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In certain problems in a variety of applied probability settings (from
probabilistic analysis of algorithms to statistical physics), the central re-
quirement is to solve aecursive distributional equation of the form
Xig((si, X;),i > 1). Here(§;) andg(-) are given and th&; are indepen-
dent copies of the unknown distributioh We survey this area, emphasizing
examples where the functigs(-) is essentially a “maximum” or “minimum”
function. We draw attention to the theoretical questiorerafogeny: in the
associated recursive tree procégs are theX; measurable functions of the
innovations proces&;)?

1. Introduction. Write & for the space of probability distributions on a
spaces; in our examplesS will usually beR or a subset oR. Suppose we are
given a joint distribution for some family of random variablés i > 1), and given
an S-valued functiong(-) with appropriate domain (Section 2.1 gives this setup
more carefully). Then we can define a niBp» — £ as follows:

T () is the distribution ofg ((¢;, X;), i > 1), where thg X;) are
independent with distribution, independent of the familgg; ).

Within this general framework one can ask about existence and uniqueriisd of
points, that is, distributiong: such thatl’ () = 1, and aboutiomain of attraction
for a fixed pointu, that is, for what initialv do we havel” (v) — u asn — oo.
One can rewrite such a fixed point equation in terms of random variables as

@) XLg(G. X).i>1)

where the independence property is assumed implicitly. We introduce the phrase
recursive distributional equation (RDE) for equations of format (1), as opposed to
alternate kinds of fixed point equation. RDEs have arisen in a variety of settings:
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e Galton—Watson branching processes and related random trees,
e probabilistic analysis of algorithms with suitable recursive structure,

e statistical physics models on trees,

e statistical physics and algorithmic questions in the mean-field model of distance.

Three aspects of this topic have been well studied. Perhaps the best known fixed
point equation is

) XL27Y2(x1 4+ X))  (S=R)

whose solutions are the Norng@o?) family. This example extends to give
characterizations of stable distributions [63]. Moreover, there is a classical topic
“characterization of probability distributions” [43] which considers the named
families of distributions in mathematical statistics and studies many different types
of characterization, some of which can be put into form (1). But this aspect
is rather remote from our concerns. A second aspect concerns general methods
for establishing existence or uniqueness of fixed points. Two natural methods
(monotonicity; metric contraction) are recalled in Section 2.2, while the more
elaborate method of “a.s. unique tree representations” or “tree-structured coupling
from the past” is described in Section 2.6. The third aspect iditiear subcase
g((&, Xi),i > 1)=>";&X; and its variants, which we review in Section 3. This

is well understood fos = R*, though not so well understood fér=R.

The main purpose of this survey article is to illustrate the variety of contexts
where RDEs have arisen, and to draw attention to another subclass of RDEs,
those involvingmax-type functions g. We present in Sections 4—7 a collection
of around ten examples (summarized in Table 1) of max-type RDEs arising from
concrete questions. Most have been studied in detail elsewhere; in each case we
seek to outline the underlying problem, describe how it leads to an RDE, and give
information about solutions of general or special cases. Section 8 provides brief
remarks on Monte Carlo methods, process analogs and continuous-time analogs,
and lists the numerous open problems and conjectures.

On the theoretical side, in Section 2.3 we set out carefully some general theory,
rather natural from the statistical physics or interacting particle system viewpoint
but less apparent from the algorithms viewpoint, which relates RDEs to a type
of tree-indexed processXj) which we callrecursive tree processes (RTPS). In
particular we introduce thendogenous property (Definition 7), that in an RTP
X; is a measurable function of the driving tree-indexed pro¢gsswithout any
external randomness being needed, and show (Theorem 11) that endogeny is
equivalent to divariate uniqueness property.

A concluding Section 9 will attempt to review the big picture.

1.1. Three uses of RDEs. When we look at how RDEs arise within specific
models in the Table 1 examples, we will see three broad categories of use, which
seem worth mentioning at the start.
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TABLE 1
Some max-type RDEs. Functions g(-) for which the RDE X ig((é,-, X;),i > 1) arediscussed™

Section g() Underlying model Endog? Comments
S=RT"
4.2 max(X; + &) Range of BRW Yes
4.3 min (X; +&)T Algorithm for BRW range Yes
4.6 max(g; — X;)T Matching on GW tree Yes
4.4 &o + max (§; X;) Discounted tree sums Yes &p=0reducesto
BRW extremes
4.4 &0+ min; (& X;) Discounted tree sums Yes See (49)
4.6 (Eo—Y; X)T Independent subset GW tree  Yes
7.2 Yi(c—& +X;)T Percolation of MSTs Yes Determines critical
7.6 See (98) First passage percolation C@njMean-field scaling analysis
S=R
5 c+max(X; +&) Extremesin BRW No ¢ specified by dis§;)
7.3 min (&; — X;) Mean-field minimal matching Yes
7.4 mirfz] & — Xp) Mean-field TSP Conjy  min[2! denotes
second smallest
OthersS
6 ®(min(X1, X2), &) Frozen percolation on tree Yes & defined in Section 6
7.6 See (96), (97), (98) Mean-field scaling Cadnj. S =R? orR3

*Note xT = max(x,0). For § = R a “max” problem is equivalent to a “min” problem by
transformingX to —X, but for § = R this does not work: the problems in Sections 4.2 and 4.3
are different. Typically th&&;) are either i.i.d. or are the successive points of a Poisson process on
(0, 00). “Endogenous” refers to fundamental solution. Key to acronyms: BRW, branching random
walk; GW, Galton—Watson; MST, minimal spanning tree; TSP, traveling salesman problem.

1.1.1. Direct use. Here is the prototype example dfrect use, where the
original question asks about a random variakland the distribution of( itself
satisfies an RDE.

EXAMPLE 1. Let X be the total population in a Galton—Watson branching
process where the number of offspring is distributed .ds the caséEé < 1 [and
P& =1) # 1]itis well known thatX < oo a.s., and then easy to check that di9t(
is the unique solution of the RDE

§
xL143Y X,  (S=2").
i=1

We will see other direct uses in Proposition 25 and in the examples in
Section 4.4.

1.1.2. Indirect use. The simplest kind of indirect use is where the quantity
of interest can be written in terms of known quantities and some other quantity
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which can be analyzed via an RDE. See Proposition 28 and Theorem 41 for results
of this kind. But there is a more intriguing kind of indirect use which we call a
540 argument, exemplified in the frozen percolation model of Section 6 and also
used in the mean-field combinatorial optimization problems in Sections 7.3—7.6.
In these examples we start with a heuristically defined quaktjtgnd a heuristic
argument that it should satisfy an RDE. Next we make a rigorous argument by first
solving the RDE and then using the associated, rigorously defined RTP as building
blocks for a rigorous construction.

1.1.3. Critical points and scaling laws. We introduce this idea with an
artificial example.

EXAMPLE 2. Leté beR-valued,E¢ = 8, and let(&;,i > 1) be independent
copies of¢. For fixede € R consider the RDE

3) XL max0, X +£—¢) (S=RM).

Then there is a solutioX,. on R* if and only if ¢ > 8. Moreover, if vatg)
(0, 00), then
var(§)
2(c—B)
Here (3) is alLindley equation from classical queuing theory [12], and it is
straightforward that foe > g the solution is

(4) EX. asc | B.

J
(5) X £ maxy (& — o).
=03

This X, is a.s. finite by thatrong law of large numbers, and the stated asymptotics
(4) follow from, for example, weak convergence of random walks to Brownian
motion with drift.

We will see later three examples of problems involvictical values or
near-critical behavior of some random system. In such problems there is a
parameterc and we are interested in a critical valagit of ¢ defined as the
value where some “phase transition” occurs, or in behavior of the system for
nearcgit. In Section 7.2 we see an example where the critical point is determined
as the boundary between existence and nonexistence of a solution to an RDE
(Proposition 56). In Section 4.3 we see how aspects of near-critical behavior
may be reduced to study of near-critical solutions of an RDE (Theorem 29), and
Section 7.6 contains more sophisticated variations on that theme. Note that in
Example 2, result (4) shows that the behavior of solutions near the critical point
scales in a simple way that does not depend on the details of the distribugon of
according to the statistical physics paradignumf/ersality one should expect such
scaling laws to arise in most natural problems.
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1.2. The cavity method. One particular topic of current interest concerns
the cavity method in statistical physics, applied in the context of combinatorial
optimization in mean-field settings. There is a methodology for seeking rigorous
proofs, in which the central issue becomes uniqueness of solution of some
problem-dependent RDE. We will elaborate slightly in Section 7.5.

2. Thegeneral setting.

2.1. A precise setup. Here we record a more careful setup for RDEs. Let
(S, 8) be a measurable space, and 4&tS) be the set of probability measures
on (S, 4). Let (®, 7) be another measurable space. Construct

OF =0 x U ™,
0<m=<oo

where the union is a disjoint union and whef@ is product space, interpreting
$>° as the usual infinite product space asftlas a singleton set, which we will
write as{A}. Let g: ®* — S be measurable. Let be a probability measure on
O x Z+, whereZ* :={0,1, 2, ...; oo}. These objects can now be used to define
a measurable map : £ (S) — £(S) as follows. Write<* N to mean< N for
N < oo and to mearx oo for N = oo.

DEFINITION 3. T (u) is the distribution ofg (¢, X;, 1 <i <* N), where:

() (X;,i>1) are independent with distributiqu;
(ii) (¢, N) has distribution;
(i) the families in (i) and (ii) are independent.

Equation (1) fits this setting by writing = (&;). In most examples there is a
sequencés; ), but for theoretical discussion we regard such a sequence as a single
random elemerg.

In examples whereP (N = oo) > 0 a complication often arises. It may be
that g(-) is not well defined on all of® x §°°, althoughg(¢, X;,1 <i <* N)
is well defined almost surely fofX;);>1 i.i.d. with distribution in a restricted
class of probabilities or§. For such examples and also for other cases where
it is natural to restrict attention to distributions satisfying some conditions (like
moment conditions), we allow the more general setting where we are given a subset
P C P(S) such thatg (&, X;,1 <i <* N) is well defined almost surely for i.i.d.
(Xi);>1 with distribution in#. Now T is well defined as a map

(6) T:P — P(S).

In this extended case it is natural to seek, but maybe hard to find, a suBsaich
thatT mapss into .
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2.2. Monotonicity and contraction. There are standard tools for studying
mapsT : £ (S) — £ (S) which do not depend on the map arising in the particular
way of Definition 3. First supposg C R is an interval of the fornfi0, xo] for some
xo < 00, or § = [0, o). Consider the usuatochastic partial order < on 2 (S):

p1 =z iff w0, x] > u2f0, x], xes.
SayT is monotone if

pn1 = pz implies T (u1) < T(u2).

Note that, writingsg for the probability measure degenerate at @, i monotone,
then the sequence of iteratE84g is increasing, and then the limit

exists in the sense of weak convergence on the compactified infBreal].

LEMMA 4 (Monotonicity lemma). Let S be an interval as above. Suppose
T is monotone. If u, gives nonzero measure to {oo}, then T has no fixed point
on P(S). If u,. gives zero measure to {oo}, and if T is continuous with respect
toincreasing limits [, 1 oo implies T (un) 1+ T (1oo)], then u, is a fixed point
of T, and . < u, for any other fixed point .

This obvious result parallels the notionlofver invariant measurein interacting
particle systems [47].

Returning to the case of geneglthe Banach contraction theorem specializes
to

LEMMA 5 (The contraction method).Let & be a subset of #(S) such that
T maps & into . Let d be a complete metric on #. Suppose T is a (strict)
contraction, that is,

d(T , T
sup (T'(p1), T(u2)) -
U1FU2EP d(u, 12)
Then T has a unique fixed point 1 in &, whose domain of attraction isall of ».

1

A thorough account of specific metrics can be found in [57]. Most commonly
used is the Wasserstein metric on distributionsForwith finite pth moment,
l1<p<oo:

@) dy(u,v) == Inf{(B[|1Z — WPDYP|Z L and W £ v},

Contraction is a powerful tool in the “linear” case of Section 3, where it also
provides rates of convergence in the context of probabilistic analysis of algorithms.
For max-type operations it seems less widely useful (see, e.g., the remark below
Open Problem 62) except in simple settings (e.g., Theorem 32). It is also worth
mentioning that in several examples we have no rigorous proofs of existence of
fixed points (see Sections 5 and 7.4) and so the use of other fixed point theorems
from analysis [45] might be worth exploring.
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2.3. Recursive tree processes. Consider again the setup from Section 2.1.
Rather than considering only the induced nfgppne can make a richer structure
by interpreting

X =g X;,1<i<*N)

as a relationship between random variables. In brief, we regamb a value
associated with a “parent” which is determined by the valkieat N “children”
and by some “random noisé”associated with the parent. One can then extend to
grandchildren, great grandchildren and so on in the obvious way. We write out the
details carefully in the rest of this section.

Write T for the set of all possible descendantsvherei = i1is---i; denotes
a dth-generation individual, thé;th child of its parentijio---iy—1. Label the
root asz. MakeT a tree by adding parent—child edges. Given the distribution
on ® x Z from Section 2.1, for each € T let (&, N;) have distributionv,
independently asvaries. Recall the functiog from Section 2.1. This structure—
the random pairgs;, Ny), i € T, which are i.i.d. ¢), and the functioz—we call a
recursive tree framework (RTF). In the setting of an RTF suppose that, jointly with
the random objects above, we can constdwialued random variableX; such
that for each

(8) Xi=g(, Xij,1<j<*N) as.

and such that, independent of the valuegsafnili in firstd — 1 generationys the
random variable$X;|i in generationi} are i.i.d. with some distributiop;. Call
this structure (an RTF jointly with th&;) a recursive tree process (RTP). If the
random variables(; are defined only for verticeisof depth< d’, then call it an
RTP of depthd’. See Figure 1.

Now an RTF has arinduced map T :£(S) — £(S) as in Definition 3.
[In the extended case (6) we need to assume fhamaps & into 2.
Note that the relationship between an RTF and an RTP mirrors the relation-
ship between a Markov transition kernel and a Markov chain. Fix an RTF.
Given d and an arbitrary distributionn® on S, there is an RTP of deptt
in which the generation- vertices are defined to have distributipry = 1°.
Then the distributiongy, (a1, a—2, ..., no at decreasing generatiodsd — 1,
d —2,...,0 of the tree are just the successive iterat8s7 (1°%), T2(u9), ...,
T4 (1% of the mapT . Figures 1 and 2 attempt to show the analogy between RTPs
and Markov chains.

One should take a moment to distinguish RTPs from other structures involving
tree-indexed random variables. For instancbkranching Markov chain can also
be represented as a famil¥;). But its essential property is that, conditional on
the valueX; at a parent, the valueqXij1, Xij2, ...) at the childrenl, i2,... are
i.i.d. An RTP in general does not have this property. Conceptually, in branching
processes one thinks of the “arrow of time” as pointing away from the root,
whereas in an RTF the arrow points toward the root.
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@) ()
in+1 T gh T
— f —> 4
() & ®
. Ll
— f —1 9| —> 9| — 49
©) W)y 00 EIES
(a) Markov Chain (b) Recursive Tree Process

Fic. 1. OntheleftisaMarkov chain represented as an iterated function system: X, isthe*“output”
of f with “inputs’ &, and X,,_1. Ontheright isan RTP; X;j isthe “output” of g with inputs & and
(Xj, ] child of i). Inthefigure, h isthe parent of i and i’,i”, ... are siblings of i.

Call an RTPinvariant if the marginal distributions of; are identical at all
depths. We have the following obvious analog of Markov chain stationarity.

LEMMA 6. Consider an RTF. A distribution w is a fixed point of the induced
map 7 if and only if there isan invariant RTP with marginal distributions .

An invariant RTF could be regarded as a particular case Makov random
field, but the special “directed tree” structure of RTFs makes them worth
distinguishing from general Markov random fields.

A central theme of this survey paper is that for certain purposes, the most useful
way of interpreting an RDE (1) is as the defining identity for an invariant RTP.

2.4. Endogeny and bhivariate uniqueness. Now imagine (8) as a system of
equations for “unknownsX; in terms of “known data¥;. It is natural to ask if the
solution depends only on the data. We formalize this as the follo@ridggenous
property. Write

()] gr=o0(, Ni, ieT).
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Markov chain Recursive tree process

Lemmas 14 and 15 use
analysis of the RTP

CFTP uscs specific

constructions X, = f(&n, Xp1) RTP X; = g(&. Xiy,5 > 1) \
Markov chain specified RDE specified by ¢(-)
by transition kernel K and dist(&)
equation p = K associated T : P — P
for stationary distribution gives fixed-point eq. T(u) =
analytic methods analytic methods
to solve equation to solve equation

FiG. 2. The analogy between Markov chains and RTPs. Specifying a transition kernel is exactly
what is needed to write the equation for a stationary distribution, and exactly what is needed to
specify the chain. Analogously, specifying S and g(-) and dist(¢) is exactly what is needed to write
the RDE, and exactly what is needed to specify the RTP. But note these equivalences $ occur at
different conceptual levels.

DEFINITION 7. An invariant RTP is calledndogenous if
X Is §r-measurable
A rephrasing is more intuitive. Within an RTF there is an embedded Galton—
Watson treej” rooted at@, whose offspring distributiorv is just the marginal
in v =dist(&é, N). That is, the rootz has Ny children; each such childhasN;

children, and so ony is the random set of all such descendants of the got
Write

(20) g=o(&§,Nj, 1€T).
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Then endogeny is equivalent to
X5 is g-measurable

and this is the criterion we use in practice.

It is intuitively clear (and true: Lemma 14) that when the Galton—Watson tree
T is a.s. finite there will be a unique invariant RTP and it will be endogenous.
But when 7 is infinite the “boundary behavior” may cause uniqueness and/or
endogeny to fail. Theorem 11 will show that the endogenous property is equivalent
to a certainbivariate uniqueness property. The simple artificial Examples 8, 10
and 13 should help to distinguish these properties from the “unique fixed point
of T” property.

Our first example shows that one cannot tell whether or not the endogenous
property holds just by looking &f, even when the fixed point is unique. Write
Bern(p) for the Bernoull{ p) distribution on{0, 1}.

ExampPLE 8. Take § = {0,1}. Define T:L(S) — £(S) by T(u) =
Bern(1/2) for all u. So Berril/2) is the unique fixed point. We will give two
RTPs with this induced’, one satisfying and the other failing the endogenous

property.

First take(z, N) with N = 2 andé £ Bern(1/2), andg(a, x1, x2) = a. Clearly
the inducedT is as above. In the associated RTP whéfehas Bern(12)
marginals, observe thaf, = &5 and so the endogenous property holds. Now
consider the well-known von Neumann random bit extractor [30], which is a
certain functiong: {0, 1}°*°* — {0, 1} which, applied to an independent Bepi(
input sequence for anyQ p < 1, gives a Bern(42) output. Set
a if x1=x2=x3---,

a,x1,XxX2,...) = _’ ]
831,32, ) g(x1,x2,...), if not.

Take (&, N) with N = oo andé 4 Bern(1/2), and then the induced is as stated.
In the associated RTP with Bern@) marginals forX;, the random variableg§
are never used, sk is independent of and the endogenous property fails.

Bivariate uniqueness. In the setting of an RTF we have the induced map
T:P — P(S). Now consider a bivariate version. Write® for the space of
probability measures o2 = § x S with marginals in®. Define7® : @ —

P (5?) by:
7@ (u@) is the distribution ofg(¢, X'V, 1 <i <* N), g(&, X}z), 1<
i <* N)), where:
() (xP, x@),i> 1) are independent with distributign® on £ @
(i) (&, N) has distributior;
(iii) the families in (i) and (ii) are independent.
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The point is that we use thsame realizations of (£, N) in both components.
Immediately from the definitions we have:

(@) If u is a fixed point for7T, then the associatediagonal measure 1 is a
fixed point forT @, where

p” =dist(X, X)  for u=dist(X).

(b) If 1@ is a fixed point forT@, then each marginal distribution is a fixed
point for T'.

So if u is a fixed point forT, thenu” is a fixed point for7 @ and there may or
may not be other fixed points @f® with marginals.

DEFINITION 9. An invariant RTP with margingk has thebivariate unique-
ness property if /" is the unique fixed point of @ with marginalsy.

The next example shows that even wheis theunique fixed point of 7', there
may be fixed points of @ other tharu”".

ExaMPLE 10. Take independent & such that/ has Bertil/2) distribution
andé& has Bertig) distribution for some G< g < 1. Consider the RDE

XLX;1+eEmod2  S={0,1).

Here T maps Bernp) to Bern(p’) where p’ = p(1 — ¢g) + (1 — p)gq, so that
Bern(1/2) is the unique fixed point of". But product measure Befty2) x
Bern(1/2) is a fixed point forr' @, and this differs fromBern(1/2))".

2.5. The eguivalence theorem. Here we state a version of the general result
linking endogeny and bivariate uniqueness, without seeking minimal hypotheses.
The result and proof are similar to standard results about Gibbs measures and
Markov random fields (see Chapter 7 of [34]), but our emphasis is different, so it
seems helpful to give a direct proof here, after a few remarks.

THEOREM 11. Suppose S isa Polishspace. Consider an invariant RTP with
marginal distribution 1.

(a) If the endogenous property holds, then the bivariate uniqueness property
holds.

(b) Conversely, suppose the bivariate uniqueness property holds. If also 7@
is continuous with respect to weak convergence on the set of bivariate distributions
with marginals ., then the endogenous property holds.

(c) Further, the endogenous property holdsif and only if 7®@"(u ® ) % 1/,
where 1 ® w isproduct measure.
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Here T@" denotes thenth iterate of 7. Note that in part (c) we do
not need to assume continuity 8f2. Also (c) can be used nonrigorously to
investigate endogeny via numerical or Monte Carlo methods, as will be described
in Section 8.1. For the record we state:

OPENPROBLEM 12. Can the continuity hypothesis in (b) be removed?

ExAmMPLE 13 (Noisy voter model on directed treg). This example shows that
the endogenous property may hold for some invariant measures while failing
for others. TakeS = {0, 1} and leté have Bertis) distribution for smalls > 0.
Consider the RDE

d
X =& + L(xy+Xo+X3>2) Mod 2

In words, a parent vertex adopts the majority opinion of its three children nodes,
except with probabilitye adopting the opposite opinion. The Bephdistribution
is invariant iff p satisfies

p=01A—-e)qp)+el—q(p);  q(p)=p>+3p*L-p).

There are three solution.(¢), % 1— p.(e)} wherep,.(e) | 0 ase | 0. As in
Example 10, the invariant RTP with Bern@) marginal is not endogenous because
the product measure is invariant f6f2 . But the invariant RTP with Berm, (¢))
marginal is endogenous; one can check th& is a strict contraction on the
space of bivariate distributions with Be((¢)) marginals, and then appeal to
the contraction lemma and to Theorem 11(c).

REMARKS. Theorem 21 and Corollary 26 provide other contexts where the
endogenous property holds for the “fundamental” invariant measure but not for
others. Contexts where the fundamental invariant measure is nonendogenous are
less common: Proposition 48 is the most natural example.

PROOF OFTHEOREM11. (a) Letv be a fixed point off @ with marginals.
Consider a bivariate RTIE(Xi(l), Xi(z)),i € T) with v = dist(Xfal), Xg)). Define
g, = o((&, Ni):geni) < n) where fori = ijiz---ig we set gefi) = d, its
generation. Observe thgy, 1 §.

Fix A : § — R abounded continuous function. Notice that from the construction
of the bivariate RTP,

(xL: &, M), genti) <n) L (X2 &, Np), geni) <n).
So
(11) E[AXP)G.]=E[A(XP)9,] as.
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Now by martingale convergence
(12) E[A(XE)19a] 2> E[A(XG)I9]E A(XT),

the last equality because of tleadogenous assumption for the univariate RTP.
Similarly,

E[A(XZ)I9]E A(XE).

Thus by (11) we see thazt(X(gl)) = A(Xg)) a.s. Since this is true for every

bounded continuous we deduceX(Q}) = Xg) a.s., proving bivariate uniqueness.
(b) To prove the converse, again #ix S — R bounded continuous. LéK;) be
the invariant RTP with marginal. Again by martingale convergence

(13) E[A(X5)|Gn] % E[A(X2)[4].

Independently of Xj, &, Nj, i € T), construct random variablé%;i, i € T) which
are i.i.d. with distributionu.. Forn > 1, defineY;" := V; if gen(i) = n, and then
recursively defineY" for genii) < » by (8) to get an invariant RTRY;") of
depthn. Observe thaﬁ(@iYg. Further giveng,, the variablesX, and Y/, are
conditionally independent and identically distributed giggen Now let

(14) o2(A) := IE[A(X2)|9n] — A(X2) 3.
We calculate
02(A) = E[(A(Xo) — E[A(X2)9a])]
(15) =E[var(A(Xz)|$x)]
= IE[(A(Xg) — A(YD))?].

The last equality uses the conditional form of the fact that for any random
variableU one has vaiy) = %E[(Ul — U»)?], whereUy, U are i.i.d. copies ol .
Now suppose we show that

(16) (X, Y4 (X*, Y  say,ast— oo

for some limit. From the construction,

()
£r ,
[Yg“] v

and then the weak continuity assumption®® implies

e ()
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Also by construction we hav 4 Y 4 wuforalln > 1, and hence™ Lyx4 .
The bivariate uniqgueness assumption now impl&s= Y* a.s. SinceA is a
bounded continuous function, (16) impliagX ) — A(Y}) — 0 a.s. and so using
(15) we see that?(A) — 0. Hence from (14) and (13) we conclude thatX )
is g-measurable. This is true for every bounded continuduproving thatX g is
g-measurable, as required.

Now all that remains is to show that a limit (16) exists. FixS — R and
h:S — R, two bounded continuous functions. Again by martingale convergence

ELf (X2)|Gn] f‘? ELf(X2)|],

and similarly fora. So
E[f (Xe)h(Yp)] = E[ELf (X2)h(Y)|§al]
=E[E[f(X)|§a1E[A(Y)|§nl],

the last equality because of conditional independencg ofand Y/, given §,,.
Lettingn — oo and using the conditionally i.d. property gives

17 Elf(Xe)h(Y)] — E[ELf (X2)IGIE[R(X2)I§1].

Moreover note thafX 4 4 Y2 iu and so the sequence of bivariate distributions
(Xg,Y}) is tight. Tightness, together with convergence (17) for all bounded
continuousf and#, implies weak convergence 0K, Y7).

(c) First assume that@”" (1 ® 1) % 1./". Then with the same construction as
in part (b) we get that

d
(Xg,Y5) = Xz, Xo).

Further recall thatA is bounded continuous; thus using (13), (14) and (15) we
conclude thatA (X) is g-measurable. This is true for any bounded continuous
function A; thus X4 is g-measurable. So the RTP is endogenous.

Conversely, suppose that the RTP with margipalis endogenous. Let
A1 and Ao be two bounded continuous functions. Note that the variables
(X, Y2), as defined in part (b), have joint distributid{?" (1 ® w). Further,
given§,, they are conditionally independent and have the same conditional law as
of Xz giveng,,. So

E[Al(XQ)AZ(Yg)] = E[E[Al(xgﬂgn]E[AZ(X@)|9>n]]
— E[E[A1(X2)|$IE[A2(X 2)|§]]
= E[A1(Xz)A2(X )]

The convergence is by martingale convergence, and the last equality is by
endogeny. So

d d d
TP "W < (Xo, Y2 S (Xg, Xp) S 0
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2.6. Tree-structured coupling from the past. The next lemma is clearly anal-
ogous to thecoupling from the past (CFTP) technique for studying Markov
chains [56]. That technique is part of a large circle of idegaghical represen-
tations in interacting particle systems [47ierated random functions [27]) for
studying uniqueness of stationary distributions, and rates of convergence to sta-
tionarity, for Markov chains via sample path constructions.

LEMMA 14. Consider an RTF and write 7 for the associated Galton—\Watson
tree. Suppose there exists an a.s. finite subtree 75 C 7 containing @ such that the
following property holds a.s. for each i:

Ifi € 7o, thenintherelation Xj = g(&j, Xi;, 1 < j <* Nj) thevalue
of Xj is unchanged by changing the values of X;; for whichi; ¢ 7o.

Then thereis a unique invariant RTP and it is endogenous.
In particular, if 7 isa.s. finite (equivalently, if EfN] <1and P(N =1) < 1),
then thereisa unique invariant RTP and it is endogenous.

PrROOF Write ht(7p) for the height of7g. Fix d. Define(Xi(d),ger(i) =d)
arbitrarily, and then use (8) recursively to defi(rrg(d), genii) <d). The hypoth-
esis implies that on the eveftit(7p) < d} the value ofX(Qf) does not depend on

the arbitrary choice o¢Xi(d), gen(i) =d), and equals som@-measurable random
element. Lettingl — oo shows there exists sonfemeasurabl& s such that

P(X¥D £ Xz) < P(ht(To) > d) — 0.

The same argument applied to a first-generation indivigusthows there exists
g-measurableX ; such that

P(x\" #X,) < P(ht(To) =d — 1) — 0.
Use the i.i.d. structure af&;, Nj),i € T) to show thai X ;, j > 1) are independent
and distributed aX . Then by the defining recursion
ngg(g,Xi’lii S* N)

and so distk ») is invariant. Moreover, in any invariant RTP it must be tiat is
this same r.v., proving uniqueness.]

Example 8 shows that (stochastic) monotonicity of the induced maig
not sufficient for endogeny. The next lemma shows that a stronger “pointwise
monotonicity” condition ory is sufficient.

LEMMA 15. Suppose S =R*. Suppose g : ©* — R™ ismonotone for each 6.
Thatis,if l<n<ocoand x=(x;,1<i<*n)andy=(y;,1<i <*n) are
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such that x; < y; Vi, then g(0,x) < g(8,y). SUppose that for fixed 6 the map
X — g(0,X) is continuous w.r.t. increasing limits. Suppose that, for the induced
map 7', the sequence (7" (8g), n > 0) istight. Then T"(8g9) — n weakly, where the
limit « isinvariant and the associated invariant RTP is endogenous.

ProoOE This u is thelower invariant measure of Lemma 4. Let(X;) be the
associated RTP. For eadhthere is a deptld- RTP (Xi(d)) such that distxi(d)) =
74-9eM) (84). Using the monotonicity hypothesis

0<xP<xP<...<x, as.

Since dis(X(Qf)) — pwe havexg”) + Xz a.s.,and then sindégl) is g-measurable

we see thaK 5 is g-measurable. [

2.7. Markov chains. Any Markov chain can be represented (distributionally)
as an iterated random functidf), = g(X,_1, &,) fori.i.d. (¢,) and some. So the
stationary distributions (if any) are the solutions of

xLg(x,8).

This is the special case of RDEs for whi€iN = 1) = 1. In general when we talk
about RDEs we are envisaging the case wig(d¥ > 2) > 0.

3. Thelinear case. The basic linear case is the caggé, X;)) = vazlé“iXi
on § = R. Note the(§;) may be dependent. This and the extension (20) have
been studied quite extensively; our discussion focuses on analogies with the max-
type cases later. Where the state spadgfisthe key ideas are from [28] which
assumeaV is nonrandom; the extensions to randdhwhich is a frequent setting
for our max-type examples) have been developed in [49, 50]. Here is a typical
result (Corollaries 1.5 and 1.6 of [49]; the case of nonrandbis in [28]; minor
nontriviality assumptions omitted).

THEOREM 16. Suppose &; > 0, with & > 0iff 1 <i < N, for some random
0< N < oo. Suppose N and }_; & havefinite (1 + §)th moments, for some § > 0.
Write p(x) = E[Y_; &']. Suppose there exists 0 < o < 1 such that p(«) = 1 and
o' (o) < 0. Suppose either:

() a=1;0r
(i) the measure >°; P(logé; € -) is not centered-lattice, that is to say, not
supported on sZ for any real s > 0.

Then the RDE
(18) x££ gX;  (S=RY)
i
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has an invariant distribution X with P(X = 0) < 1, and this solution is unique
up to multiplicative constants. In case (i), E(X) < oo if p/(a) < 0. In case (ii), if
a<lthen P(X >x)~cx % asx — oo, for some0 < ¢ < 0.

One can study ([49], Theorem 6.1) the operafocorresponding to (18) with
respect to the metrid,, defined as at (7) but without the)/* term. In the setting
of Theorem 16 it turns out that the contraction coefficient (@) = 1 and hence
the contraction argument cannot be used directly. The proof of Theorem 16 instead
involves somewhat intricate analysis to find the moment generating functi¥n of
See [38] for the case wheré may be infinite.

See [49] for many references to the appearance of the linear RDE (18) in the
study of branching processes and branching random walks, invariant measures of
infinite particle systems, and Hausdorff dimension of random Cantor-type sets.
See [26, 60] for many references to linear RDEs arising in probabilistic analysis of
algorithms which are analyzable by contraction. See [39, 40] for the specialization

o0
XEY hE)X  (S=RY)
i=1
where (§;) are the points of a Poisson process @yoco). Often, within one
model there are different questions which lead to both linear and max-type RDEs;
instances can be found in Sections 4.1, 5 and 7.4.

Questions of endogeny have apparently not been studied in this linear case. Note
that Example 2 provides a (degenerate?) case of a linear RCEwWImich is not
endogenous. The following corollary deals with the simplest specialization of the
Theorem 16 setting.

COROLLARY 17. In the setting of Theorem 16, suppose (i) holds and
0’ (1) < 0,sothat the RDE (18) hasasolution X withEX < ocoand P(X =0) < 1.
Then the associated RTP is endogenous.

PROOF Consider a solution of the bivariate fixed point equation

x.7)< (ZSiXi, ZfiYi)-
Observe

X —y|<

YEX - Y)| <) &IXi — Y

and the expectations of the leftmost and rightmost terms are equal. So the
inequality must be the a.s. equality

(19)

DEX—Y)|=) &IXi—Y| as.
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By Theorem 11(b) it is enough to shoi/ = Y a.s. Suppose not. Thexy, — Y;
takes both positive and negative values. So we cannot Agse> 0,&2 > 0) > 0
or there would be nonzero chance of cancellation in the sum and (19) would fail.

Thus the RDE can only be of the formiglxl. But this can only happen if
P(&1=1) =1, which case is excluded by the hypothesigl) < 0. [

OPENPrROBLEM 18. Study endogeny in the other cases of Theorem 16.

It is worth pointing out that there is no very complete “general theory” for
S=R:

OPENPROBLEM 19. Study analogs of Theorem 16 = R.

Of course the contraction method remains useful in particular cases. See [22]
for results on smoothness of solutions in the case of finite second moment.

3.1. The Quicksort RDE. A slight extension of the linear case is the case

(20) (& X)) Léo+ Y & Xi.
i>1
As a well-known concrete example, probabilistic analysis of the asymptotic

distribution of the number of comparisons in the Quicksort algorithm leads to the
study of the following RDE:

(21) XLUX1+A-U)X2+CU) (S=R)

where C(x) := 2xlogx + 2(1 — x)log(1 — x) + 1, andU < U(0,1). There is
a unigue solution WIthE[ X2] < oo becausd is a contraction under the metidg
at (7) [59]. But there are also other solutions.

THEOREM 20 ([31]). Let v be the solution of the RDE (21) with zero mean
and finite variance. Then the set of all solutions is the set of distributions of the
formv % Cauchyim, o2) wherem € R and 02 > 0, and * denotes convolution.

The next result basically says that none other than the “fundamental” solution
of the Quicksort RDE (21) is endogenous.

THEOREM 21. Aninvariant RTP associated with the Quicksort RDE (21) is
endogenousif and only if o = 0.

PROOFE Let i be a solution of the RDE (21), so using Theorem [26=
v % Cauchym, 02) for somem € R ando? > 0. Suppose X, Y) is a solution
of the bivariate RDE with marginals

X UX1+A-U)X+CU)
(e2) <Y):<UY )’
1+A-U)Y>+C(U)
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where(X1, Y1) and(X», Y») are i.i.d. having the same distribution @8, Y) and
are independent di 4 Uniform([O, 1].

First consider the case = 0. In this case bottk and Y have finite second
moment and hence so dofs= X — Y. Naturally the distribution oD satisfies
the RDE

DLUDI+(1-U)D, (ONR),

whereD; = X; — Y;, i € {1, 2}. Easy calculation shows th&t[ D] = 0 = E[D?].
Thus X =Y a.s. which proves endogeny for the invariant RTP with marginal
by using part (b) of Theorem 11.

Now consider the other case > 0. Let O be a random variable with
distributionv and let(Z, W) be i.i.d. Cauchyn, ¢2), independent 0®. We claim
that(X,Y) =(Q + Z, Q + W) is a solution of the bivariate equation (22). In that
caseX # Y a.s. and hence part (a) of Theorem 11 implies that the invariant RTP
with marginalu is not endogenous.[]

So all that remains is to prove the claim, which will use the following lemma.

LEMMA 22. Let (Z1, Z») bei.i.d. Cauchym, o2) for somem e Rand o2 > 0

and let U < Uniform[0, 1] be independent of (Z1, Z2). Then V = UZy + (1 —
U)Z, isa Cauchym, o) random variable which is independent of U .

ProoeE We will calculate the characteristic function Bfconditioned onlJ.
Fix t € R; then

Efe'"V |U] = E[e! V12161 4=V 22 ]
— E[e'V"21|U] x B[/ &V Z2|y]
=expiimtU —oU|t]) x expimt (1 —U) —o(1—U)|t|)
=expimt — |t])

as required.

Now let (Q1, O») be two independent copies & and let(Z1, Z2, W1, W>) be
i.i.d. Cauchym, o2) which are independent aiQ1, 0»). Define X; = Q; + Z;
andY; = Q; + W; for i € {1,2}. Then (X1, Y1) and (X5, Y») are two i.i.d.
copies of (X, Y). Trivially UX; + (A - U)X+ C(U)= Q'+ Z andUY; +
A-U)Y,+CU)=0 +W,whereQ'=UQ1+1-U)02+C(U), Z' =
UZ1+A—-U)Zy andW' = UWq + (1 — U)Wa,. Notice thatQ’i QO and that
by Lemma 22,2’ and W’ are i.i.d. Cauchyn, c2) which are independent a’.
Hence(Q' +Z', Q'+ W) 4 (X, Y). This proves the claim.]
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3.2. Moment recursions.  Another feature of the linear and the extended linear
cases is that one can give a recursion for the moments of the solitj@ssuming
moments exist. For instance, in case (20)

E[X] = E[] + (ZE[Si])E[X],

i>1

E[X? = E[g3] + (2215[&0&1)&)(]

i>1

+ ( 3 E[sis,-])(E[XD% (ZJE[;?])E[XZJ.
i,j=Li#j i>1

Unfortunately one does not have analogous general explicit information in our

max-type setting.

4. Simple examples of max-type RDEs. The examples in this section are
“simple” in a particular sense: one can construct an explicit solution (typically in
terms of the stochastic process from which the RDE arises) without needing first
to solve the fixed point equation analytically.

4.1. Height of subcritical Galton-Watson trees. A Galton—\Watson tree is the
family tree of a Galton—Watson branching process with offspring distribution
say, and with one progenitor. Exclude as trivial the caBé®y = 0) = 1 and
P(N =1) = 1. Inthe (sub)critical casB[N] < 1, itis well known by probabilistic
arguments that the branching process becomes extinct a.s., so that the random
variable

H :=min{g| no individuals in generatiop} = 1 + (height of the treg

is a.s. finite. By conditioning on the numbaT of offspring of the progenitor, we
see thatH satisfies the RDE

(23) HL1+max(Hy, Ha, ..., Hy), He{l,23, ..},

where the max over an empty set equals zero. Lemma 14 shows this RDE has a
unique solution and is endogenous (of course this is also easy to check directly).

This RDE (23) is a natural prototype for max-type RDESs, and the following
section describes one direction of generalization.

Note that the total progen¥ in the Galton—Watson tree satisfies the linear
RDE in Example 1. This is one of several settings where aspects of the “typical”
behavior are governed by a linear RDE while aspects of the “extreme” behavior
are governed by a max-type RDE.
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4.2. Positive range of one-dimensional BRW. Consider a discrete-generation
process in which individuals are at positions on the real nén generation 0
there is one individual, at position 0. In generation 1 we see that individual's
offspring; there areN offspring (for random O< N < oo) at positionsco >
& > & > ..., the joint distribution of(N;&;,i > 1) being arbitrary subject to
the moment condition (24) below. Inductively, each individual in generatjcat
positionx say, hasV’ children at positiongx + &/), where the familiesN’; &/)
are i.i.d. for different parents. This process is (discrete-time, one-dimensional)
branching random walk (BRW). The phrase “random walk” indicates the spatial
homogeneity (otherwise we would haveranching Markov chain). Some authors
use BRW for the more special case where different siblings’ displacements are
independent of each other and &f we shall call this the IBRW (independent
BRW) case. Write

m(9) = E[Ze%’}.
i
The moment condition we shall assume throughout is

(24) 36 > 0 such thain(0) < oco.

The underlying Galton—Watson process, obtained by ignoring spatial positions,
may be subcritical, supercritical or critical (depending BfwW], as usual).
Consider

R, := position of rightmost individual in generation

with R, = —oo if there is no such individual. Write nonextinction for the event
that the process survives forever. Standard results going back to [19] show:

PrRoOPOSITION23. If the BRW is supercritical, then there exists a constant
—o0 < y < oo such that n~ 1R, — y a.s. on nonextinction. And y is computable
as the solution of

inf (logm(9) — y6) = 0.
6>0

Now considerR := max,>o R,, the position of the rightmost particle ever. If
the process becomes extinct a.s., or in the setting of Proposition 23 with, we
clearly have O< R < oo a.s. StudyingR generalizes the study (Section 4.1) of the
height of a Galton—Watson tree (take= 1), as well as the study of the rightmost
position of a random walk [tak&/ = 1 and compare with (5)]. Applications to
gueueing networks are given in [44]. Conditioning on the first-generation offspring
leads to the RDE below, and Lemma 15 establishes the other assertions.
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LEMMA 24. Suppose extinction is certain, or suppose supercritical with
y <0.Then

(25) RL max(O, max(R; + ’;‘i)>, 0<R < o0.

If extinction is certain, then R is the uniquesolution of this RDE and the RTP is
endogenous. In the supercritical case, R is the lower invariant measure for the
RTP, and the associated invariant RTP is endogenous.

There is an interestingritical scaling question here—see Open Problem 30
later. The lemma also leaves open the question of whether there may be other
invariant measures in the supercritical case. A thorough treatment of the latter
question was given in [21] within a slightly more general setting, including the
next result showing thatonuniqueness s typical.

PROPOSITION 25 ([21], Theorem 1). Under technical hypotheses (omitted
here) the RDE (25) has a one-parameter family of solutions X (y), 0 <y < oo.
Here X (0) is the lower invariant measure. There exists o > 0 such that for each
y >0wehave P(X(y) > x) ~ ¢, exp(—ax) asx — oo, for some 0 < ¢, < 0.

Without needing to go into the proof of Proposition 25, we can observe the
following.

COROLLARY 26. Under the hypotheses of Proposition 25, for y > 0 the
invariant RTP associated with X (y) is not endogenous.

PROOF Let(Qj, i € T7) be the associated BRW, that ig, is the family tree
of descendants of the progenitor, afdis the position orR of individual i, with
Qs = 0. Fixd and consider the following construction. L(@i(d) :genii) =d) be
i.i.d. with some invariant distribution. Fore 7 define

y@=2z%  geni)=d.
and thenforget)=d —1,d — 2, ..., 1,0 define
v =max0; Qj — Qi genj) <d: Qj— Qi+ 72", genj) =d)

wherej runs over all descendants af One can check tha(tYi(d)) defines an
invariant RTP of deptld. Now let A; be the event that, in the definition

v =max(0; Q). gen(j) <d: 0+ 7. genj) =d)

the maximum is attained by some generatibdescendant. We use the following
straightforward lemma whose proof is given later.
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LEMMA 27. Foranr.v.Y andé§ > 0 define
conqdist(Y), §) = maaxP(a <Y <a+9d).
uppose (Z;) arei.i.d. with P(Z > x) ~ ce™** asx — oo. Thenthereexists§ > 0,

depending only on the distribution of Z, such that for every countable set (x;) of
realsfor which Y := max (x; + Z;) < oo a.s., we have conadist(Y), §) <1 —6.

On the eventd; the r.v. Yéd) is of the form in the lemma, with the role of the
(x;) played by theg,-measurable r.v.$Q; :gen(j) = d), whereg, is theo -field
generated by the first generations of the BRW. So the lemma, together with the
tail estimate in Proposition 25, implies

conddist(Y”|g4). §)<1—8  onAg.

This estimate remains true for an invariant R of infinite depth. If the RTP is
endogenous, theh, is §-measurable, and so the conditional distribution' of

given G, converge agl — oo to the unit mass aYry; then the inequality above
implies P(A;) — 0. But P(A;) — O implies

Yo =max Qi:ieT)
and so the invariant distribution is just the lower invariant distributidn.
PROOF OFLEMMA 27. Suppose if possible the conclusion of the lemma is not

true. Then for every, | 0+ we can find a countable collection of redlg');>1
such thatt, := max>1(x]' + Z;) < oo a.s. and

(26) P(O<Y, <8, >1—6,.

By assumptionP (Z > x) ~ ce”** asx — 00, s0Y, < oo a.s. implies
© n
(27) 0< ) ™ <o0.
i=1

So in particularx — —oo asi — oo for everyn > 1. Thus without loss of
generality we can assume th@af', i > 1) are in decreasing order.
Let F be the distribution function af, and writeF (-) = 1 — F(-). We calculate

PO=<Y, <4,
=1- P(Yn ¢ [0» 8n])
=1-P(Z; <—xj'foralli > 1, or Z; > §, — x;' for somei > 1)

o0
_ B Y A F (8, — x"
<1 i—l_IlF( A —x rl_nzale(Sn xh),
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for arbitrary fixedA > 0. So from (26) we get

(28) lljF(—A —x') + rpzalxﬁ(an —x') < ép.

But max-1 F (8, — xI') = F(8, — x}), S0 using (28) we get

(29) nli_)moo F@—x)=0 = x}— —o0 asn — oo.
Now fix ¢ > 0. By hypothesis, there exisid > 0 such that

(30) (1—¢e)ce ™™ < F(x) < (1+¢&)ce ** forallx > M — .

Chooseng > 1 such that for alk > ng we havexy < —M, and hence:! < —M
forall i > 1. Now from (28)

(Bl) 8, = F(8y —x) > (L—e)ce @O  — 1 <

Further, for any,,,
kn

kn
[[FC~x—xH=[]1-F(=x—x")
i=1 i=1
> (1— F(—1 —xp))"
(32)

> (1— (14 &)ce® @)

kn
Z (1 — ﬁea}"gneOMn) ,

where the last inequality follows from (31). Now takg= % 1 oo to get

kn

o 0

lim inf 1_[1F(—A —x>1
i=

This contradicts (28). O

4.3. Analgorithmic aspect of BRW. In the setting of Section 4.2—a BRW sat-
isfying (24)—there is an algorithmic question. Suppose we are in the supercritical
case [sayP (N > 1) = 1 to avoid any chance of extinction] and suppgse 0. So
there exist individuals at large positive positions—how do we find them? Suppose
we can access data only by making queries. A query

children of progenitor?
gets an answer

progenitor has child Gat position -0.4 and child V at
position -0.8
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and a query
children of G?
gets an answer

"G has child GF at position 0.6 and child GJ at posi -
tion -1.6.

There is a naturagreedy algorithm for finding individuals with large positive

positions. At each step, look at all individugfsnamed in previous steps for which
one has not already made the quehy | dr en of X?; then make this query for

the individualX at rightmost position. See Figure 3.

This greedy algorithm was studied in [2], in the special setting of binary IBRW
which we now adopt (presumably much of what we say here holds in the general
BRW setting). In analyzing the performance of the greedy algorithm, a key role is
played by the positiold. of the leftmost individual ever queried. On the one hand
this is given by
(33) L = supinf O,

(w;) !
where the sup is over all lines of descént;) and whereQ; is the position of
individual i. On the other hand, by conditioning on the positig&s$ of the first-
generation children we see thaimust satisfy the RDE

(34) LL min(O, max(L; + 5,-)), —00< L <0.

This is genuinely different from (25), that is, one cannot obtain (25) from (34) by,
for example, reflection. As shown in [2], Proposition 4.1, this RDE has a unique
solutionL, and from (33) we see the associated invariant RTP is endogenous.

The actual question of interest in this setting in tymwed of the greedy
algorithm, defined as the limit

1
speed=Ilim -Q,,
non

o]

FiG. 3. Algorithmic exploration of BRW. The individuals e have been queried in order 1,2, 3, 4;
the children x have not yet been queried. Individual 5 will be queried next.
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wherev, is thenth vertex examined by the greedy algorithm. It turns out there is
a simple formula for speed.

PROPOSITION28 ([2]). For binary IBRW,
speed=E[(§ + L)"]

where L is the unique solution of the RDE (34) and & independent of L is the
displacement of a child.

So Proposition 28 is a prototype for one kind of indirect use of an RDE. From
this formula, but not a priori, one can deduce that the speed is strictly positive
whenevery > 0. This leads to the question péar-critical scaling. Given a one-
parameter family of distributions for offspring displaceméfy), parametrized
by p say, and such that(p) > O iff p > pqit, we will typically have linear scaling
for y:

y(p) ~ c(p — peiit) asp | perit-
But how does spedg) scale? A special case permits explicit analysis.
THEOREM29 ([3], Theorem 6). Consider an IBRWwhere each individual has
exactly two children whose displacements & satisfy P(§ =1) =p, P(§ =-1) =

1— p. Thecritical point pgit isthe smaller solution of 16p¢it(1 — perit) = 1. The
solution L(p) of the RDE (34) satisfies

—log P(L(p) =0) =c(p — peri)” >+ 0(1)  asp | pai
for a certain explicitly defined constant ¢, and

speedp) = exp(—(c +o(1)(p — perid" %) asp | perit-

OPEN PROBLEM 30. In the context of more general one-parameter families
of offspring displacement§;):

(a) In the supercritical setting | pcrit, Study whether the scaling for speed
is as in Theorem 29.

(b) Inthe subcritical setting 1 pcrit, Study the scaling of the rand&p) given
in Lemma 24.

4.4. Discounted tree sums. In this section we study the RDE
(35) XLy+ max £X;  (S=RM)
1<i<oo

where(n; &,1 <i <* N) has a given joint distribution, for random < oo. There
is a natural construction of a potential solution via what we will ciégtounted
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tree sums, as follows. Take the associated Galton—Watson frewith offspring
distribution N. Put i.i.d. copies;; of n at vertices. On the edges from eaglto

its children(ij) ;>1 put independent copid;;, 1 < j <* Nj) of (§;,1 < j <* N).
For an edges = (i, ij) we will write &, to denote the edge weight;. Consider

a path(g = vg, v1, ..., vg). View the random variable,, as having “influence”
Nvg H?:lg(vj—lavj) at the root; that is, the influence is decreased by a faciar
crossing an edge. From an infinite path= (& = vg, v1, v2, ...) we get a total
influenced_32 o 1, ]‘[j?=l.§(vj_l,vj), which we suppose to be a.s. finite. Finally set

00 d
(36) X = sup > v [ ] &1

7=(2@=v0,v1,V2,...) 4=0 j=1

If X < o0 a.s., then clearly it is a solution of the RDE (35), and this solution is
endogenous.

But it is not so easy to tell, directly from the representation (36), wheXhisr
indeed finite. So for the record we state

OPENPROBLEM 31. Study conditions under which (36) defines an a.s. finite
random variablex.

This question makes sense when we allB; > 1) > 0, though the concrete
examples we know involve only the cage< 1 a.s. We content ourselves with
recording a simple contraction argument (essentially that of [58], (9.1.18), in the
setting of finite nonrandornv) designed to handle the cage< 1 a.s.

THEOREM 32. Suppose 0 <& < 1 and n > 0 with E[n”] < oo Vp>1.
For 1 < p < oo write ¢(p) := Z;?iOE[é;i”] < 00. uppose c¢(p) < oo for some
1<p<oo.

(a) Thedistribution  of X at (36) is an endogenous solution of the RDE (35)

with all moments finite. For the associated operator T we have T" (5g) 4 .
(b) Take p < oo suchthat ¢(p) < 1. Then T isa strict contraction on the usual
space £, of distributions with finite pth moment. So . is the unique solution of

the RDE with finite pth moment, and 7" (o) 4 w for any po € F,.

PROOF By assumptiornc(pg) < oo for some pg, and then sincé; < 1 we
clearly havec(p) | 0 asp 4 oo. So choose and fix £ p < oo such that(p) < 1.
Write %), for the space of distributions d&* with finite pth moment. We will first
check thall' (¥,) € ¥,. Letu € ¥, and let(X);>1 be i.i.d. samples from which
are independent a&;);~1 andn. Define[u], as thepth moment ofi.. Observe
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that

() =cfpre )

=Y EIEIEIX]]

i=1
= [u]p x c(p) < oo.

Further we have assumed thHéln?] < oo; thus using (35) we conclude that
maps¥, to itself.

Let d, be the usual metric (7) off,. Fix u,v € ¥,. By a standard coupling
argument construct i.i.d. samplésY;, ¥;));>1 such that:
e they are independent ¢f;);>1 andn;
° Xiiu aniniv foralli > 1;
o (dp(p,v)? =E[X; — Yi|?].
PutZ = n+max>1(&X;) andW = n+maxx>1(&Y;). Notice that from definition
z4 T(w) andW 4 T (v). Now

(dp(T(w). T ()" <E[Z—W|7]

= EHmaxgiXi — maxé; Y;
i>1 i>1

]
sE[mei —a-mp}
i=1

== Z E[S,p]d,l; (/’L’ V)
i=1

=c(p) xdf(u,v).
SoT is a strict contraction map with contraction facte(p))Y/? < 1. Sinced,,
is a complete metric otF),, the contraction method (Lemma 5) shows that there
exists a fixed poinu € ¥, and thatT” (1.0) LY w for eachug € F),. In particular,
T"(80) 4 w. But T"(8p) is just the distribution of

n—1 d
(37) X .= sup > o [T w10

T=(2=00,V1,V2,...,Un—1) 4—0 j=1
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Sou is the distribution ofX at (36). Finally, we can choogearbitrarily large, so
u has all moments finite.

While the argument in Theorem 32, boundingax by asum, is crude, it does
serve to establish existence of solutions in the examples we will consider below.
Let us first say something about uniqueness.

COROLLARY 33. Consider the RDE (35). Suppose X at (36) is well defined
(whichin particular holdsunder the hypotheses of Theorem 32). Write . = dist(X)
for the lower invariant measure for the associated operator 7. Consider the RDE
obtained by omitting » in (35):

(38) X< max X, (S=R™M).

1<i<oo

If dist(Y) isa nonzero solution of (38),then for 0 < a < oo we have
T (dist@Y)) % 11

and each u, isaninvariant measure for 7. If also

(39) n isindependent of (&;); O isinthe support of ,

then each ., isdistinct.
By analogy with Corollary 26 and Proposition 48 later we state:

CONJECTURE34. Under the assumptions of Corollary 33and (39),for a > 0
the invariant RTP associated with p,, isnot endogenous.

PROOF OFCOROLLARY 33. Write W for the operator associated with (38).
Supposev # §g is invariant forW. Set up the RTRY;) associated with (38). So
for fixed n

n
Yo = sup Yy, l_[ S(Uj—lsvj)
n=(D=vg,v1,V2,..., vn) j=1

and the(Y,, : gen(v,) = n) are independent with distribution And 7" (v) is the
distribution of

n n—1 d

(40) Z(n) = sup (Yv,, 1_[ S(vjfl,vj) + Z Nvy 1_[ S(vjl,vj))-
T=(=vQ,v1,V2,...,Un j=1 d=0 j=1

Note the sample path monotonicity property

7ZW < z0+D 35
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which holds for the following reason. Given,, there is av,+1 = v,i at-
taining the maximunv,, = max &,,;X,,;, and the right-hand side of (40) for
(vo, v1,...,v,+1) iS not smaller than the right-hand side of (40) fan, vi,

eee, Up).
This monotonicity, together with the facts

ZW < x™ 4y, X" 4 X as,
implies existence of the limit
ZMW4rZ<co  as.
So
T"(v) =dist(z™) - dist(Z) ;=1 say

and by continuityu, is invariant forT .

Now for arbitrarya > 0 definez™ by replacingy,, by aY,, in (40). As above
there exists a Iimithl”) 1+ Z, < o0 a.s., andy, :=dist(Z,) is invariant forT'.

To prove the final assertion of Corollary 33, fixa < b. ClearlyZ, < Z, a.s.,
so it is enough to prov®(Z, > Z,) > 0. By Lemma 35 below (whose easy proof
we omit) it is enough to prove

(41) P(aYy > X) > 0.

Let # be theo -field generated by the RT®;) and by all the, ,,. By assumption
(39) the(n;) are independent aft, and it easily follows that

P(X <e|d) >0 a.s., foreach > 0.
SinceYy is #-measurable, this establishes (410

LEMMA 35. Fori=1,2let f; > 0beafunctionsuchthat f* :=supf; < oo.
Fora>0letg(a) :=supafi+ f2). Ifaf] > f5,thenq(b) > q(a) for all b > a.

Corollary 33 hints that general solutions of the “discounted tree sum” RDE (35)
correspond to solutions of the homogeneous RDE (38). Unfortunately the latter is
not trivial to solve. For by taking logs (séf = log X, & =log&) we see (38) is
equivalent to

XL m,ax(éi + X))
1

and this RDE, to be studied in Section 5, is the fundamental example of a max-type
RDE which cannot be solved by any simple probabilistic construction. See [41] for
further discussion of (38).
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4.5. Examples of discounted tree sums.

EXAMPLE 36. TakeU < Uniform(0, 1) and consider the RDE
(42) XZ14maxUXy, A—U)X2)  (S=RM).

This arises [25] in the context of the probabilistic worst-case analysis of Hoare’s
FI ND algorithm. Theorem 32 implies existence of a fixed point with all moments
finite, uniqgue amongst possible fixed points with finjfle+ ¢)th moments. In a
different way it can be proved [25] that any fixed point has all moments finite, and
hence the fixed point is unique.

ExamMPLE 37. Consider the RDE
(43) X<y 4 cmax(Xy, Xo)

where O< ¢ < 1.

This arises [13] as a “discounted branching random walk.” One interpretation is
as nonhomogeneous percolation on the planted binary tree (the root has degree 1),
where an edge at depihhas traversal time distributed éty. ThenX is the time
for the entire tree to be traversed. Assuminigas all moments finite, Theorem 32
implies existence of a fixed point with all moments finite, unique amongst possible
fixed points with finite expectation. The same conclusion can be drawn in the
slightly more general setup of a Galton—Watson branching tree with offspring
distribution N. Instead of assuming has all moments finite, make the weaker
assumption that there exigts> 0 such that sup.g x% P(n > x) < oo andmc? <1
wherem = E[N]. Under these assumptions, [13] shows that the RDE (43) has a
solution such thaP (X > x) = o(x %) wherea = —logm/logc. Moreover, this
solution is unigue in the class of distributiofs such thatc®(1 — H(x)) — 0 as
x — o0. But outside this class there may be other solutions.

ExaMPLE 38. Consider the RDE
(44) x<y+ maiXe_s" X;  (S=RM),

where(§;,i > 1) are the points of a Poisson rate 1 procesg@®mo) and where
n has Exponential(1) distribution independeni .

This is a new example, arising from a species competition model [29]. Time
reversal of the process in [29], together with a transformatio(0of) to (0, oo)
by x — —log(1 — x), yields a branching Markov process taking values in the
space of countable subsets(6f o), which can then be extended e oo, o) as
follows.



1078 D. J. ALDOUS AND A. BANDYOPADHYAY

Each individual at position at timer lives for an independent Exponential)
lifetime, after which it dies and instantaneously gives birth to an infinite number
of children to be placed at positioris + &;);>1 Where(§;);>1 are points of an
independent Poisson rate 1 procesg@rmo). The result of [29], transformed as
above, shows that for each< oo the Poisson raté process on—oo, 00) is
a stationary law for this branching Markov process. We pose a different question.
What is the extinction tim& for the process started at time 0 with a single particle
at position 07? It is easy to see thatsatisfies the RDE (44).

For this example, easy calculation shows thap) = 1/p for p > 1, so
Theorem 32 implies existence of an invariant distribution with all moments finite
which is also endogenous.

Now in the setting of Corollary 33 consider themogeneous equation, that is,
withn=0
(45) x4 m>ale5i X, onS=RT.

l
The solutionX = 0 of (45) corresponds to the solution of (44) with all moments

finite. We show below by direct calculation that there are other solutions of (45),
which by Corollary 33 correspond to other solutions of (44) with infinite mean.

PrOPOSITION39. The set (X,, a > 0) of all solutions of the RDE (45) is
given by
0, if x <O,
(46) P(Xq<x)= [ x
a—+x
In particular for « = 0 it isthe solution §p.

, ifx>0.

PrROOF Let i be a solution of (45). Notice that the point&;; X;)|i > 1}
form a Poisson point process, sy on (0, c0)2 with mean intensityis p(dx).
Thusif F(x) = P(X <x), then forx > 0

F(x) = P(maXe‘S" X; < x)
i>1

= P(no points ofB are in{(z, z)|e "'z > x})

“7) =exp<— // dt,u(dx))

e lz>x

B 1 — F(u)
= exp(—/x — du).

We note thatF is infinitely differentiable so by differentiating (47) we get
dF _ Fx)(1- F(x))

— f 0.
dx . orx >

(48)
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It is easy to solve (48) to verify that the set of all solutions is given by (4B).

Later results [Proposition 48(a) applied after taking logarithms] imply that for
a > 0 the invariant RTP associated wik), is not endogenous.

ExAmMPLE 40. Nonhomogeneous percolation on the binary tree.

One can also consider the analog of (35) whaax is replaced bymin,
though this situation does not seem to have been studied generally. One particular
occurrence is in the setting of Example 37, interpreted as nonhomogeneous
percolation, in which case the tim#é taken to percolate to infinity satisfies the
RDE

(49) XL+ emin(Xa, Xo).

This setting has been studied from a different viewpoint in [17].

4.6. Matchings on Galton-Watson trees. Amongst many possible examples
involving Galton—Watson trees, the following rather subtle example provides a
warm-up to the harder example in Section 7.3.

Consider an a.s. finite Galton—Watson tfeevith offspring distributionV. Fix
an arbitrary probability distribution on (0, co). Attach independent-distributed
weights to the edges. partial matching on 7~ is a subset of edges such that no
vertex is in more than one edge. Theight of a partial matching is the sum of its
edge weights. So associated with the randomdreg a random variable

W := maximum weight of a partial matching.

In seeking to studyW via recursive methods, we quickly realize that a more
tractable quantity to study is

X := maximum weight of a partial matching
(50) — maximum weight of a partial matching
which does not include the raot

To see why, fix a child of the root. Compare (a) the maximum-weight partial
matching.M; which matches the root towith (b) the maximum-weight partial
matchingM_ in which the root is not matched.

These matchings must agree on the subtrees of all first-generation children
excepti. On the subtree rooted at.M; is the maximum-weight partial matching
which does not includé, and.M _ is the maximum-weight partial matching. Thus
weight(.M;) — weight(M_) = & — X; whereé; is the weight on edgé&oot, i) and
X; is defined asX but in terms of the subtree rooted iatSince in seeking the
maximum-weight partial matching we can use angr noi, we deduce the RDE

(51) X £ max0,& — X;,1<i <N)
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where theX; are independent copies &fand thes; are i.i.d. ¢). Uniqueness and
endogeny follow from Lemma 14.

This RDE, in the special case whe¥ehas Poisson(1) distribution, arose in the
context of the problem

study the maximum weigh¥/,, of a partial matching on a uniform
randomn-vertex tree, in thea — oo limit.

The essential idea is that a randomly chosen edge of that tree splits it into
two subtrees, the smaller of which is distributed as a Galton—Watson tree with
Poisson(1) offspring. For the detailed story see Section 3 of [11], whose final result
is:

THEOREM41. Supposev isnonatomic and has finite mean. Then
|I£n n_lEWn = Egﬂ(§>x+z)
where ther.v.’s on theright are independent, & has distribution v, X isdistributed
asthe solution of the RDE (51) with Poissoril) distributed N and Z is distributed
as the solution of the RDE
Z<L maxX, & — 7)
where ther.v.’s on the right are independent.

Let us mention the explicit solutions of our RDE in two special cases.

LEMMA 42. Let N have Poissoril) distribution.
(a) ([11], Lemma 2) If v isthe exponentiall) distribution, then the solution of
the RDE (51)is
P(X <x)=exp(—ce™™), x>0,
where ¢ ~ 0.715is the unique strictly positive solution of ¢2 4 ¢~ = 1.
(b) If v is the Bern(p) distribution, then the solution of the RDE (51) is the
Bern(1 — x(p)) distribution, where x = x(p) solvesx = e~ 7P+,

A closely related “dual” problem concerns independent sets. Recall that an
independent set in a graph is a subset of vertices, no two of which are linked by
an edge. Take as before a Galton—Watson tree Witiffspring, and a probability
distributionv on (0, co). Now assign independentdistributed random weights to
eachvertex and consider

X := maximum weight of an independent set
— maximum weight of an independentset which does not include the root

Similar to above, we can argue thétis the solution of the RDE

N

(52) x4 max(O,g -3 Xi)
i=1

where¢ has distributiorv, independent oN.
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5. Rightmost position of BRW. Here we work in the setting of Section 4.2.
We have a BRW ofiR, where an individual has a random numbBbéof offspring,
whose random displacements from the parent’s positiorare £, > &> > -- -,
distributed arbitrarily subject to the moment condition (24). For simplicity suppose
N >1la.s.andP(N > 1) > 0. By Proposition 23, the positioR,, of the rightmost
individual in generatiom satisfies

niR, — y a.s.

For reasons to be explained in the next section, one expects that under minor extra
assumptions (including a nonlattice assumption) a much stronger result is true:
there exist constants, such that

(53) Ry — v <4 x asn — oo

and thatX is the unique (up to translation) solution of the RDE
(54) XL —y fmaxg +X;), —oo<X<oo.
l

This is our first example of an RDE which is “not simple,” in the sense that we do
not know how to construct probabilistically a solution.

5.1. Tightnessof R,,. At first sight it may be surprising that a limit (53) could
hold, since it presupposes that the sequei;e— mediar(R,)) is tight, whereas
one might expect its spread to increase to infinity. However, tightness is quite easy
to understand.

LEMMA 43. |If
(55) (median(R,+1) — mediaR,), n > 0) is bounded above,
then
(56) (R, — median(R,),n > 1) istight.

Harry Kesten (personal communication) attributes this type of argument to old
work of Hammersley: it is perhaps implicit in [36], page 662.

PROOF OFLEMMA 43. Givene > 0 we can choosé < co and B > —oo
such that

P(generatiork has at least logl/¢ individuals in[B, 00)) > 1 —&.
Then by conditioning on the positions of generatign

P(Rn+k < B+ medianR,)) < 2e.
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Writing A for an upper bound in (55), we deduce
P(Ry+k < B— Ak + medianR,4+1)) < 2e.

This establishes the tightness requirement for the left tak,ofFor the right tail,
givene < 1/4 we can choosk < oo andB > —oo such that

P(generatiork has at least~*log 1/¢ individuals in[B, 00)) > 1 — ¢

(we changed the lagl/s term above te ~tlog 1/¢). Write ¢, for the 1— & quantile
of R,, so thatP(R, > g,) > ¢. Again by conditioning on the positions of the
generatiork,

P(Rpsk <B+gn)<e+(1—g)° 09Ye <25 - 1/2,
So mediagR, 1) > B + ¢, implying
gn < median{R, 1) — B < median(R,) + Ak — B.

Sinceg, is the 1— ¢ quantile ofR,,, this establishes the tightness requirement for
the right tail ofR,. O

In the case where all displacemefjisare nonpositive (i.e., by reflection the
case where displacements are nonnegative and we are studying the position of the
leftmost particle) it is clear thak, is decreasing and so (55) holds automatically,
and then the lemma implies (56). A slicker argument for this case is in [24],
Proposition 2. The same holds (by translation) if there is a constant upper bound
on displacement, that is, if

PE1<x9)=1 for some constanty < co.

From these tightness results it is natural to expect that, under rather weak regularity
conditions, we in fact have the convergence results

(57) median(R,+1) — mediafR,) — v,
(58) R, — medianR,) % X,

for some limit distributionX. Our interest in these limits arises, of course, because
if (57) and (58) hold, then the limiX must satisfy the RDE (54).

5.2. Limit theorems. This topic has been studied carefully only in the
IBRW setting. We quote a recent result from [14], which provides an extensive
bibliography of earlier work. The proof uses a mixture of analytic and probabilistic
tools, for example, the “stretching” partial order (which goes back to the original
KPP paper [46]), and multiplicative martingales.
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THEOREM 44 ([14]). Consider an IBRW where E[N] < oo, N > 1, P(N >
1) > 0, and where the offspring displacement has density f(x) = ¢ %™ for some
convex function . Then the limit

R, — medianR,) > X

exists [and hence satisfies the RDE (54)]. If E[N log N] < oo and if a technical
assumption on ¢ (0) := E[N] [ %* f(x) dx (details omitted) holds, then the limit
distribution is of the form

(59) P(X < x)=E[exp(—exp(6o(Y + x)))]
for some constant 6g and random variable Y.

While the log-concave assumption plays a key role in the proof, it does not seem
intuitively to be essential for the result.

OPEN PrROBLEM 45. Under what weaker hypotheses does Theorem 44
remain true?

5.3. Endogeny. The viewpoint of this survey is to seek to study existence and
uniqueness of solutions of RDEs separately from weak convergence questions.
This has not been done very systematically in the present context:

OPEN PROBLEM 46. Study existence and uniqueness of solutions to (54)
directly from its definition.

However, Proposition 48 will show that the associated RDE is generally not
endogenous.
We first need to exclude a degenerate case. Write

y* = essSsuf.

If y* < oo andE#{i|&; = y*} > 1, then there exist embedded infinite Galton—
Watson trees on which the parent—child displacement eguali easily follows
that there is the a.s. limit

R,—ny*— X a.s.
and that the associated invariant RTP is endogenous. The next lemma (whose easy
proof is omitted) excludes this case.
LEMMA 47. Consider a BRW satisfying (24)and P(N > 1) = 1. If
(60) y¥*=o00; o y*<oo and E#il&=y") <1,

thenn=1R, — y < p*.



1084 D. J. ALDOUS AND A. BANDYOPADHYAY

PROPOSITION48. Suppose X is a solution of the RDE (54). Under either
assumption (a) or assumption (b) below, the invariant RTP associated with this
solution is not endogenous.

(a) There exist constants ¢, > 0 such that P(X > x) ~ cexp(—ax) as
X — OQ.

(b) Suppose there is a BRW satisfying (24), (60)with P(N > 1) = 1 and
P(N > 1) > 0. Suppose there exist constants y,, such that

d
Ry —vn— X, Yn —Vn-1—7>Y,
so that necessarily y = lim, n~1R,, and X satisfies the RDE (54).

OPENPROBLEM49. Weaken the assumptions in Proposition 48. In particular,
does nonendogeny hold under only the assumptions of Lemma 477

From the viewpoint of the underlying BRW, nonendogeny is a property of the
RTP associated with am — oo limit, so it is not obvious what its significance
for the BRW might be. Informally, the argument in Section 5.4 shows that
nonendogeny is related to a kind of “nonpredictability” propertyRf Given
the ordered positionsX,, ;) of the nth-generation individuals, foN > n write
(pn.n(Xn.i), i > 1) for the probability that the rightmost individual in generation
N is a descendant of th&, ; individual. Then there exist limit$, oo (X,.;) =
limy_ o0 pn.N(Xni). For fixedn this is maximized at the rightmost individual
Xn.1, but it can be shown under suitable conditions tpat.(X,.1) — O as
n — oo. Loosely, it is unpredictable which line of descent leads to the rightmost
individual at large times.

5.4. Proof of Proposition 48. Using the notation of Corollary 26 letQ;,
i € 7) be the associated BRW; that %, is the family tree of the progenitor,
and Q; is the position orR of theith individual, with Q4 = 0. Fixd > 1 and let
{Z|geni) = d} be i.i.d. copies of(. Fori € 7 define

o Yi(d) = Zi(d), when gefi) = d,
o ¥V = maxQ; - 0i + z”|genj) = d andj is a descendant 4f, when
geni)e{d—1,d—2,...,1,0}.

It is easy to check tha([Yi(d)) defines an invariant RTP of depth for the
RDE (54).

Let g, be theo-field generated by the firsf generations of the BRW. So
g4 1 %, theo-field generated by all thg’s. Observe that

(61) v§? =max{ g + z”|genj) =d}.
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Case (a). Under the conditional distribution givepy, the random variableféd)
has the same form as in Lemma 27, with the role of(the¢ being played by the
gq4-measurable random variableg;, genj) = d), and the role of th€Z;) being

played by the i.i.d. random variabIer(d), genj) =d). So Lemma 27 along with
our assumption (a) of exponential right tail, implies that there exXistsO such

that

(62) conqdist(¥"64).8) <1—6.

This inequality is true for any invariant RTP of depth at ledsso in particular
true for the invariant RTRY;) of infinite depth, so we get

conddist(Yz|%4),8) <1-8 — max Pa<Yz<a+3§8$a) <1-36.

—o0o<a<oxo

Now suppose that the invariant RTP were endogenous, tHaj is,4-measurable.
Using the martingale convergence theorem we get for each rational

Ta<vy<ats) <1—=96 a.s.

which is clearly impossible.
For case (b) we need two lemmas. The first is straightforward (proof omitted)
and the second is an analog of Lemma 27.

LEMMA 50. Let po < 1. For each n let (C,;,i > 1) be independent events
with P(C, ;) < po. Suppose there is a random variable M* taking values in
7T =1{0,1,2,...; 00} such that

d
> 1c,, > M* asn — 0o
i

in the sense of convergence in distribution on Z*. Then either P(M* =0) > 0 or
P(M*=o00)=1.

LEMMA 51. Let (Z;) bei.i.d. nonconstant. For each n let (a, ;,i > 1) bereal
constants. For k > 1 let M, bethe kth largest of (a,; + Z;, i > 1). 1f M, 150
asn — oo, then for each k we have M, > 0 asn — oo.

PROOF Write 6* = ess suf¥;. Arrange (a,.;,i > 1) in decreasing order.
Since a,.1 + Z1 is asymptotically not greater than O it is easy to see that

limsup, a, 1 < —6*. From nonconstancy df it follows that for alle > O there
exist po < 1 andng < oo such that

P(ap1+ Z1> —¢) < po. n > no.

Apply Lemma 50 to the eventss, ; + Z; > —e¢}, passing to a subsequence to
assume existence of a limit

d
Z ]l(dn,ﬁZiZ*S) — M*.
i
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By assumptionP (M* = 0) = 0, so by Lemma 5P (M* = o0) = 1, implying
M, 5 0.

Case (b). Recall the argument leading to (61). Ta(lé(d)) to be further i.i.d.
copies ofX and set

79 =max Q; + Zj(d)|ger(j) =d).

Then the joint distribution Y, ¥} is the distributionT @" (1 ® 1) appearing
in Theorem 11(c), and that theorem asserted that endogeny is equivalent to
(63) @ 7L (x,x)  asd— co.

Suppose, to obtain a contradiction, that (63) were true. Writing for the
ga4-measurable r.v. defined as the median of the conditional distributidf;édéf

giveng, (63) would easily imply
v —a,50.
Now for k > 1 consider
By i = kth largest of O + Zj(d) lgen(j) =d}.

S0 By1 — Aq->0. Now apply Lemma 51 conditionally of;, with the role
of the (a,,;) being played by(Q; — A,), to conclude that for each we have

Bgk — A2 0. (More pedantically, we need to detour through a subsequence
argument to justify conditional application of Lemma 51; we omit details.) So

(64) By1—Bax £ 0.
Next we exploit the underlying BRW. Write
Rk = position ofkth rightmost individual in generation.

Fix d andu > 0. For an individualj in generationd, the displacement of its
rightmost descendant in generatiaris asymptotically 2 — oo) distributed as¥,
independently agvaries, and so

Iimminf P(Rp1— Rnk <u)>P(Bg1— Bagr<u)

by considering the rightmost descendant of each okthenerationd individuals
featuring in the definition oB, x. Now (64) implies
Rm,l—Rm,k—lgO asm — o0.

But this property (for each) states that an ever-increasing number of individuals
accumulate near the rightmost individual, easily implying

Riypi11— Rp1— €ss sugE > 0.

This in turn implies lim, m*lRm,l = ess su1, contradicting Lemma 47.0
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REMARK 1. Some multiplicative martingales used in the study of BRW (see,
e.g., [20]) are of the form

Za@)=m"(0) > expY)

where(Y/",i > 1) are the positions of the generatiarindividuals. The a.s. limit
Z(©) =Ilim, Z,(9) satisfies the RDE

ZLY exp&) Zi/m(®)

This is an instance of an “average-case” RDE paralleling the “extreme-case”
RDE (54).

REMARK 2. Very recently Iksanov has shown (personal communication) that
one can derive existence of solutions to (54) by considering a related linear
RDE. Interestingly, all those solutions have exponential right tail and hence by
Proposition 48 none are endogenous.

6. Frozen percolation process on infinite binary tree. A different setting
where a particular “max-type” RDE plays the crucial role isfitozen percolation
process on the infinite binary tree, studied in [5]. Mgt= (V, &) be the infinite
binary tree, where each vertex has degre€ & the set of vertices anglis the set
of undirected edges. L&U,).c¢ be independent edge weights with Unifginl)
distribution. Consider a collection of random subsétsc & for 0 <r < 1, whose
evolution is described informally by:

(%)

(A cluster is formally a connected component of edges, but we also consider it as
the induced set of vertices.) For comparison purposes, a more familiar process is
B; :={e e &|U, <t}, for 0 <t < 1; which gives the standard percolation process
on T3 [35]. It is elementary that the clusters 8f can be described in terms of the
Galton—Watson branching process and that infinite clusters exisbf(% but not

forr < % The evolution of the process;, 0 <t < 1) can be described informally

by:

Ao is empty; for eacle € &, attimer = U, setA, = A,_ U {e} if each
end-vertex ok is in a finite cluster of4,_; otherwise set; = A,_.

for eache € &, attimer = U, setB, = B;_ U {e}.

We notice that any process satisfying (nust haveA, = B, forr < % butA, C B,

forr > % Qualitatively, in the procesga,) the clusters may grow to infinite size
but, at the instant of becoming infinite, they are “frozen” in the sense that no extra
edge may be connected to an infinite cluster. The finaltgetill be a forest oril'3

with both infinite and finite clusters, such that no two finite clusters are separated
by a single edge.
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Following [5] we call this process thé&ozen percolation process onTs.
Although this process is intuitively quite natural, rigorously speaking it is not clear
that it exists or that«) does specify a unique process. In fact Itai Benjamini and
Oded Schramm (personal communication) have an argument that such a process
does not exist on th&2-lattice with its natural invariance property. But for the
infinite binary tree case [5] gives a rigorous construction of a process satisfyjing (
which can be summarized as follows (Theorem 1 and Proposition 2 of [5]).

THEOREM 52. There exists a joint law for (4,,0<¢ <1) and (U, e € &)
such that (%) holds and the joint law is invariant under the automorphisms of Ts.
Furthermore for a prescribed edge e and vertex v of T3, and fixed ¢ in (%, 1), the
following are true:

(a) P(cluster containing e becomesinfinitein [z, 7 4+ dt]) = 4%4 dt,

(b) P(cluster containing v becomesinfinitein [z, r + dt]) = 8734dt,

(c) P(einsomeinfinite cluster of A1) = {5, P (einsomefinitecluster of A1) =
o Ple ¢ A1) = 2,

(d) P(vinsomeinfinite cluster of A1) = %, P (vinsomefinitecluster of A1) =
o P(v ¢ A1) = g5

6.1. 540 arguments. The phrasecircular argument has negative connota-
tions, but we will describe what we term a 34@e., one and a half circles) argu-
ment. In summary, the three half-circles are:

e Suppose a process with desired qualitative properties exists. Do heuristic
calculations leading to an RDE.

e Solve the RDE. Use the associated RTP to make a rigorous construction of a
process.

e Repeat original calculations rigorously.

In the next three sections we outline how this argument is used to prove
Theorem 52. A similar 540argument in a more sophisticated setting underlies
the mean-field minimal matching example of Section 7.3.

6.2. Sage 1. Suppose that the frozen percolation process exist§soand
has the natural invariance and independence properties. Define a modified tree

called theplanted binary tree, written"f‘g> = (17, §), where one distinguished
vertex (we call it theroot) has degree 1 and the other vertices have degree 3.
Write ¢ for the edge at the root. Clearlys is isomorphic to the subtree @f3

which can be obtained by first making some vertex the “root” and then removing
two edges coming out of the root and their induced subtrees. Given independent
Uniform(0, 1) variables, sayU.),.g, as the edge weights dfg, we suppose we

can define a frozen percolation process on this modified treeY Lt the time
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at which the component containing the edgbecomes infinite, witl = oo if
never. Lete; andes be the two edges which are coming out of the edperite

the corresponding induced planted subtree"ﬁi‘g;ilsand’}I“g2 Let Y1 andY> be the
respective times for the edges ande; to join an infinite cluster mﬂ‘gl or "]1‘32
Now considefl's. If U; < min(Yy, Y»), then the edgeé joins an infinite component;
otherwise it never enters the process. Thus one can write

(65) Y = ®(min(Yy, Y2), Uz),
whered: [ x [0, 1] — I, with I =[5, 1] U {oc} is defined as

X, if x>u,
(66) O(x,u)=

00, if x <u.

Observe that the subtre@, , T3, are isomorphic tdl'3, and soY; and Y» are
independent and distributed &s And so the law ofY on the setl satisfies the
RDE

(67) Y = ®(min(Y1, Y2), U),

where Ui Uniform(0, 1) and Y1, Y> are i.i.d. and have the same law #s
Fortunately this RDE is easy to solve.

LEMMA 53 ([5]). A probability law n on I satisfies the RDE (67)if and only
if for some xo € [3, 1]

1 1 1
(68) ,u(dx):ﬁdx, > <X < X0; M(OO)ZEO-

PROOF Suppose that a probability lay on I is a solution of (67) with
distribution functionF. Then from the definition of

F(x)= P(U <min(Yy, Y2) <x), F<x<l

SupposingF has a density’ on [%, 1] (which can be proved by a more careful
rephrasing of the argument); we get

F'(x) =2x(1— F(x))F'(x), T<x<1,

and hence it follows that

(69) F(x)=1— % on[3, 1] N supporty).

Since the functionr |—> 1- E is strictly increasing, identity (69) can only happen
when suppoliw) = 2, xo] for some2 <xp<1.

Conversely it is easy to see that such a probability law/ogatisfies the
RDE (67). O
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From the definition oft’ in terms of frozen percolation on the planted binary
tree, we expect the support of its distribution to be alllc [%, 1] U {oc}, and
so we choose the particular solution (68) wiiy= 1, that is, the distributionw
defined by

1 1 1
or equivalently
1 1
(71) vy, ooh=o- S=ysl
y 2

Continuing to argue heuristically, we can now do the calculations recorded in
Theorem 52: we give the argument for (a), and the other parts are similar. Write
e1. €2, e3, e4 for the edges adjacent to the edgeand T3, , Ts,, Ts,, T3, for the
corresponding planted binary trees which are all isomorphistand further let
Y1, Yo, Y3, Y4 be the times at which the respective edges enter an infinite cluster of
the frozen percolation processes restricted to the subtrees. Writfogthe time
taken for the edge to enter an infinite cluster (noté = ~c if never), then

min Y;, if U, < min Y;,
(72) 7 — ] 1<i<4 1<i<4
00, otherwise.

Thus the density; of Z on [%, 1] in terms of the law of Y can be written as

dv 3 1 1 3 1
fZ(x)=XX4E X v°((x,00)) =4x x ﬁ X (§> =m,

as asserted in part (a).

6.3. Sage2. We now start a rigorous construction based on knowing that the
distributionv at (70) solves the RDE (67). For each edge& let ¢ ande be the
two directed edges defined ey and let€ be the set of all directed edges. Now
for the directed edges we have a natural language of family relationship: the edge
¢ = (v, w) has twochildren of the form (w, x1) and(w, x»). It is not hard to use
the Kolmogorov consistency theorem and the fact thatlves (67) to show

LEMMA 54 ([5]). There exists a joint law for ((Uz, Y;), € € €) which is
invariant under automor phisms of T3 and such that for each e € &
Y; haslaw v,
(73)
Y; =®(min(Yz,Yz,),U;)  as,

where ¢1 and ¢, are children of ¢, and where for eache € &, U; = U; = U..
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Now we can outline the rigorous construction of the frozen percolation process.
Essentially, one takes the heuristically obvious property (72) as a definition. In
more detail, for an undirected edgedefined, as the set of four directed edges
adjacent te and directed away from it. Define

(74) A1 :={e€ &|U, <min(Yy :e' €0,)}.
Finally for 0<t < 1 define
(75) Ay = {e € A1|U, < t}.

It is now clear that ;) inherits from(Y3) the automorphism-invariance property,

as well as the property that the only possible time at which an edge join the
process is at timé&/,. To check that+,) actually satisfies«) and so it is a frozen
percolation process is somewhat more elaborate, and this part of the proof [5] of
existence is omitted here.

6.4. Sage3. We can now repeat the argument leading to (72) in terms of the
explicit construction above and its modification on planted binary trees. This leads
to part (a) as shown in Stage 1, and the other parts are similar.

6.5. The endogenous property. If the RDE were nonendogenous, then the
frozen percolation process would have a kind of “spatial chaos” property, that the
behavior near the root was affected by the behavior at infinity. For several years we
conjectured in seminar talks that the RDE is nonendogenous, but recently proved
the opposite.

THEOREM 55 ([16]). The invariant RTP associated with (67), (70) is
endogenous.

7. Combinatorial optimization within the mean-fiedld model of distance.

In problems involvingz random points ind-dimensional space, explicit calcu-
lations forn — oo asymptotics are often complicated by the obvious fact that
the () inter-point distances are dependent r.v.'s. One can make a less realistic but
more tractable model by eliminating the ambieérdimensional space and instead
assuming that th§) inter-point distances aiedependent r.v.s. This is themean-

field model of distance. Specifically, assume inter-point distances have exponential
distribution with meam, so nearest-neighbor distances are order 1. This model
mimics true inter-point distances th= 1 dimension; other distributions can be
used to mimic othed without changing essential aspects of what follows.

This model, and study of theninimal spanning tree and minimal matching
problems within it, are surveyed in some detail in Sections 4 and 5 of [11]. Here
we emphasize a different example, in Section 7.2, and only briefly record the
RDEs arising in the minimal matching, traveling salesman and variant problems
(Sections 7.3-7.6).
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(9]

0.5 0.8 2.1

18/ 1. ¥.7 0.9/1. ¥.5 0.4/2. 4.1

FIG. 4. Part of arealization of the PWIT that shows just the first three children of each vertex. The
length is written next to each edge e.

|37

7.1. The PWMIT approximation. In the mean-field model above, the key feature
is that there is am — oo “local weak limit” structure called the PWITPbisson
weighted infinite tree), which describes the geometry of the space as seen from a
fixed reference point. In brief (see [11] for more details) consider a Poisson point
process

(76) O<é<ébr<éz<--

of rate 1 on(0, oo0). Take a root vertexy. Let this root have an infinite number

of children 1 2, 3, ..., the edge-lengths to these children being distributed as the
Poisson process;, i > 1) at (76). Repeat recursively; each veridras an infinite
number of children(ij, j > 1) and the edge-length;, j > 1 are distributed

as the Poisson process (76), independent of other such Poisson processes. See
Figure 4.

7.2. Critical point for minimal subtrees. Consider the mean-field model on
n points as the complete gragy, on n vertices, and write, for the length of
edgee. For a subtred, that is, a tree whose vertices are some subset of: the
vertices, write

[t| = number of edges it

L(t)=) & = total length oft,

ect
a(t) = L(t)/|t| = average edge-length of
A well-known result [32] on minimal spanning trees says that, if we insist on

[t = n — 1, then the smallest we can maké) is about(3) :=); i~3. If we
fix 0 < ¢ < 1 and consider subtrees with aroundedges, then we guess that the
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smallest value ofi(t) should be around(e) asn — oo, for some deterministic
function é(¢). It is not hard to show that(e) > 0 for largee while () = 0 for
smalle. So there must be aitical point at whichd(-) leaves 0; this is analogous
to critical points in percolation theory. What is interesting is that the critical point
is determined by an RDE. It is convenient to turn the problem around and study
the maximum size of a subtreé subject to the constraint thatt) < c¢. For fixed
0 < ¢ < oo consider the RDE o = [0, o0)

o
77 Y 4 Z(c —&5+YHT; (&) a Poisson rate 1 point process @co).

i=1

ProPoSITION 56 ([4]). Define M(n,c) = max|t|:t asubtree of K,,,
a(t) < c}. Then there exists a critical point ¢(0) € [e~2, e~1] such that
(78) ifc<c(0)  then nIM(n,c)%0,
(79) ifc>c(©  then 3y(c) > Osuchthat P(n"M(n,c) > n(c)) — 1,
and

¢(0) = inf{c|RDE (77) has no solution on [0, co0)}.

The conceptual point to emphasize is that, by analogy with Example 2, we are
studying an “average” by studying whether an associated “compensated sum” is
finite or infinite.

First we explain how the RDE (77) arises. In the PWIT define, for integers
h >0,

Y™ = supc|t| — L(t)|roote t, heightt) < A},

where thesup is over subtrees of the PWIT, and where heigtiy denotes the
maximum number of edges in a pathtifrom the root. To obtain the maximizing
t one simply considers in turn each chilaf the root and considers whether one
gets a positive contribution by including childn t. The contribution equals

=g+

whereé; is the length of edge from root to chiidanle.(hfl) iS a sup over subtrees
t; of child i:

y" ™Y = supie|t;| — L(t;)Iheightt;) < h — 1.
So

o0

(80) YW =3 (c—g+r" )"
i=1
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where the(Yl.(h_l)) are, by the recursive structure of the PWIT, independent copies
of Y= Writing 7. for the map on distributions associated with the RDE (77),
the last equality says

T (80) = dist(y ™).
Lemma 15 then implies that fer< ¢(0),

T'(60) S ue  ash— oo,

where ., supported on0, co), is the lower invariant measure; and that the RTP
is endogenous. Indeed, is just the distribution of

Y = sup(c|t| — L(t)|roote t, t finite}.

OUTLINE PROOF OFPROPOSITION56. Fixc < ¢(0). Roughly, the fact that
Y s finite implies that there cannot exist large subtrees of the PWIT with
average edge-length much greater tlkathe fact that the PWIT represents the
local structure ofK,, for largen implies that the same should hold f&,; this is
the lower bound (78) of the proposition. Let us amplify this argument into four
steps. Fix an integen.

Sep 1. The connection betweek, (the complete graph on vertices with
random edge-lengths) and the PWIT is provideddmal weak convergence of the
former to the latter—see [11], Theorem 3 for formalization. A soft consequence of
local weak convergence is

Iilr;n distmaX{c|t| — L(t)|t C K,,, rootet, |t| < 3m]}

(81)
is stochastically smaller thai®" so.

Indeed, we would have asymptotic equality if we required only thave depth
< 3m; but we make a stronger restriction.

Sep 2. The quantity above can be used to bound the chance of the event: there
exists a small tre¢ containing the root and with|t| — L(t) > x. Consider the
mean number of verticassatisfying that event (with in place of root) and apply
Markov’s inequality to deduce the following:

P(3 at leastSn verticesv s.t.3t > v with ¢|t| — L(t) > x and|t| < 3m)
is asymptotically< § L [x, oo].

Sep 3. Any tree with at leasti@d edges can be split into edge-disjoint subtrees,
each having between and 3 edges.
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Sep 4. We are assuming < c(0), so interposer < ¢’ < ¢* < ¢(0). If the
desired conclusion (78) were false, there would be some “bigttvaeh [t| > en
anda(t) < c. Use step 3 to split into “small” subtrees; a deterministic averaging
argument shows there would exist at ledstverticesv in small treest’ with
a(t’) <. Here$ depends or, ¢, ¢’ but not onn, m. These trees now satisfy
c*It| — L(t) > m(c* — ¢’). Applying step 2, the chance of this many small trees is
at mosts L [m(c* — ¢’), 0o]. Sincem is arbitrary andu.(co0) = 0 we get the
lower bound (78). We are done.

The argument for the upper bound (79) is parallel. Eor ¢(0) eachv has
nonvanishing chance of being in some large finite tregth a(t) > ¢(c), and one
can patch together these trees to gefdn0-size tred with a(t)) > ¢(¢). O

Incidentally, the lower bound(0) > ¢~ stated in Proposition 56 arises from
the first moment method, and the upper bou(@ < ¢~ comes from considering
paths as a special case of trees. Moreover, numerically ~ 0.263. See [4] for
details.

7.3. Minimal matching. Consider again the mean-field model of distance, that
is, the complete grapk’, with random edge-lengths with exponential (megn
distribution. Take: even and consider a (complete) matching, that is, a collection
of n/2 vertex-disjoint edges. Define

M, = minimum total length of a complete matching

This problem is often studied in the bipartite case ([61], Chapter 4) but the two
versions turn out to be equivalent in our asymptotic setting. The following limit
behavior was argued nonrigorously in [53] and proved (in the bipartite setting) in
[1, 6]. There are fascinating recent proofs [48, 55] of an underlying exact formula
for EM,, in the bipartite, exponential distribution setting, but it seems unlikely that
the applicability of exact methods extends far into the broad realm of problems
amenable to asymptotic study.

THEOREM57. Z2EM, — n2/6.

The technically difficult proof is outlined in moderate detail in Section 5 of [11].
Here we emphasize only the underlying RDE, and some analogous RDEs arising
in analogous problems.

The central idea is that, since the PWIT originates as a “local weak limik’,0f
one can relate matchings @), to matchings on the PWIT. The technically hard,
though noncomputational, part of the proof is to show that the limi ErEMn
must equal

(82) inf{E(typical edge-length afi() : M an invariant matching on the PWJIT



1096 D. J. ALDOUS AND A. BANDYOPADHYAY

Hereinvariant means, intuitively, that in defining the matching on the PWIT,
the roote must play no special role. Now one can see how to construct the optimal
matching Mopt on the PWIT by reusing two ideas we have seen earlier in this
survey. First, we use the 54@rgument from Section 6.1 start with heuristically
defined quantities, obtain an RDE and use its solution as a basis for rigorous
construction. Second, we use the idea from Section 4.6 of seeking a recursion
for a quantity defined asdifference.

Write T for the PWIT. Consider the definition, analogous to (50),

Xz = length of optimal matching om

(83) — length of optimal matching om \ {&}.

Here we meartotal length, so we gebo — oo, and so this makes no sense
rigorously. But pretend it does make sense. Then for each ghoithe root we
can defineX ; similarly in terms of the subtre®’ rooted at;:

X j = length of optimal matching om/
— length of optimal matching ofi”/ \ {;}.

One can now argue, analogously to (51),

(84) Xz= min (&§; — X)),

1<j<oo
(85) root is matched to the vertex argmig; — X ;) in the optimal matching.
Recall(§;) is the Poisson process (76). This motivates us to consider the RDE
(86) X< min &-X) (S=R).
1<i<oo
Luckily, this turns out to be easy to solve.
LEMMA 58 ([6], Lemma 5). The unique solution of (86) is the logistic
distribution
(87) PX<x)=1/1+e), —00 < X < 00,
or equivalently the density function
Fx) = (24 e74/%)72, —00 < X < 0.
Implementing the 540argument, we will use the logistic solution or the RDE
to construct a random matching on the PWIT. Each edgethe edge-seE of T
corresponds to two directed edgés:: write E for the set of directed edges and
write &(¢) = &(e) = &(e) for the edge-length. For a directed edgew) we can

call the directed edgegw, x)| x # v} its children. The Kolmogorov consistency
theorem and the logistic solution of (86) imply (cf. Lemma 54)
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LEMMA 59. Jointly with the edge-lengths (£ (e), e € E) of the PWIT we can
construct {X (¢), ¢ € E} such that:

(i) each X (¢) hasthelogistic distribution,
(i) for each e, with children ey, eo, ... say,

(88) X(e) = l<r1in<noo(§(ej) —X(¢))).

Theorem 61 will show thaX (v, v') depends only on the edge-lengths within
the subtree rooted at. Guided by the heuristic (85), for each verterefine
(89) v* = arg min(& (v, V') — X (v,0")).
v ~Y

In view of (82) an outline proof of Theorem 57 can be completed by proving

PROPOSITIONGO ([6], Lemma 16, Propositions 17 and 18). {dje set of
edges (v, v*) forms a matching Mopt on the PMT.

Write Mopt(z) for the vertex to which the root @ is matched in Mopt, SO that
the mean edge-length in Mopt can be written as £& (@, Mopt(g)). Then:

(b) E&(2, Mopt(@)) = 72/6.
(c) For any invariant matching M,

(90) E&(@, M(2)) — E&(@, Mopt(2)) = O,
Let us indicate only the proofs of (a) and (b). For (a) we need only show that
(v*)* = v. Note first

E(w,v") — X(v,v%) < m?in(é(v, y)— X, y)) by definition ofv*
YFU

=X ((v*, v) by recursion (88)
or equivalently
(91) E(,v*) < X(v,v*) + X(v*, v).
And if z # v* is another neighbor af, then

§(v,2) —X(v,2) > rygi?(é(”’ y) = X(v,y))
= X(z,v)

or equivalently

E(w,z2) > X(,2) + X(z,v).

We conclude that* is theunique neighbor ofv satisfying (91). But the right-hand
side of (91) is symmetric, so applying this conclusiontshows(v*)* = v.
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To prove (b) we calculate the mean length of the edge at the root. In order for this
length to bex, there must be an edge of lengtHrom the root to some vertex,
and also (91) we must hawe< X (root, j) + X (J, root). But these are distributed
as independent logistics, s&y andX», and so

(92) ES(@,Mopt(Q))zj(;ooxdx P(x < X1+ X2)

= JE((X1+ Xo)t)? by a general formula
= 1E(X1 + X2)? by symmetry
= 1Ex?

(93) =72/8,

the last step using a standard fact that the logistic distribution has vari&rige

THEOREM 61 ([15]). The invariant RTP associated with the RDE (86) is
endogenous.

The significance of this result is pointed out in Section 7.5. The proof
involves somewhat intricate analytic study of the iteraé8" (u x w) to verify
Theorem 11(c). We remark that we have not succeeded in using contraction
methods to prove Theorem 61. Indeed the operat@ssociated with the RDE
(86) is not a strict contraction. To see this, it is easy to checkfhiatwell defined
on the subspace; of distributions with finite mean. Moreover, ¥ has logistic
distribution, then the distribution af + X is a fixed point forT? for any ¢ € R.
HenceT cannot be a strict contraction on the whole®f. This shows that the
logistic solution of (86) does not have full “domain of attraction,” but the question
of determining the domain of attraction remains open.

OPEN PROBLEM 62. Find the subsetb C #; such thatT”(v)—d>//, as
n — oo if and only if v € D, wherep is the logistic distribution.

REMARK. The way we started the heuristic argument at (83) may seem
implausible, because one might expect analogous quantities inAisigtting to
have spreads which increase to infinity withBut a better analogy is with the
position R, of the rightmost point in BRW,; its spread (Lemma 43) stays bounded
with n.

7.4. TSP and other matching problems. Here we follow Sections 6.1 and 6.2
of [6], which showed how earlier work [51, 52] fits into the current framework.

As suggested at the start of Section 7, one can define a mean-field model of
distance with any regiseudo-dimension 0 < d < oo to mimic distances between
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random points ind dimensions. Precisely, take the complete grdghon n
vertices, and let the i.i.d. edge-lengths have distributitAL where

P(L §x)~xd/d asx | 0.

This scaling keeps nearest-neighbor distances as order 1. And in the local
approximation of thisk,, by the PWIT, we simply change the distribution of edge-
lengths at a vertex in the PWIT: the homogeneous Poisson process of rate 1 is
replaced by an inhomogeneous Poisson proces§i0< & < - - - of ratex?~1; in

other words

E(number ofi with & < x) =x9/d.

For minimum matching in pseudo-dimensianit is remarkable that (heuris-
tically, at least) the previous analysis is in principle unchanged. Theorem 57
becomes [cf. (92)]

.2 00
lim-EM, = de(X1+X2>x)dx
n n 0
whereX1 and X» are independent copies of the solution of the RDE

(94) X< min & —-X) (S=R).

1<i<oo
Thus the abstract structure of the limit theorem is unchanged in pseudo-
dimensiord. But for d # 1 there is no known explicit solution of (94); and while
numerical methods indicate that there is indeed a unique solution, rigorous proof
remains elusive.

OPEN PrROBLEM 63. Prove that for each real©d < oo there is a unique
solution to the RDE (94), and that the associated invariant RTP is endogenous.

Similarly, in the TSP (traveling salesman problem) in pseudo-dimengjon
a variant of the argument leading to recursion (86) leads us to the recursion

(95) X< middE - X)) (S=R).

1<i<oo
Here min?! denotes the second minimum, and the analog of Theorem 57 is that
the lengthsS, of the optimal TSP satisfies

1 00
lim ~ES, :/ x4 P(X1+ X2 > x)dx
n 0

where X1 and X, are independent copies of the solution of the RDE (95).
Numerically the limit is about 24 for d = 1. Again numerical methods indicate
that there is a unique solution for all but no rigorous proof is known even for
d=1.
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OPENPROBLEM64. Prove thatforeachreakdd < oo (or atleast fod = 1)
there is a unique solution to the RDE (95), and that the associated invariant RTP is
endogenous.

Instead of studying minimal matchings one could study Gibbs distributions on
matchings; this leads to a different RDE ([6], (46), and [62])

o0
XLy e %y,  (S=R*)
i=1

which is somewhat in the spirit of the linear case.

7.5. The cavity method. The nonrigorouscavity method was developed in
statistical physics in the 1980s; see [54] for a recent survey. Though typically
applied to examples such as ground states of disordered Ising models, it can also
be applied to the kind of “mean-field combinatorial optimization” examples of the
last two sections. It turns out that the methodology used in [6] to make a rigorous
proof of the mean-field matching limit serves to provide a general methodology
for seeking rigorous proofs paralleling the cavity method in a variety of contexts.
This is a broad and somewhat complicated topic, and the time is not ripe for a
definitive survey, but it seems worthwhile to outline the ingredients of the rigorous
methodology, pointing out where RDEs and endogeny arise.

Start with a combinatorial optimization problem over some sizexndom
structure.

e Formulate a “sizexo” random structure, the — oo limit in the sense of local
weak convergence.

e Formulate a corresponding combinatorial optimization problem on theosize-
structure.

e Heuristically define relevant quantities on the sizestructure via additive
renormalization [cf. (83)].

e If the sizeoo structure is treelike (the only case where one expects exact
asymptotic solutions), observe that the relevant quantities satisfy a problem-
dependent RDE.

e Solve the RDE. Use the unique solution to find the value of the optimization
problem on the sizeo structure.

e Show that the RTP associated with the solution is endogenous.

e Endogeny shows that the optimal solution is a measurable function of the data,
in the infinite-size problem. Since a measurable function is almost continuous,
we can pull back to define almost-feasible solutions of the sipeablem with
almost the same cost.

e Show that in the size-problem one can patch an almost-feasible solution into
a feasible solution for asymptotically negligible cost.
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7.6. Saling laws in mean-field combinatorial optimization. Here we indicate
current nonrigorous work on scaling exponents associated with mean field of
combinatorial optimization problems. As indicated in the methodology description
above, the main requirement for making rigorous proofs would be proofs of
unigueness and endogeny for the RDEs which arise. So our discussion emphasizes
the RDEs.

7.6.1. Near-optimal solutions. In the context of mean-field minimum match-

ing, compare the optimal matchingé’;)t with a near-optimal matching(®™ by

using the two quantities
8, (M™) = n " E[number edges ol ™ \ M),
£n(M™) =n~TE[cos(M ™) — cos(Ma)]-
Then define
e"(8) = minfe, (M™)|8,(M™) > &}.

We anticipate a limit(8) =lim,, €7 (§), and then can ask whether there is a scaling
exponent

e(8) < &% ass — 0.

Such a scaling exponent provides a measure of how different an almost-optimal
solution can be from the optimal solution.

Remarkably, it is not so hard to study this question by an extension of the
methods of Section 7.3. It turns out [10] that the key is the extension of the RDE
(86) to the following RDE ors = R3:

X min(&; — X;)
(96) (Y) = | Min(& — (Zi + M1 =i") = Vi1 #i7))
“ min(&; — ¥;)

where
i* = argming — X;)

and wherex > 0 is a Lagrange multiplier. In terms of the solution of this RDE
one can define functiongA) andds (1) which then define the limit function(s).
Numerical study in [10] indicates the scaling exponent 3 in both minimal
matching and TSP problems in the mean-field model.
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7.6.2. TSP percolation function. In the context of the TSP in the mean-field
model of distance, one can study a functigrn(z), 0 < u < 1) analogous to the
percolation function, defined as follows. Recak,, is the complete graph with
random edge-lengths. Over all cycles, in K, containingun vertices, letC, ,
be the minimum average edge-lengthmf,. We anticipate a limit

Iirrln ECy., = p(u).

It turns out [8] that what is relevant is the following RDE for a distributidh Z)
onR?:

max(. — & + X; — Z;")
l

X\ d
97 =
©0 <Z> max(x — & + X; — Z) + maX¥ (. — & + X; — Z7H)

Here A > 0 is again a Lagrange multiplier. In terms of the solution of this RDE
one can define functions(1) andu (i) which then define the limit functiop (u).
Numerical study in [8] indicates a scaling expongit) < u* asu | 0 witha = 3.
Moreover, for both the present “percolation function” setting and the previous
“near-optimal solution” setting, one can pose analogous questions involving trees
in place of tours, and it turns out [8, 10] that for both these questions the scaling
exponent is 2. But at present we have no good conceptual explanation of these
fascinating observations.

7.6.3. First passage percolation. A somewhat different setup is appropriate
for a mean-field model of first passage percolation. Take the 4-reguldl tweih
in-degree 2 and out-degree 2 at each vertex; regard this as the mean-field analog of
the oriented lattic&2. Attach independent exponential(1) random variable®
the edges off. We studyflowsf = (f(e)) on T, for which the in-flow equals the
out-flow at each vertex, with & f(e) < 1. Associated with an invariant random
flow are two numbers

af)=Ef(e): the average density of the flow

(f) = Eif;?f(e) :

We study the function

the flow-weighted average edge-traversal time.

8* (1) :=supga(f) : f an invariant flow withr (f) = 7}, O<t<1.

We haves*(t) > 0 iff t > tppp, Whereteppis the time constant in first passage
percolation orl. As above, to study scaling exponents the key is a certain RDE
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for S =R™, which turns out [7] to be

3
Z 4 min(Zz—i-éz—a, Z3+§3—a,2(zi +&; —a))
(98) i=1

— min(O, Y ZitEi—a), Y (Zi+&— a)).

i=1,2 i=1,3

Here a is a parametek (trpp, 1). In terms of the solution of this RDE one
can define functions(a) and z(a) which then determine the functiodi(z).
Numerical study in [7] indicates a scaling exponent 2:

8*(r) ~12.7(t — ‘L’|:|Dp)2 ast | trpp
8. Complements.

8.1. Numerical and Monte Carlo methods. In the context of studying a fixed
point equation (u) = p or the bivariate analog in Theorem 11, there are several
numerical methods one might try: solving the equation directly or calculating
iteratesT" (o) for some convenienfip; discretization or working in a basis
expansion. But implementation is highly problem-dependent.

In contrast, given an RDE(ig(s,Xi, i > 1) the bootstrap Monte Carlo
method provides a very easy to implement and essentially problem-independent
method. Start with a list oV numbers (takeV = 10,000 say) with empirical
distributiono. Regard these as “generation-0" individueXsO, 1<i<N).Then
T (;10) can be approximated as the empirical distributionof N “generation-1"
individuals (Xl.l, 1 <i < N), each obtained independently via the following
procedure. Take& with the prescribed distribution, takB, I, ... independent
uniformon{1,2,..., N} and set

Xh= (6. X9 X9, ).
Repeating for, say, 20 generations lets one see whéthgrp) settles down to a
solution of the RDE. Note that as well as finding solutions of a given RDE, this
method can be used to study endogeny via Theorem 11(c).

8.2. Smoothness of densities.  For linear RDES, under appropriate assumptions
one can show that fixed points are unique and ha%e densities, and use this
as a basis for a theoretical “exact sampling” scheme; see [26]. In the Quicksort
example (21), smoothness of densities has been studied in [31]. It would be
interesting to seek general smoothness results for solutions of max-type RDE.
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8.3. Dependence on parameters.  When an RDE depends on a parameter (e.g.,
our (77) and (96); see also examples involving multiplicative martingales for
branching processes, e.g., [23], Theorem 3.3), it is natural to ask whether the
solution depends continuously on the parameter. This has apparently not been
studied in any generality.

8.4. Continuous-time analogs. We set up recursive tree processes as discrete-
generation processes, analogous to discrete-time Markov chains. Let us mention
two contexts where continuous-parameter analogs of RTPs arise. The first is the
classical KPP equation, which is the analog of (54) for branching Brownian
motion; see [37] for a recent probabilistic account. The second concerns the
maximum X of standard Brownian excursion of length 1. By scaling, the

maximum X, for Brownian excursion of length satisfiesX,itl/zX. Since
excursions above higher levels are independent (conditional on their lengths), we
can write (for infinitesimab)

X =5+ maxi;/(8) X;
1

where (¢;(8),i > 1) are the lengths of excursions above legekithin standard
Brownian excursion. See [18] for this kind of decomposition.

8.5. Process-valued analogs. There are examples where the distribution
arising in an RDE is the distribution of a stochastic process, rather than a single
real-valued random variable. Here is an illustration.

Birth and assassination process[9]. Start with one individual at time 0. During
each individual's lifetime, children are born at the times of a Poisson {rate
process. An individual cannot die before the time of its parent’s death (time 0, for
the original individual); after that time, the individual lives for a further random
time S, i.i.d. over individuals. Consider the random tinkeat which the process
becomes extinct. It is not hard to show [9] that< oo a.s. under the assumption
inf,-ou tEexpus) < 1/x.

It does not seem possible to find an equation Xoitself, but one can study
a procesg X (1),0 <t < oo) for which X = X (0). Specifically, first set up the
process of all possible descendants; for a realization, for e&thX (r) be time
until extinction, in the modification where the first individual has a “fictional
parent” who dies at time. One can now argue that the procé€&qr)) satisfies
the RDE

XOZt+S+ max (&+Xi(t+S—&))
i &<t+S

where(&;) are the points of a Poisson ratgrocess on0, co). This RDE has not
been studied.

OPEN PROBLEM 65. Study the scaling behavior &f in the limit as YA |
inf, u 1E exp(us).
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8.6. Matchings in random regular graphs. Fix » > 2 and consider a random
r-regularn-vertex graphg(n, r). Attach independent exponential(1) distributed
random weightg&,) to edges. As in Section 4.6, |&f (n, r) be the maximum
weight of a partial matching ig.(n, r). Then — oo limit of 4(n, r), in the sense
of local weak convergence, is the infiniteegular tre€l’,. Thus one can seek to
carry out the general program formalizing the cavity method (Section 7.5) in this
setting. Recent work [33] provides interesting positive and negative results. The
relevant RDE is [cf. (51)]

(99) x4 max (0.5 —X;)  (S=R"),

1<i<r—

THEOREM®66 ([33]). Let 7,1 be the map associated with the RDE (99). Then
Tr{l has a unique invariant distribution. Moreover, for (X;) with the invariant
distribution,

limn*EM @, r)
n

1 r
= EEZEi]l(Si —X; = max(§; — X;) > 0>
P} 1<j=r
LA TR R
= e — e -
2 Jo

n r(r—1)(A-5b)

2
[ee} t 2 1
X / f te e (1—e*(1—-b)  (L—e "1 —b)) dzdt
0 0

1-b"
r(1-b)"

where b isthe unique solution of b =1 —

Similar results for matchings on the sparse random graph model are also derived
in [33]. But in the “dual” problem for independent subsets the relevant RDE
turns out to have nonunique solution for 5, and nonuniqueness holds also for
independent sets in the sparse random graph model above a certain critical value.
So this setting provides an important test bed for the range of applicability of the
method.

8.7. Random fractal graphs. A recent thesis [42] studies RDEs arising in the
context of constructing random fractal graphs, and discusses examples such as the
following:

XLg(X1, X2.6)  (S=RM)
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where

¢ £ Bem(p),
g(x1,x2,0) = 2min(xq, x2),

g(x1, x2, 1) = I max(xa, x2).

However, the form of functiong are chosen for mathematical convenience, rather
than being derived from an underlying richer model as in our examples.

8.8. List of open problems and conjectures. These can be fitted into four
categories.

Weakening hypothesesin general theorems.
Open Problem 12: bivariate uniqueness implies endogeny.
Open Problem 19: solving linear RDE @n
Open Problem 18: endogeny for linear RDERMH.
Open Problem 31.: finiteness of discounted tree-sums.
Open Problem 45: convergence of BRW extremes.
Open Problem 49: nonendogeny of extremes in BRW.

Existence and uniqueness of solution of particular RDEs. Here one can also
ask about endogeny.
Open Problem 46: extremes of branching random walk.
Open Problem 63: mean-field matchimlg# 1.
Open Problem 64: mean-field TSP.
All three RDESs in Section 7.6.

Endogeny and nonendogeny.
Conjecture 34: discounted tree-sums.
Open Problem 62: domain of attraction for minimum matching.

Scaling exponents.
Open Problem 30: range of BRW and speed of algorithmic BRW.
Open Problem 65: birth and assassination.
All three RDESs in Section 7.6.

9. Conclusion. Here we attempt to review the big picture.

1. RDEs in general, and max-type RDESs in particular, arise in the study of a
wide range of underlying stochastic models. Look again at the list of models in
Table 1.

2. While for linear RDEs one has hope of general theory, the diversity of forms
of the functiong(-) listed in Table 1 makes it hard to envisage a general theory
which encompasses many max-type examples in one axiomatic framework. Indeed
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it is not clear how to make any useful classification of our examples; we have
given only an informal “simple/not simple” classification (start of Sections 4 and 5)
based on whether there is a relatively easy a.s. construction of random variables
satisfying the RDE.

3. The cavity method (Section 7.5) provides a range of examples new to
the probability community. Existence and uniqueness of solutions has been
proved rigorously only in the special settings of mean-field matching in pseudo-
dimension 1 (Section 7.3) and matchings and independent sets in random graphs
(Section 8.6). It remains a challenge to establish existence and uniqueness in the
other examples of Sections 7.4 and 7.6.

4. What is new in this survey is the discussion of endogeny, both the (fairly
straightforward) general theory in Section 2, and the analysis of examples. In
some cases one can study endogeny in a model parameterized by a distg§bution
(e.g., Corollaries 17 and 26; Proposition 48) but in other cases (Theorems 21, 55
and 61) the argument relies on analytic calculations based on knowing an explicit
formula for the invariant distribution for a speciicFor making the cavity method
rigorous, one would like techniques to establish endogeny without knowing such
explicit formulas.
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