3.2, we considered several cases.
For each case, we identified a vertex z and a color C such that, if we obtain
σ ′ from σ by trying C at z and we obtain τ ′ from τ by trying C at z, then
d2(σ

′, τ ′) ≤ d2(σ, τ ) − w.
In this section we reconsider each case. Obtain σ ∗ and τ ∗ by scanning σ and τ

left to right, using the identity coupling. For each case in Section 4.3.2, we prove
the following:
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TABLE 1

Case σz−1 ···σz+1 τz−1 ···τz+1 C′ cr (0) cr (1) cr (2)

1 0 1 0 1 2 1 1 0 1 2
1 0 1 0 2 0 2 0 0 1 2
2 0 1 0 1 0 1 0 0 0 2
2 0 1 0 2 1 2 1 0 1 2
2 0 1 0 0 2 0 0 0 0 2

• If z > 1, then there is a color c� (depending only on σz−1, σz, τz−1 and τz) such
that choosing color c� for vertex z − 1 ensures σ ∗

z−1 = σz−1 and τ ∗
z−1 = τz−1.

Actually, it is easy to see that c� exists—just take any color in {σz−1, σz} ∩
{τz−1, τz}.

• Suppose z < n. For any color c, there is a color cr(c) (depending only on σz−1,
σz, σz+1, τz−1, τz, τz+1 and c) such that if we choose c� for vertex z − 1, c for
vertex z and cr(c) for vertex z + 1, then σ ∗

z+1 = σz+1 and τ ∗
z+1 = τz+1.

• There is a color C′ such that, if we obtain σ ′ from σ by trying C′ at z and we
obtain τ ′ from τ by trying C′ at z, then σ ′

z = σz and τ ′
z = τz.

This is enough to establish V = 1/27. We will consider the event that c� is
chosen for z − 1 and, whatever color, c, is chosen for z, cr(c) is chosen for z + 1.
This event occurs with probability 1/9. Conditioned on the fact that this event
occurs, we can choose the color c for vertex z after choosing all other colors. That
is, the choice of c is independent of the rest of the scan. Let σ † and τ † be random
variables defined by a left to right scan of σ and τ , which uses c� at z−1 and cr(c)

at z + 1 and misses out the re-coloring at z.
If |d2(σ

†, τ †) − d2(σ, τ )| ≥ w/2, then we choose color C′ for vertex z so
σ ∗ = σ † and τ ∗ = τ †. Otherwise, we choose color C for vertex v so d2(σ

∗, τ ∗) ≤
d2(σ

†, τ †) − w. Either way, we get |d2(σ
∗, τ ∗) − d2(σ, τ )| ≥ w/2.

Cases 1 and 2 from Section 4.3.2 are in Table 1.
In Case 3, say σz−1 · · ·σz+1 = 0 1 0 and τz−1 · · · τz+1 is monotonic. Then C′ is

any color in {0,1}, cr(2) is any color in {0,2} ∩ {τz, τz+1} and, for any i �= 2, cr(i)

is any color in {0,1} ∩ {τz, τz+1}.
The case where τz−1 · · · τz+1 = 1 0 1 and σz−1 · · ·σz+1 is monotonic is similar.

6. Optimal mixing of Glauber and scan when q = 4.

6.1. Distance measures. In this section G is the n-vertex path. We take the
state space to be �+ (i.e., all colorings, whether proper or not). The results that
we get by analyzing our Markov chains on state space �+ also apply to the same
chains with state space �—this is because the chains do not make transitions from
states in � to states outside of �. (Thus, the stationary distribution is uniform
on � – states in �+ \ � have zero measure.) We ought to note that, on the extra
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states in �+ \�, what we are calling a “Metropolis” update does not strictly fit the
official definition. For example, with a natural definition of the “energy” of a color-
ing, and using the usual Metropolis filter, the transition . . .0 0 1 . . . → . . .0 1 1 . . .

would occur with positive probability. Nevertheless, we disallow this transition
because of the adjacent color 1 vertices in the final state. However, our version
of Metropolis agrees with the usual one on the significant part of the state space,
namely, �.

6.2. Glauber with q = 4: O(n logn) updates suffice. We’ll use Theorem 2.2
of [13].

Suppose (σ, τ ) ∈ S differ on vertex i. Construct (σ ′, τ ′) from (σ, τ ) by using
the following coupling. Choose the same vertex v to recolor in σ and in τ . Choose
the same color in both copies unless v ∈ {i −1, i +1}. In that case, choose color σi

in one copy, while choosing τi in the other (and choose the same color otherwise).
We first show that the value β in Theorem 2.2 of [13] is 1. That is, we show that

E[Ham(σ ′, τ ′)] ≤ 1. Consider the choices made in σ . If we choose vertex i − 1
and color τi , then the Hamming distance might go up by 1. Similarly, if we choose
vertex i + 1 and color τi , then the Hamming distance might go up by 1. If we
choose vertex i and any of the (at least two) colors not in {σi−1, σi+1}, then the
Hamming distance goes down by 1. These are the only choices which can cause
the distance to change.

Now consider a multi-step coupling from (σ, τ ). Assume for now that i ∈
{3, . . . , n − 2}, so there are at least 2 vertices to the left of vertex i and at least
2 vertices to the right of vertex i. The other cases are easier and we will con-
sider them later. Let c be a color which is not in {σi, τi} (there are two such
colors, but choose an arbitrary one and call it c). Let � be the set containing
the following 6 choices (in σ ): choose i with any color, choose i − 1 with τi , or
choose i + 1 with τi . Let the stopping time T be the first time a choice from � is
made. [I.e., a choice from � is made in the transition from (σ (T − 1), τ (T − 1))

to (σ (T ), τ (T )), where (σ (0), τ (0)) = (σ, τ ).]
Let � be the set containing the following 14 choices (in σ ): Choose i − 1 with

any color besides τi . Choose i + 1 with any color besides τi . Choose i − 2 with
any color. Choose i + 2 with any color. Let C be the set containing all 4n − 20
choices that are not in � or �. Let z1, . . . , zt denote the choices made (in σ )
in the transitions (σ (0), τ (0)), (σ (1), τ (1)), . . . , (σ (t), τ (t)). We will say that the
sequence z1, . . . , zt is good if the only choices in � ∪ � are the following:

• for some t1 ∈ [1, t], zt1 consists of vertex i − 2 along with the “smallest” color
(e.g., smallest numerically) that is not in {c, σi−3(t1 − 1), σi−1}, and

• for some t2 ∈ [t1 +1, t], zt2 consists of vertex i +2 along with the smallest color
that is not in {c, σi+3(t1 − 1), σi+1}, and

• for some t3 ∈ [t2 + 1, t], zt3 = (i − 1, c),
• for some t4 ∈ [t3 + 1, t], zt4 = (i + 1, c).
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Denote by G the event that z1, . . . , zt−1 is good. Now,

Pr(G|T = t) =
(

t − 1
4

)(
1

4n − 6

)4(4n − 20

4n − 6

)t−5

.(18)

Let α be any positive constant which is at most 1/6. Let δ be a positive constant,
independent of n, such that, for all t ∈ [αn,n], the expression in (18) is at least δ.
Now

E
[
Ham

(
σ(T ), τ (T )

)|T = t and G
]≤ 3 × 0 + 1 × 1 + 2 × 2

6
= 5

6
.

In particular, Ham(σ (T ), τ (T )) = 1 if zt = (i, c) and Ham(σ (T ), τ (T )) = 0 if
zt consists of vertex i with some other color. Otherwise, Ham(σ (T ), τ (T )) ≤ 2.
Similarly,

E
[
Ham

(
σ(T ), τ (T )

)|T = t and ¬G
]≤ 2 × 0 + 2 × 1 + 2 × 2

6
= 1,

so

E
[
Ham

(
σ(T ), τ (T )

)|T = t
]

= Pr(G|T = t)E
[
Ham

(
σ(T ), τ (T )

)|T = t and G
]

+ Pr(¬G|T = t)E
[
Ham

(
σ(T ), τ (T )

)|T = t and ¬G
]

≤ Pr(G|T = t)
(
1 − 1

6

)+ (
1 − Pr(G|T = t)

)
= 1 − 1

6 Pr(G|T = t).

Thus if t ∈ [αn,n],
E
[
Ham

(
σ(T ), τ (T )

)|T = t
]≤ 1 − δ

6
.

Finally,

E
[
Ham

(
σ(T ), τ (T )

)|T ≤ n
]= n∑

t=1

E
[
Ham

(
σ(T ), τ (T )

)|T = t
]

× Pr(T = t |T ≤ n)
(19)

≤ 1 − δ

6

n∑
t=αn

Pr(T = t |T ≤ n)

≤ 1 − δ

6

n∑
t=αn

Pr(T = t).

Since α ≤ 1/6, we have

Pr(T < αn) = 1 −
(

4n − 6

4n

)αn

= 1 −
(

1 − 6

4n

)αn

≤ 6α

4
≤ 1

4
.
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Also,

Pr(T > n) =
(

4n − 6

4n

)n

=
(

1 − 6

4n

)n

≤ exp(−6/4) ≤ 1

4
.

Thus, (19) gives

E
[
Ham

(
σ(T ), τ (T )

)|T ≤ n
]≤ 1 − δ

12
.(20)

Now Theorem 2.2 of [13] tells us that

E
[
Ham

(
σ(n), τ (n)

)− 1
]≤ Pr(T ≤ n)

(
E
[
Ham

(
σ(T ), τ (T )

)|T ≤ n
]− 1

)
,

and by (20), this is at most −δ/12 so

E
[
Ham

(
σ(n), τ (n)

)]≤ 1 − δ

12
.

By the “delayed path coupling lemma” of Czumaj et al. (Lemma 2.1 of [13]), the
mixing time satisfies

Mix(MGl, ε) ≤ 12 log(nε−1)

δ
n.

In the preceding argument, we assumed that i ∈ {3, . . . , n − 2} so that vertices
i − 1, i − 2 and i + 1, i + 2 all exist. The argument still goes through if i has
fewer neighbors to the left (or right). In that case, we just modify the argument
by changing the definition of “good” so that it doesn’t mention vertices that don’t
exist.

Thus, we have proved the following:

THEOREM 12. Let G be the n-vertex path, and let q = 4. Consider the Markov
chain MGl on the state space �+. Then Mix(MGl, ε) ≤ 12

δ
n log(nε−1), where δ is

the constant mentioned above.

6.3. Systematic scan for q = 4: O(logn) sweeps suffice. We will only define
the coupling for pairs (σ, τ ) ∈ S. Each such pair disagrees at a single vertex i.
Thus, when we come to re-color a vertex j during the scan, at most one of {j −
1, j +1} has a disagreement. The coupling that we will use is as follows. If vertex j

is not adjacent to a disagreement, then we use the same colors in both copies. On
the other hand, if (say) vertex j − 1 has a disagreement, then we couple the choice
of σj−1 for σj and τj−1 for τj and we couple the choice of τj−1 for σj and σj−1
for τj . Otherwise, we choose the same color in both copies. The coupling if j + 1
has a disagreement is similar.

In the following sequence of lemmas, we let i denote the rightmost vertex where
there is a disagreement between the colorings σ and τ . Lemmas 13 through 16 are
valid for any q ≥ 4, and we state them in terms of q so that we can re-use them
later for q > 4. The first lemma, Lemma 13, analyzes a scan starting from vertex
i + 1.
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LEMMA 13. Suppose that σ and τ differ at vertex i < n and agree to the right
of vertex i. Obtain σ ′ and τ ′ by scanning left to right, starting at vertex i +1. Then

E[Ham(σ ′, τ ′)] − Ham(σ, τ ) ≤ 1

q − 1
.

PROOF. If z = i + � for � ∈ {1, . . . , n − i}, then the probability that vertex z

becomes a disagreement after the recoloring is (1/q)�. Thus, the expected number
of additional disagreements is(

1

q

)1

+
(

1

q

)2

+ · · · +
(

1

q

)n−i

≤ 1

q
× 1

1 − 1/q
= 1

q − 1
. �

The next two lemmas analyze a scan starting from vertex i.

LEMMA 14. Suppose (σ, τ ) ∈ S differ on vertex i. Let C = |{σi−1, σi+1}|.
(C is the number of colors that are used at neighbors of i in coloring σ .) Obtain
σ ′ and τ ′ by scanning left to right, starting at vertex i. Then E[Ham(σ ′, τ ′)] ≤
C/(q − 1).

PROOF. Consider the recoloring of vertex i in copy σ . With probability
1 − C/q , the chosen color is not in {σi−1, σi+1} so Ham(σ ′, τ ′) = 0. On the other
hand, no matter what color is chosen for vertex i, Lemma 13 guarantees that (con-
ditioned on this choice) E[Ham(σ ′, τ ′)] ≤ 1 + 1/(q − 1). Thus, we have

E[Ham(σ ′, τ ′)] ≤ C

q

(
1 + 1

q − 1

)
= C

q − 1
. �

LEMMA 15. Suppose colorings σ and τ differ just on vertices i − 1 and i.
Obtain σ ′ and τ ′ by scanning left to right, starting at vertex i. Then

E[Ham(σ ′, τ ′)] ≤ 1 + 3

q − 1
.

PROOF. Consider the recoloring of vertex i in copy σ . With probability at
least 1−3/q , the chosen color is not in {σi−1, τi−1, σi+1}, so Ham(σ ′, τ ′) = 1. On
the other hand, no matter what color is chosen for vertex i, Lemma 13 guarantees
that E[Ham(σ ′, τ ′)] ≤ 2 + 1/(q − 1). Thus, we have

E[Ham(σ ′, τ ′)] ≤
(

1 − 3

q

)
· 1 + 3

q

(
2 + 1

q − 1

)
,

which simplifies to the claimed upper bound. �

The next three lemmas analyze a scan starting from vertex max{1, i − 1}.
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LEMMA 16. Suppose (σ, τ ) ∈ S differ on vertex i. Obtain σ ′ and τ ′ by scan-
ning left to right, starting at vertex max{1, i − 1}. Then

E[Ham(σ ′, τ ′)] ≤ 3

q − 1
.

PROOF. If i = 1, then Lemma 14 with C = 1 shows E[Ham(σ ′, τ ′)] ≤ 1/

(q − 1), which is at most the expression given in the statement of the lemma.
Suppose i > 1. Consider the recoloring of vertex i − 1 in copy σ . With probability
1/q , color τi is chosen. By Lemma 15, E[Ham(σ ′, τ ′)] ≤ 1+3/(q−1). Otherwise,
σ ′

i−1 = τ ′
i−1, so Lemma 14 guarantees that E[Ham(σ ′, τ ′)] ≤ 2/(q − 1). Hence,

E[Ham(σ ′, τ ′)] ≤ 1

q

(
1 + 3

q − 1

)
+
(

1 − 1

q

)
2

q − 1
= 3

q − 1
,

as claimed. �

For the rest of this section, we restrict attention to the case q = 4, which corre-
sponds to the “break even” situation in Lemma 16.

LEMMA 17. Suppose (σ, τ ) ∈ S differ on vertex i < n. Suppose that σi+1 /∈
{σi, τi, σi−2}. Obtain σ ′ and τ ′ by scanning left to right, starting at vertex
max{1, i − 1}. Then E[Ham(σ ′, τ ′)] ≤ 11

12 .

PROOF. If i = 1, then the lemma follows from Lemma 14 with C = 1. Sup-
pose i > 1. Consider the recoloring of vertex i − 1 in copy σ . With probability 1

4 ,
color σi+1 is chosen. The same color is chosen in copy τ , and Lemma 14 with
C = 1 guarantees that E[Ham(σ ′, τ ′)] ≤ 1

3 . With probability 1
2 , the color chosen

for vertex i − 1 is not in {σi+1, τi}, so σ ′
i−1 = τ ′

i−1. By Lemma 14 with C = 2,
E[Ham(σ ′, τ ′)] ≤ 2

3 . Otherwise, Lemma 15 guarantees that E[Ham(σ ′, τ ′)] ≤ 2.
Thus, we have E[Ham(σ ′, τ ′)] ≤ 1

4 · 1
3 + 1

2 · 2
3 + 1

4 · 2 = 11
12 . �

LEMMA 18. Suppose (σ, τ )∈S differ on vertex i < n. Suppose that σi+1 = σi .
Suppose that σi �= σi−2 and τi �= σi−2. Obtain σ ′ and τ ′ by scanning left to right,
starting at vertex max{1, i − 1}. Then E[Ham(σ ′, τ ′)] ≤ 11

12 .

PROOF. If i = 1, then the lemma follows from Lemma 14 with C = 1.
Suppose i > 1. Consider the recoloring of vertex i − 1. With probability 1

4 ,
color τi is chosen in copy σ and σi is chosen in copy τ . Both of these choices
are accepted. In this case, consider the recoloring of vertex i. With probabil-
ity 1

2 , the color chosen is not in {σi, τi} and is accepted in both copies, leaving
Ham(σ ′, τ ′) = 1. Otherwise, by Lemma 13, E[Ham(σ ′, τ ′)] ≤ 7

3 . Thus, condi-
tioned on this color choice for vertex i − 1, we have E[Ham(σ ′, τ ′)] ≤ 1

2 · 1 +



SYSTEMATIC SCAN FOR SAMPLING COLORINGS 213

1
2 · 7

3 = 5
3 . For any other choice at vertex i − 1, Lemma 14 guarantees that

E[Ham(σ ′, τ ′)] ≤ 2
3 . We conclude that E[Ham(σ ′, τ ′)] ≤ 1

4 · 5
3 + 3

4 · 2
3 = 11

12 . �

For the remaining lemmas, we analyze a scan starting from vertex 1. These three
lemmas imply the result.

LEMMA 19. Suppose (σ, τ ) ∈ S differ on vertex n. Obtain σ ′ and τ ′ by scan-
ning left to right, starting at vertex 1. Then E[Ham(σ ′, τ ′)] ≤ 11

16 .

PROOF. Consider the recoloring of vertex n − 1 in coloring σ . With probabil-
ity 1

4 , color τn is chosen. In this case, Ham(σ ′, τ ′) ≤ 2. Otherwise, σ ′
n−1 = τ ′

n−1 so
E[Ham(σ ′, τ ′)] ≤ 1

4 . Thus, E[Ham(σ ′, τ ′)] ≤ 1
4 · 2 + 3

4 · 1
4 = 11

16 . �

LEMMA 20. Suppose (σ, τ ) ∈ S differ on vertex i < n. Suppose that σi+1 /∈
{σi, τi}. Obtain σ ′ and τ ′ by scanning left to right, starting at vertex 1. Then
E[Ham(σ ′, τ ′)] ≤ 47/48.

PROOF. If i ≤ 2, then the lemma follows from Lemma 17. Suppose i > 2
and consider the recoloring of vertex i − 2. With probability 1

4 , the color that
is chosen is the first color that is not in {σ ′

i−3, σi−1, σi+1}. This is accepted so
Lemma 17 guarantees that E[Ham(σ ′, τ ′)] ≤ 11

12 . Otherwise, Lemma 16 guarantees
that E[Ham(σ ′, τ ′)] ≤ 1. Putting this together, E[Ham(σ ′, τ ′)] ≤ 1

4 · 11
12 + 3

4 · 1 =
47
48 . �

LEMMA 21. Suppose (σ, τ ) ∈ S differ on vertex i < n. Suppose that σi+1 =
σi . Obtain σ ′ and τ ′ by scanning left to right, starting at vertex 1. Then
E[Ham(σ ′, τ ′)] ≤ 191/192.

PROOF. If i ≤ 2, then the lemma follows from Lemma 18. Next suppose
i = 3. Consider the recoloring of vertex i − 2. With probability 1

4 , it is recolored
with the first color that is not in {σi−1, σi, τi}. Now Lemma 18 guarantees that
E[Ham(σ ′, τ ′)] ≤ 11

12 . Otherwise, Lemma 16 guarantees that E[Ham(σ ′, τ ′)] ≤ 1.
Our conclusion for i = 3 is that E[Ham(σ ′, τ ′)] ≤ 1

4 · 11
12 + 3

4 · 1 = 47
48 . Finally,

suppose i > 3. Consider the recoloring of vertex i − 3. Let c be the first color
that is not in {σi−1, σi, τi}. With probability 1

4 , the color that is chosen for vertex
i − 3 is the first color that is not in {σi−4, σi−2, c}. Suppose this happens. Then
with probability 1

4 , c is chosen for vertex i − 2. Then Lemma 18 guarantees that
E[Ham(σ ′, τ ′)] ≤ 11

12 . Otherwise, Lemma 16 guarantees that E[Ham(σ ′, τ ′)] ≤ 1.
We conclude that E[Ham(σ ′, τ ′)] ≤ 1

4 · 1
4 · 11

12 + 15
16 · 1 = 191

192 . �

Lemmas 19, 20 and 21 imply the following result (by path coupling).

THEOREM 22. Let G be the n-vertex path and let q = 4. Consider the Markov
chain M→ on the state space �+. Then Mix(M→, ε) ≤ 192 log(nε−1).
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6.4. Lower bounds for q ≥ 4. In this section we prove that Glauber requires
�(n logn) updates and scan requires �(logn) sweeps. We use the “disagreement
percolation” method of van den Berg [28].

6.4.1. Calculating the stationary distribution for bounded line segments. Con-
sider an s-edge path (for any s). Consider the q × q “transfer matrix”

A =



0 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 1 1
...

...
. . .

...

1 1 1 0 1
1 1 1 · · · 1 0


.

Note that As[i, j ] is the number of colorings of the path in which the right vertex
is colored with color i and the left vertex is colored with color j . We will write ei

to denote the row vector with a 1 in column i and zeros elsewhere. Write f to
denote the row vector (1,1, . . . ,1). Write vi to denote the row vector with q − 1 in
column i and −1 elsewhere. Let e′

i , f
′ and v′

i be the corresponding column vectors.
Thus, eiA

se′
j is the number of colorings from color i on the right to color j on the

left.
Now the (right) eigenvectors of A are f ′ with eigenvalue q − 1 and, for every

j , v′
j with eigenvalue −1. Since ej = q−1f + q−1vj , we have

Ase′
j = q−1(Asf ′ + Asv′

j ) = q−1((q − 1)sf ′ + (−1)sv′
j

)
,

by induction. Thus, if s is even, we have

Ase′
j = q−1((q − 1)sf ′ + v′

j

)
.

So, for i �= j , the number of paths from color i to color j is

eiA
se′

j = q−1((q − 1)s − 1
)
.(21)

Also, the number of paths from color j to color j is

ejA
se′

j = q−1((q − 1)s + q − 1
)

(22)
= q−1(q − 1)s

(
1 + (q − 1)−(s−1)).

6.4.2. Calculating the induced distribution on the color of an internal vertex.
Suppose that � and r are positive even integers and let k = � + r . Consider a path
on vertices 1, . . . ,1 + k. Consider the uniform distribution on colorings in which
vertices 1 and 1 + k are both colored with color j .
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We wish to bound the probability that vertex 1 + � is colored with color j .
From (22), this is

q−1(q − 1)r(1 + (q − 1)−(r−1)) × q−1(q − 1)�(1 + (q − 1)−(�−1))

q−1(q − 1)k(1 + (q − 1)−(k−1))

= q−1(1 + (q − 1)−(r−1))1 + (q − 1)−(�−1)

1 + (q − 1)−(k−1)
(23)

≥ q−1(1 + (q − 1)−(r−1)).
6.4.3. Dividing the line into segments. Let r be the largest even number not

exceeding 1
3 logq−1 n. Let � be the smallest even number that is at least 48 loge n.

Let k = � + r and m = �(n − 1)/k�. For i ∈ {0, . . . ,m − 1}, let Li be the vertex
1 + ik and Mi be the vertex 1 + ik + �. Finally, let Lm = 1 + mk and Ri be Li+1.
The idea is to divide the line into line segments. Segment i has left endpoint Li

and “middle” point Mi (which is not quite in the middle!) and right endpoint Ri .
Let Zi be the indicator for the event that vertex Mi is colored with color 0. Let

Z =∑m−1
i=0 Zi . Of course, the expectations of Zi and Z are only well defined if

we focus attention on a particular distribution over �. We will use the notation
Eπ(Zi) to refer to the expectation of Zi in distribution π .

6.4.4. Calculating the distribution of Z in stationarity. Let π be the uniform
distribution on �. We can sample from π by filling in the colors from left to
right. There are q(q − 1)n−1 possible colorings in �. Given the colors of vertices
1, . . . , n − v (for v < n), there are (q − 1)v ways to finish the coloring, and these
are chosen uniformly. The probability that Z1 = 1 is 1/q . For any i > 1, we can
use (22) [observing that it is (22) that determines the upper bound, and not (21)]
to see that the probability that Zi = 1, conditioned on colors σ1, . . . , σMi−1 , is at
most

q−1(q − 1)k(1 + (q − 1)−(k−1))

(q − 1)k
= q−1(1 + (q − 1)−(k−1)).

Thus, Z is dominated from above by the sum of m independent Bernoulli random
variables with success probability p = q−1(1 + (q − 1)−(k−1)).

Let ε = m−3/8. By a Chernoff bound,

Prπ
(
Z ≥ (1 + ε)mp

)≤ exp(−ε2mp/3).(24)

Note that (q − 1)k−1 = ω(n1/3) and that m = �(n/ logn). Thus, (24) implies

Prπ
(
Z ≥ q−1m + 1

2mn−1/3)≤ Prπ
(
Z ≥ (1 + ε)mp

)
(25)

≤ exp(−ε2mp/3) = o(1).
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6.4.5. An initial distribution for the Markov chains. Equation (25) shows that,
in the stationary distribution π , Z is unlikely to exceed q−1m + 1

2mn−1/3. In this
section we will define an initial distribution π0 on colorings in �.

The idea will be to show that, if σ(0) is chosen from π0 and σ(0), σ (1), . . . , σ (t)

evolves according to the dynamics (either Glauber or scan) and t is too small, then,
in the distribution of σ(t), Z is likely to exceed q−1m + 1

2mn−1/3. This allows us
to conclude that the chain does not mix by step t .

Let π0 be the uniform distribution on colorings in which vertices L0, . . . ,Lm are
colored 0. By (23), Eπ0Z ≥ mq−1(1 + (q − 1)−(r−1)) ≥ mq−1(1 + (q − 1)n−1/3).
By a Chernoff bound,

Prπ0

(
Z ≥ q−1m + 1

2mn−1/3)≥ 1 − o(1).(26)

6.4.6. The t-step distribution for systematic scan. Suppose σ(0) is chosen
from π0. Let σ(0), σ (1), . . . evolve according to the dynamics of M→. Let
L→,t (Z) denote the distribution of the random variable Z in the coloring σ(t).

Suppose τ(0) is chosen from π0. Let τ(0), τ (1), . . . evolve according to the
“clamped dynamics” Mc→, which is the same as M→ except that all moves in-
volving vertices {L0, . . . ,Lm} are rejected (so the color of these vertices cannot
change). Let Lc→,t (Z) denote the distribution of the random variable Z in the col-
oring τ(t). By construction, the distribution Lc→,t (Z) is same as the distribution
of Z in π0. [This follows because π0 is the stationary distribution of Mc→. This can
be proved as follows, where �0 is the set of colorings in which vertices L0, . . . ,Lm

are colored 0. Let P c→ be the transition matrix of Mc→ and let P c← be the transition
matrix of the reversal. Then any stationary distribution π ′ of Mc→ satisfies

π ′(σ ′) = ∑
σ∈�0

π ′(σ )P c→(σ, σ ′) = ∑
σ∈�0

π ′(σ )P c←(σ ′, σ ),

but the latter equation is satisfied by the uniform distribution π ′ = π0. Also, the
chain is ergodic so has a unique stationary distribution.]

To upper bound dTV(L→,t (Z),Lc→,t (Z)), we will consider a joint process
(σ (t), τ (t)) in which the first component has the same distribution as (σ (t)) and
the second component has the same distribution as (τ (t)). The total variation dis-
tance dTV(L→,t (Z),Lc→,t (Z)) is upper-bounded by the probability that some ver-
tex Mi gets different colors in σ(t) and τ(t).

The particular joint process that we will consider starts with σ(0) = τ(0). To
move from (σ (t −1), τ (t −1)) to (σ (t), τ (t)), we use the “switch coupling.” When
we consider vertex v for recoloring, we will couple the color choices as follows:

(A) if we consider color σ(v − 1) for v in σ , then consider color τ(v − 1) for v in
τ ,

(B) if we consider color τ(v − 1) for v in σ , then consider color σ(v − 1) for v

in τ ,
(C) otherwise consider the same color for v in τ as in σ .
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We will be particularly interested in t < r . For such a t , and for any i ∈
{0, . . . ,m − 1}, the probability that vertex Mi gets different colors in σ(t) and
τ(t) is at most the probability that we chose option (B) in order for vertices
Li + 1, . . . ,Li + � over the t scans.

Say that vertex Li + v is “interrupting” (i.e., it interrupts the disagreement per-
colation) if, the first time that we consider this vertex when we have a disagreement
at vertex Li +v−1, we choose some option other than option (B) for vertex Li +v.

The probability that vertex Mi gets different colors in σ(t) and τ(t) is at most
the probability that we have fewer than t interrupting vertices in Li +1, . . . ,Li +�;
this probability is dominated (from above) by the probability of having fewer than t

successes in � Bernoulli trials with success probability (q −1)/q . So if we take any
t ≤ r/2 ≤ (2/3)�(q − 1)/q , a Chernoff bound says that the probability of having
fewer than t interrupting vertices is at most

exp
(−(1/3)2�(q − 1)/(2q)

)
,

which is at most n−2 by the definition of �. Thus, the probability that there exists
an i such that vertex Mi gets different colors in σ(t) and τ(t) is at most mn−2 =
o(1).

Thus, for any t ≤ r/2, dTV(L→,t (Z),Lc→,t (Z)) = o(1), so, by (26),

PrL→,t (Z)

(
Z ≥ q−1m + 1

2mn−1/3)≥ 1 − o(1).

Combining this with (25), we find that dTV(L→,t , π) ≥ 1 − o(1) so systematic
scan does not mix in t steps. Thus, we obtain the following theorem.

THEOREM 23. Let G be the n-vertex path, and let q ≥ 4. Consider the Markov
chain M→ on the state space �. For any fixed ε < 1 and sufficiently large n,

Mix(M→, ε) ≥ 1
2

(1
3 logq−1 n − 2

)
.

6.4.7. The t-step distribution for Glauber. A similar argument to that of Sec-
tion 6.4.6 can be used to show that Glauber dynamics does not mix in t steps for
some t = �(n logq−1 n). The particular value of t for which the straightforward
argument works is around nr/(q2e). We prefer to give a stronger argument which
gives a better bound as a function of q . The idea for the stronger argument is as
follows. In Section 6.4.6 we showed that the distribution of L→,t (Z) and Lc→,t (Z)

were close by showing that, with high probability, there was no i ∈ {0, . . . ,m − 1}
for which a disagreement at vertex Li or Ri could percolate to vertex Mi . Here we
observe that the distributions L→,t (Z) and Lc→,t (Z) would be close even if some,
but not many, of the percolations occur.

We start with some notation. It will be helpful to keep track of the near-
est endpoint to an arbitrary vertex v. For this purpose, if v is in the range
Li + 1, . . . ,Mi − 1, its “important neighbor” will be vertex v − 1. On the other
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hand, if v is in the range Mi, . . . ,Ri − 1, its important neighbor will be vertex
v + 1.

As in Section 6.4.6, we will consider a process σ(0), σ (1), . . . in which σ(0)

is drawn from π0 and σ(t) evolves according to MGl. We will also consider
the process τ(0), τ (1), . . . in which τ(0) = σ(0) and τ(t) evolves according to
a clamped dynamics Mc

Gl in which moves involving L0,L1, . . . ,Lm are rejected.
We will construct a joint process (σ (t), τ (t)) with σ(0) = τ(0). To move from
(σ (t − 1), τ (t − 1)) to (σ (t), τ (t)), we choose the same vertex v in both copies.
If v = Li , for some i then only σ is changed. If v > Lm, then we use the same
color in both copies. Otherwise, we do a switch coupling, based on the important
neighbor, w, of v. In particular, we couple the color choices as follows:

(A) if we consider color σ(w) for v in σ , then consider color τ(w) for v in τ ,
(B) if we consider color τ(w) for v in σ , then consider color σ(w) for v in τ ,
(C) otherwise consider the same color for v in τ as in σ .

Suppose that t ≤ (qnr)/(2e(q − 1)). The probability that Mi gets different col-
ors in σ(t) and τ(t) is at most the probability that (at least) one of the following
occurs during the t steps:

• During some ordered sequence of � − 1 steps, the process recolors vertices
Li + 1, Li + 2, . . . ,Li + � − 1 = Mi − 1 using option (B).

• During some ordered sequence of r steps, the process recolors vertices Ri − 1,
Ri − 2, . . . ,Ri − r = Mi using option (B).

The probability that one of these occurs is at most

2
(

t

r

)(
1

qn

)r

≤ 2
(

te

rqn

)r

≤ 1

8

(
2te

rqn

)r

≤ 1

8

(
1

q − 1

)r

,

where we have crudely used r ≥ 4 in the second inequality. Thus,

dTV
(
LGl,t (Zi),L

c
Gl,t (Zi)

)≤ 1

8

(
1

q − 1

)r

.(27)

Now combining (23) and (27) we have

PrLGl,t (Zi = 1) ≥ PrLc
Gl,t

(Zi = 1) − dTV
(
LGl,t (Zi),L

c
Gl,t (Zi)

)
≥ q−1(1 + (q − 1)−(r−1))− 1

8

(
1

q − 1

)r

≥ q−1 + 5

8
(q − 1)−r

≥ q−1 + 5

8
n−1/3.

So

ELGl,t (Z) ≥ q−1m + 5
8mn−1/3.
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Also,

varLGl,t (Zi) = PrLGl,t (Zi = 1)PrLGl,t (Zi = 0) ≤ 1.

We will show in Lemma 25 (below) that, for i �= j , covLGl,t (Zi,Zj ) ≤ m−1. So

varLGl,t (Z) =∑
i

varLGl,t (Zi) +∑
i �=j

covLGl,t (Zi,Zj )

≤ m +∑
i �=j

covLGl,t (Zi,Zj )

≤ 2m.

Let

λ = (1/8)mn−1/3
√

2m
.

Note that λ = ω(1) as a function of n. Also,

ELGl,t (Z) − λ
√

varLGl,t (Z) ≥ q−1m + 5
8mn−1/3 − λ

√
2m

= q−1m + 1
2mn−1/3.

Thus, by Chebyshev’s inequality, we have

PrLGl,t

(
Z ≤ q−1m + 1

2mn−1/3)≤ PrLGl,t

(
Z ≤ ELGl,t (Z) − λ

√
varLGl,t (Z)

)
≤ λ−2 = o(1).

Combining this with (25), we find that dTV(LGl,t , π) ≥ 1 − o(1), so Glauber dy-
namics does not mix in t steps for any t ≤ (qnr)/(2e(q − 1)). Thus, we obtain the
following theorem.

THEOREM 24. Let G be the n-vertex path, and let q ≥ 4. Consider the Markov
chain MGl on the state space �. For any fixed ε < 1 and sufficiently large n,

Mix(MGl, ε) ≥ qn((1/3) logq−1 n − 2)

2e(q − 1)
.

LEMMA 25. For i �= j , covLGl,t (Zi,Zj ) ≤ m−1.

PROOF. We will show that Zi and Zj have low covariance in the t-step distrib-
ution by showing that Glauber dynamics (over t steps) is quite close to a “clamped
distribution” in which some vertex between Mi and Mj is held fixed. This “dis-
agreement percolation” argument is similar to the argument in Section 6.4.7.
The only difference is that, in order to get a sufficiently small upper bound on
the covariance, we have to look at a “clamped process” that is slightly different
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from Mc
Gl. In particular, in Mc

Gl, Mi is only r vertices away from the nearest
“clamped vertex,” Ri . Here we need to spread the clamped vertices out more sym-
metrically with respect to the vertices Mi . Let

� = {
Mi + k/2|i ∈ {0, . . . ,m − 1}}.

Consider a process σ(0), σ (1), . . . which evolves according to MGl. Let ρ(0),

ρ(1), . . . be a process which evolves according to a clamped version of MGl in
which those moves involving vertices in � are rejected. We refer to this dynamics
as Msc

Gl (where “sc” is intended to indicate “symmetric clamped”). Consider the
joint process (σ (t), ρ(t)) which starts with ρ(0) = σ(0) and progresses according
to the identity coupling [the same vertices and colors are chosen in the transition
σ(t − 1) → σ(t) and in the transition ρ(t − 1) → ρ(t)]. Now the probability that
σ(t)Mi

�= ρ(t)Mi
or σ(t)Mj

�= ρ(t)Mj
(or both) is at most

4
(

t

k/2

)(
1

n

)k/2

,

since an ordered sequence of k/2 vertices would need to be chosen either from the
left toward Mi or from the right toward Mi or from the left or right toward Mj .
The probability that a particular vertex is chosen at any step is 1/n. Since t ≤
(qnr)/(2e(q − 1)) and k ≥ 8er , this is at most(

8te

kn

)k/2

≤ e−k/2 ≤ n−24.

Now

covLGl,t (Zi,Zj ) = ELGl,t (ZiZj ) − ELGl,t (Zi)ELGl,t (Zj )

= PrLGl,t (Zi = 1 ∧ Zj = 1) − PrLGl,t (Zi = 1)PrLGl,t (Zj = 1)

≤ PrLsc
Gl,t

(Zi = 1 ∧ Zj = 1) + n−24

− (
PrLsc

Gl,t
(Zi = 1) − n−24)(PrLsc

Gl,t
(Zj = 1) − n−24)

≤ covLsc
Gl,t

(Zi,Zj ) + 4n−24

= 4n−24. �

7. Optimal mixing for Glauber and scan when q > 4. Let G be the
n-vertex path. For q > 4, Lemma 1 of [22] shows that Glauber dynamics mixes
in O(n logn) steps. For scan, we use the coupling from Section 6.3. Consider a pair
(σ, τ ) ∈ S which disagrees at a single vertex i. Obtain σ ′ and τ ′ by scanning left to
right, starting at vertex max{1, i−1}. Lemma 16 shows that E[Ham(σ ′, τ ′)] ≤ 3/4.
This implies the following theorem (by path coupling).

THEOREM 26. Let G be the n-vertex path, and let q > 4. Consider the Markov
chain M→ on the state space �+. Then Mix(M→, ε) ≤ 4 log(nε−1).
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8. H -coloring: O(n5) updates or scans suffice. Let H be a fixed graph, pos-
sibly with self-loops, and let � be the set of H -colorings of the graph G. These
are the homomorphisms from G to H—see [7, 15, 19] for details. We can extend
the dynamics MGl and M→ to the domain of H -coloring by modifying the pro-
cedure Metropolis(v) from Section 2. In particular, a proposed color c (which is a
vertex of H ) is accepted if and only if every neighbor w of v is colored with some
neighbor cw of c. The original dynamics corresponds to the situation in which H

is a q-clique with no self-loops.
Suppose that H is connected. Let G be the n-vertex path. If H has an odd

cycle, then Glauber dynamics and systematic scan are both ergodic on �, the set of
H -colorings of G. In this case we say that any two colorings, σ ∈ � and τ ∈ �, are
compatible. If H does not have an odd cycle, then it is bipartite. Neither dynamics
is ergodic on �. However, the H -colorings can be partitioned in a natural way
into two subsets, such that Glauber and scan are both ergodic on either subset. In
particular, the H -colorings are partitioned as follows. Two H -colorings σ ∈ � and
τ ∈ � are compatible if σ1 and τ1 are chosen from the same side of the bipartition
of H . Our aim is to show rapid mixing on the set(s) of compatible colorings:

Let h = |V (H)|. Define t as follows:

t =


4h − 1, if H is not bipartite and n is even;
2h − 1, if H is bipartite and n is even;
4h, if H is not bipartite and n is odd;
2h, if H is bipartite and n is odd.

Note that n + t is always odd.

LEMMA 27. In any two compatible H -colorings σ and τ , there is a t-edge
path in H from σn to τ1.

PROOF. We look at each of the four cases.

H is not bipartite and n is even: Let c be some point on an odd-length cycle. Go
from σn to c in at most h − 1 edges. Also, go from c to τ1 in at most h − 1
edges. If the constructed path has an even number of edges, go around the cycle
using at most h more edges. Now go back and forth on the last edge to make
the total length equal to t .

H is bipartite and n is even: Note that σn and τ1 are on opposite sides of the
bipartition. Go from σn to τ1 in at most h − 1 edges and go back and forth on
the last edge.

H is not bipartite and n is even: Let c be some point on an odd-length cycle. Go
from σn to c in at most h − 1 edges. Also, go from c to τ1 in at most h − 1
edges. If the constructed path has an odd number of edges, go around the cycle
using at most h more edges. Now go back and forth on the last edge to make
the total length equal to t .
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H is bipartite and n is odd: Note that σn and τ1 are on the same side of the bipar-
tition. Go from σn to τ1 in at most h − 1 edges and go back and forth on the
last edge. �

8.1. Constructing canonical paths. Let �′ be the state space. It is either the set
of all proper colorings (if H is not bipartite) or it is one of the two maximum sets
of compatible colorings (if H is bipartite). We will use the canonical paths method,
which can be viewed as a special case of comparison in which we compare MGl
to the uniform random walk on �′. Thus, for each σ ∈ �′ and τ ∈ �′, we will
construct a canonical path γσ,τ from σ to τ .

First, let σnc1 · · · ct−1τ1 be some t-edge path from σn to τ1 and let z1z2 · · ·
z2n+t−1 denote σ1 · · ·σnc1 · · · ct−1τ1 · · · τn. Let Zi denote the H -coloring zizi+1 · · ·
zi+n−1, so Z1 = σ and Zn+t = τ . The path γσ,τ passes through Z1,Z3,Z5, . . . ,

Zn+t . Moving from Zi to Zi+2 can be implemented by n Glauber transitions (ap-
plied to vertices 1 to n in order). Let

A = max
α,β

1

π(α)PGl(α,β)

∑
σ,τ

π(σ )π(τ) |γσ,τ |,(28)

where the max is over all Glauber-dynamics transitions (α,β) and the sum is over
all pairs (σ, τ ) such that (α,β) is on the canonical path γσ,τ . By Theorem 2.1
of [9], we have λ(MGl) ≥ 1/A. We now derive an upper bound on A.

The three stationary probabilities in (28) are all 1/|�′|. Furthermore, every
canonical path γσ,τ satisfies |γσ,τ | ≤ n+t

2 n. Finally, PGl(α,β) = 1
nh

. Plugging this
into (28), we get

A ≤ n + t

2
n

nh

|�′| max
α,β

∑
σ,τ

1.

We will show that the number of pairs (σ, τ ) using transition (α,β) is O(n |�′|),
from which we can conclude

A = O(n4),(29)

viewing h as constant. The method we use is standard: each canonical path through
(α,β) will be assigned a unique “encoding” chosen from a set of O(n |�′|) encod-
ings.

So now fix (α,β) and consider the set of all canonical paths that use tran-
sition (α,β). We show how to encode a typical such path, from σ to τ ,
say. Let τnc

′
1 · · · c′

t−1σ1 be some t-edge path in H from τn to σ1 and let

ẑ1ẑ2 · · · ẑ2n+t−1 denote the path τ1 · · · τnc
′
1 · · · c′

t−1σ1 · · ·σn. Let Ẑi denote the
H -coloring ẑi ẑi+1 · · · ẑi+n−1.

The encoding of the canonical path from σ to τ consists of the following infor-
mation:
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• i, indicating that the current transition is on the path from Zi to Zi+2, and the
colors zi and zi+1;

• Ẑi , and
• the colors σi−t+1, . . . , σi−1 and τi−t+1, . . . , τi−1.

Given the transition (α,β) and the values of i, zi and zi+1, we can deduce Zi .
From Zi and Ẑi and the extra colors, we can deduce σ and τ . Thus, the number of
pairs (σ, τ ) using the given transition is at most the number of encodings, which is
O(n |�′|) as required, so we have now established (29).

Note that MGl is reversible. Let 1 = β0 > β1 ≥ · · · ≥ β|�′|−1 > −1 be the
eigenvalues of its transition matrix PGl. Since 1 − β1 = λ(MGl), we have
1/(1 − β1) ≤ A. To bound the mixing time of MGl, we also need an upper bound
on 1

1+β|�′|−1
. This is an easy application of Proposition 2 of [10] since, for every

σ ∈ �′, we have PGl(σ, σ ) ≥ 1/h.
In particular, for every σ ∈ �′, we define the (odd-length) canonical path from σ

to itself to be single transition PGl(σ, σ ). Proposition 2 of [10] then gives

1

1 + β|�′|−1
≤ 1

2
max

σ

1

PGl(σ, σ )
≤ h

2
.

Combining this with (29), Proposition 1(i) of [26] gives

Mixσ (MGl, ε) ≤ 1

1 − βmax

(
lnπ(σ)−1 + ln ε−1)

= O(n4)
(
lnπ(σ)−1 + ln ε−1).

Thus, we have the following theorem.

THEOREM 28. Let H be a fixed connected graph. Let G be the n-vertex path.
Let �′ be the state space of MGl, which is either the set of all proper H -colorings
of G (if H is not bipartite) or one of the two maximum sets of compatible colorings
(if H is bipartite). Consider the Markov chain MGl on the state space �′. Then

Mix(MGl, ε) = O(n5 ln ε−1).

In Section 10.1 we will show how to use our lower bound λ(MGl) ≥ 1/A to
get a corresponding lower bound on λ(M→). This will imply that the mixing time
of systematic scan is also O(n5 ln ε−1), though, for technical reasons (since scan
is not reversible), we state the result in continuous time. See Theorem 31 in Sec-
tion 10.1 for details.

8.2. Special case. Suppose that H is an odd cycle of length k. We noted at
the beginning of Section 8 that Glauber and scan are ergodic on � and Section 8.1
shows that the mixing time is O(n5). In fact, the analysis for 3-coloring trans-
lates directly to the case of a k-cycle so we get the following analog of Theorems
1 and 3.
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THEOREM 29. Let H be an odd cycle. Let G be the n-vertex path. Let �′ be
the set of H -colorings of G. Consider the Markov chain MGl on the state space �′.
Mix(MGl,

1
2) = �(n3 logn).

The generalization of the proofs of Theorems 1 and 3 is straightforward. In Sec-
tion 4.1 each configuration X ∈ ϒ corresponds to k colorings. In Section 4.2 the
height hi of every vertex i satisfies hi = σi (modk). The quantity B in Section 4.3
is increased by a factor of k. A similar result holds for scan.

9. Directed H -coloring. It is natural to ask whether the H -coloring results
could be generalized, for example, to directed H -coloring. The answer is no. To il-
lustrate this, we give an example of a directed H that is not ergodic on the n-vertex
path G, and another example of a directed H for which Glauber is ergodic, but
mixes slowly.

For the first example, let H have vertex set {x, y, z} and edge set {(x, y), (y, z),

(z, x)}. Now the three possible colorings of G are

xyzxyz . . . , yzxyzx . . . and zxyzxy . . . .

These are not connected by either Glauber or scan moves.
For the second example, let the vertices of H be {x, b1, . . . , bk, c1, . . . , ck}. Let

the edges of H consist of an edge from x to every vertex (including itself), a di-
rected clique on B = {b1, . . . , bk} and a directed clique on C = {c1, . . . , ck}. Let
X be the singleton set {x}. The H -colorings of G correspond to the length-n strings
satisfying the regular expression X∗B∗ ∪ X∗C∗. Let A be the set of H -colorings
satisfying the regular expression X∗B+. (A coloring in A starts out with a possibly
empty sequence of color-x vertices, then contains a nonempty sequence of vertices
with colors from B .) Let M be the set of all colorings with at most one color from
B ∪ C. Since B and C are the same size, π(A) ≤ 1/2. Furthermore, for σ ∈ A\M
and τ ∈ A\M , PGl(σ, τ ) = 0 and P→(σ, τ ) = 0. Claim 2.3 of [12] shows that the
mixing time of both of these chains is at least π(A)/8π(M). Now

π(A) = |A|
|�| = |A|

2|A| + 1
≥ |A|

3|A| = 1

3
.

Also,

π(M) = |M|
|�| = 2k + 1

|�| ≤ 2k + 1

kn
,

which completes the proof.

10. Comparisons of scan and Glauber for general graphs. From the results
obtained so far, it seems as if one sweep of systematic scan is equivalent to a linear
number of Glauber updates. In the majority of cases examined (Sections 4–7),
we have obtained tight asymptotic bounds, and we know the equivalence is exact.



SYSTEMATIC SCAN FOR SAMPLING COLORINGS 225

Where we don’t have tight bounds (Section 8), at least our results are consistent
with this supposed equivalence. It is natural to wonder whether a result can be
framed that relates scan and Glauber in a more general setting, where the graph G

is arbitrary.
In this section we use the comparison method of Diaconis and Saloff-Coste [9]

to compare the optimal Poincaré constant λ(MGl) of Glauber dynamics to the op-
timal Poincaré constant λ(M→) of scan. Ideally, we might hope for λ(M→) =
�(nλ(MGl)). In fact, the best bounds we can prove lose a factor n in either direc-
tion so we have a lower bound for λ(M→) of �(λ(MGl)), and an upper bound of
O(n2λ(MGl)). Moreover, for the lower bound, we need to assume G has bounded
degree.

10.1. Comparing scan to Glauber.

THEOREM 30. Suppose G has maximum degree �. Let MGl and M→ be the
Glauber dynamics or systematic scan applied to H -colorings of G for a fixed but
arbitrary H . Then λ(MGl) ≤ 4q�+1λ(M→).

PROOF. Suppose σ → σ ′ is a possible Glauber transition, that is, PGl(σ,

σ ′) > 0. Let i be the unique vertex satisfying σi �= σ ′
i . Say that τ ∈ � is between

σ and σ ′ if σ → τ is a possible scan transition, and additionally: (i) τi = σ ′
i and

(ii) τj = σj for all j ∼ i, where “∼” denotes adjacency in G. Denote by B(σ,σ ′)
the set of states between σ and σ ′. Consider a scan transition from state σ , and
denote by Ei the event that, for all k ∈ {i} ∪ {j : j ∼ i}, the color proposed by
Metropolis(k) is σ ′(k). Similarly, consider a reverse scan transition from state σ ′,
and denote by Fi the event that, for all k ∈ {i} ∪ {j : j ∼ i}, the color proposed by
Metropolis(k) is σ ′(k).

The following observations are easy to verify:

• Conditioned on Ei , a scan transition from state σ is certain to result in a state
τ ∈ B(σ,σ ′).

• For all τ ∈ B(σ,σ ′), P←(τ, σ ′|Fi ) = P→(σ, t |Ei).
• Pr(Ei) ≥ q−(�+1) and Pr(Fi ) ≥ q−(�+1).

It follows from these three observations that∑
τ∈B(σ,σ ′)

min
{
P→(σ, τ ),P←(τ, σ ′)

}
≥ ∑

τ∈B(σ,σ ′)
min

{
Pr(Ei)P→(σ, τ |Ei),Pr(Fi )P←(τ, σ ′|Fi )

}
≥ q−(�+1)

∑
τ∈B(σ,σ ′)

min
{
P→(σ, τ |Ei),P←(τ, σ ′|Fi )

}
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= q−(�+1)
∑

τ∈B(σ,σ ′)
P→(σ, τ |Ei)

= q−(�+1).

Then for any f :� → R,

EMGl(f, f ) = 1

2

∑
σ,σ ′∈�

π(σ)PGl(σ, σ ′)
(
f (σ) − f (σ ′)

)2
≤ q�+1

2

∑
σ,σ ′∈�

π(σ)PGl(σ, σ ′)

× ∑
τ∈B(σ,σ ′)

min{P→(σ, τ ),P←(τ, σ ′)}

× (
f (σ) − f (σ ′)

)2
≤ q�+1

∑
σ,σ ′∈�

π(σ)PGl(σ, σ ′)(30)

× ∑
τ∈B(σ,σ ′)

[
P→(σ, τ )

(
f (σ) − f (τ)

)2
+ P←(τ, σ ′)

(
f (τ) − f (σ ′)

)2]
≤ q�+1

∑
σ,σ ′∈�

π(σ)PGl(σ, σ ′)

× ∑
τ∈B(σ,σ ′)

P→(σ, τ )
(
f (σ) − f (τ)

)2
+ q�+1

∑
σ ′,σ∈�

π(σ ′)PGl(σ
′, σ )

× ∑
τ∈B(σ ′,σ )

P←(τ, σ ′)
(
f (τ) − f (σ ′)

)2
= 2q�+1

∑
σ,σ ′∈�

π(σ)PGl(σ, σ ′)
∑

τ∈B(σ,σ ′)
P→(σ, τ )

(
f (σ) − f (τ)

)2(31)

= 2q�+1
∑

σ,τ∈�

π(σ)P→(σ, τ )
(
f (σ) − f (τ)

)2 ∑
σ ′:τ∈B(σ,σ ′)

PGl(σ, σ ′)

≤ 2q�+1
∑

σ,τ∈�

π(σ)P→(σ, τ )
(
f (σ) − f (τ)

)2(32)

= 4q�+1EM→(f, f ).
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Inequality (30) applies the fact that 1
2(a − b)2 ≤ (a − ξ)2 + (ξ − b)2 for

all ξ . Inequality (31) uses the fact that Glauber is time reversible, that is, that
π(σ)PGl(σ, σ ′) = π(σ ′)PGl(σ

′, σ ), for all σ,σ ′ ∈ � and the fact that B(σ,σ ′) =
B(σ ′, σ ). Inequality (32) seems crude at first sight, but it is not obvious how to do
better: the knowledge of τ does little to constrain σ ′. �

The inverse of λ(M) is closely related to the mixing time of M. Much is known
about the precise relationship between these quantities; see, for example, the in-
equalities in [1, 9, 10, 12, 16, 23, 26]. Some known results only apply when M is
reversible, or when the eigenvalues of its transition matrix P are positive. Our sur-
vey paper [14] gives inequalities between Poincaré constants and mixing times in
both the general case and the reversible case. We will not repeat the details or trace
the development of the ideas here, but we mention a few simple facts that are use-
ful for us. Slightly stronger bounds can be obtained with more effort. Let M̃→ be
the continuization of M→ as defined in [2], Chapter 2, page 5. Essentially, this is
just M→ except that the holding time between discrete transitions is exponential
with mean 1. It is a classical result (see, e.g., [23], pages 55 and 63) that the mixing
time of M̃→ is bounded as follows:

Mixx(M̃→, ε) ≤ 1

λ(M→)

(
2 ln(1/ε) + ln(1/π(x))

)
.(33)

Combining (33), Theorem 30 and the upper bound 1/λ(MGl) = O(n4) from Sec-
tion 8.1, we get the following:

THEOREM 31. Let H be a fixed connected graph. Let G be the n-vertex path.
Let �′ be the state space of MGl. It is either the set of all proper H -colorings of G

(if H is not bipartite) or it is one of the two maximum sets of compatible colorings
(if H is bipartite). Consider the Markov chain M̃→ on the state space �′:

Mix(M̃→, ε) = O(n5 ln ε−1).

Let MZZ
Gl be the “lazy” version of Glauber dynamics from page 53 of [23].

In each step, the lazy Markov chain stays where it is with probability 1/2, and
otherwise makes the transition specified in the definition of MGl. We introduce
the lazy chain to keep the eigenvalues positive. See [14] for inequalities which
avoid this device. The following inequality from [14] is similar to Proposition 1(ii)
of [26]:

1

λ(MGl)
= 1

λ(MZZ
Gl )

≤ max
x

Mixx

(
MZZ

Gl ,
1

2e

)
.

Combining this with Theorem 30 and with (33), we find that, for bounded-degree
graphs G, the mixing time of M̃→ is at most O(n) times the mixing time of MZZ

Gl .
Perhaps this result can be improved by a factor of n2.
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10.2. Comparing Glauber to scan.

THEOREM 32. Suppose G is arbitrary. Let MGl and M→ be the Glauber
dynamics and systematic scan applied to H -colorings of G for a fixed but arbi-
trary H . Then λ(M→) ≤ n2qλ(MGl).

PROOF. Let σ,σ ′ ∈ � be a pair of states for which P→(σ, σ ′) > 0. There is
a natural canonical path γσ,σ ′ = (σ = τ 0 → τ 1 → ·· · → τn = σ ′) from σ to σ ′
using Glauber transitions, in which τ i−1 differs from τ i (if at all) only at vertex i.
According to [9], Theorem 2.1, the quantity we need to bound is

A = 1

π(τ)PGl(τ, τ ′)
∑

σ,σ ′ : (τ,τ ′)∈γσ,σ ′
π(σ)P→(σ, σ ′)|γσ,σ ′ |

= n2q
∑

σ,σ ′ : (τ,τ ′)∈γσ,σ ′
P→(σ, σ ′),

where we have used the facts that π is uniform, |γσ,σ ′ | = n, and PGl(τ, τ
′) = 1/nq .

(Diaconis and Saloff-Coste state their theorem for time-reversible MCs, but their
proof does not use time reversibility.) We shall demonstrate that A ≤ n2q , from
which it follows that λ(M→) ≤ n2qλ(MGl).

Regard τ and τ ′ as fixed, and suppose τ and τ ′ differ at vertex i. Denote by Eσ
1

the event that the sequence

Metropolis(1),Metropolis(2), . . . ,Metropolis(i − 1)

takes σ to τ , and by Eσ ′
2 the event that

Metropolis(i + 1),Metropolis(i + 2), . . . ,Metropolis(n)

takes τ ′ to σ ′. Then P→(σ, σ ′) ≤ Pr(Eσ
1 ∧ Eσ ′

2 ) = Pr(Eσ
1 )Pr(Eσ ′

2 ), and∑
σ,σ ′ : (τ,τ ′)∈γσ,σ ′

P→(σ, σ ′) ≤∑
σ

Pr(Eσ
1 )
∑
σ ′

Pr(Eσ ′
2 ).

The second sum above is clearly bounded by 1, since the events {Eσ ′
2 : σ ′ ∈ �} are

disjoint. In fact, the first sum is also bounded by 1, since Pr(Eσ
1 ) is equal to the

probability that the sequence

Metropolis(i − 1),Metropolis(i − 2), . . . ,Metropolis(1)

takes τ to σ . So the terms of the first sum may also be viewed as probabilities of
disjoint events. Thus, A ≤ n2q , as claimed. �

Combining Theorem 32 with inequalities of Diaconis and Stroock [10] and
Sinclair [26], we get

Mixx(M
ZZ
Gl , ε) ≤ n2q

1

λ(M→)
ln

1

επ(x)
.(34)
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This can be combined with the upper bound

1

λ(M→)
≤ 2(maxx Mixx(M→,1/e))2

(1/2 − 1/e)2 .(35)

The square of the mixing time in (35) is necessary in the general nonreversible
case (see [14]), though of course better inequalities might apply to the particular
chain M→. Combining (34) and (35), we get a weak inequality which shows that
the mixing time of (lazy) Glauber dynamics is at most O(n3) times the square of
the mixing time of systematic scan.

Note that the proofs of Theorems 30 and 32 are actually about Dirichlet forms
rather than about Poincaré constants, so the same inequalities apply to the log-
Sobolev constant.
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