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THE SIZES OF THE PIONEERING, LOWEST CROSSING AND
PIVOTAL SITES IN CRITICAL PERCOLATION ON
THE TRIANGULAR LATTICE

By G. J. MORROW ANDY. ZHANG
University of Colorado

Let L,, denote the lowest crossing of a squate<2n box for critical site
percolation on the triangular lattice imbeddedzif. Denote also by, the
pioneering sites extending below this crossing, @ndthe pivotal sites on
this crossing. Combining the recent results of Smirnov and Weiath]

Res. Lett. 8 (2001) 729-744] on asymptotic probabilities of multiple arm
paths in both the plane and half-plane, Keste@snim. Math. Phys. 109
(1987) 109-156] method for showing that certain restricted multiple arm
paths are probabilistically equivalent to unrestricted ones, and our own
second and higher moment upper bounds, we obtain the following results.
For each positive integer, asn — oo:

1. E(an|‘[) — n4‘r/3+0(1)_

2.E(|Fy|") = n7r/4+0(1)_

3.E(10:%) = n3‘[/4+0(l)_

These results extend to higher moments a discrete analogue of the recent
results of Lawler, Schramm and Wernéfdth. Res. Lett. 8 (2001) 401-411]

that the frontier, pioneering points and cut points of planar Brownian motion
have Hausdorff dimensions, respectively347/4 and 34.

1. Introduction. Consider site percolation on the triangular lattice. Each
vertex of the lattice is open with probability and closed with probability
1 — p and the sites are occupied independently of each other. We will realize the
triangular lattice with vertex set?. For a given(x, y) € Z2, its nearest neighbors
are defined agx £ 1,y), (x,y+1), x+1,y—1 and(x — 1,y + 1). Bonds
between neighboring or adjacent sites therefore correspond to vertical or horizontal
displacements of one unit, or diagonal displacements between two nearest vertices
along a line making an angle of 13@ith the positivex-axis.

Recall that the triangular lattice may also be viewed with sites as hexagons in a
regular hexagonal tiling of the plane. This point of view is convenient to describe
the fact that wherp = 1/2 (critical percolation) and the hexagonal mesh tends
to zero, the percolation cluster interface has a conformally invariant scaling limit,
namely, the stochastic Loewner evolution processgJILE]. Smirnov and Werner
[12] combine the convergence of the cluster interface with recent results on the
probabilities of crossings of annular and semi-annular regions by SalEulated
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by Lawler, Schramm and Werner [6, 7, 9] to obtain corresponding probabilities for
the critical site percolation on the triangular lattice.

We will use the Smirnov and Werner [12] estimates in the case of three-arm,
two-arm and four-arm paths to establish results, respectively, on the length of the
lowest crossing, the size of the pioneering sites extending below this crossing and
the number of pivotal sites on this crossing of a square box with sides parallel
to the coordinate axes iA2. Here and throughout the paper we will be working
with the critical percolation model. To illustrate how our work fits in with known
results for planar Brownian motion, we describe various geometric features of the
Brownian paths as follows. Define the hidl, at times of a planar Brownian
motion B, s > 0, as the union of the Brownian pafio0, ¢] := {8,,0 < s <t}
with the bounded components of its complem@At 8[0, 7]. The frontier or outer
boundary ofg[0, ¢] is defined as the boundary Kf,. By contrast, a pioneer point
of the Brownian path is defined as any pgdgtat some time < ¢ such thais; is in
the boundary oK, that is, such thag, is on the frontier of3[0, s]. A point g, for
some O< s < ¢t is called a cut point of8[0, ¢] if B[0,s] N B(s, 1] = &. Lawler,
Schramm and Werner [8] have shown that the frontier, pioneer points and cut
points of a planar Brownian motion have Hausdorff dimensions, respectiv@y, 4
7/4 and 34. We answer an open question ([12], question 2) to find an analogue
of this result in the case of critical percolation on the triangular lattice. Indeed,
we asymptotically evaluate all moments of the sizes of the corresponding lowest
crossing, pioneering sites and pivotal sites that we define below.

It turns out that our method requires a more careful analysis in the four-arm
case than in the two and three-arm cases. As pointed out in [12], the probability
estimates of annular crossings of multiple-arm paths [see (2.3) below] lead
naturally to a prediction of our first moment results. Only in the pivotal (four-arm)
case do we need to apply the estimate of Smirnov and Werner [12] for probabilities
of multiple-arm crossings of semi-annular regions, in addition to the basic annular
estimates to actually establish the prediction. In all cases, however, the methods
of Kesten [4] are essential to construct the probability estimates for our moment
calculations. This calculation handles, in particular, the probability of four-arm
paths near the boundary of the box used to define the pivotal sites.

Denote byT the full triangular lattice graph whose vertex setZ8 and
whose edges are the nearest neighbor bonds. Défite= max{|x|, |y|} for
X = (x, y) € Z2. For any real number > 0, we denote the square box of vertices
B(r) := {x € Z2:||x|| < r}. A path is a sequence of distinct vertices connected
by nearest neighbor bonds. Thus, a path is simple. Following Grimmett [2], the
boundary or surface of a sét of vertices is the seiX of vertices inX that are
adjacent to some vertex not K. A path is open (closed) from a sktto a setY’ if
each vertex of the path is open (closed) and containg®in(X U Y) except for
the endpoints id X andaY which may or may not be open (closed). The interior
of X is defined by intX) = X \ X. A setX of vertices is connected if the graph
induced byX is connected as a subgraphlafLet R be a connected set of vertices
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lying within a finite union of rectangles with sides parallel to the coordinate axes.
We say that a path is “irR” if its vertices remain inR except possibly for its
endpoints. If, in additionR is a single such rectangle, a horizontal open (closed)
crossing ofR is an open (closed) path iR from the left side ofR to the right side
of R. A vertical crossing is defined similarly.

Letn be a positive integer. For eaghe B(n), we define the event

L (X, n) :=there exists a horizontal open crossingBaf)
(1.2) containing the vertex, and there exists a
closed path imB(n) from x to the bottom ofB(n).

The lowest crossing for any given configuration of vertices for which a horizontal
open crossing oB(n) exists is known (see [2]) to be the unique horizontal open
crossingy, of B(n) that lies in the region on or beneath any other horizontal
open crossing. In fact, on any given configuration we may also represent the set of
vertices iny, as equal to the sdti, := {x: L(X, n) occurg. Although this fact is
well known, we briefly review its proof. First, any verteof y;,, admits a closed
path to the bottom oB(n) [so thatL(x, n) occurs], else one could construct a
crossing strictly lower than,. Therefore,y,, C L,,. On the other hand, to show
L, C yn, assume the event(x, n). The open path in this event lies aboyg so
the closed path in this event has to crgssunless € y,,. Thus, the set of vertices
of y, is preciselyL,,.

We introduce next the pioneering sites extending below the lowest crossing of a
configuration inB(n). Define the event

F (X, n) :=Xxis open and there exist two open pathBifu)
started fromx, one to the left side and one to the
right side of B(n), and there exists a closed path
in B(n) from x to the bottom ofB(n).

(1.2)

Note that (1.1) implies (1.2). The difference is that in (1.2) the two open paths
need not be disjoint, whereas in (1.1) the horizontal crossing threugbaks up

into two disjoint open paths. We define the set of pioneering sites as tlig set

{x: F(x, n) occurg. GeometricallyF,, consists of the union of the lowest crossing
with the many complicated orbs and tendrils hanging from it; the vertices of these
latter sets do not admit two disjoint paths to the sideB @f). Alternatively, F,, is

the set of open sites discovered through the exploration process that starts at the
lower left corner ofB(n) and runs until it meets the right side, that determines the
interface between the lowest spanning open clust&(ir) and the closed cluster
attaching to its bottom side. This descriptionfgf explains its correspondence to
the trace of SLE.
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Finally, we define the pivotal sites lying along the lowest crossing. Define the
event

@(x, n) :=there exists a horizontal open crossingkih)
containing the vertex, and there exist two
disjoint closed paths iB(n) started fronx, one
to the top side and one to the bottom sideBa#).

(1.3)

We define the set of pivotal sites as the g&f := {x:Q(X, n) occurg. The
two closed “arms” emanating from a pivotal (and therefore open)xsiferce
any horizontal open crossing & (n) to pass througlx. Let ¢, be the open
cluster containing the lowest crossing whenever such a horizontal open crossing
exists. That a pivotal site exists implies that this cluster also contains the highest
horizontal open crossing and that the site belongs to both the highest and lowest
crossing.

We can now state our main result. Here and through®uand E denote,
respectively, the probability and expectation for the critical percolation.

THEOREM1. For each positiveinteger ¢, asn — oo:

1. E(IL,|") = n*/3to@),
2. E(|Fn|r) — n7r/4+o(1)_
3. E(1Qul") = /4@,

Note that probability upper bounds follow immediately by Markov’s inequality
from the tth moment upper bounds in Theorem 1. On the other hand, a bound
on the distribution of small values ¢1.,,| is obtained in [5]. LetL denote the
event that there is a horizontal open crossingBéf). These authors show that
there exist constants, ¢ > 0 andCy < oo such thatP (|L,| < nlt¢|L£) < Cin~™
([5], Theorem 2). We conjecture that this result continues to hold for the triangular
lattice case if the exponentlc is replaced by A3 — § for anyé§ > 0, where now
a > 0 may depend oA.

A one arm version of Theorem 1 is obtained by Kesten [3]. He shows that
there exists a limiting measure on configuration space, conditioned by the
event that the origin is connected &B(n) asn — oo such that, with respect
to u, there is a unique open clustBf connected to the origin with probability 1
([3], Theorem 3). He then proveE,(|W N B(n)|%) < (n?m,)", wheren, :=
P[0is connected by an open path(in co) x R] ([3], Theorem 8). We do not
study here the number of sites B(n) from which a five-arm path to th&B (n)
exists. By the results of Smirnov and Werner [12] [see (2.3)], the expected number
of such sites is predicted to bé®.

Results analogous to the above-mentioned Hausdorff dimension properties of
certain planar Brownian motion point sets but now for the stochastic Loewner
evolution process SlLdtself have been obtained as follows: the dimension of the
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SLEg curve (or trace) is 7 [1]; the dimension of the (outer) frontier of SEks

4/3 [7], and the dimension of the set of cut points of 3li&3/4 [6]; see Remark 5

of [12]. Perhaps for both the Brownian and SLE processes one can obtain moment
estimates on the number of disks of radius 0 needed to cover a given one of

the above point sets similar to the moment estimates presented here. Some results
for the expected number of such disks have been obtained by Rhode and Schramm
[10] concerning both the SLEcurve and hull withe in a range of values including

the casac = 6 that corresponds to the critical percolation of this paper.

Finally we mention that items 1 and 2 of Theorem 1 may be proved by
the same method that Kesten [3] uses to establish the one-arm case mentioned
above. However, that method does not extend to the four-arm case since then the
exponent in expression (2.3) becomes less thdn see Section 3.1 for further
details. We emphasize that the difficulty in this paper lies in the case of higher
moments £ > 2) for pivotal sites wherein we study the organizatiorr ofertices
in the box B(n) at which four-arm events occur. We develop a disjoint boxes
method (Section 4) that yields a proof of items 1 and 2 and that also lays a
groundwork for the proof of item 3 of Theorem 1. Our organization of the disjoint
boxes leads to two developments. First, it allows for the construction of certain
horseshoe estimates governed by Lemma 5 that are critical in establishing the
correct asymptotic order for even the first moment in the pivotal case. We carry out
these constructions in Sections 5 and 6. Second, it allows for the analysis of groups
of vertices that are closely clustered together in the analysis of second and higher
moments by a separate method based on Lemmas 7 and 8 shown in Section 7.
These lemmas are extensions of Kesten’s [4] Lemmas 4 and 5. This latter work
indeed forms the technological foundations for much of the current paper.

2. Lower bounds. In this section we establish lower bounds for each of the
moment estimates of Theorem 1. To do this, we begin by writing down the known
asymptotic probabilities of multiple-arm paths from [12]. Next Kesten’s method is
applied to obtain lower bounds for the probabilities of certain restricted multiple-
arm path events. The expectation lower bounds then follow easily.

Note that.L(X, n) is a certain sub-event of a so-called three-arm path that we
now introduce. DefingB(x, m) := X + B(m). Assume thaiB(x, m) belongs to the
interior of B(n). Denote

(2.1) A(X,m;n) := B(n) \ int(B(X, m)).
The event of a three-arm path froBi(x, m) to d B(n) is defined by

U3s(X, m; n) :=there exist two disjoint open paths in
A(X,m;n) fromdB(x, m) to d B(n),
and there exists a closed path in
A(X,m;n) fromadB(x, m) to d B(n).

We denoteUs(X,n) := Us(X,0;n). We shall use the following estimate
from [12].

2.2)
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LEMMA 1. For eachfixedm >0, P(U3(0, m; n)) =n=2/3t°M asn — oco.

ProoOF The proof follows by a direct translation of Theorem 4 of [12] as
follows. Consider the event that there existisjoint crossings of the annulus
A(ro,7) :={z € C:rg < |z] < r}, not all closed nor all open, for the hexagonal
tiling of fixed mesh 1 irC. Let #, (ro, r) denote generically any of the sub-events
defined by a specific ordering of closed and open crossings amongdisgint
crossings. Then for eagh> 2,

(2.3) P(H,(ro,7)) = Fo0E=D/1200() a5 oo,

Choose now two open and one closed crossings in the definiticiz0fg, 7).

Then Lemma 1 follows by applying (2.3) far = 3 and noting, on account of

the mild change in geometry between the hexagonal and present models for the
triangular lattice, that the evemts (0, m; n) satisfies#z(m /2, n) C U3(0, m; n) C
Hz(2m,n/2). O

Similar to (2.2), we define the events of two-arm and four-arm paths from
B(X,m) to dB(n) by

U2(X, m; n) :=there exist two paths id (X, m; n)
(2.4) from 0 B(x, m) to 0B(n),
one of them being open and the other closed

and

Ua(X, m; n) := there exist two disjoint open paths in
A(X,m;n) fromaB(x,m) to 0 B(n),
and there exist two disjoint closed paths in
A(X,m;n) fromdB(x,m) to 0 B(n).

(2.5)

We also denotéld, (X, n) := U, (X, 0;n), x = 2,4. As in the proof of Lemma 1,
except now withc = 2 andx = 4, respectively in (2.3), we obtain the following.

LEMMA 2. For fixed m > 0, P(U20,m;n)) = nY4°@D and
P(U4(0, m; n)) =n—>/4°D asp — co.

We now make precise the notion of restricted multiple-arm pathsr Lzt the
probability of a givenc-arm path from a given vertex insid&(n/4) to d B(n). We
restrict thex-arm path by specifying disjoint intervals of length proportionatto
and separated by intervals also proportionat twn thed B(n) for the hitting sets
of the various arms. Kesten [4] shows that there is only a multiplicative constant
cost in the probabilityr of this restricted event. In fact, Kesten shows a little more
that we will describe explicitly for the Lemmas 3 and 4. To begin, define certain
rectangles that sit on the four sides Bfn), counting counterclockwise from
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the left side ofB(n), by R1 :=[—n, —n/2] x [-n/2,n/2], Ry :=[—n/2,n/2] x
[—n,—n/2],R3:=[n/2,n] x [-n/2,n/2] and Ry :=[—n/2,n/2] x [n/2, n]. Let

R be a rectangle with sides parallel to the coordinate axes and sharing one side
with the boundary of a boB. We say that a path-tunnels throughR on its

way to d B if the intersection of the path with the smallest infinite vertical strip
containingR remains inR. Thus, the path may weave in and out ®fbut not
through the top or bottom sides &f, and comes finally t@ B. Likewise, we say

that a pathv-tunnels throughR on its way tod B if the roles of horizontal and
vertical are interchanged in the preceding definition. This definition is consistent
with the requirements of Kesten’s [4] Lemma 4. Accordingly, for eaehB(n/4),

we define a certain restricted three-arm path event by

T3(X, n) := Jtwo disjoint open paths iB(n) started fronx,
one to the left side oB(n) that/-tunnels through
R1, and one to the right side & (n) thatk-tunnels
(2.6) throughR3, and there is a closed path B(n) from x
to the bottom ofB(n) thatv-tunnels througRs.
Further, there are vertical open crossings of eacR;of
andR3, and there is a horizontal closed crossingrof

By the proof of Kesten’s [4] Lemma 4, we obtain the following.

LEMMA 3. Thereexistsa constant C3 such that uniformly for all x € B(n/4),
P(U3(X,n)) = C3P(T3(X, n)).

Note by Lemma 3 that, forx € B(n/4), the probabilities of L(X,n),
U3s(X, n) andT3(X, n) are all comparable.

We next define certain restricted two-arm and four-arm path events. In the two-
arm case we introduce rectangles that cut off the top and bottom sid&a pby
Sy :=[—n,n] x [—n, —n/2] andSs :=[—n, n] x [n/2, n]. In the four-arm case we
have the similar picture as the three-arm case, except now there is one more closed
arm thatv-tunnels throughr, on the way to the top oB(n). We thus define for
anyx € B(n/4),

T2(x, n) := there exists an open path B(n) from x
to the top ofB(n) thatv-tunnels througt®,,
and a closed path iB(n) from x to the
bottom of B(n) thatv-tunnels througts,.
Further, there exists a horizontal open crossing
of S4 and a horizontal closed crossing$f

(2.7)
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and

T4(x, n) := Jtwo disjoint open paths iB(n) started fronx,
one to the left side oB(n) thatk-tunnels through
R1, and one to the right side df(n) that/-tunnels
throughR3, and3two disjoint closed paths iB(n)

(2.8) from x, one to the bottom oB(n) thatv-tunnels
throughR2 and one to the top aB(n) thatv-tunnels
throughR4. Further, there are vertical open crossings
of each ofR1 andR3, and there are
horizontal closed crossings of eachiyf andR,.

Again, by the proof of Kesten [4], we have the following.

LEMMA 4. There are constants C> and C4 such that uniformly for x e
B(n/4), P(Ux(X,n)) < Cc P(Ti (X, n)), k =2, 4.

2.1. Proof of lower bounds. We now obtain expectation lower bounds for the
sizes of the lowest crossing, pioneering sites and pivotal sites. By definition, we
have|L,| = erB(n) 1 rx.n)- Thus,

(2.9) E|L,|= Y P(LX.n)> > P(LXn)).
xeB(n) XeB(n/4)

By Lemmas 1 and 3 and the inclusidw is open N T3(x,n) C L(X,n), we
have 2P (£(X,n)) > (1/C3) P(Us(X, n)) > (1/C3) P(U3(0, 5n/4)) > n=2/3+oD),
uniformly for x € B(n/4). Therefore, summing oxe B(n/4) in (2.9), we obtain

(2.10) E|Ly| > (n/4)2n= 230 — p4/3+o(1)

In exactly the same way, but using now Lemmas 2 and 4 and the inclusions
{xis open) N T2(x,n) C F (X, n) and{x is open N Ta(X, n) C Q(X, n), we have

(2.11) E|Fy| > (n)4)2n~ Y400 — 7/4+o0
and
(2.12) E|Qul > (n/8)2n=%/4t0D — ;3/4+o)

Note finally that thecth moment lower bounds in Theorem 1 follow immediately
from (2.10)—(2.12) and Jensen’s inequality forait 1.

3. Lowest crossing and pioneering sites. In this section we carefully study
an upper bound for the first and second momentd.gf and|F,|. We do this to
establish a dyadic summation construction alternative to Kesten'’s [3] method that
we will later incorporate in our analysis of the pivotal case in Sections 5 and 6.
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We introduce the following concentric square annuli of verticesBim). Let
Jjo = jo(n) be the smallest integgrsuch that 2/n < 1. Define

Ao:=B(n/2),
A;=B((1-27UDn)\B((1—27/)n), 1<j < jo,
(3.1) Jjo—1
Ajp=Bm\ U A;=0Bm).
j=0

The annuliA; become thinner as they approach the boundarg @ such that,
for j < jo, the distance from a pointe A; to dB(n) is comparable with 2/»
and also comparable with the width 4f. SinceA j, = 0 B(n), we will use instead
the property, valid for allj < jo, that if x € A; and [ly — x|| < 2-U+Dn, then
y € B(n). Notice that the annuli ; are natural for an approach based on disjoint
boxes by the following reasoning. For any vertex B(n), we will construct a
box B(x, r) centered ax that is roughly as large as it can be yet stays ingide).
The collection of verticex that give rise to boxe®(x, r) with radii r < 2=/n
correspond to the annuld;. Therefore, roughly speaking, the sizes of largest
disjoint boxes may be organized by arranging the centers of the boxes in these
annuli.

If the sizes of the setsi; were defined by areas of the regions between
concentric squares rather than by cardinalities of subsets of vertic8$nof
we would obtain an upper bound for the sizes of these sets immediately by
using the fact that2n)2(1 — 2-U+1)2 — (20)2(1 — 277)2 < 277242, An error
in approximating|A ;| by the area between concentric squares may come about
due to inclusion or exclusion of a ring of vertices. However; i& jo, then the
thickness of a given annulus is2+VYn > 1/2 so the area estimate may only be
an under-estimate by a factor of at most 4. Therefore, since the boundB(y of
has cardinality 8 — 4, we have, for all G j < jo, that

(3.2) Al <277%42
|Aj]

3.1. Expectation upper bound. We write the expectation of the size of the
lowest crossing as

(3.3) E|L,|= ) P(L(x,n))= Z > P(L(X,n)).
XeB(n) Jj=0xeA;

We note that by (2.2), fax e A},

(3.4) P(L(X, 1)) < P(U3(0,27 VD))

Lete > 0. By Lemma 1, there exists a const@htsuch that

(3.5) P(U3(0,r)) < Cor=23¢  forallr > 1.
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Here and in the sequel we alla# to be a constant depending etthat may vary
from appearance to appearance. Thus, by (3.2)—(3.5), we obtain

Jo 00
3.6 E|L, | <Ce S A (27U Dy)~23 < o p4/3+e 5" 27i/3,
J
j=0 j=0

Since the geometric series in (3.6) converges, we obtain by (3.6) that
(3.7) E|L,| <n¥3to®,

By the same argument, we construct an upper bound @, |. Indeed, let > 0.
By Lemma 2, there exists a constant such that

(3.8) P(U2(0,7)) < Cer~ Y4 forallr > 1.

Therefore, just as in (3.3) and (3.6) but using now (3.8) in place of (3.5), we find
E|F,| <n'/%t°D_ The proof of the upper bounds for= 1 of items 1 and 2 of
Theorem 1 is thus complete.

We comment that the exponefit1/4 + ¢) that takes the place @¢F2/3 + ¢)
in the upper bound foE|F, | does not affect the convergence of the geometric
sum because the exponents in (3.5) and (3.8) are greaterthaxote, however,
that a four arm calculation similar to that shown above would require the use
of an exponent—5/4 + ¢) so that the corresponding geometric sum would not
converge. It is precisely for this reason that we must establish an alternative to
Kesten'’s [3] method of proof to obtain our Theorem 1 for the pivotal case. The
approach we have shown above for the first moment upper bound may be extended,
in fact, to all moments, though we will not show the general case due to the fact
mentioned earlier that Kesten’s method may be applied successfully to obtain a
generalkth moment bound in the one, two- and three-arm cases. We only show in
addition below a second moment upper bound for the lowest crossing because it
demonstrates the way we extend our dyadic summation method to higher moments
in all cases, including the pivotal one.

3.2. Second moment upper bound. We show an estimation of the second
moment of|L,,|. Write

(3.9) E(L= Y Y P(LXn)NLY,n).

XeB(n)yeB(n)

Recall the definition ofjo = jo(n) and A; in (3.1). Consider first the “diagonal”
contribution to (3.9) defined by

Jo
(3.10) 1= > > P(L(X,n) N LY, n)).

j=0X€Aj yeB(x,Z*(H‘Z)n)
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Fix j < jo andx € A; and work on the inner sum in (3.10). For this purpose, we
introduce a net of concentric square annyli= a,,(x) whose union is the box
B(x, 2-U*2p) as follows:

am(X) ;= B(X,27"n) \ B(X, 27(m+1)n), j+2<m<jo—1,
(3.11) ‘

ajo(X) := B(X, 2 %n).
Notice thata ;, may consist of only the single point By this decomposition, we
have thaEif:Hz >yea, P(LX, n)NL(Y,n))is equal to the inner sum in (3.10).
By (3.11), the size o#,, is easily estimated by
(3.12) lam| <272" 202 all j+2<m < jo.

Furthermore, fox € A; andy € a,,, with j +2 <m < jo, by halving the distance
betweerx andy, we have that
(3.13) B(x, 27" 2p) N B(y, 27 ") = @.

Also, fory € a, with m > j + 2, sincelly — x|| < 2-U+2pn and 2 "+2, +
2-U+2y < 2-U+Dy,  we have that bottB(x, 2=™12,) and B(y, 2-"*+2p) are
subsets ofB(n). Therefore, sincel(x, n) N L(y, n) implies that for each of the
boxes in (3.13) there exists a three-arm path from the center of the box to its
boundary, we have by (3.13), independence and (3.5) that, for @lk,, with

m < jo,

(3.14) P(L(X, 1) N LY, 1)) < Co(27Mn) 4342

Also, trivially, (3.14) continues to hold witlk = jo, since then 2”n > 1/2. Thus,
by (3.14), we have

Jo 0o
S P(LOG) NLY.n) < Ce Y 272 n(2"n) 4342
(3.15)  m=jyeam e

< Cn2/3+2%072i03,

Therefore, by (3.10), (3.15) and (3.2), we have

o0 o0
(316) I< C8n2/3+28 Z |AJ|2—2]/3 < C8n8/3+2£ Z 2—5j/3 < Cgf’l8/3+28.
j=0 j=0

We next consider the off-diagonal part of the sum (3.9) defined by

Jo Jo
BA7) =)0 3" 33 Xqxeyl=2-i-2a) P (LX) N LY, ).

J=0xeA; k=0yeA;

Here x4 denotes the indicator function of the given set of vertigesin the
sumll, for all eligible verticesx € A; andy € A with k > j, we have that the
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boxesB(x, 2~/~3n) and B(y, 2%¥—3x) are disjoint and lie insid&(n), while if
k < j, the same holds true by (3.1) when we replace these boxes, respectively, by
B(x,27773n) and B(y, 27%~5n). Therefore, by (3.5), (3.17) and (3.2) we have
Jo Jo .
< Ce Y A A2 ) =23 % 27k =2/3+¢

j=0 k=0
(3.18)

2
Jo
:C8<Z|Aj|(2—Jn)—2/3+8> SC8n8/3+28
j=0

Therefore, by definitions (3.9), (3.10) and (3.17), and by collecting the estimates
(3.16) and (3.18), we obtain

(3.19) E(|L,|?) < n®30®,

We handle an upper bound for the second moment of the number of pioneering
sites by the same method. Thus, we have established the upper bound Bof
items 1 and 2 of Theorem 1. This concludes our discussion of these items.

4, Method of digoint boxes. Denote  p,:(X1,X2,...,%X) =
P(Ni=1Q(x;,n)). Recall the definition ofjo = jo(n) and A; in (3.1). Define,
forall j1 <j2<--- <,

(4.1) e = Y D Y Pue(XL, ., Xe).

X1€Ajl X2€Aj2 X €A,

By symmetry, to obtain an upper bound for thth moment of the number of
pivotal sites, it suffices to estimate the sum

Jo o Jo
(4.2) So:=D0 > v D Shjpee
A=0jo=j1  jr=jr—1

Moreover, by induction o in Theorem 1, we may assume that all the vertices
in (4.1)—(4.2) are distinct. In this section we establish a parametrization of certain
boxes centered at the verticesg x», ..., X, that are both mutually disjoint and
large enough to yield convergence of the sum (4.2) in our method for estimating
this sum shown in Sections 5 and 6. Indeed, we are led naturally to a certain graph
G defined below that organizes the vertices and their relative distances from one
another. Although this organization is somewhat complicated, it will allow us to
introduce estimations op, . (X1, X2, ..., X;) that refine the estimation approach
based solely on disjoint boxes (illustrated in Section 3.2) because our estimation
will depend also on the configuration of the graph.

We lay the groundwork for the definition of the gra@has follows. Letc > 2
be a positive integer depending only enthat we will specify later. We say a
vertexv is “near to” a vertexu, for someu € A, if v e B(u, 2-7=2p), and write
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this (asymmetric) relation asNu. If v is not near tou, we write instead/Nu.
Letnowx; € Aj,, 1<i <7, with j; < j>» <--- < j,. We say that a sequence of
verticesxy,, ..., Xy, is a chain that leads fromy, to xy, if Xz Nxy_, for each
i=1,...,k— 1. Definee; :=1 and

Vi :={X.:e # e1, and there exists a chain froxa to x,, }.

Thus, V1 is the set of all vertices that leadxg, . Note thatx; may lead toxo, but if
X2 does not lead ta&1, thenx,, ¢ V1. We denote inductively, b¥; := {e:x, € V;},
the set of indices corresponding to verticesVin i = 1,2,..., that we now
continue to define. Note that the cardinalities §f and V; are the same since
we have assumed the vertices are distinct. Lete; be the smallest index with
e2 > e1 such thak, ¢ E;. Define

Vo :={x.:e ¢ ({e1, e2} U E1), and there exists a chain froxa to x.,}.

Thus, no element oV, begins a chain that leads %p,. It may be thatx., leads
to x.,, but we leavex., out of V, as defined. Continuing in this fashion, we take
e3 to be the smallest index wildy > e, such thaks ¢ (E1 U E2). Define

Va:={X.:e ¢ ({e1, e2, e3} U E1 U E3), and3a chain fromx, to X, }.

Finally, we obtain a disjoint collection of sets of verticeés ..., V,, where some
of the V; may be empty. We say th&t is the set of vertices chained to the ragt

Thus, for example, iff = 3 and bothxzNx1 and xoNXx1, then V1 = {Xo, X3}
and e- is undefined. Also ifxsNx1 and xoNx; but insteadx,Nxs, then again
Vi = {X2,%x3} and e is undefined. If, on the other handyNXi, XaNXq
and xzNxz, then V1 = {x2} and e = 3 and V» is empty. Further, ifxoNx1,
x3Nx1 and xgNxz, then V; is empty andes; = 2 and Vo = {xa}. Finally, if
XoNX1, XaNx1 andxaNx», thene; =i andV; is empty,i = 1, 2, 3.

Suppose now, in general, that is defined fori = 1,...,r. Thus,r is the
number of root vertices. Note by definition that the verkgxs always counted
among the roots. We say that a vertex is isolated if V; = @. At nonisolated
roots we introduce a decomposition of the sétshemselves by means of a local
“near to” relation. It turns out that we will be able to work with one original
root x,;, and its corresponding set of vertic& at a time in constructing the
moment estimates of Sections 5 and 6, so in what follows we only write out a
decomposition of;. We will represent this decomposition as a graphbelow,
where, in general, a connected graphwith vertex set{x,,} U V; is associated
with the root vertex,,. The graphG on all vertices is defined simply as the union
of the component graplG; .

Let|Vy| > 1. We denotd/; := {y1, Y2, ...}, where the names of the vertices have
been changed such that € a,, (X1), Y2 € ap,(X1), ..., for p1 > p> > --., where
y1 is determined such thgy Nx; and such thay; minimizes the distance te;.
Therefore,p1 > j1 + 2c by (3.11). We now say thatM,u for someu € a,, (w),
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if ve B(u, 2—’”—2%). We call My, a local relation, wherev fixes the locale of
the relation. We describe how to decompdgevia a collection of local relations
starting withMy, in a way wholly similar to the decomposition of the original set
of vertices{xy, ..., X;} via the N-relation. Indeed, sef; = 1, renamey; aswsi,
and defineW, as all the vertices o¥1 \ {wy} that are chained to the roat; by
means of a chain of relations for the relatidfy,. We renamep s, = m1 so that
W1 € ay,(X1). Let f> be the smallest index witlf, > f1 such thaty, ¢ W1. We
renamey s, = Wy and alsop y, = m2 so thatw; € a,,,(X1). Note, in particular, that
Wwo My, Wy. Define

Wo:={yr:yr ¢ ({w1, w2} U W), and3a My,-chain fromy s to wo}.

Continuing in this way, we define alsfy < f4 < --- as long as these exist and
so also local rootsv; =y, and corresponding set¥;, i = 3,4, ..., chained to
them by the relationVy,. We also define indices for the locations of the local
roots. Indeed, following the example above for our definitions:gfandmo, we
definem; such thatw; € a,,, (x1) for all i such thatwv; exists. Note by definition,
sincem; = py, and p1 > p> > ---, we have thain; > mo > ---. In general, for
eachi, we further decompose the 3&t into a disjoint union:

(w1 ) UW; DU (w2 UW; ) U--- .

Here for eachj =1,2,..., W; ; is a set of vertices chained to the corresponding
local rootw; ; by the relationM,, as follows. AssumeéW; is not empty, else
wi 1 and Wy 1 are undefined. Sinc#71 is the set of elements chainedvq, we
know there existy € Wy such thatyMy, wi. We takew; 1 as such a vertey
that minimizes the distance tw1. We define the index:1 1 by the property:
W11 € am, ,(W1). Therefore, by definition oMy, and the fact thatvi € a, (X1),
we havemi1 > m1 + 2c. Note by definition ofwy 1, that for anyy € W1, we
havey € a,(w1) with somep < m1 1. We defineWy; as the set of vertices in
W1\ {w1 1} that are chained to the local rowj 1 by the relationM,,,. We perform
a similar procedure starting witi¥, to define the local rootv, 1. In particular,
Wo 1My, Wo. Likewise, as long ad¥; is not empty, we definev; 1 € W; and a
setW; 1 chained tow; 1 by the relationM,,, . Here the indicegi 1, m3 1, ... are
defined such thaw; 1 € a,, ;(W;), i = 2,3, .... Again, we choosev; 1 such that
m; 1 IS maximal, that is, there does not exyst a,, (w;) N W; with m > mi1.

We definews 2 and W1 2 if W1\ (W11 U {wz 1}) is not empty. We do this in the
same way that we definethb and W» from V1 \ (W1 U {w1}). Thus, we order the
vertices inWy aswy 1, y2, y3, ..., wherey; € ap, (W) with m11> p2> p3>---.
Among all elements oW1 \ {w1 1} that are not chained to the local raef 1 by the
relationMy, , we choosevq  to be the vertey; with least index. Correspondingly,
we defineWy, as the elements oy \ (W11 U {wq 1, W1 2}) that are chained
to wy 2 by the relationMy,. Note, in particular, thawi > € an,,(W1) with
m1,2 < my 1. Similarly, we define local roots, ;, j = 3,4, ... and for eachi > 2,
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therootsw; ;, j =2,3,.... We definen;, ;,, fori, =1,2, ..., as indices such that
Wi, iy € am(W;,) With m = m;, ;,. Again by definitiorvn; 1 > m; 2 > - -, and, since
Wi 1 € am; ,(W;) andw; 1 My, w;, we have that; 1 > m; + 2c.

.....

.....

,,,,,

by means of the relation,, for w =w;, ;. We continue in this way until no
further local roots may be defined. In general, fo» 1, we havew;, ;1€
am (Wi1 ik) form = Mg, .1 and

..........

Wil,...,ik,lMWil

Here whenk =1, w;, . ;,_, becomes;. We also define the index;, ... i, in
general, by the property that;, ;. ., € au(W;y,. ;) With m =m;, ;... We
have that, foralk > 0,m;, ;1 >m; 2> ---andm;, ;i 1>m; i +2c,
where fork =0, m;, .. ;, denotesj;.

We now use our parameterto obtain one further property of the indices not
mentioned in the previous paragraph. First, sil@econsists of all verticew that
may be chained tav1 by the relationMy,, we argue that may be chosen such
that

,,,,,

(4.3) W € ap(X1) with p >my — 1, forallw e Wy.

Indeed, since there are at mast- 1 relations with respect tdf, that must be
satisfied, ifc is large enough and v € a,,(x1) for somem < m1 — 2, then the
chain will not be able to cross the square annulis_1(x1) to reachws € a,,, (X1).
Therefore, we choose sufficiently large to guarantee (4.3). Note that the value
of ¢ so chosen does not depend on the vafljeor the locationx;. Now, since
we have control on the index for the location ofw, it is easy by estimating the
sum of distances between successive vertices in a chain of relations leading to
by (r — 1)2~™1+1=2¢;; that again, by choosing somewhat larger if necessary,
we havemy;, > my + ¢ for all i, =2,3..., while, of course, we still have that
m1,1 > m1 + 2c. By the same argument based at any local root, we have, for all
k > 0, that

ik+c forlk+1:27397
(4.4)

,,,,,,

We now define the grapB1 alluded to above. The vertices Gf are{x;} U V3.
We assumeVy| > 1, else the graph is trivial. Nv;, . ; is a local root, we say
that the root is at levek. We define a (horizontal) edge at levielbetween
w;,,..i, andw;, ;1 whenever both these local roots exist. In our diagram

below we make the edge go horizontally to the left from, _; to w;, ;i +1
to recall the fact that the associated indices satigfy  ;, +1 < mj,

.....

.....



MOMENTS OF THE NUMBER OF PIVOTAL SITES 1847

W221 W2.1,2 W21,1

Wi1,2,1
< A
< W21 Wi,2 Wi,1
A A
W2 2
- Wl
- A
W2
X1

Fic. 1. Thegraph G1.

we call wi an immediate successor ®f. Similarly, if w;, _; is a local root

of level k and if the rootw;, . ; .1 exists at levek + 1, then we call this local

root the immediate successor of the former local root. We now define that a
(vertical) edge exists between two immediate successors. In our diagram the level
increases vertically with. We illustrateG; for the following example in Figure 1:

[Vi] =10,|W1| =3, |W11| =0, W12l =1and|Wy 21| = 0;|W2| =5, W2 1| =2,

[Wo 2| =1,|W221|=0,|Wz11]|=0and|Wp1,|=0.

4.1. Representation of digoint boxes. We fix the graphG; and study the
problem of verifying that certain boxes centered at its vertices that we now
construct are indeed disjoint. Assum&| > 1. For each vertew =w;, . ;, € Gy,
we define
4.5) W) = Mg in,.ip1s if Wiy io,....i,1 EXISES |

My in...i» if Wi, i, i,.1 does not exist
Note that since we assume thaf exists, we also have:(x1) = m1. We set the
constant value := 2c + 4 wherec appears in (4.4).

PROPOSITION 1. The collection of boxes B(w,2"W=sy) w e Gq, are
mutually disjoint.

~~~~~~~~~~

in G;1. Definel as the largest nonnegative integer such thatis, ..., i; =i; and
setz:=wj, ;. If one ofw or w is x1, then we sef =0 and putz = x;. We
consider two cases, namely, (a) onewodr w’ is equal taz, or (b) neithemw norw’

is equal toz. In case (a) we assume, without loss of generality, #at z. Note
therefore that with this choice in case (&} k, K’ > k, andw’ € W;, _;, since

W, i1 exists. In case (b) we must have bétk [ + 1 andk’ > [ + 1, else we

are in case (a) again. Thus, in case (b) we may switch the designation of the primed
vertex if necessary such that ; > i;1.
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We work first with case (a). Sinc&’ € W;, . ;,, we have that
(4.6) W € a,(w) for somep <mj,. i, .1

Indeed, (4.6) holds by the definition @f;, ;1 as the maximaln such that
y € an (W) among ally e W;, _;, \ {w}. Now by (4.5), we have:r(w) =m;,, i 1,
so by (4.6),

4.7y  BW,27"W=2y) and B(w,27""™W=2;)  are disjoint
Consider first a special case of (a), namely, that
(48) w’ € {Wil,...,ik,l} U Wil ..... ir,1

so thatw' is either the immediate successomobr is one of the descendants of this
immediate successor. It follows by (4.8) thigt, = 1. Therefore, sincg’ > k + 1,
we have, by (4.4) and (4.8), that

.....

My i, 1 = Mg i
Therefore, by (4.5), we have that(w') > m(w) whether or not the vertex

Wit ip,....il, 1 exists. Hence, it follows by (4.7) that

il, F2c=miy iy i1+ 2.

.....

B(W,27"M)=5p) and B(w,27"™=5n)  are disjoint

Thus, we have established disjoint boxes under condition (4.8) in case (a).
Suppose next for case (a) that> k + 1 with i;_, > 2. Thus, we consider the
remaining descendantg of w that were not considered in the special case (4.8).

Putw:=w; icif SO eithew’ =W (whenk’ =k + 1) orw’ is a descendant
of w:
/ ~
W e {W} U Wil,...,ik,i12+l'
For all suchw’, we have that
(4.9) W ea,(w)  forsomep <m; . il

Indeed, by definition, the vertax lies in the annulug,, (w) wherem is maximal:

,,,,,

m > p. Therefore, since indeed’ is one such vertey, the assertion (4.9) is
verified. Hence, by (3.13),

BW,27772p) and B(w,27772p)  are disjoint
But, by definition of the indices and (4.9), we have
m(W) =iy i 12 My it 2P
Also, by (4.4) and (4.5), sinde= k andk’ > k + 1, we have that

m(W/)Zmii,m,i}(, >m +c>p+c>p.

i1,..., ik,i]/(+l
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Thus, sinces > 2, we obtain the desired conclusion. This completes the proof of
disjoint boxes for case (a).
We now proceed to study case (b). We first note that stnge> [ + 1,

(l) We {Wil ..... ilsi1+l} U Wi]_,...,i/,il+1v
(i) W' e {w;, fUW,

01,05 ilvil/+l.

(4.10)

77777 ilsil/+1

Therefore, just as in (4.9), we find by (4.10) that

(4.11) (Ywea,(2 for somep <mjy, . i1
(i) weay(2 for somep’ < Miy, iilsg-

Now we claim that forp given in (4.11), we have
(4.12) W ¢ B(w, 27P%y).

Indeed, on the contrary, we would hawéM,w. Therefore, we could chaw’ to
Wiy,....ir,ire1 DY the relationM;. Indeed, ifl < k — 2, thenw is already chained in
this way tow;, ...i;.i;,., While if / =k — 1, thenw =w;, ;... SOwe would have
directly thatw'M,w;, .. ;.i..,- Therefore, on the one hand, we have the inclusion
(ii) of (4.10) and, on the other hand, we would have thag (J;“] W;, _;,.; since
w' is chained tow;, . ;... But these two inclusions are in contradiction since
i1/+1 > i;+1. Hence, we must not have that this chain relation exists and, therefore,
(4.12) holds.

To finish the argument for case (b), suppose first that p — 2. Then by (4.11)
alone and (3.11), we have thBtw’, 2-7'~2n) and B(w, 2~ 7~2x) are disjoint. But
by (4.4) and (4.5),

/ /
mW) = my, g =P and mw) = miy i, > p.

Thus, since > 2, we obtain the desired disjoint boxes condition. Suppose finally
that p’ > p — 2. We have by (4.12) and (3.13) tha#(w',2-?~%~2;) and
B(w, 2—1’—26—211) are disjoint. Therefore, we obtain the disjoint boxes condition
by using (4.4), (4.5) and (4.11) to obtain the following two strings of inequalities:
+s>p +s>p+2c+2

----- v =My einif g

and

mW) +s>miy i +S>Miy i TS>Pp+Ss>pt+2c+2

.....

This completes the proof of case (b). Therefore, the proof of Proposition 1 is
complete. O
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5. Upper boundsin the pivotal case. In this section we will prove in detail
upper bounds for the first and second momentgpfi. To do this, we will recall
the approach of Kesten [4] to lay the groundwork that allows us to establish certain
“horseshoe” estimates that we describe below. Ret- B(n) be a box centered
at x near the right boundary aB(n) such that the right boundary df; lies on
the right boundary ofB(n), and let B, ¢ B(n) be a box containingB; such
that the right edge oB; is centered in the right edge @&h. Thus,B2 \ By is a
semi-annular region that we call a horseshoe. To estigte@,,|), we bound the
P(Q(x, n)) by the product of probabilities of two subevents@fx, n), namely,
(i) there exists a four-arm path fromto d B, and (ii) there exists a three-arm
crossing of the horseshoe. The probability of the latter event will be handled
by Lemma 5. To organize the sizes of the larger boReghat fit inside B(n),
we introduce a partition of the bo®B(n) that is dual to the original partition
of concentric annuli introduced in Section 3. For the second moment, we must
estimateP (Q(x, n)NA(y, n)). We employ the same “near to” definition employed
in Section 4. Wheryﬁx, so thatx andy are isolated root vertices, we determine
first whether these vertices are separated sufficiently to give rise to one or two
horseshoes. The boxes and horseshoes we construct for our probability estimates
will remain disjoint. We then utilize independence of events and Lemma 5 applied
to each horseshoe that appears in our construction. From this point of view, our
method for the pivotal case may be termed the method of disjoint horseshoes.
However, ifyNx, then it does not suffice to simply apply a disjoint boxes argument
combined with Lemma 2, because this leads to a divergent sum in our dyadic
summation method. Thus we need another result, namely, Lemma 7, that is proved
in the Appendix.

Let By = B1(2°) C B(n) be a fixed box of radius”2and for eachh > p such
thatv — p is an integer, leB2 = B2(2") C B(n) be a box of radius'2containing
B1 such that the right edge @fB; is centered in the right edge 6#B,. Denote
by H := H(p,v) := B2(2") \ B1(2”) the corresponding horseshoe. ConsiglAar
with the right edges in common with the right edged@, removed. The resulting
set of vertices consists of two concentric semi-rings of verticéginThe smaller
semi-ring we denote b§y H and call the inner horseshoe boundary and the larger
semi-ring we denote by, H and call the outer horseshoe boundary. Define the
event

9(p,v) := there exists an open pathin H = H(p, v) that
connects; H to 91 H and there exist two disjoint
(5.1) closed paths, andr4 in H(p, v) that connect
02H to 01H; r4is oriented counterclockwise and
ro clockwise fromr1 as viewed fronbo H.

LEMMA 5. Definethe event that thereisathree-arm crossing of the horseshoe
H(p,v) in B(n) with inner radius 2° and outer radius 2" by (5.1). Then there
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is a function e(u) — 0 as u — oo and constant C such that P(g(p,v)) <
C20(2+s(p))/2V(2+e(v)).

PROOF The first main step is to establish (5.2). To do this, we have to recall
the proof of Kesten’s [4] Lemma 4. Since Kesten's connection arguments will
continue to play a role in our proof of Lemma 7, we repeat the main outlines
of these arguments here for the sake of completeness. For ang boRB(x, r),
we define theith side,i = 1, 2, 3,4, as the part of the boundary &, that is,
respectively, on the left, bottom, right or top B8f Define disjoint filled squares
Bi = Bi(p), i =1, 2,4, that lie outside but adjacent to the sidesBaf2”), where
the index: refers to the'th side, so that the squares are listed in counterclockwise
order around the boundary @&y, 2°). Here and in the sequel a square will be
synonymous with a boB(x, r) for some centex and radius. We assume that the
squaress; are of radius 23 with spacing 72°—3) on either side. See Figure 2.
Define the event#(p, v) as the evenff(p, v) with the additional requirements
that the pathr1 A-tunnels throughg: and the paths, andrs v-tunnel through
B2 and Ba, respectively, and further, there is a vertical open crossing;aind
there are horizontal closed crossinggsefand 84. We will show

(5.2) P(g(p,v)) <CP(H(p,v)).

Define H(p1,v) := B2(2") \ B2(2°) for any p < p1 < v, where by our
definition above,B>(2°1) = B1(2°) for p1 = p. We now takep; = v — k
and so view a nested sequence of boBe$2" %), k > 1, each in a similar
relationship to the boxB1(2°) as the original boxB»(2"). Introduce disjoint
squares; = o; (v — k), i =1, 2, 4, of radii 2—k=3 that lie now inside but adjacent
and centered to théth sides ofB2(2' %), k =0,...,v — o — 1. Likewise, by
similarity to the squareg; (p) on the outside oB1(2”), introduce corresponding
squaress; (v — k — 1) of radii 2°~%=* on the outside oB»(2"~*~1). First note for
the casek = 0, that, by the existence of vertical open crossings of the squares
a1(v) and 81(v — 1) and horizontal closed crossings of the squargs) and
Bi(v — 1), i =2,4, and by the existence of appropriate connecting paths that
h-tunnel through bothry(v) and B1(v — 1) and thatv-tunnel throughy; (v) and
Bi(v — 1) for eachi =2, 4, and by FKG, there exists a constantsuch that

P(H(—1v))>c1.

Now we iterate this argument with> 1, while keeping track of the probability

of connecting paths from one step to the next. Indeed, we replace in the above
argument the squares(v) and 8; (v — 1) by the squares1(v — k) and 81(v —

k — 1), and only require, besides the horizontal closed crossings and vertical open
crossings, the existence of connecting paths that, as appropriate /eitirerel or
v-tunnel through all three o8; (v — k) ande; (v — k), andg; (v — k — 1), to show

by induction that there exists a constapsuch that

(5.3) P(H(v—k—1v)>cic;¥  allk=0,...,v—p—1
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Ba(p1)
a4(p1)
Ba(p)
a1 (p1) Bi(p)
Bi(p1)
Bi(2°)
Ba(p)
a2(p1) 32(2m)
Ba(p1)

FIG. 2. Arrangement of the connection boxesin the proof of Lemma 5. Here p1 = p + 1.

We may assume that> p + 2, so we now do so. Define the evehtp + 2, v)
by replacing the horseshdé(p, v) in (5.1) by H(p + 2, v), so that obviously
94(p,v) C §(p+2,v). Consider the everk (p +2, v) that the paths;,i =1, 2, 4,
defining 4(p + 2, v) can be chosen such that each has a certain fence around
it at the location that it meets the inner horseshoe bounélghi(p + 2, v); see
[4], page 134, for the precise definition of the fence. Kesten shows, by adroit
application of the FKG inequality (see [4], Lemma 3), that each fence, in turn, will
allow an extension of the chosen pathinto H(p, p + 2) by means of a certain
corridor it will travel through, with the result that there is only a multiplicative
constant cost in probability that the path wiltunnel orv-tunnel, as appropriate,
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through the corresponding squate
(5.4) P(K(p+2,v)) <CsP(H(p,v)),

whereCy depends on the parameter of the fence.
On the exceptional set, where one of the patteannot be chosen to have such
a fence, one obtains, following Kesten [4], page 131, a bound

(5.5) P(J(o+2.v)\ K(p+2,v)) <5P(F(p +3.v)).

The parametes can be made as small as desired by adjusting the parameter of the
fence (see [4], Lemma 2). Therefore, by (5.1) and (5.5), one obtains

(5.6) P(g(p,v) < P(F(p+2,v) < P(K(p+2,v))+5P(§(p+3,v)).

By iteration of (5.6) and by applying (5.4) and (5.3) at the end, one obtains, just as
in [4], page 131, that

P(3(p,v)) =D 8" P(K(p+3t+2,v))+C8VP/3

t>0

<Y Cy8'P(H(p+3t,v)) + CE3YPPP(H(p,v))
(5.7) =

P(H(p,v) (Zcfc (5c§)’+C(5c§)<V—P>/3>.
t>0
Sinces is arbitrary, by (5.7), the desired estimate (5.2) follows.

We continue the proof of the lemma. Lgtbe the center vertex of the right side
of B1:= B1(2°). Recall thatd; H denotes the inner horseshoe boundary of the
horseshodd (p, v). Let the squares;(p), i =1, 2, 4, as defined above lie inside
the boundary oB>(2°) = B1(2”). Define the events

&(p) := there exists an open pathin B1(2°) fromy’ to
01 H and there exist two disjoint closed paths
(5.8) rp andrg in B1(2°) fromy’ to 01 H;
ro is oriented counterclockwise angl
clockwise fromr; as viewed from the vertex

and
D(p) := &(p) occurs, the pathy h-tunnels through (p),
and, for eacli = 2, 4, the paths; v-tunnel throughy; (o).

Further, there exists a vertical open crossing o)
and horizontal closed crossingswf(p) andaa(p).

By Kesten'’s arguments agaiR (& (p)) < CP(D(p)) andP (H (p,v))P(D(p)) <
CP(&(v)). Therefore, by (5.2) and these two inequaliti®sg (o, v)) P(E(p)) <
CP(H(p,v))P(D(p)) <CP(E(v)). Therefore,

(5.10) P(g(p,v)) < CP(E(v)/P(E(p)).

(5.9)
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Finally, to complete the proof of the lemma, we recall Smirnov and Werner’s
semi-annulus version of Lemma 1 (Theorem 3 of [12]) as follows.4.&to, r)
denote the event that there exigt disjoint crossings of the semi-annulus
Ay (ro,r) ={z€C:rg < |z| <r Sz > 0} for the hexagonal tiling of fixed mesh 1
in C. Then for allc > 1,

(5.11) P (G (ro, r)) = r <+ D/6+oD) asr — 0o.
Therefore, by (5.11) witk = 3, we have
(5.12) P(&(p)) =2 PPt as5p — 0.

Hence, by (5.10) and (5.12), the proof of the lemma is compléie.

For our proof of Lemma 7, we will also need the following result that is a
restatement of Kesten's [4] Lemma 5. LBtl) be a box centered at the origin
with radius! > 2, and letB(x,m) C B(l/2). Define disjoint filled squareg;,

i =1, 2,3, 4,thatlie outside but adjacent to the sideBdk, m), where the index
refers to theéth side. We take the squares to have radi8 and to be centered in the
sides ofB(x, m). Let Ua(x, m; 1) be as defined in (2.5). L&t4(X, m; [) be defined
by (2.5) with the following additional requirements: the open pathsndr3 that
exist fromaB(l) to dB(x, m) will h-tunnel throughB1 and B3, respectively, on
their ways tod B(x, m), and, likewise, the closed paths andr4 will v-tunnel
throughg, andpa, respectively, on their ways @B (x, m), and, further, there exist
vertical open crossings ¢f; and 3 and horizontal closed crossings@f and .

LEMMA 6. Thereisa constant C such that

P(Ua(x, m; 1)) < CP(Va(x, m; 1)).

5.1. Expectation bound for pivotal sites. We are now ready to estimate
E(|0x ). We will refine the partition of the box(n) defined by the concentric
annuli A; of (3.1) by cutting these annuli transversally. Define an increasing
sequence of regionB*(j*), j* > 0, each lying insideB(n) by

(5.13)  B*(j*):={(x1,x2) € B(n) :min{|x1, x|} < 1 — 277 ~Hn}.

The setB*(j*) is the boxB(n) with squares of diameter2 ~1n removed from
each of its corners. We define the dual sets to the adnuby taking the successive
differences of the setB*(j*):

A% := B*(0),
(5.14)
A%o:=B*(j)\ B*(j* - 1), jF =1
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Thus, forj* > 0, A*, consists of four “L"-shaped regions. For each such region,
the “L" cuts off a square in the corresponding cornerRyiz). The collection
{A}’f*, Jj* >0} is a partition ofB(n). Moreover, the following properties hold:

is a union of eight rectangles if0 < j*<j,
(5.15) is a union of four corner squares iIf0 < j* = j,

is a union of four rectangles if j*=0andj >0,

one central square if j*=j=0.
Note, by (3.1), (5.13) and (5.14), that we have the estimate
(5.16) |AjNA%|<C2777"n?  allo<j*<j, n>1

for some constantC. Let {A;, 0 < j < jo} be the partition ofB(n) defined
by (3.1). Thus, by (5.15), the collectidr ; ﬂA**, 0<j*<j < jo} comprises a
joint partition of B(n). Hence, we can write

jo J
(5.17) E(Q.h= Y. Pl@xn)=> > > PQEXn).

XeB(n) _/:Oj*ZOXeAjﬂAjf*

Now for any 0< j* < j, we considerx € A; N Aj Choose real numbers
p=p(j,n) andv =v(j* n) such that 2 < 2~/n and 2 < 2=7"'n andv — p

is integer. Heref =< g over a range of arguments for the functiofisand g
means that there exists a constéht- 0 such that(1/C)g < f < Cg over this
range. We choosB1(2°) to have centex and make the definition gf such that
B1(2°) C B(n), but also such thaiB1(2°) C dB(n). This is possible since the
box B(x,2-/~2n) lies interior to B(n) by construction, so now we expand the
radius of this box such that its boundary just meets tha@f. Notice therefore
that while p is not independent of, the value of 2 only varies by a constant
factor withx. We also construct a ba&»(2”) C B(n) containingB1(2°), as in the
context of Lemma 5, such th@y(2") and B1(2”) share boundary points along
the side of B(n) corresponding to the side of the annuldg thatx belongs to.
This is possible by our construction of the dugl.. Thus, by the definition (5.1)
of J(p, v) and the definition of the four-arm path (2.5), and by independence, we
have that

(5.18) P(Q(x, 1)) < P(Ua(0,2°)) P(d(p, v)).
Lete > 0. By Lemma 2, there exists a const@ht; such that
P(U4(0,r)) < Ce, oA allr > 1.

Similarly, by Lemma 5, there exists a constafit, such thatP(g(p,v)) <
Ce22P7" @78 all p < v. Therefore, by these considerations witk: €2~ In>
C/2 and with Z/n and 27" n in place of 2 and 2, respectively, we have, by



1856 G. J. MORROW AND Y. ZHANG

(5.16) and (5.18), that there exists a constansuch that
Jo J
E(0a) < Ce Y > 2777 n2 @27 n)~3/4te2(=iHin @)
j=0,*=0
(5.19)

o0
S C8n3/4+8 Z 2—3]/4 S an3/4+8.
j=0
This concludes the case= 1 of item 3 of Theorem 1.

5.2. Second moment for pivotal sites. In the case of second and higher
moments we will have to consider the condition that a given root vettexs
not isolated (so thatV;| > 1; see Section 4). To handle the need for an extra
convergence factor in our dyadic summation method, in this case we introduce the
following lemma. We will use this lemma, in particular, to estimate the probability
of the event@ (x, n) N @(y, n) in casey Nx for the second moment estimate below.
Let R be a filled-in rectangle of vertices with sides parallel to the coordinate axes.
For any vertexwv contained in the interior oR, denote the event

(5.20) U4(w; R) :=3Fa four-arm path irR fromw to dR.

This is simply an extension of the definitidvis(w, n) in (2.5) with R in place
of B(n). Recall also definition (2.8).

LEMMA 7. Let R = R(X') bearectangle centered at x’ with its shortest half-
side of length / > 1 and longest half-side of length L > 1 suchthat 1 < L/I < 2.
Let R contain a vertex x such that ||x — x'|| <1/2. Suppose further that R contains
a collection of disjoint boxes B; := B(y;, 2"), i =1, ..., v, which also have the
property that for eachi =1, ..., v, x ¢ B;. Then there exist constants C, d and c1,
depending only on v, such that

P (W(X; BN (ﬂ Ua(yi R>>) < CP(74(0,1/d)) [ ] P(Ua(0,2771)).

i=1 i=1

We prove Lemma 7 in the Appendix.

We are now ready to estimate the second momenPgf. As in the estimation
of the first moment, we use the partitigld ; N A%, 0 < j* < j < jo} of B(n).
Denotep,(X,y) := P(Q(X,n) N @(Y, n)). Hence, as in (4.1)-(4.2), it suffices to
estimate

Jjo J Jo k
(5.21) To:=Y Y Y Y Y paxy).
j:Oj*ZOXGAjﬂA’;* k=jk*=0yeArNA},

Recall that, as mentioned at the beginning of Section 4, we may assume that the
verticesx andy are distinct in (5.21). We now define a diagonal sub-sum of the
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sum (5.21) according to the conditiogne B(x,2~/=%n) that isyNx. For this

case, we recall by (3.11) tha,t,’,f_ 20 am(X) = B(X, 27/=%n), wherec is defined
in Section 4 by (4.4). Therefore we write this diagonal sum as

Jo

J Jo
(5.22) 1::22 Yo > > paxy).
j=0j*=

XeAj ﬂA* m=j+2cyea, (X)

Lete > 0. We estimatd . We use that i/ € a,,, (), then (3.13) holds. lfr > j +
2¢+ 4, we apply Lemma 7 with = 1 andx’ = x for a squareR C B(n) with half-
sidel =< 2~/n such thatB(y, 2-?n) C R. Note that, indeeds ¢ B(y, 2~ 2n)
for y € a,, so that the hypothesis of Lemma 7 is satisfied with=2 27 ~2x. If
insteadj +2c <m < j + 2c + 4, then we can still define the squatdor the same
asymptotic size of but such that now the boR(y, 2=""2n) c B(n) is disjoint
from R. In this latter case we simply apply independence of events. Finally, we
find a boxBy in B(n) of radius 2 < 2=/n, one of whose edges lies #B(n) and
that contains botl® and the boxB(y, 2M). Forx € A;N A**, we construct a box
B> C B(n) of radius 2 = 2=/"n such that the horseshoe péB1, B2) conforms
to the context of Lemma 5. Therefore, since on the e n) N @(y, n) there
must be a three-arm crossing of the horseshoe, by Lemma 5, independence and
Lemma 7, and by Lemma 2 applied to batiU4(0, 2*1¢1)) and P (U4(0, 1 /d))
for [ < 2°, we have that

(5.23) pa(X,y) < C, 2P A (=5/4+e)+H(p—v)(2—¢) < an—5/2+2g22_/*+(—3j+5m)/4_

Therefore, by (3.12), (5.16), (5.22) and (5.23), we have that

oo J 00
j=0j*=0 m=j
(5.24)

oo J 00 00
< C€n3/2+2€ Z Z Z 2]*+(—7]—3m)/4 < C8n3/2+28 Z 2—3]/2'
Jj=0j*=0m=j j=0

We now turn to the remaining sul := Xo — I. The verticesx andy
left to consider in this sum are isolated root vertices, so yiéax. We would
like to construct a horseshoe along the sideBgf) for each vertex in this
pair of vertices. But boxes centered at these vertices, defined by the condition
that each box just comes to the side Bfz), may overlap. To treat this case,
we define an (asymmetric) horseshoe relationship as follows. We yite if
y € B(X, 2—f+6n). If yKx, then we define one root horseshoe vertex, that,is,
while if yKx, then bothx andy are defined as root horseshoe vertices. We shall
refer to these cases, respectively, by the nunibef root horseshoe vertices,
namely,2 = 1 or h = 2. The horseshoe relationship provides a useful way to
organize our construction of estimates.
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Consider first that = 1 and writell, for the sum over pairs of vertices Ih
corresponding to this condition. Though there are few vertjaesarx that satisfy
both the conditiong|x — y|| > 2=/=%n andh = 1, the fact thaty may lie near
the boundary oB(n) requires us to construct a horseshog #tk is much larger
than j. So we writell; = Il1a + 1115, where the sumH 1a andll1b correspond,
respectively, to the cases ()<k <j+2c+ 2, and (b)k > j+2c+ 2. In
case (a), because= 1, we can fit two disjoint boxes centered at our vertices
each with radius asymptotic to2» inside a boxB; that has a radius’2< 2=/n
of the same asymptotic order. YBi also has one edge B (n). Again, we find
a boxB, C B(n) of radius 2 < 2~/ n such that the pai¢B1, B>) conforms to the
context of Lemma 5. Note that the size of the set of verticesptisatonfined to by
the conditiong: = 1 and (a) is bounded b§2—2/n. Therefore, in a similar fashion
as the estimation aof but now without the use of Lemma 7, we have that

o J
Illa S an_5/2+28 Z Z |A_/ m A}’f*|2_21n222p(_5/4+8)+(’0_v)(2_8)

=0 j*=0
(5.25) =

o J
< C8n3/2+28 Z Z 2]*—5]/2‘
j=0j=0

To estimatell1b, we first construct a pair of boxesB1, B2) as in the context
of Lemma 5 with the parameter playing the role ofp as follows. We find
B1:= B(Y, 2°) C B(n) with 2° =< 2~%» such thatB; has one side in the boundary
of B(n). We takeB; accordingly by defining its radius’2< 2=/n such thatB; is
disjoint from B(x, 2°) for 2° = 2-7=2~1,_ That By and B, will exist follows
by (b) and the assumption that the vertices are isolated roots. Now /siack,
we can also find another inner horseshoe Baxwith radius 2 = 2=/n that
now contains bothB(x, 2-/=2~1;) and B,. We pair the boxB, with an outer
horseshoe bo®, with radius 2t = 2=/"n. Thus, we have the horseshoe formed
by the pair(B1, B2) nested inside the horseshoe formed(ﬁy, B>). Hence, by
independence and Lemmas 2 and 5, we find that

pn(X,y) < P(Ua(0,27)) P(U4(0,27)) P(§ (0, v)) P(F(p1, VD)

(5.26) o
< o~ 5/2+2 2" +(5)-30)/4

Therefore, since there are only on the order of Zn? verticesy accounted for
wheny € A in the sumll1b, we find by (5.26) that

o J o
(5.27) 11b < Con®/2+2 3™ N N 20"+ (=8i=T0/4,
j=0j*=0k=j

Consider next thak = 2. Write |1, for the sum over pairs of vertices falling
underll that correspond to this condition. In this wly= Il + ll,. As before,
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we definej, j*, k andk* by the inclusionsc e A; N A;‘.* andy € Ay N Af.. We
consider two cases: either (& — j*| < 1 or (b) [k* — j*| > 1. Accordingly,
we will break up the sumil, into the sumllz = ll2a + Il12b with summands
corresponding, respectively, to these cases.

We first work with the case (a). Sinéé is almost equal tg*, we shall in effect
lengthen the set, N A’ in the long directions ofi;, and denote this lengthening

by

JF+1
(5.28) Ay j* :=Akﬂ< U Az*>.

Jor=j*—1

Consider one of the eight connected componeAt,s C Ag j+ that is a
rectangular section of; on the same side of; thatx belongs toinA;. The other
components ofd; ;+ can be handled similarly. Note that by (5. 28) and (5.16),
A} j» has dimensions on order of 21 by 27/"n. Assume, without loss of
generality, thak = (x1, x2) andy = (y1, y2) € A}Qj* both belong to the right side
Aj and Ay, respectively.

We introduce bands of verticés := b, (X, j, k, j*) in A;’j*, forv>1, by

(5:29) by :={(y1,y2) € Af j» 027 *°n < |x2 — yo| < (W + D277 *°n).

Here v ranges up to ordepmayx < 2/~/". By our construction, these bands of
vertices cross4;{’j* transversally. Note that by the assumptiog- 2 thaty € b,

only for somev > 2 so that4;, = = U,"%b,. As for the sizes of the bands, we
have by the definition ofi; and (5.29) that, independent gf andv,

(5.30) lby| < C277 %2,

Now choose 2 =< 27/n such that the right edge oBi(x) := B(X, 2”) just
meetsd B(n). Also, fory e b,, define 2 < 27%n such that the right edge of
B1(y) := B(y, 2°) just meetsdB(n). These are the inner boxes of horseshoes
we will construct at each ok andy. For eachv = 2, ..., vmax, We define an
exponenty by 2” =< v2~/n, uniformly in v > 2, so that boxe®,(x) c B(n) and
B2(y) C B(n), each with radius 2 exist and are disjoint such théB1(X), B2(X))
and(B1(Y), B2(y)) each form a horseshoe pair as in the context of Lemma 5. The
outer boxes remain i (n) by (5.28) and the expression fofax. Moreover, the
outer boxesB2(X) and B»(y), while disjoint, are nested inside another bBx

of radiusC?2” whose right edge lies iaB(n). Since we are in case (a), we may
again pairB; with an outer horseshoe bdk of radius 21 =< 2-/"n. Therefore,

by independence and by application of Lemma 5 to the horseshoe pairs, and by
Lemma 2, we obtain

X, y) < Ce2(P+U)(—5/4+8)+(0+p—v—vl)(2—s)

(5.31) e
< C,n~5/2+26 =246 2" +(5j-3K) /4
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Hence, by (5.16), (5.30) and (5.31), we have

o J oo o0
(5.32) lloa < Cen¥2¥26 3" 37 3 Ny 2Hep) (S TR/4,

j=0j*=0k=j v=1

Finally, we turn to the sunhl2b. By (b) we havesz —yo| =270y > 27Ky
if k* > j*+ 1, while |xo — yo| > 2% "1y > 277"y if k* < j* — 1. We can
therefore define two different values of namely,v; and vy, by 21 =< 2=/"n
and 22 =< 27¥"y to obtain two disjoint horseshoes with outer radit and 22.
In detail, we have two pairs of box€81, B»), where each pair of boxes conforms
to the context of Lemma 5, and where both larger ba&gare disjoint and belong
to B(n). In one pairB; = B(X, 2°) and B2 has radius 2 and in the other pair
B1 = B(y, 2°) and B has radius 2. Here 2 < 2=/n and Z =< 2% are chosen
such that the inner boxeB; lie along the boundary oB(n) and are disjoint by
h = 2. See Figure 3. Therefore, by independence and Lemmas 2 and 5, we estimate

[—n, n)>

A

Fic. 3. Horseshoesfor r =2incase|;j* —k*| > 1;xe€ Ap N Af, y € A3N A3,
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that

pn(X,y) < C52(0+‘7)(—5/4+s)+(p+rr—V1—vz)(2—8)

(5.33) o _
< C,n~5/2H2 Q2" 2 9(=3]~3K) /4

Hence, by (5.16) and (5.33), we have

(5.34) llob < Con®/%t2 Z Z Z Z ) K H(=Tj=Tk) /4.

j=0j*=0k=j k*=

Thus, by (5.17), (5.24), (5.25), (5.27), (5.32) and (5.34), we have proved item 3 of
Theorem 1 forr = 2.

6. Higher moments for pivotal sites. In this section we show how to
generalize the first and second moments for the number of pivotal sites shown
in the previous section. We will outline the main ingredients for establishing a
generaltth moment by considering in some detail the case 3. The main
issues not covered so far will be to determine (a) the sizes and numbers of
horseshoes to construct, (b) the manner in which Proposition 1 is applied, and
(c) the way that Lemma 7 is applied. We recall the definitign, (x4, ..., X;) :=
P(N{_1 Q(x;,n)) and the sunkg that we must estimate in (4.1)—(4.2). As in the
previous section, we assume that each of the vertices in (4.1) belongs to the right
side of its respective annulus;, .

To organize our constructlon of estimates, we generalize the horseshoe relation
K on the set of root vertices,,, i =1, ..., r, defined in Section 4. Write

i —Je;+6
Xe, K Xe; if Xe, € B(Xe;, 27747 n).

The constant in the exponent allows some breathing room so that, in particular, if
xekl?xei, then there exists< 2 /«n such that the right edge of the b@&(x,, , /)
lies ond B(n) and such thaffx,, — X, || > 4!.

We define root horseshoe vertices among the set of root vertices by analogy with
the definition of root vertices in Section 4 but now for the horseshoe relationship.
We denote these root horseshoe verticesxpy a =1,..., h, for someh <r
where f, = ¢;, and, in particular,f, = 1. We shall define the sets, of root
vertices chained to the root horseshoe verticgsn a way that is different from
the default definition given by the method of Section 4. The reason for this is that
the organization of certain probability estimates we make below is sensitive to the
order of the indices in the roots that are not root horseshoe vertices. We proceed
inductively as follows. First, ik.,KX,,, thenx,, € U1, else by our definition of
root horseshoe vertices, is the root horseshoe vertex;,. Suppose now that
f2 = ez so indeedx,, is the second root horseshoe vertex. Ther,.jKx,, but
Xe3IZXf2, we putx., € Uy. This is the default arrangement that we spoke of.
However, if instead,, KX r,, then we put insteal., € U». In general, if eacl,,,
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1 <k <i, has been designated as some root horseshoe veftewith some

1 <a < b orplaced as an element 6f, for some 1< a < b, then we determine

the designation or placement »f_, by the following rule. Ifxei+ll?xek for all

1<k <i,thenei+1 = fp11, that is, we have a new root horseshoe vertex. Else
we placex,, , in the setU, of highest indexaz such thatx,, ., is related to some
vertex in the current s€i s, } U U,. Thus, the set#/, are continuously updated,

but elements may only be added and not subtracted, and they are only added at the
highest possible level subject to a chain condition available at the current step. As
a consequence, we obtain after constructlon thatkifj and ifx,, € {xz,} U Uy,

and |fxe € {Xz,}UU, for someb < a, thenxe Kxe, since mdeed(e] is not related

to any element ofxy,} U U,. To see how thIS property is used, see the comments
of Section 6.1.5 following (6.32).

6.1. The third moment. We organize our discussion of the case- 3 at first
according to the value aof. Subsequent levels of organization derive from the
values ofr and a further parameter< i that we shall define below.

6.1.1.t =3, r =1 We assume =1 so that|Vy| = 2. Thus,G = G1 has
vertices given by either (iJx1, w1, wy 1} or (ii) {X1, w1, wp}. We write/ to denote
the sub-sum ofg that corresponds to= 1. We also writel = Ii + Iii, where
the sumg/i and/ii correspond, respectively, to the cases (i) and (ii).

Assume first that (i) holds. Consider now the following subcases under (i):

(@ mi1>mi+s+2,
(b) my1<mi+s+2,

wheres is the constant 2+ 4. Partition the sunti = Iia + Iib accordingly.
Consider first subcase (a). P&t:= B(wz,1), for [ := 27"17% Sincewy 1 €
am,,(W1), we have by (a) thatB(wy 1, 2-™.172p) « R, while also w; ¢
B(wq 1, 2—m1»l—2n). Therefore, we may apply Lemma 7 with= 1, X' = X = wq,

y1 =Wz 1, and 21 = 271172, We also apply Proposition 1 to the subgraph of
G1 with vertex sefx1, w1} only. Therefore B(x1, ) andR are disjoint. Hence, by
these results and independence, we find that

(6.1)  pu.a(X1, W1, Wi 1) < P(Ua(0, 1)) P(Ua(0, 2*171)) P(U4(0, 1/d)).

Note that automatically, because- 1, we have thak = 1 in any case. Therefore,

we may construct a horseshoe with inner radiis=22=/1» and outer radius

2" <2 /inforxe A; N Al whose inner box contains all the boxes discussed
above. Hence, by Lemma 5, we will be able to improve the estimate (6.1) by a
factor 2°—")2=¢) Thus, by (6.1), Lemma 2 and this last observation, we estimate
that

(6.2) P 3(X1, W1, Wy 1) < Con ™ 1o/4+36 021 —2/152matma.1)/4



MOMENTS OF THE NUMBER OF PIVOTAL SITES 1863

Since we apply the size estimate (3.12) for each of the indices m1 and
m = mj1 1, We obtain by (6.2) that

oo 1 [e’e) o]
(6.3) lia<Cen®*3 3" 3 3 N /St @m-Smy/4,

j1=0 j{=0m=j1m11=m1

Now consider subcase (b). By Proposition 1 applied directlgio we have
that the boxesB(wy 1, 27"11751), B(Wy, 27"17%~2x) and B(x1, 271 "n) are
mutually disjoint under (i). Then sinag; 1 is at most a constant different than
by (b) and (4.4), by independence and Lemma 2 alone, we obtain that (6.2)
continues to hold withny in place ofmy 1. Therefore, by substitution afiq
for my,1 also in the size estimate af,, , and by eliminating the sum om 1,
we obtain
oo J1 00
(6.4) Iib< Cen¥*3 3™ N 3 2ii=3mmi/4,
J1=0jF=0m1=j1
To help with case (i), as well as further cases arising in higher moment
calculations, we first state a general consequence of Proposition 1 that we will
use to set up our application of Lemma 7.

PROPOSITION2. Consider the graph G1 = {x1, Wy, ...}. Set D := 2-/1= 2,
There exists a constant ¢g and a rectangle R centered at X; with smallest half-
side of length I satisfying D/10<1 < D/5 and largest half-side of length L
satisfying L /1 < 2 and with center satisfying ||X1 — X1|| < /2 such that each box
B/ (W) := B(w, 27"W=s—cop) 'w e G1, W # X1, lies either entirely inside R or
entirely outside R.

PROOF.  First, by Proposition 1, the boxégw) = B(w, 27"W ) w e Gy,
are mutually disjoint. Since the sum of the radii of the bo¥g®), w =£ X1, is
bounded by(z — 1) D, we may chooseg so large that the sum of the diameters of
the corresponding shrunken box@gw) is at mostD/16. Therefore, by the same
argument as given in the proof of Lemma 7 in the Appendix for the construction
of R, with D here playing the role there of the distani@g, the proof is complete.
O

We now continue our discussion of case (ii). We apply Proposition 2 directly
to the graphG1 to obtain the rectangl® having the properties stated there so
that, in particular,B(x1,1/2) C R C B(x1, D/5) for D := 277172, We apply
Lemma 7 withv = 2, x = X1, and 2 = 2~"Wi)=s—co, Hence, by Lemma 2, and
by independence applied to any shrunken box lying outRidee have that

2
©5) Pn.3(X1, W1, Wa) < CP(U4(0.1/d)) [ | P(Ua(0, 2% 1n))
: i=1

< Con~15/4+3e Q5 (jutmitmo) /4
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As in case (i), we may construct a horseshoe with inner radfusriti outer
radius 2 as chosen above, whose inner box contains all the boxes implied by
the estimate (6.5). So we may improve this estimate by the same factor coming
from Lemma 5 as before. Therefore, by (6.5), this repeated observation, and the
size estimate (3.12) for each index= m, andm = m», we obtain

oo j1 00 00
(66) lii SCsn9/4+38 Z Z Z Z 2jik+(—7j1—3m2—3m1)/4'

j1=0 jF=0mo=js Mm1=m2

6.1.2. 1 =3,r =2. Wefirstassume thaV1| = 1 and|V>| = 0. For simplicity,
we assume thats is the second root. Thus, the graBh has verticegxy, w1} and
the graphGs. is trivial over the (isolated) root verteis}. Next we determine
whether we have a horseshoe relationship between the two root vertices or not. If
x3Kx1, then we havé: = 1, else we havé = 2.

We work first with the casé = 1. Similar to our analysis of the corresponding
case of the second moment estimation, we have two possibilities éneet:
either (a),j1 < jza<j1+ 2c+ 2, or (b), j3 > j1+ 2c + 2. We writell; to
denote the sub-sum @y that corresponds te = 2 andis = 1. We also write
11 =1l1a + 11, where the sum# 1a andll1b correspond, respectively, to the
cases (a) and (b). We study first case (a). We apply Proposition 2 to the Giaph
to obtain a rectangl® such thatB(xy,1/2) C R C B(x1, D/5) for D := 2-/1=2y,
and/ > D/10, so thatB’(wy) lies either inside or outsidR. By construction of the
original roots and by the cases = j; + 2c ormy > j1 + 2c + 1, we find that the
box B(xs, 2~/3~%~2y) is disjoint from bothR and the boxB(wy, 27122y
[see (7.4)]. Hence, we can apply independence and Lemmas 2 and 7 to estimate

Pn.3(X1, W1, X3) < P(U4(0, 1/d)) P(U4(0, C27™1n)) P(U(0, C2 /3n))
6.7
( ) < C8n715/4+3825(2j1+m1)/4’

where the last inequality holds because under fajs within a constant ofj;.
Sinceh =1, it is again an easy matter to construct a horseshoe as in each
case of Section 6.1.1 with inner radiué 2 2-/n and outer radius'2< 2 /in
whose inner box contains all the boxes implied by the estimate (6.7). So we
may improve the estimate (6.7) by an application of Lemma 5. Hence, because
lam,| < C272"1,2 and since there are only2~2/1n2 verticesxs to account for
whenh =1 and (a) holds, we have that

oo J1 00
(68) “lafcsng/4+38 Z Z Z 2jf+(*10j173m1)/4.

j1=0j{=0m1=j1

We next study case (b). Sinée= 1, we have that the rectangl exists as

constructed above. But now becaysas sufficiently larger thary; and sincexs
is isolated, there is room to construct a pair of bokgsand B, as in the context
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of Lemma 5 withB; centered aks as follows. We findB; = B(X3, 2°3) C B(n),
with 2°3 < 27735 such that the right-hand side & lies in dB(n). We takeB,
accordingly by defining its radius ag32< 2-/in such thatB; is disjoint from
both B’(w1) and R, where B’(w1) is the shrunken box given by Proposition 2.
Hence, by independence and Lemmas 2, 5 and 7, we find

Pn,3(X1, W1, X3) < P(U4(0,1/d))
(6.9) x P (Ua(0, C27™n)) P(U4(0, 2°%)) P( (03, v3))
< an—5/2+282(j1+m1+j3)(5/4—8)2(j1—j3)(2—8)‘

Again we may improve this estimate by introducing a horseshoe whose inner box
containsR, B’(wj) and the horseshoe paiBi, B2). So we multiply the right-
hand side of (6.9) by the factof’2")2=) where the radii 2 and 2 are defined
up to multiplicative constants in the previous case (a). Sincé byl, there are
only C27/1~3p2 verticesxs accounted for withx; € A ;, andxs € A ,, we find by
these observations that
oo J1 00 00

(6.10)  1l1b < Con¥43¢ 3" 3~ N N 20 H(Ei3m T/,

j1=0j3=0mi=j1 jza=j1

We now pass to the cage= 2. Note that the sum ovess in Il is no longer
localized strictly nearbyx; via the horseshoe relation, so we will be able to
construct a larger horseshoexat but how large now depends on the relation
between the dual indices of the original two roots. ket A}, i =1 3. There

are two cases to consider regarding the dual indices:
either (@)lj; — jal<1 or (b)lj; —j3l=2

Define sumsla andll»b by partitioning the sunhl 2 according to these cases.
We work first with case (a). As in Section 5, we haxge Aj, ;= where
the latter set is defined by (5.28). For convenience, we rewrite the lignés

by = {(v1.y2) € A ;= 102700 < |(x0)2 — yo| < (v + D27 1+0n)

for eachv =1, 2, ..., vmax With vmax < 2/27/1. Here we have simply substituted

X1, j1, jzandjj for x, j, k and j*, respectively, in the original definition. Notice

by the definition of the horseshoe relation thate b, only for v > 2. We utilize

the rectangleR and the boxB’(w1) we have constructed fdr = 1. First choose

the radius 23 < 27/3n such that the right edge @1 (x3) := B(X3, 2°3) just meets
dB(n). Also choose 2 < 2-/1n such that the right edge @1(x1) := B(Xg, 2°1)

just meets) B(n). These are the inner boxes of horseshoes we will construct at each
of x3 andxi, respectively. Note thaB;(x1), in fact, contains bottR and B’ (w1)
because these latter sets are chosen via the constnSection 4 to both lie
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within a box of radius 2/1~“n centered ax1. For eachy =2, .. ., vmay, We define

2" < v27/1n, uniformly in v > 2, so that boxesBa(x1) C B(n) and Ba(x3) C
B(n), each with radius '2 exist and are disjoint such théB1(x1), B2(x1)) and
(B1(X3), B2(x3)) each form a horseshoe pair as in the context of Lemma 5. The
outer boxes remain i (n) by (5.28) and the expression fofax. Moreover, the
outer boxesB>(x1) and B2(x3), while disjoint, are nested inside another igyxof
radiusC?2” whose right edge also lies B (n). Since we are in case (a), we may
again pairB; with an outer horseshoe bdk of radius 21 =< 2-/in. Therefore,

by independence and by application of Lemma 5 to the horseshoe pairs, and by
an application of Lemma 7 as in the cdse- 1, for x3 € b,, we have that, for all

V> 2, pp = pn.3(X1, W1, X3) satisfies

pn < an—5/2+28 2(j1tm1+j3)(5/4—¢) o(p1+p3—v—v1)(2—¢)

(6.11) L '
< Cen—15/4+38 v—2+s 22]1 +(5]1+5m1—3j3)/4‘

Hence, by (6.11), (5.16), (3.12) and the estimiate < C2/177342 [cf. (5.30)],
we have

00 1 oo oo oo
(6.12) llpa < Cen*3 3 3" N N N2/t m3mTie) /4,
j1=0 ji=0mi=j1 jz=j1v=1

Consider next case (b) undee= 2. The difference with case (a) is that now the
outer boxesB>(x1) and B>(x3) found there may be chosen with larger radii while
still remaining disjoint. Thus, the horseshoe p@, B>) is no longer needed in
this case. Indeed, we may now take the radii of these outer boxes as22/in
and 23 < 27J3n, respectively. By definition of the dual partition, these larger
boxes still remain inB(n) and are disjoint. Therefore, we obtain in place of (6.11)
the bound

pn < Ce p 22428 9(j1+m1+j3)(5/4—¢) o(p1+p3—v1—3)(2—¢)

(6.13) o . .
< Csn—15/4+3€22j1 +213+(—3]1+5m1—3]3)/4.

Hence, by (6.13), we have
c© o0 oo j1 J3
(6.14) 1l2b < Cen®43 3" 3 N N N Uit TS T /4

J1=0m1=j1 jz3=j1 j{=0j3=0

Finally, in the case that the isolated root vertex is instea@o V1 = @) and the
second root vertex ig; (so Vo> = {X3}), we obtain a wholly analogous estimation
by writing out the cases (g% < j1 +2c+ 2, and (b)j2 > j1+2c+2 underh =1
and by writing out the cases (g} — j;| < 1, and (b)|j; — j;| > 1 underh = 2.
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6.1.3.t =3, r = 3. In the caser = 3 we must have three isolated roots
relative to the original partitioA ;} that are simplyy, X andxz. The basic plan
in all that follows is that a horseshoe must be constructed whenever there is room at
a given level of algebraic or dyadic division to do so. Algebraic levels of division
arise according to placement of a root vertex in a banor in another closely
related band/, that we define in Section 6.1.4. The horseshoe structure depends
on the room that exists between root vertices. This spacing will be accounted for
by various joint inequalities in the dyadic indicgs or in another spacing relation
that we introduce for the dual indicgg in Section 6.1.5.

6.1.4. =3, r=3,h=1. We assume first thdt= 1. The set of root vertices
chained tox; by the horseshoe relationship is therefére= {x», x3}. We write
I111 to denote the sub-sum &fp that corresponds to = 3 andh = 1. We write
four conditions:

@l)j1<jo<ji+2c+8 (bl)j2>j1+2c+8,
(@2)jo<j3<jo+2c+8, (b2)j3> jo+2c+8.

We also writellly = ll11a1a2 + 111161a2 + 114162 + 11116152, where the
summands correspond, respectively, to these four joint cases.

For any vertexx; € Uy, we define bands of verticds, = b/, (x;, j;), for all
u=0,1,...andi > 2, that divideRg := B(x1, 2~/2T6+7;) N B(n) into horizontal
sections by

(6.16) b :={(y1,y2) € Ro:u2 /"0 < |(x;)2 — y2| < (u + 1)279 T3},

(6.15)

whereu ranges up temay < 2/i 771 for i > 2. Here the exponent in the definition

of Rg is chosen such that, by the definition of the horseshoe relation, any vertex
in Uy lies in Ro. The main difference between the bamjsand the bands, that

we defined in (5.29) is that, contrary to that definition, here we place no restriction
thatb;, lie in some single annulud ;. Although these new bands play a similar
role as the original ones, we apply them at a different level of the construction of
estimates. We apply, in general, thjewithin a horseshoe séft, with U, # @. We

apply theb, instead in a region between such horseshoe sets. Now, by (6.16), for
any annulus j,, we have that

(6.17) |bl,(x;, )N Aj,| <C27/i7Ikp?  forallu > 0.

Study first the joint case (al)—(a2). In this case all three vertices are located
either in A;, or a nearby annulus. Therefore, sinte= 1, x, and x3 are each
confined to a set of vertices of size at m6@2/112. We call such a size estimate
a confinement factor. Since the roots are isolated, we may construct disjoint boxes
with centers at the vertices, i = 1, 2, 3, such that each has a radiu & 2-/1n
and each lies irRg. Construct a box; of radius 2 =< 2=/1n whose right edge
meetsd B(n) and that contain®kg. Pair B; with an associated outer horseshoe
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box B> of radius 2 =< 2-Jin. Hence, by independence and Lemmas 2 and 5, and
the confinement factors, we easily have

oo Jj1
(6.18) ll1ala2 < Con4+3e 3 3™ 2ii-131/4,
J1=0j;=0

Under the joint case (b1)—(a2) we study two subcases,
(6.19) either (i)x3 € by(X2, j2) or (i) X3 € b, (X2, ji2) for someu > 1.

Partition the sunll1h1a2 accordinglyill161a2 = 1111b1a2i + 1111b1a2ii. Study

first subcase (i) under (b1)—(a2). Since the vertices are isolated roots, by (a2),
we can choose radii®2< 2772 and 2 < 2-/in such that the boxeB(x1, 2°),
B(X2,2°) and B(X3,2°) lie in B(n) and are mutually disjoint. Moreover, by
(b1) and (i), the boxes centeredkatandxs are both contained in a bd¥ of radius

C2° < 27172, whose right edge lies 08B(n), where we choose”2such that

B1 is also disjoint from the box centered»at We construct a second bde so

that the pai(B1, B2) conforms to the context of Lemma 5 where the outer box has
radiusC2° and is disjoint from the box centeredxat We also construct an inner
horseshoe bo®; of radius 2 = 2~/1 that contains all the boxes constructed so
far and pair it with an outer horseshoe b8x of radius 2 = 2~/in. Thus, by
independence and Lemma 2 and two applications of Lemma 5, we have

P 3(X1, X2, X3) < Cs2(p+20)(—5/4+s)+(0+p1—p—v1)(2—8)

(6.20) e
< an—15/4+3€22]l+(5]1+2]2)/4‘

Since undef = 1 and (a2) the confinement factor faris C2-/1=/212, and since
under the added condition (i) the confinement factoxpis C2-2/212, we obtain
by (6.20) that
oo J1 00
(6.21) 11b1a2i < Con®43 3 3~ 3™ 2/ (=31-1072/4,
J1=0j{=0j2=j1

Consider next subcase (ii) under (b1)—(a2). The difference with case (i) is that
we now create two disjoint inner horseshoes instead of just one. We take inner
boxesB1(x;) centered ak;, i = 2, 3, with radii 2% < 27/2p, { = 2, 3, such that
these inner boxes meet the boundaryBgh) and are disjoint and are, moreover,
disjoint from a box centered at with radius 2 =< 2/1n. We take the associated
outer boxesBx(X;), i = 2,3, each with a radius2< u2~/2n, for u ranging up
to order 22—/1, Both outer boxes of these horseshoes are disjoint Bara, 2°)
by (bl). Further, we construct a third horseshoe by taking an innerBaoaf
radiusC2’ that contains both the outer boxBs(x;), i = 2, 3, and that admits an
outer box B> of radius 2t =< 27/1p that is still disjoint from the boxB(x1, 2°).
Finally, we construct a fourth horseshoe pdi, B») such thatB; contains all the
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previous outer boxes, as well as the B, 2°). We take Athe inner and outer
radii of this last pair to be, respectivelg2/t and 21 =< 2~/in. Therefore, we
obtain

P 3(X1, X2, X3) < Cg2(p+p2+p3)(—5/4+s)+(p2+p3—v—V1)(2—8)

(6.22) e
< Con15/443 ~2+ep2ji+(5j1+2)2) /4,

Now by (a2) and (6.17), we have thaf, N A ;,| < C2~%2r2. Also, x, is confined
to a region of siz&” 27177242, Therefore, by independence and Lemmas 2 and 5,
we obtain by (6.22) the estimate

1 1b1a2ii < C,.n¥/4+3e
(6.23) S|

x Z Z i iu—2+82jf+(—3j1—10j2)/4‘

Jj1=0j3=0ja=j1u=1

We now consider the joint case (al)—(b2). Sirigés sufficiently larger than»
and the roots are isolated, we can construct a horseshagevath inner radius
2r3 =< 27J3p and outer radius 2x< 27/2n < 27/1n and choose the radiug &
27J1n so that the outer box of this horseshoe will be disjoint from both the boxes
B(x1,2°) and B(xz, 2°) that lie in B(n) and are themselves constructed to be
disjoint. Again, we construct a large horseshoe pﬁhr, B») with inner and outer
radii 2°* and 21, respectively, as in the previous cases such Hatontains the
smaller horseshoe, as well as the boBg1, 2°) and B(X2, 2°). Therefore, by
independence and Lemmas 2 and 5, and by (al), we have that

P 3(X1, X2, X3) < Cg2(2p+p3)(—5/4+8)+(/01+p3—v—Ul)(2—8)

(6.24) i j1—3;
< an—15/4+352211+(1011—313)/4.

By h =1 and (al), we have thab is confined by the factor 2/1,2, while by
h =1 alone xz is confined by the factor21~/3n2. Therefore, since by (al) we
eliminate the sum ovejp, we obtain by (6.24) that
oo J1 o)
(6.25) Hl1a1b2 < Con¥/413¢ 3~ 3™ N~ i+ (0a-Tia)/4,
J1=0j{=0j3=/1

Consider finally the joint case (b1)—(b2). Again we apply the dichotomy (6.19).
We partition the sumill p1b2 = 1111612 + I111b1b2ii accordingly. In sub-
case (i), under (b1)—(b2), we take a horseshoe atith inner radius 23 < 2=/35
and outer radius'2 =< 27/2n, where the outer box is disjoint from the boxes cen-
tered atx, andxy of radii 2° =< 2=/2n and 2 =< 2~ /1n, respectively. These last two
boxes are chosen to be small enough that, even doubling their radii, they would
not meetd B(n). We next take a horseshd@®;, B») such thatB; has a radius
2r2 = 2=J2p and contains both the box centeredxatand the horseshoe as.
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We take B> to have a radius'2 =< 2~/in that is disjoint from the box centered
at x1. Again we construct a large horseshoe pdli, B») with inner and outer
radii 2°* and 21, respectively, as in the previous cases such Faatontains both
the smaller nested horseshoes, as well as theRgrx, 2°). Therefore, we obtain
by independence and Lemmas 2 and 5 that

Pn3(X1, X2, X3) < Cg2(p+a+p3)(—5/4+8)+(p1+p2+p3—V1—VZ—V3)(2—8)

(6.26) i+ (5j14+5j2—3]
< C,n~15/4+36 021+ (5j1+5/2-3)3)/4,

By & = 1, we have thaks is confined by the factor 217242, while in addition
by (i), x3 is confined by the factor22-/3,2, Therefore, we obtain by (6.26) that

00 1 oo oo
(6.27) 11b1b2i < Con®43 37 N~ N N iiH31-30-Ti)/4,
J1=0j3¥=0j2=j1 jza=j1

Finally, in subcase (ii), under (b1)—(b2), we take inner boRe&;) centered
atx;,i =2, 3, with radii 2% < 27 Jin, i = 2, 3, such that these inner boxes meet the
boundary ofB(n) and are disjoint and are, moreover, disjoint from a box centered
atxq with radius 2 < 27/1n. We take the associated outer bo¥esx;), i = 1, 2,
each with a radius'2< u2~/2n, for u ranging up to order2-/1, Both outer boxes
of these horseshoes are disjoint fraxy, 2°) by (b1). This almost looks like
subcase (i) under (b1)—(a2), except notice that here theRoxs), while still
having a radius distinct from the ba¥; (x2), has now an asymptotically smaller
radius since we are in case (b2). All the remaining arrangements of boxes and
horseshoes are exactly as in subcase (i) of (b1)—(a2), with the same formulae for
asymptotic radii. Thus, we have a total of four horseshoes. Therefore, we obtain

DPn 3(X1’ X2, X3) < CE2(,0+P2+,03)(—5/4+8)+(P2+,03—V—Vl)(2—8)

(6.28) e
<C.n —15/4+38u —2+¢ 22]1 +(5]1+5]2—3]3)/4.

Now by (6.17), we have thab, N Aj,| < C27/27/3p2, Also, X, is confined to
a region of sizeC2~/17/2p2 by h = 1. Therefore, by independence and Lemmas
2 and 5, we obtain by (6.22) the estimate

11b1b2ii < Con/4t3e
(6.29)

Oojlooooooz'*3'3‘7'4
x Z Z Z Z Z”_ +eojiH(=3j1—3j2—7j3) /4

J1=0 ji=0jo=j1 ja=j2u=1

This concludes our analysis of the cdse 1.
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6.1.5.t=3,r=3,h=2. We consider next thdt = 2. We assume first that
Uy = {X2} so that we have root horseshoe vertikgandxs. Again, because = 3,
all the roots are isolated and, moreover, the papis an isolated root horseshoe
vertex. We writd 1> for the part of the sunXy corresponding to this arrangement.
Recall that we locate the vertices in the dual partition, in general, by the dual
indices;* such thak; € Aj;, i=1,2,....

Perhaps by now parf of the outline is clear. Initially, we consider two
possibilities:

either (Q)j2 < j1+2c+8 or (b)j2> ji1+2c+8.

However, while we will construct a horseshoeat in either case, we must
delineate its size. Its outer radius may be as smallCa8 /2n when x3 €

by(X2, j2, j3, j1), and it may be as large &2/1 whenxs € Aj‘.* for [j3 —jil > 2.

So, in general, we need to know the manner in which the root horseshoe vertices
Xy, are separated in the dual partition. We have already seen such an analysis
in caser = 2 andh = 2. We generalize the approach shown there. For any dual
indicesk* and j* of root horseshoe vertices (we call such indices also as dual
horseshoe indices), write thatJ*j* if |k* — j*| < 1. We say that a dual index

Jy. of aroot horseshoe vertex is chained to the dual indej; of another root
horseshoe vertex, if there exists a sequence of relations fromj;‘;/ to j;‘:. By the
method of Section 4, we define root dual horseshoe inQ'lFle& j;:z* << j;‘-t*,

with f* = f1 and some < h, wherex s, =Xy is the first root horseshoe vertex.

In the current case we have eithee= 1 or r = 2, wherer = 1 means that
[j3 — ji| <1 andr = 2 means that the opposite inequality holds. We wiitg ;
for the part of the suntg corresponding te = 3 and the given values a&fand:.
Since heréh =2 andr =1 or 2, we havell, =111, 1+ 1112,2. We further partition
|||271 =1Illz1a + |||2’1b and |||272 = |||2’2a + |||272b for the arrangements of
vertices corresponding, respectively, to cases (a) and (b).

We consider first an estimate Ol 1a so that, in particulart = 1. Putb, :=
by(X2, j2, j3, j1). Sinceh = 2 andt = 1, we havexs € b, for somev > 2 (cf.
the caseh = 2 of Section 6.1.2). Here ranges up tQmax < 2271 < C2/17/1
by (a). We choose a radiug®=< 273, so that the right boundary of the box
B1(X3) := B(X3, 2°3) meetsdB(n). This is the inner box of a horseshoexat
We construct boxe®(x;, 2°), i =1, 2, lying inside B(n) with a common radius
2° =< 2=/1n that are themselves disjoint and also disjoint fré(x3). This is
possible since = 3 andh = 2 and with the given radius far= 2 by (a). Yet by
(a) again, the vertexs, although in a horseshoe relationshipxtg may stray as
far away asvp2~/2n from x; for some constant integeg > 2 since we are here
measuring the distance in terms of the exporgenihis can easily be dealt with
by breaking up the analysis into the subcases4vg andv > 4vg. Forv < 4vg we
take the outer boBa(x3) of a horseshoe at to have radius'2 < 2772, < 2=/1p.
For v < 4vg, we do not yet construct a second horseshoe of outer ratius@



1872 G. J. MORROW AND Y. ZHANG

v > 4vg, we do construct another such horseshoe as follows. We construct an inner
horseshoe boRB; that containB(x;, 2°) for eachi = 1, 2 that has radiu€’2” and

is disjoint also fromB1(x3) by our choice of large enough Accordingly, we
adjust the radiusBa(x3) upward to 23 < v2~/2n =< v2~/1n and also define an
outer boxB; paired withB; in a horseshoe formation, by taking the radiusBef

as also 2 =< v2~/1n. We choose this radius such thgi(x3) and B; are disjoint.
Hence, ifv > 4ug then we have two horseshoes of equal outer radii. The outer
boxes remain inB(n) by (5.28) forv < vmax. Moreover, these outer boxes are
nested inside another bdx of radiusC2"3 whose right edge also lies hB(n).

Since we arein case= 1, we may again paiB; with an outer horseshoe bd of

radius 21 =< 2~/ n. By (a), we have that the confinement factorsteiis C2~2/1,,2.
The confinement factor foxs at levelv is by (a) and (5.30)jb,| < C27/1=3,2,
independent ob. Therefore, by independence and Lemmas 2 and 5, and by using
(a) to eliminate the sum oy, we obtain the following estimation:

2

oo J1 00
(6.30) llgia < Con¥43¢ 3~ N~ N Ny 2repirH(-0TR)/4,

71=0j=0j3=j1v>1

Consider next an estimation ofl 16. We have two subcases as follows.
Subcase (i)x3 belongs to the banéy ., := by, (X2, jl, J2, ji) for somev; > 2,
where vl ranges up tovy max With v max < 2/1-Ji, But since we may have
X3 € le ob1, v we have also subcase (iix3 belongs to the bana,,, :=

by,(X2, j2, j3, ji) for some v, > 2, where nowv, only ranges up tovz max
With v2 max < 2/2 J1. These subcases comprise a dichotomy skxCE not in a
horseshoe relation to eithes or x;. Partition the sunhll2 16 = I112,1bi + 1112 1bii
accordingly. We study first subcase (ii) under (b). Singés sufficiently larger
than j1, we will now be able to construct horseshoes at batAndxs with outer
radii of each given as'2 < v,2~/2n. We also construct a horseshoe with inner box
of radiusCv,2~/2n containing both the horseshoesxatandxs, and with outer
radius 2 < 2~/1n. We choose 2 small enough subject to this asymptotic relation
so that the boxB(x1, 2°) is outside this last horseshoe. We also construct a large
horseshoe paifB1, B>) with inner and outer radii2 < 27/1n and 21 =< 27/in,
respectively, as in the previous cases such thatcontains both the smaller
nested horseshoes, as well as the Bgx;, 2°). The confinement factor fax,
is C2/1772p2, while that forxs under subcase (ii) i€2/2~/312, Therefore, we
obtain

o 1bii < Con®/4+3

oo J1 [ee) o0
—2+eoji+(=3j1—3j2—7j3) /4
XD DD D dovn :
J1=0 j{ =0 jo=j1 ja=j2 v2>1

We turn to subcase (i) under (b). Noixs — x; || > C2 in, i =12, for all
v1 > 2. Similar as in case (a), we delay the construction of a horseshoexnear

(6.31)
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until v1 > 4 since we may havix, — x1|| > v12~/2+> for somev; < 2. But since
this will not affect the estimate, we assumge> 4. We still construct an inner
horseshoe at, with inner horseshoe boR1(x2) of radius 2 =< 2-/2n, and outer
horseshoe bo®Ba(x,) of radius 22 < 2-/1x. We takeBo(x») to be disjoint from a
box B(x1, 2°) of radius 21 =< 2~J/1n. We construct an inner horseshoe ®(x3)

of radius 23 < 27/3x and an associated outer horseshoe Bogxs) of radius
2”3 < v12~/1n. We also construct a boR; whose right edge meets the boundary
of B(n) that also contains the outer horseshoe Bogx,) and the boxB (X1, 2°)
that were already constructed to be disjoint. We @aimwith an outer horseshoe
box B of radius 23 so thatB2(x3) and Bz are disjoint. We finally construct a large
horseshoe paitB1, B2) but now with a new inner radiu€2's, while the outer
radius remains'2 = 2~/in. So we have four horseshoes in all. The confinement
factor forx; is C2=/17Jip2, i = 2, 3. Therefore, we obtain

o 1bi < Con¥/4+3

(6.32) 0 j1

555§

J1=0j§=0jo=j1 jz=j2 v1=1

We comment on the situation that insteldgd= {x3} andxy, =Xz with U, =&
wheni = 2 andr = 1. In this case we do not have to consider the possibility that
X3K X2 since, by our definition of the setg,, if this relation did hold, then we
would instead have the cagg = @ and U, = {x3} that is analogous to the one
we have just considered. We consider now the casegs(&) j» + 2¢ + 8, and
(b) j3 > j2+ 2c + 8. In case (a) we have an analogous situation as in the previous
case (a) except now we haxge b, (X2, j2, j3, ji), SO in the generic case thats
sufficiently large, we construct horseshoes at eacky @ndxs of asymptotically
equal inner radii by condition (a) of order 2»n and equal outer radii of order
v2~/2n. We obtain an estimate for the corresponding $Uma as

oo Jj1 o0 . ) .
III/Z,la < C8n9/4+38 Z Z Z 2]1-"-(—3]1—10]2)/4‘
J1=0j5=0j2=ja

In case (b) we break up the analysis by the dichotomyd¥ b,,(X2, j2, j3, ji)
for somewv;y > 2, or (i) X2 € by, (X1, j1, j2, j;) for somev; > 2. With this minor
change in notation, we obtain estimates for the sum corresponding to these cases
with the same forms of estimation as shown by 1b6i and Il 1bii. This
concludes our discussion of the case 1 underi = 2.

We next discuss the cage= 2. We assume, as in the original discussion of
h =2 andr = 1, thatU; = {x2}. Now, however, the second root horseshoe index is
far from bothx, andx; by assumption, that is, the length scale of this distance is
max{2~/3n, 2-/in} as compared to21x for the length scale between andx;.
In the generic case thas is sufficiently larger tharyj;, we construct a horseshoe
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atx» of inner box of radius 2 = 2-/2i and outer box of radius'2 =< 2~/1n that
remains disjoint from a bo®(xy, 2°) with radius 2 = 2~/in. This horseshoe is
nested in a large horseshoB;(x1), B2(x1)) with inner radius 2t < 2=/ and
outer radius 2 =< 2-/In. We also construct a horseshog (xs), Ez(xe,)) with
inner box of radius 2 = 2=72n and outer box of radius'2 = 2~/3n such that
the outer boxe$,(x1) and Ba(x3) are disjoint. Thus, in this generic case (b) we
obtain an estimate

o0 J1 00
(6.33) llgb < Cen¥43 %™ 3™ % Z i +i3+H(=3/1-Tj2=7j3) /4
Jj1=0j;=0j3=/1 j5=0

This concludes our discussion of the case 2.

6.1.6. 7 =3, r =3, h =3. We finally consider the cask = 3. Write IlI3
to denote the sub-sum dfg that corresponds té = 3. We partitionlllz =
1131 + 1132 + 1133 according to the caseas= 1, 2, 3, respectively. Consider
first thath = 3 andr = 1. We takexs € b, (X1, j1, j3, ji) With somev > 2. We
takexz € b, (X1, j1, j2, ji) with someu > 2. We have three cases for u:

@2t=v>u+2 (b)v>2u and (C)0<v—u=<1l

Partitionlllz 1 = Il131a + 113,10 + 1113 1¢ accordingly.

We study first case (a). We define inner horseshoe bdkgx;) of radii
2°i < 27Jin, i = 1,2, 3, for the three respective vertices. We define the radii of
the associated outer horseshoe boResx;) for i = 2,3 to both equal 2 =<
(v — u)2~/1n. We define the radius of the associated outer horsesho@hex)
to be 21 < u2-/in. These asymptotic relations are chosen such that all three
of Bo(X;), i =1,2,3, are disjoint. We also construct a horseslife, B,) with
inner box B1 of radius C2"2 containing both outer boxeB>(x;), i = 2,3, and
with outer box B of radius 2! and disjoint fromBz(x1). We finally construct
a Iarge horseshoe paiB1, Bo) with an inner radiusCu2~/1n and outer radius
C2~Jin such thatB; contains all the previous outer horseshoe boxes. We have
three inner horseshoes, two of which are nested in a fourth horseshoe, and all four
of these are nested in a fifth horseshoe. See Figure 4. The confinement factors for
x; are 2717Ji j =2 3. Therefore, after the substitutian:= v — «, we obtain an
estimate

3 1a < Con¥43

o J1 [ee} [e’e)
x Z Z Z Z Z (uA)~2HeQii+n—"Ti2=1j3)/4,

J1=0j§=0 jo=j1 js=jau,A>2

(6.34)

In case (b) we change the three inner horseshoe B@(]@), By(X),i=1,2,3,
as follows. We use the same asymptotic formulé&e22~/in as in case (a) for
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“eo

FiG. 4. Horseshoe construction for the estimate of 1113 4.

the inner radii, and we still write'2 < u2~/1n and 22 =< (v — )2 /1n, but now
define the outer horseshoe radii by changing the vertex at which the larger outer
box sits fromx; to x3. Indeed, we now take the outer boxBs(X;), i =1, 2, to

have radii 21, and the outer box2(x3) to have radius 2 such that all three of
these outer boxes are disjoint. Therefore, much as in case (a), by the substitution
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A :=v —u, we obtain

|||3’1b < C€n9/4+38

00 J1 o0 00
x Z Z Z Z Z (uA)_2+821'i"+(1‘1—7j2—7j3)/4'

J1=0 j{=0 jo=j1 ja=j2u=2,A>u

(6.35)

Finally, in case (c) we still takexz € b, (X1, j1, j2, ji) With someu > 2 but
now considerxs € by (X2, j2, j3, ji) with somew > 2, wherew ranges up to
order 227/1, We again construct three inner horseshoe pBirs;), Ba(x;), i =

1, 2, 3. We again take the corresponding inner radii to 5e22~/in. We take the
radii of the outer boxe®(x;), i = 2, 3, to be 23 < w2~ /2n, so that, by the range

of w, this is asymptotically no larger tharr2n. We take the radius of the outer
box By(x1) to be 21 < u2=/in. We choose the boxes subject to these asymptotic
formulae such that all three outer boxes are disjoint. We also construct a fourth
horsesho&B;, B>) with inner boxB1 of radiusC2"3 containing both outer boxes
Ba(X;), i = 2,3, and with outer box3, of radius 21 that is disjoint fromBa(X1).

We finally construct a Iarge horseshoe [:(éﬂli, B») with an inner radiu€u2/1n

and outer radiu€'2 /in such thatB; contains all the previous outer horseshoe
boxes. Therefore, since the confinement factoxfois now instead 2/2/3,

ll31c < Con¥/4+3

oo 1 0 00
x Z Z Z Z Z (uw)_2+821f+(—3jl—3j2—7j3)/4'

J1=0 j#=0 jo=j1 ja=j2 u=2,w>2

(6.36)

If instead we consider < u in the original setting, we apply the same method but
with the roles of: andv switched. This completes our discussion of the ¢asd..
Consider next that = 2. Say thatj3 is the second root dual horseshoe index.
We letxz € b, (X, j1, j2, ji) for someu > 2. We construct three horseshoe pairs
(B1(X), B2(x)), i = 1,2, 3, with inner radii 2 < 2~/in. We take the radii of
Bo(X;),i =1,2,tobe 21 < u2~/1n, but becausgs is now far from bothx; andxa,
we construct the radius of the outer b®s(x3) to be 23 < 2-/3n. As before,
we construct these three outer boxes to be disjoint. Finally, we construct a fourth
horseshoe pai¢B1, B2) with inner box By of radiusC2"t containing both outer
boxesB(x;), i = 1, 2, and with outer boxB; of radius 2 /in that is disjoint from
B2(x3). This is possible due to the separation of the dual indices, wheaages
up to order 21 /1. Therefore, sincéh, | < 2-/2772, we have by (5.15) that

32 < an9/4+38

oo j1 00 00 J3
x SN SN S (wyFei 3T/,

J1=0ji=0 jo=j1 jz=j2 j3=0u>2

(6.37)
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We consider finally the case= 3. This is the easiest case. It refers to widely
separated vertices. We construct three horsesBp(e@) By(x;),i=1,2,3, with
inner radii 21 < 27Jin and outer radii 2 < 27J'n, i = 1,2,3, respectively.
Therefore, by (5.15), we obtain

|“3’3 < C8n9/4+3€

© j1 o0 j2 o0 jg
DIDIDIDIDID WLl
J1=0 ji=0 j2=j1 j5=0jz=j2 j3=0
This completes our discussion of the case 3 whenr = 3.

(6.38)

7. The general case. We show in this section a two-fold argument for
establshing the generath moment for the number of pivotal sites. The first part
of the argument is to isolate discussion of the (nonroot) vertices that are chained
to a given root. This is accomplished by utilizing Lemma 7 and its generalization
in Lemma 8, together with Proposition 1. Lemma 8 is required to handle the case
t > 5. This part of the analysis does not require any horseshoe estimates. The
second part of the argument is to explain the general strategy for the construction
of horseshoes at root vertices, as well as the construction of nested horseshoes.

7.1. Nonroot vertices. We begin with an example to understand how to
generalize the argument of Section 6.1.1. ket 5 andr = 1. AssumeG1 =
{X1, W1, W1 1, W1 2, W1 21}. Consider the following dichotomy:

either ()m12>m1+s1+2 or (i)mi2<mi+s1+2.

Define boxesRl = B(Wq,11), for [{ :=27™17 51y and Ri2 = B(wl 2,11.2),
..... = B(Wil lkv lk) for
liy. .. ik = 2‘””1 44444 ‘Sln wheres; is the constantl =5 + s fors= 2c + 4 (see
Section 4) and somg > 0 to be determined below.

We study first the generic case (i). Sineg2 € a,, ,(W1), we have thaR; > C
B(Wy .2, 271272n) C Ry while alsow; ¢ B(wy 2, 271272y), so, in particular,
w1 ¢ R1 2. Consider now the following subcases:

@l) migr1>mi+s1+2 or (blymii<mi+s1+2,
(@2) myp1>mi2+s1+2 or (b2)myz1<mi2+s1+2.

Consider first the generic joint subcase (al)-(a2) under case (i). By the very
same reasoning as given for (i), by (al), we have ®at; 1, 27"117%n) C Ry

while alsow; ¢ B(wq 1, 2-"1172y) | so, in particularwy ¢ R11. By the same
reasoning again under (a2R121 C B(Wy 21,2 "12172,) C Ry while also

W12 ¢ B(Wg 21, 2-m12172p) 50, in particularwi 2 ¢ R121. Furthermore, by
Proposition 1, we have thadt; 1 and Ry 2 are disjoint. Hence, we have in all the
following picture: R121 C R12 C R1 andR11 C Ry with R11 N R1 2 = 2. See
Figure 5. We note that the context of Lemma 7 may be generalized to the present
circumstance as follows.
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LEMMA 8. Let R = R(X') be arectangle centered at x’ with its shortest half-
side of length / > 1 and longest half-side of length L > 1 suchthat 1 < L/l < 2.
Let R contain a vertex x such that ||x — X'|| < /2. Suppose that R contains a
collection of boxes B; = B(y;, 2"), i =1,...,v, such that for every i, x ¢ B;.
Assume that any two of the boxes B; are either digoint or one of themis contained
entirely within the other and that whenever box B; C B;, the smaller box B; does
not contain the center y; of the larger box B;. Denote V :={y;:i =1,...,v}
and Dy = Dy (X) := max;ev [ly; — X[ and assume that Yyiev M < 6i4Dv(x).
For any W C V such that B; C B;, for all y; ¢ W and some y;, € V \ W,
denote also the maximal distance D (Yi,) := max,ew Iy — Yioll, and assume
that >y cw 2 < 6lllDW(y,-o). Then the conclusion of Lemma 7 continues to hold.

Rio1

o wl,l
wi,2

R

Rio

Ry

Fic. 5. Configuration of boxes R;, . ;, injoint subcase (al)-(a2)under (i).
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The proof of Lemma 8 follows by induction anand is an extension of the proof
of Lemma 7. To show first how to apply Lemma 8 for our construction, we work on
the current example. We begin with the assumption that we are in the joint subcase
(al)—(a2) of (i). TakeR = R1, X =wq andv = 3, where the centesg,i =1, 2, 3,
are the verticed/ := {wy 1, W12, W1 21}. The boxesB; are the corresponding
boxesR;;,, ... i, with radii 2 = liy,....i as above. We assume tlygis so large in the
definition of the radii of these boxes through the paramgter s + s that we do
not need to shrink these boxes to establish the sum of diameters conditions. This
is possible since we do not change the positions of the verticEg ¢fve do not
changes = 2c¢ + 4), but only adjust the incremesyd so that the radii of the boxes
centered at these vertices change. In particulaf¥fes V, we have that the sum of
all the diameters of the boxes is at mosR2"1.2757%0y since bothm1 21 > m12
andm1 1 > m1 2 while Dy (wq) > 2-m1.2=2y, 50 it suffices for this case to fing
such that 827°7% < 1. If insteadW = {wy 1}, thenDy (wq) > 2-m11-2y while
the radius of the boRj 1 is 271175750y, For the caséV = {w1 2 1}, we subtract
to find

.....

M19—2  m—mig—C — m—my2—3
[Wi21—Will > [[W12—W1| —[[Wy2—Wqp 1| > 27127427 M127¢ > 2=Mm12

by our choice ot in Section 4. Hence, agaiy (wy) > C27™12 > 6427121751,
In summary, we can see that the sum of diameters condition for the maximal
distanceDw (w1) is satisfied because, first, the quantidyy (w1) is estimated
below by a constant times the distarjsg, — wy ;|| (and this distance is at least
271;=2) for the maximalj > 1 such that some vertex; ;. _; € W. Second,
the radius of each box whose center isWihis at most 21— We shall
construct below a nested or disjoint boxes condition for each joint subcase referred
to above such that the boxds that will be contained in a given bog;, with
centery;, = Wp (or a rectangular variant @;,) will correspond to centers that are
children ofwg. Therefore, we see by the graphical structure of Section 4 that
the argument above for verifying the sum of diameters condition is independent
of the joint subcase. We fix the valueqfin the definitions of the radi, . ;, and
in the conditions (i), (ii), (al), (a2), (b1) and (b2). Thus, the disjoint and nested
relations of our joint subcase (al)—(a2) of (i) are preserved as in Figure 5 and
so we have verified the hypothesis of Lemma 8 for this case. We next verify the
conclusion of Lemma 8 for this case as well.

The induction hypothesis is the conclusion of Lemma 8 for some number of
boxesB;,i =1, ..., u, with u in place ofv. The proof of the induction hypothesis
for v =1 in Lemma 8 is the same as the proof foe 1 in the original statement
of Lemma 7 with 21 in place of 2171 in (A.1). We establish the inductive step
of Lemma 8 for the current example. We construct a rectamgleas in the
proof of Lemma 7, that has a cenfér such that|X; — w1 || < 2Dy <11/2 for
tDy < < 4Dy andDy < 1. Let us assign indices bB1 = R11, B> = R12
and Bz = R1.21, SO thatB3 does not contain the center 86 and B3 C Ba. By
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the proof of Lemma 7, all the boxeB; are either entirely inside or outside.
Therefore, if one ofB; or B, does lie insideR;, then because at least one other
does lie outside®1, we can apply the induction hypothesis applied to the rectangle
Ry in place ofR. So let us assume that there are no boReiside R1. In this
case we proceed to construct a second rectaﬁgl& B(wy 2, r) inside R1 2,

as in the proof of the initial case of Lemma 7 applied wRh= R1 > and with

r = ||Wy21 — Wi2|l/4, so thatBz is disjoint from R,. That is, we apply the
induction step only to the context of a single b8y inside the boxR = R1>.
Explicitly, we have that

3
P <u4(w1; R)N ( () Ualyi; R)))

(7.1) T
< (Ua(wy; RY))P(Ua(Wy,1; R11))

x P (Ua(0, 2/%) P(Ua(Wy,2: R2)) P(U4(0,5r: 11,2/2)),

where 23 = 2m.21-51; and where if 24 > 12, we omit the last factor in
this inequality. If 24 < I1 2, then the product of the last two factors in this
inequality is bounded by’ P(74(0; /1,2/d)), as in the proof of the case= 1
of Lemma 7. Therefore, we obtain the desired conclusion of Lemma 8 for the
particular example.

Consider next subcase (al)-(b2) under (i). We still have the bBxes =
1,2, 3, as defined above, but nhow they may not satisfy the nested or disjoint
condition of Lemma 8. But, by (b2)312 4+ s1 + s + 2> m1.21 + s. Therefore,
the boxesB(wjy 2, 2-Mm12-51—5=2,) gngd B(Wy1 21,27 "217%0) are disjoint by
Proposition 1. Therefore, since this last box contaiggbecausea; > s), in fact,
we may shrink the box3, by the constant factor 2 to obtain a boxB; such
that now the boxe®1, B;, Bz are mutually disjoint. Also, due to the geometric
series estimat@éwi 21 — w1 | < 2-m.2=1, we have by (i) thaiBz c Ry. Hence,
in fact, we may apply Lemma 7 with thg}, in place of theB, and withB; and B3
as before and still wittR = R4 to again reach the desired conclusion. This trick
must be modified in general. In subcase (b1)—(a2) under (i) we have that the boxes
B(Wy, 27™M7175=2y) and By = B(W1.1,2 11 %1p) are disjoint by (bl) and
Proposition 1, and, moreovekg is nested inB» by (a2). Further, by Proposition 1
applied to the trimmed grap&; without the vertexvs » 1, we have thaB; andB;
are disjoint. To obtain a nested or disjoint condition, we apply the method of
Proposition 2 withw; playing the role of the root an@,; = B(wq , 2771.2751)
playing the role of a shrunken box, and with= 2—5-2[; = 2="1751=5-2_Sjnce
m1.2 > m1, the diameter of the bo®, is small compared wittD, depending on
the parametesp, so we may adjust this parameter upward if necessary to construct
a rectangler; with centerx’ that satisfied|x’ — wy| < 17/2, whereR] has half
sides/} and L} with 1 < L /17 < 2 such that bothB, and Bz lie either nested
together insideR] or nested together outsid¥. Here in the method of proof of
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Lemma 7 we takeD/10 < I; < D/5 so thatR] C B(wy,l’) C B(wy, 27 72y).

Thus, we obtain thaB; lies outsideR. By working again with the method of
Proposition 2, this time wittD = C2~/1n, for any of the joint subcases, we may
enclosex; by a suitable rectanglgy with shortest half-side= 27/t such thatr;,
satisfies a nested or disjoint condition with the other rectangles constructed thus
far. Now Lemma 8 is applied with = x; and the rectangles contained By if

any such exist. IR} is disjoint from R, then we apply Lemma 8 separately with

x =w; and the rectangles contained By. Thus, in each joint subcase organized

as above, there will exist a specific arrangement of boxes and rectangles with radii
given asymptotically by 2”1 n such that Lemma 8 will apply to disjoint pieces

of the arrangement. As shown in Section 6.1.1, we may alternatively choose to
apply Lemma 8 first withR = R} and use thaB(x1, 2~"1"*n) is disjoint from Ry

and all other boxes by Proposition 1. However, it is convenient to use the more
general format withx = x; andR = R;, for one application of Lemma 8 to obtain

the same result in all joint subcases, namely, by Lemma 2, that

(7.2)  pua(X1,...,Wi21) < Csn*25/4+5€25(j1+M1+mL1+m1,2+m1.2,1)/4'

Hence, by using the confinement factors (3.12), by (7.2) and by constructing one
horseshoe at;, we have that any sub-sum Bf corresponding te =5 andr =1
under the eight different joint subcase combinations is bounded by

o o0

(7.3) CntY4> Z Z 2/ +(=7j1=3m1=3m12—3m1,1—3m121)/4

j1=0 mi21=m1?2

where the intervening summations are indexed by the conditionsjp < j1,
m1 > j1, m12>m1 andmsi 1 > mq 2. In conclusion, since the confinement factor
convergent sum analogous to (7.3) for any gré&ahsince we have shown that we
can take 2 = 27"i1--ikn corresponding to the vertey;, . ; in Lemma 8.

It remains to make some comments about the case when there is a second
graph G, with root x.. We argued briefly in the lines preceding (6.7) of
Section 6.1.2 that, even with = 1, there would exist a boB = B(X,,[) with
radius/ < 2~/en such thatB is disjoint from all the rectangles constructed as
above in Section 7.1 with centers or mock centers at vertic€g iffhe argument
is based on the fact that if, in the construction of the vertiéefor G1, we obtain
m1 = j1 + 2c, then of course sincg, +4c+2> j1 +4c+2>my1+ 2c + 2, the
boxes mentioned in the line preceding (6.7) within place ofxs are disjoint. If,
on the other handny = ji1 + 2c + 1, then, for allw;,, _; € Wy with k > 2, we
have

(7.4) W — xq|| < 272"l 4 gmmi—e < 3. p=i1=2-2

.....

Hence, againB(x,, 2 /e=%~2p) is disjoint from B(w;, _;,, 2 ™1 =2"2p),
This last statement continues to hold with- 1 andi; > 2 since we may similarly
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argue fori > 2 thatj1 + ¢ <m; < j1 + 2c orm; > j1 + 2c + 1. Therefore, we may
extend the analysis of (7.3) to the case of a second g&aphith an appropriate
horseshoe at the second root vertex In conclusion of this section, we have
shown a convergent dyadic sum process up to the construction of horseshoes at
the root vertices.

7.2. Horseshoes. The remainder of the general argument is based on a pattern
of nonoverlapping horseshoes and the corresponding probability estimates that
provide for convergence factors in the pivotal case. We have shown in Section 6 a
parametrization of spacing between the root vertices provided by the definitions
of the root vertices, the root horseshoe vertices, certain bands dividing space
between nearby roots and the separation of dual horseshoe indices. These levels of
organization determine confinement factors associated to each root vertex in terms
of the dyadic indices; and dual indicesj*. In fact, there exists a sufficiently
large constantCg in this parametrization such that as long as a root vexjex
is not confined to belong to a set of vertices of size at @@ 2/n?, then a
horseshoe is constructed at this vertex. We have, in particular, that a horseshoe is
constructed at each root vertgx such that its dyadic indey, does not satisfy
Jji < jr < ji 4+ co for some root vertex; with i < k and dyadic indexj;, where
co is a constant positive integer. If indeed the conditjpr j; < j; 4+ co does hold
and if in addition the vertex; is in a horseshoe relation 1g, then the vertex;
is confined to belong to a set of vertices of size at n@&t2/in2. In this case a
convergence factor for this vertex is accounted for by its confinement factor alone.
This follows because the probability that a four-arm path issues from the center
of a box of radius 2 < 2—/kx and then exits this box is at mo6t 2%/k/4,—5/4+¢
Thus, by multiplying the confinement factor by the probability and by substitution
of j; for j; due to the condition on these indices, we obtain the convergence factor
2-3ii/4, This situation is an exception wherein a horseshoe is not constructed for
lack of space. It represents an analogue of the confinement that is associated to
each nonroot vertex. Note, on the other hand, that additional horseshoes besides
those at roots may need to be constructed in general to fill in spaces between the
dyadic annuli inB(n). Such is the case because horseshoes are not allowed to
overlap. Therefore, if one vertex belongs to a band associated with another, then
the horseshoes associated to each can only grow so large (with equal outer radii).
Then a larger horseshoe containing both the horseshoes that have grown together
must be constructed as though the two vertices had become one (cf. Figure 4). We
can summarize this strategy by observing that a maximal number of horseshoes
is introduced for a given parametrization of spacing of root vertices. Due to the
nesting of two horseshoes with equal outer radii inside a single larger horseshoe,
the algebraic factors (e.g-2+¢) associated to the confinement of vertices in bands
remain always with exponents-2 + ¢), so contribute only convergent terms in
our method. Due to this allowance for nesting of horseshoes, the additional dyadic
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convergence factors that arise from Lemma 5 compensate in exactly the same way
a confinement factor would if there were to be no room for a horseshoe.

In conclusion, each vertex in our estimation method for the pivotal sites, be it
a root or nonroot, contributes a convergence factor with the same expe@ent
Thus, each arrangement of the vertices that defines a subJswh Xg in
(4.1)—(4.2) by the above division of cases yieltls: Con®/4+7¢ 3% _;2-3u1/4,
By contrast, when we apply our method to the case of items 1 or 2 in Theorem 1,
we omit the construction of horseshoes altogether. We also omit the need for
Lemmas 7 and 8. Then by Proposition 1 and Lemma 2 alone, the root vertices
and nonroot vertices contribute convergence factors with exponeblasnd—%,
respectively, in the case of the lowest crossing and exponelitsand —sz
respectively, in the case of pioneering sites.

APPENDIX

PROOF OFLEMMA 7. We proceed by induction on the number of boxes
We establish first the statement of the lemmaifes 1. Definer := ||x — y1]|/4.
We have that

(A.1) B(x, r) is disjoint from B(y1, 2+~ 1).

Indeed, 2171 < ||x — y1]|/2 = 2r. Note thatL > ||x — y1|| = 4r, S0l > L/2 > 2r.
Therefore,

(A.2) B(x,r) C B(X,1/2) C R,

where the last inclusion follows becaupe— X'|| <1/2 andB(x’, ) C R. Now we
use (A.1), (A.2), the assumptioB(y1, 2*t) C R and independence to obtain by
(2.5) and (5.20) that

(A.3) P(Ua(x; R) N Ua(y1; R)) < P(U4(0, ) P(Ua(0, 2417 ).

We consider now two casek< 24 andl > 24r. If [ < 24r, then by Lemma 4
with ¥ = 4, we have

P(U4(0,1)) < P(U4(0,1/24)) < C4P(72(0,1/24))

so we are done by (A.3) in this case. If instéad 24, then, sincg|x — y1|| = 4r
implies that

B(x,r), B(y1,r) C B(X, 5r)
and since also by (A.2) the annulks- A(0O, 5r;1/2) C R, we have that
P(Ua(x; R) N Ua(y1; R))

(A.4) -
< P(U4(0,r)) P(U4(0, 217 )) P(U4(0, 5r; 1/2)).
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We now apply Lemmas 4 and 6 and construct connections across the annulus
X+ A(O, r; 5r) to show first that

P(U4(0, ) P(U4(0, 5r; 1/2)) < C4P(T4(0, 7)) P(U4(0, 5r; 1/2))
< CP(U4(0,1/2)).
Then we apply Lemma 4 again to establish that this last probability is at most
C'P(74(0,1/2)).

Therefore, by (A.4) and these last two observations, we have established the lemma
for v =1 in the casd > 24r. Thus, by comparing the two cases, we can take
d = 24 andc1 = 1 in the statement of the lemma whea= 1.

We now proceed to show the inductive step. Assume the statement of the lemma
is true with a positive integer in place ofv for someu < v and withv > 2. Define

D, = max |ly; —X|.
i=1,..v

Note that! > L/2> D, /2, so thatB(x, %DU) C B(X,1/2) C R. Consider now the
shrunken boxes! := B(y;, 2%~%), i = 1,...,v. Since D, > 2% for all i, we
have that the sum of the diameters of these boxes satisfies

v
2y 24 <29D,27¥ < LD,
i=1
for all v > 2. Therefore, even if all the shrunken boxes were packed inside the
subsetB(X, %Dv) of the rectangler, there would be a gap in thg coordinates
of the verticesz € B(x, 3 D,) somewhere in the interviky + 5Dy, x1 + £ Dy]
and also in the intervallry — Dy, x1 — 75D,1, where we denote = (x1, x2).
Indeed, each of these intervals has Wiq%tDv which is strictly greater than the
sum of the diameters of the boxés. Similarly, there must be gaps in the
coordinates of the verticese B(X, %DU) somewhere in corresponding intervals
for the second coordinate. Therefore, by constructing a rectangle with sides along
some vertical and haorizontal lines through the gaps in these intervals, we have that
there exists a rectang@ := R(X) C B(X, %Dv) C R with shortest and longest
half-sides! and L, respectively, satisfyind./I < 2 such that its center satisfies
X — x| < 2—10DU <1/2 and such that a certain proper subg#t, ..., B] } of the
set of shrunken boxes lies entirely insifi@nd the others lie entirely outside To
see that the subset will be proper so that the numberw, note that if the indexg
yields the maximum in the definition db,, then 20~ < & Dy so that

B(Yio, 207") N B(x, 1D,) = @.
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We now apply the inductive hypothesis wiih< v. First we note that for ali,
B! C B(x,12)) since 12 > }—(Z)DU. We consider again two cases. Ifi121/8, then
by this construction, we have that

(e o Py )

i=1

(A.5) < P(‘U4(X; RN < () Ua(Vi,: ﬁ)))
a=1
x P(Ua(0,12;1/2)) [] P(Ua(0, 2473)).
iig
If instead 12 > 1/8, we omit the facto (U4(0, 127; 1/2)) in this inequality. By
the induction hypothesis, we have that

P(u4(x; Bn ( () Ualyi,;: ﬁ)))
a=1

u

< Cu)P(74(0; T/d))) [T P(Ua(0, 24acr(y),
a=1

We take now the constanifu) := 96" andci(u) := 3u. Thus, if 17 > 1/8, we
are done by this last inequality and (A.5). If, on the other hand <128, then we
estimate by Lemmas 4 and 6 that

P(T4(0; T/d (u))) P(U4(0, 121;1/2)) < C P(U4(0,1/2)) < C'P(74(0,1/d (v))).

This completes the proof of the inductive step and therefore of the lemima.
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