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In certain problems in a variety of applied probability settings (from
probabilistic analysis of algorithms to statistical physics), the central re-
quirement is to solve arecursive distributional equation of the form

X
d=g((ξi ,Xi), i ≥ 1). Here(ξi ) andg(·) are given and theXi are indepen-

dent copies of the unknown distributionX. We survey this area, emphasizing
examples where the functiong(·) is essentially a “maximum” or “minimum”
function. We draw attention to the theoretical question ofendogeny: in the
associated recursive tree processXi, are theXi measurable functions of the
innovations process(ξi)?

1. Introduction. Write P for the space of probability distributions on a
spaceS; in our examples,S will usually beR or a subset ofR. Suppose we are
given a joint distribution for some family of random variables(ξi, i ≥ 1), and given
an S-valued functiong(·) with appropriate domain (Section 2.1 gives this setup
more carefully). Then we can define a mapT :P → P as follows:

T (µ) is the distribution ofg((ξi,Xi), i ≥ 1), where the(Xi) are
independent with distributionµ, independent of the family(ξi).

Within this general framework one can ask about existence and uniqueness offixed
points, that is, distributionsµ such thatT (µ) = µ, and aboutdomain of attraction
for a fixed pointµ, that is, for what initialν do we haveT n(ν) → µ asn → ∞.
One can rewrite such a fixed point equation in terms of random variables as

X
d=g
(
(ξi,Xi), i ≥ 1

)
(1)

where the independence property is assumed implicitly. We introduce the phrase
recursive distributional equation (RDE) for equations of format (1), as opposed to
alternate kinds of fixed point equation. RDEs have arisen in a variety of settings:
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• Galton–Watson branching processes and related random trees,
• probabilistic analysis of algorithms with suitable recursive structure,
• statistical physics models on trees,
• statistical physics and algorithmic questions in the mean-field model of distance.

Three aspects of this topic have been well studied. Perhaps the best known fixed
point equation is

X
d=2−1/2(X1 +X2) (S = R)(2)

whose solutions are the Normal(0, σ 2) family. This example extends to give
characterizations of stable distributions [63]. Moreover, there is a classical topic
“characterization of probability distributions” [43] which considers the named
families of distributions in mathematical statistics and studies many different types
of characterization, some of which can be put into form (1). But this aspect
is rather remote from our concerns. A second aspect concerns general methods
for establishing existence or uniqueness of fixed points. Two natural methods
(monotonicity; metric contraction) are recalled in Section 2.2, while the more
elaborate method of “a.s. unique tree representations” or “tree-structured coupling
from the past” is described in Section 2.6. The third aspect is thelinear subcase
g((ξi,Xi), i ≥ 1) =∑

i ξiXi and its variants, which we review in Section 3. This
is well understood forS = R

+, though not so well understood forS = R.
The main purpose of this survey article is to illustrate the variety of contexts

where RDEs have arisen, and to draw attention to another subclass of RDEs,
those involvingmax-type functionsg. We present in Sections 4–7 a collection
of around ten examples (summarized in Table 1) of max-type RDEs arising from
concrete questions. Most have been studied in detail elsewhere; in each case we
seek to outline the underlying problem, describe how it leads to an RDE, and give
information about solutions of general or special cases. Section 8 provides brief
remarks on Monte Carlo methods, process analogs and continuous-time analogs,
and lists the numerous open problems and conjectures.

On the theoretical side, in Section 2.3 we set out carefully some general theory,
rather natural from the statistical physics or interacting particle system viewpoint
but less apparent from the algorithms viewpoint, which relates RDEs to a type
of tree-indexed process(Xi) which we callrecursive tree processes (RTPs). In
particular we introduce theendogenous property (Definition 7), that in an RTP
Xi is a measurable function of the driving tree-indexed process(ξi) without any
external randomness being needed, and show (Theorem 11) that endogeny is
equivalent to abivariate uniqueness property.

A concluding Section 9 will attempt to review the big picture.

1.1. Three uses of RDEs. When we look at how RDEs arise within specific
models in the Table 1 examples, we will see three broad categories of use, which
seem worth mentioning at the start.
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TABLE 1
Some max-type RDEs. Functions g(·) for which the RDE X

d=g((ξi ,Xi), i ≥ 1) are discussed∗

Section g(·) Underlying model Endog? Comments

S = R
+

4.2 maxi (Xi + ξi)
+ Range of BRW Yes

4.3 mini (Xi + ξi)
+ Algorithm for BRW range Yes

4.6 maxi (ξi −Xi)
+ Matching on GW tree Yes

4.4 ξ0 + maxi (ξiXi) Discounted tree sums Yes ξ0 = 0 reduces to
BRW extremes

4.4 ξ0 + mini (ξiXi) Discounted tree sums Yes See (49)
4.6 (ξ0 −∑i Xi)

+ Independent subset GW tree Yes
7.2

∑
i (c − ξi +Xi)

+ Percolation of MSTs Yes Determines criticalc

7.6 See (98) First passage percolation Conj.Y Mean-field scaling analysis

S = R

5 c + maxi (Xi + ξi) Extremes in BRW No c specified by dist(ξi )
7.3 mini (ξi −Xi) Mean-field minimal matching Yes

7.4 min[2]i (ξi −Xi) Mean-field TSP Conj.Y min[2] denotes
second smallest

OtherS
6 �(min(X1,X2), ξ0) Frozen percolation on tree Yes � defined in Section 6
7.6 See (96), (97), (98) Mean-field scaling Conj.Y S = R

2 or R
3

∗Note x+ = max(x,0). For S = R a “max” problem is equivalent to a “min” problem by
transformingX to −X, but for S = R

+ this does not work: the problems in Sections 4.2 and 4.3
are different. Typically the(ξi ) are either i.i.d. or are the successive points of a Poisson process on
(0,∞). “Endogenous” refers to fundamental solution. Key to acronyms: BRW, branching random
walk; GW, Galton–Watson; MST, minimal spanning tree; TSP, traveling salesman problem.

1.1.1. Direct use. Here is the prototype example ofdirect use, where the
original question asks about a random variableX and the distribution ofX itself
satisfies an RDE.

EXAMPLE 1. Let X be the total population in a Galton–Watson branching
process where the number of offspring is distributed asξ . In the caseEξ ≤ 1 [and
P(ξ = 1) �= 1] it is well known thatX < ∞ a.s., and then easy to check that dist(X)
is the unique solution of the RDE

X
d=1+

ξ∑
i=1

Xi (S = Z
+).

We will see other direct uses in Proposition 25 and in the examples in
Section 4.4.

1.1.2. Indirect use. The simplest kind of indirect use is where the quantity
of interest can be written in terms of known quantities and some other quantity
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which can be analyzed via an RDE. See Proposition 28 and Theorem 41 for results
of this kind. But there is a more intriguing kind of indirect use which we call a
540◦ argument, exemplified in the frozen percolation model of Section 6 and also
used in the mean-field combinatorial optimization problems in Sections 7.3–7.6.
In these examples we start with a heuristically defined quantityX, and a heuristic
argument that it should satisfy an RDE. Next we make a rigorous argument by first
solving the RDE and then using the associated, rigorously defined RTP as building
blocks for a rigorous construction.

1.1.3. Critical points and scaling laws. We introduce this idea with an
artificial example.

EXAMPLE 2. Let ξ be R-valued,Eξ = β, and let(ξi, i ≥ 1) be independent
copies ofξ . For fixedc ∈ R consider the RDE

X
d= max(0,X + ξ − c) (S = R

+).(3)

Then there is a solutionXc on R
+ if and only if c > β. Moreover, if var(ξ) ∈

(0,∞), then

EXc ∼ var(ξ)

2(c − β)
asc ↓ β.(4)

Here (3) is aLindley equation from classical queuing theory [12], and it is
straightforward that forc > β the solution is

Xc
d= max

j≥0

j∑
i=1

(ξi − c).(5)

ThisXc is a.s. finite by thestrong law of large numbers, and the stated asymptotics
(4) follow from, for example, weak convergence of random walks to Brownian
motion with drift.

We will see later three examples of problems involvingcritical values or
near-critical behavior of some random system. In such problems there is a
parameterc and we are interested in a critical valueccrit of c defined as the
value where some “phase transition” occurs, or in behavior of the system forc

nearccrit. In Section 7.2 we see an example where the critical point is determined
as the boundary between existence and nonexistence of a solution to an RDE
(Proposition 56). In Section 4.3 we see how aspects of near-critical behavior
may be reduced to study of near-critical solutions of an RDE (Theorem 29), and
Section 7.6 contains more sophisticated variations on that theme. Note that in
Example 2, result (4) shows that the behavior of solutions near the critical point
scales in a simple way that does not depend on the details of the distribution ofξ ;
according to the statistical physics paradigm ofuniversality one should expect such
scaling laws to arise in most natural problems.
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1.2. The cavity method. One particular topic of current interest concerns
the cavity method in statistical physics, applied in the context of combinatorial
optimization in mean-field settings. There is a methodology for seeking rigorous
proofs, in which the central issue becomes uniqueness of solution of some
problem-dependent RDE. We will elaborate slightly in Section 7.5.

2. The general setting.

2.1. A precise setup. Here we record a more careful setup for RDEs. Let
(S,S) be a measurable space, and letP (S) be the set of probability measures
on (S,S). Let (�,T ) be another measurable space. Construct

�∗ := �× ⋃
0≤m≤∞

Sm,

where the union is a disjoint union and whereSm is product space, interpreting
S∞ as the usual infinite product space andS0 as a singleton set, which we will
write as{�}. Let g :�∗ → S be measurable. Letν be a probability measure on
� × Z̄

+, whereZ̄
+ := {0,1,2, . . . ;∞}. These objects can now be used to define

a measurable mapT :P (S) → P (S) as follows. Write≤∗ N to mean≤ N for
N < ∞ and to mean< ∞ for N =∞.

DEFINITION 3. T (µ) is the distribution ofg(ξ,Xi,1≤ i ≤∗ N), where:

(i) (Xi, i ≥ 1) are independent with distributionµ;
(ii) (ξ,N) has distributionν;
(iii) the families in (i) and (ii) are independent.

Equation (1) fits this setting by writingξ = (ξi). In most examples there is a
sequence(ξi), but for theoretical discussion we regard such a sequence as a single
random elementξ .

In examples whereP(N = ∞) > 0 a complication often arises. It may be
that g(·) is not well defined on all of� × S∞, althoughg(ξ,Xi,1 ≤ i ≤∗ N)

is well defined almost surely for(Xi)i≥1 i.i.d. with distribution in a restricted
class of probabilities onS. For such examples and also for other cases where
it is natural to restrict attention to distributions satisfying some conditions (like
moment conditions), we allow the more general setting where we are given a subset
P ⊆ P (S) such thatg(ξ,Xi,1 ≤ i ≤∗ N) is well defined almost surely for i.i.d.
(Xi)i≥1 with distribution inP . Now T is well defined as a map

T :P → P (S).(6)

In this extended case it is natural to seek, but maybe hard to find, a subsetP such
thatT mapsP into P .
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2.2. Monotonicity and contraction. There are standard tools for studying
mapsT :P (S) → P (S) which do not depend on the map arising in the particular
way of Definition 3. First supposeS ⊂ R̄ is an interval of the form[0, x0] for some
x0 < ∞, or S = [0,∞). Consider the usualstochastic partial order 
 onP (S):

µ1 
 µ2 iff µ1[0, x] ≥ µ2[0, x], x ∈ S.

SayT is monotone if

µ1 
 µ2 implies T (µ1) 
 T (µ2).

Note that, writingδ0 for the probability measure degenerate at 0, ifT is monotone,
then the sequence of iteratesT nδ0 is increasing, and then the limit

lim
n

T nδ0 = µ∗
exists in the sense of weak convergence on the compactified interval[0,∞].

LEMMA 4 (Monotonicity lemma). Let S be an interval as above. Suppose
T is monotone. If µ∗ gives nonzero measure to {∞}, then T has no fixed point
on P (S). If µ∗ gives zero measure to {∞}, and if T is continuous with respect
to increasing limits [µn ↑ µ∞ implies T (µn) ↑ T (µ∞)], then µ∗ is a fixed point
of T , and µ∗ 
 µ, for any other fixed point µ.

This obvious result parallels the notion oflower invariant measure in interacting
particle systems [47].

Returning to the case of generalS, the Banach contraction theorem specializes
to

LEMMA 5 (The contraction method).Let P be a subset of P (S) such that
T maps P into P . Let d be a complete metric on P . Suppose T is a (strict)
contraction, that is,

sup
µ1 �=µ2∈P

d(T (µ1), T (µ2))

d(µ1,µ2)
< 1.

Then T has a unique fixed point µ in P , whose domain of attraction is all of P .

A thorough account of specific metrics can be found in [57]. Most commonly
used is the Wasserstein metric on distributions onR with finite pth moment,
1≤ p < ∞:

dp(µ, ν) := inf{(E[|Z −W |p])1/p|Z d=µ andW
d=ν}.(7)

Contraction is a powerful tool in the “linear” case of Section 3, where it also
provides rates of convergence in the context of probabilistic analysis of algorithms.
For max-type operations it seems less widely useful (see, e.g., the remark below
Open Problem 62) except in simple settings (e.g., Theorem 32). It is also worth
mentioning that in several examples we have no rigorous proofs of existence of
fixed points (see Sections 5 and 7.4) and so the use of other fixed point theorems
from analysis [45] might be worth exploring.
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2.3. Recursive tree processes. Consider again the setup from Section 2.1.
Rather than considering only the induced mapT , one can make a richer structure
by interpreting

X = g(ξ,Xi,1≤ i ≤∗ N)

as a relationship between random variables. In brief, we regardX as a value
associated with a “parent” which is determined by the valuesXi at N “children”
and by some “random noise”ξ associated with the parent. One can then extend to
grandchildren, great grandchildren and so on in the obvious way. We write out the
details carefully in the rest of this section.

Write T for the set of all possible descendantsi, wherei = i1i2 · · · id denotes
a dth-generation individual, theid th child of its parenti1i2 · · · id−1. Label the
root as∅. MakeT a tree by adding parent–child edges. Given the distributionν

on � × Z̄ from Section 2.1, for eachi ∈ T let (ξi,Ni) have distributionν,
independently asi varies. Recall the functiong from Section 2.1. This structure—
the random pairs(ξi,Ni), i ∈ T, which are i.i.d. (ν), and the functiong—we call a
recursive tree framework (RTF). In the setting of an RTF suppose that, jointly with
the random objects above, we can constructS-valued random variablesXi such
that for eachi

Xi = g(ξi,Xij ,1≤ j ≤∗ Ni) a.s.(8)

and such that, independent of the values of{ξi,Ni|i in first d − 1 generations}, the
random variables{Xi|i in generationd} are i.i.d. with some distributionµd . Call
this structure (an RTF jointly with theXi) a recursive tree process (RTP). If the
random variablesXi are defined only for verticesi of depth≤ d ′, then call it an
RTP of depthd ′. See Figure 1.

Now an RTF has aninduced map T :P (S) → P (S) as in Definition 3.
[In the extended case (6) we need to assume thatT maps P into P .]
Note that the relationship between an RTF and an RTP mirrors the relation-
ship between a Markov transition kernel and a Markov chain. Fix an RTF.
Given d and an arbitrary distributionµ0 on S, there is an RTP of depthd
in which the generation-d vertices are defined to have distributionµd = µ0.
Then the distributionsµd,µd−1,µd−2, . . . ,µ0 at decreasing generationsd, d −1,

d − 2, . . . ,0 of the tree are just the successive iteratesµ0, T (µ0), T 2(µ0), . . . ,

T d(µ0) of the mapT . Figures 1 and 2 attempt to show the analogy between RTPs
and Markov chains.

One should take a moment to distinguish RTPs from other structures involving
tree-indexed random variables. For instance, abranching Markov chain can also
be represented as a family(Xi). But its essential property is that, conditional on
the valueXi at a parenti, the values(Xi1,Xi2, . . .) at the childreni1, i2, . . . are
i.i.d. An RTP in general does not have this property. Conceptually, in branching
processes one thinks of the “arrow of time” as pointing away from the root,
whereas in an RTF the arrow points toward the root.
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FIG. 1. On the left is a Markov chain represented as an iterated function system: Xn is the “output”
of f with “ inputs” ξn and Xn−1. On the right is an RTP; Xi is the “output” of g with inputs ξi and
(Xj, j child of i). In the figure, h is the parent of i and i′, i′′, . . . are siblings of i.

Call an RTPinvariant if the marginal distributions ofXi are identical at all
depths. We have the following obvious analog of Markov chain stationarity.

LEMMA 6. Consider an RTF. A distribution µ is a fixed point of the induced
map T if and only if there is an invariant RTP with marginal distributions µ.

An invariant RTF could be regarded as a particular case of aMarkov random
field, but the special “directed tree” structure of RTFs makes them worth
distinguishing from general Markov random fields.

A central theme of this survey paper is that for certain purposes, the most useful
way of interpreting an RDE (1) is as the defining identity for an invariant RTP.

2.4. Endogeny and bivariate uniqueness. Now imagine (8) as a system of
equations for “unknowns”Xi in terms of “known data”ξi. It is natural to ask if the
solution depends only on the data. We formalize this as the followingendogenous
property. Write

GT = σ(ξi,Ni, i ∈ T).(9)
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FIG. 2. The analogy between Markov chains and RTPs. Specifying a transition kernel is exactly
what is needed to write the equation for a stationary distribution, and exactly what is needed to
specify the chain. Analogously, specifying S and g(·) and dist(ξ) is exactly what is needed to write
the RDE, and exactly what is needed to specify the RTP. But note these equivalences � occur at
different conceptual levels.

DEFINITION 7. An invariant RTP is calledendogenous if

X∅ is GT-measurable.

A rephrasing is more intuitive. Within an RTF there is an embedded Galton–
Watson treeT rooted at∅, whose offspring distributionN is just the marginal
in ν = dist(ξ,N). That is, the root∅ hasN∅ children; each such childi hasNi
children, and so on;T is the random set of all such descendants of the root∅.
Write

G = σ(ξi,Ni, i ∈ T ).(10)
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Then endogeny is equivalent to

X∅ is G-measurable

and this is the criterion we use in practice.
It is intuitively clear (and true: Lemma 14) that when the Galton–Watson tree

T is a.s. finite there will be a unique invariant RTP and it will be endogenous.
But whenT is infinite the “boundary behavior” may cause uniqueness and/or
endogeny to fail. Theorem 11 will show that the endogenous property is equivalent
to a certainbivariate uniqueness property. The simple artificial Examples 8, 10
and 13 should help to distinguish these properties from the “unique fixed point
of T ” property.

Our first example shows that one cannot tell whether or not the endogenous
property holds just by looking atT , even when the fixed point is unique. Write
Bern(p) for the Bernoulli(p) distribution on{0,1}.

EXAMPLE 8. Take S = {0,1}. Define T :P (S) → P (S) by T (µ) =
Bern(1/2) for all µ. So Bern(1/2) is the unique fixed point. We will give two
RTPs with this inducedT , one satisfying and the other failing the endogenous
property.

First take(ξ,N) with N = 2 andξ
d= Bern(1/2), andg(a, x1, x2) = a. Clearly

the inducedT is as above. In the associated RTP whereXi has Bern(1/2)
marginals, observe thatX∅ = ξ∅ and so the endogenous property holds. Now
consider the well-known von Neumann random bit extractor [30], which is a
certain functionḡ : {0,1}∞ → {0,1} which, applied to an independent Bern(p)
input sequence for any 0< p < 1, gives a Bern(1/2) output. Set

g(a, x1, x2, . . .) =
{

a, if x1 = x2 = x3 · · · ,
ḡ(x1, x2, . . .), if not.

Take(ξ,N) with N =∞ andξ
d= Bern(1/2), and then the inducedT is as stated.

In the associated RTP with Bern(1/2) marginals forXi, the random variablesξi
are never used, soX∅ is independent ofG and the endogenous property fails.

Bivariate uniqueness. In the setting of an RTF we have the induced map
T :P → P (S). Now consider a bivariate version. WriteP (2) for the space of
probability measures onS2 = S × S with marginals inP . DefineT (2) :P (2) →
P (S2) by:

T (2)(µ(2)) is the distribution of(g(ξ,X
(1)
i ,1≤ i ≤∗ N),g(ξ,X

(2)
i ,1≤

i ≤∗ N)), where:
(i) ((X

(1)
i ,X

(2)
i ), i ≥ 1) are independent with distributionµ(2) onP (2);

(ii) (ξ,N) has distributionν;
(iii) the families in (i) and (ii) are independent.
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The point is that we use thesame realizations of (ξ,N) in both components.
Immediately from the definitions we have:

(a) If µ is a fixed point forT , then the associateddiagonal measure µ↗ is a
fixed point forT (2), where

µ↗ = dist(X,X) for µ = dist(X).

(b) If µ(2) is a fixed point forT (2), then each marginal distribution is a fixed
point forT .

So if µ is a fixed point forT , thenµ↗ is a fixed point forT (2) and there may or
may not be other fixed points ofT (2) with marginalsµ.

DEFINITION 9. An invariant RTP with marginalµ has thebivariate unique-
ness property ifµ↗ is the unique fixed point ofT (2) with marginalsµ.

The next example shows that even whenµ is theunique fixed point ofT , there
may be fixed points ofT (2) other thanµ↗.

EXAMPLE 10. Take independentI, ξ such thatI has Bern(1/2) distribution
andξ has Bern(q) distribution for some 0< q < 1. Consider the RDE

X
d=XI+1 + ξ mod 2; S = {0,1}.

Here T maps Bern(p) to Bern(p′) where p′ = p(1 − q) + (1 − p)q, so that
Bern(1/2) is the unique fixed point ofT . But product measure Bern(1/2) ×
Bern(1/2) is a fixed point forT (2), and this differs from(Bern(1/2))↗.

2.5. The equivalence theorem. Here we state a version of the general result
linking endogeny and bivariate uniqueness, without seeking minimal hypotheses.
The result and proof are similar to standard results about Gibbs measures and
Markov random fields (see Chapter 7 of [34]), but our emphasis is different, so it
seems helpful to give a direct proof here, after a few remarks.

THEOREM 11. Suppose S is a Polishspace. Consider an invariant RTP with
marginal distribution µ.

(a) If the endogenous property holds, then the bivariate uniqueness property
holds.

(b) Conversely, suppose the bivariate uniqueness property holds. If also T (2)

is continuous with respect to weak convergence on the set of bivariate distributions
with marginals µ, then the endogenous property holds.

(c) Further, the endogenous property holds if and only if T (2)n(µ⊗µ)
d→µ↗,

where µ⊗µ is product measure.
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Here T (2)n denotes thenth iterate of T (2). Note that in part (c) we do
not need to assume continuity ofT (2). Also (c) can be used nonrigorously to
investigate endogeny via numerical or Monte Carlo methods, as will be described
in Section 8.1. For the record we state:

OPEN PROBLEM 12. Can the continuity hypothesis in (b) be removed?

EXAMPLE 13 (Noisy voter model on directed tree). This example shows that
the endogenous property may hold for some invariant measures while failing
for others. TakeS = {0,1} and letξ have Bern(ε) distribution for smallε > 0.
Consider the RDE

X
d= ξ + 1(X1+X2+X3≥2) mod 2.

In words, a parent vertex adopts the majority opinion of its three children nodes,
except with probabilityε adopting the opposite opinion. The Bern(p) distribution
is invariant iffp satisfies

p = (1− ε)q(p)+ ε
(
1− q(p)

); q(p) = p3 + 3p2(1− p).

There are three solutions{p∗(ε), 1
2,1 − p∗(ε)} wherep∗(ε) ↓ 0 asε ↓ 0. As in

Example 10, the invariant RTP with Bern(1/2) marginal is not endogenous because
the product measure is invariant forT (2). But the invariant RTP with Bern(p∗(ε))
marginal is endogenous; one can check thatT (2) is a strict contraction on the
space of bivariate distributions with Bern(p∗(ε)) marginals, and then appeal to
the contraction lemma and to Theorem 11(c).

REMARKS. Theorem 21 and Corollary 26 provide other contexts where the
endogenous property holds for the “fundamental” invariant measure but not for
others. Contexts where the fundamental invariant measure is nonendogenous are
less common: Proposition 48 is the most natural example.

PROOF OFTHEOREM 11. (a) Letν be a fixed point ofT (2) with marginalsµ.
Consider a bivariate RTP((X(1)

i ,X
(2)
i ), i ∈ T ) with ν = dist(X(1)

∅ ,X
(2)
∅ ). Define

Gn := σ((ξi,Ni) : gen(i) ≤ n) where for i = i1i2 · · · id we set gen(i) = d, its
generation. Observe thatGn ↑ G.

Fix 
 :S → R a bounded continuous function. Notice that from the construction
of the bivariate RTP,(

X
(1)
∅ ; (ξi,Ni), gen(i) ≤ n

) d= (X(2)
∅ ; (ξi,Ni), gen(i) ≤ n

)
.

So

E
[


(
X

(1)
∅

)|Gn

]= E
[


(
X

(2)
∅

)|Gn

]
a.s.(11)
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Now by martingale convergence

E
[


(
X

(1)
∅

)|Gn

] a.s.−→ E
[


(
X

(1)
∅

)|G] a.s.= 

(
X

(1)
∅

)
,(12)

the last equality because of theendogenous assumption for the univariate RTP.
Similarly,

E
[


(
X

(2)
∅

)|G] a.s.= 

(
X

(2)
∅

)
.

Thus by (11) we see that
(X
(1)
∅ ) = 
(X

(2)
∅ ) a.s. Since this is true for every

bounded continuous
 we deduceX(1)
∅ = X

(2)
∅ a.s., proving bivariate uniqueness.

(b) To prove the converse, again fix
 :S → R bounded continuous. Let(Xi) be
the invariant RTP with marginalµ. Again by martingale convergence

E[
(X∅)|Gn] a.s.−→
L2

E[
(X∅)|G].(13)

Independently of(Xi, ξi,Ni, i ∈ T), construct random variables(Vi, i ∈ T) which
are i.i.d. with distributionµ. For n ≥ 1, defineYn

i := Vi if gen(i) = n, and then
recursively defineYn

i for gen(i) < n by (8) to get an invariant RTP(Y n
i ) of

depthn. Observe thatX∅

d=Yn
∅

. Further givenGn, the variablesX∅ andYn
∅

are
conditionally independent and identically distributed givenGn. Now let

σ 2
n (
) := ‖E[
(X∅)|Gn] −
(X∅)‖2

2.(14)

We calculate

σ 2
n (
) = E

[(

(X∅)− E[
(X∅)|Gn])2]

= E
[
var
(

(X∅)|Gn

)]
(15)

= 1
2E
[(


(X∅)−
(Yn
∅
)
)2]

.

The last equality uses the conditional form of the fact that for any random
variableU one has var(U) = 1

2E[(U1−U2)
2], whereU1,U2 are i.i.d. copies ofU .

Now suppose we show that

(X∅, Y n
∅
)

d→ (X�,Y �) say, asn →∞(16)

for some limit. From the construction,[
X∅

Yn+1
∅

]
d=T (2)

([
X∅

Yn
∅

])
,

and then the weak continuity assumption onT (2) implies[
X�

Y �

]
d=T (2)

([
X�

Y �

])
.
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Also by construction we haveX∅

d=Yn
∅

d=µ for all n ≥ 1, and henceX� d=Y � d=µ.
The bivariate uniqueness assumption now impliesX� = Y � a.s. Since
 is a
bounded continuous function, (16) implies
(X∅)−
(Yn

∅
) → 0 a.s. and so using

(15) we see thatσ 2
n (
) −→ 0. Hence from (14) and (13) we conclude that
(X∅)

is G-measurable. This is true for every bounded continuous
, proving thatX∅ is
G-measurable, as required.

Now all that remains is to show that a limit (16) exists. Fixf :S → R and
h :S → R, two bounded continuous functions. Again by martingale convergence

E[f (X∅)|Gn] a.s.−→
L1

E[f (X∅)|G],
and similarly forh. So

E[f (X∅)h(Y n
∅
)] = E

[
E[f (X∅)h(Y n

∅
)|Gn]]

= E
[
E[f (X∅)|Gn]E[h(Y n

∅
)|Gn]],

the last equality because of conditional independence ofX∅ and Yn
∅

given Gn.
Lettingn →∞ and using the conditionally i.d. property gives

E[f (X∅)h(Y n
∅
)] −→ E

[
E[f (X∅)|G]E[h(X∅)|G]].(17)

Moreover note thatX∅

d=Yn
∅

d=µ and so the sequence of bivariate distributions
(X∅, Y n

∅
) is tight. Tightness, together with convergence (17) for all bounded

continuousf andh, implies weak convergence of(X∅, Y n
∅
).

(c) First assume thatT (2)n(µ ⊗ µ)
d→µ↗. Then with the same construction as

in part (b) we get that

(X∅, Y n
∅
)

d→ (X∅,X∅).

Further recall that
 is bounded continuous; thus using (13), (14) and (15) we
conclude that
(X∅) is G-measurable. This is true for any bounded continuous
function
; thusX∅ is G-measurable. So the RTP is endogenous.

Conversely, suppose that the RTP with marginalµ is endogenous. Let

1 and 
2 be two bounded continuous functions. Note that the variables
(X∅, Y n

∅
), as defined in part (b), have joint distributionT (2)n(µ ⊗ µ). Further,

givenGn, they are conditionally independent and have the same conditional law as
of X∅ givenGn. So

E[
1(X∅)
2(Y
n
∅
)] = E

[
E[
1(X∅)|Gn]E[
2(X∅)|Gn]]

→ E
[
E[
1(X∅)|G]E[
2(X∅)|G]]

= E[
1(X∅)
2(X∅)].
The convergence is by martingale convergence, and the last equality is by
endogeny. So

T (2)n(µ⊗µ)
d= (X∅, Y n

∅
)

d→ (X∅,X∅)
d=µ↗. �
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2.6. Tree-structured coupling from the past. The next lemma is clearly anal-
ogous to thecoupling from the past (CFTP) technique for studying Markov
chains [56]. That technique is part of a large circle of ideas (graphical represen-
tations in interacting particle systems [47];iterated random functions [27]) for
studying uniqueness of stationary distributions, and rates of convergence to sta-
tionarity, for Markov chains via sample path constructions.

LEMMA 14. Consider an RTF and write T for the associated Galton–Watson
tree. Suppose there exists an a.s. finite subtree T0 ⊆ T containing ∅ such that the
following property holds a.s. for each i:

If i ∈ T0, then in the relation Xi = g(ξi,Xij ,1≤ j ≤∗ Ni) the value
of Xi is unchanged by changing the values of Xij for which ij /∈ T0.

Then there is a unique invariant RTP and it is endogenous.
In particular, if T is a.s. finite (equivalently, if E[N] ≤ 1 and P(N = 1) < 1),

then there is a unique invariant RTP and it is endogenous.

PROOF. Write ht(T0) for the height ofT0. Fix d. Define(X
(d)
i ,gen(i) = d)

arbitrarily, and then use (8) recursively to define(X
(d)
i ,gen(i) ≤ d). The hypoth-

esis implies that on the event{ht(T0) < d} the value ofX(d)
∅ does not depend on

the arbitrary choice of(X(d)
i ,gen(i) = d), and equals someG-measurable random

element. Lettingd →∞ shows there exists someG-measurableX∅ such that

P
(
X

(d)
∅ �= X∅

)≤ P
(
ht(T0) ≥ d

)→ 0.

The same argument applied to a first-generation individualj shows there exists
G-measurableXj such that

P
(
X

(d)
j �= Xj

)≤ P
(
ht(T0) ≥ d − 1

)→ 0.

Use the i.i.d. structure of((ξi,Ni), i ∈ T) to show that(Xj , j ≥ 1) are independent
and distributed asX∅. Then by the defining recursion

X∅ = g(ξ,Xi,1≤ i ≤∗ N)

and so dist(X∅) is invariant. Moreover, in any invariant RTP it must be thatX∅ is
this same r.v., proving uniqueness.�

Example 8 shows that (stochastic) monotonicity of the induced mapT is
not sufficient for endogeny. The next lemma shows that a stronger “pointwise
monotonicity” condition ong is sufficient.

LEMMA 15. Suppose S = R
+. Suppose g :�∗ → R

+ is monotone for each θ .
That is, if 1 ≤ n ≤ ∞ and x = (xi,1 ≤ i ≤∗ n) and y = (yi,1 ≤ i ≤∗ n) are
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such that xi ≤ yi ∀ i, then g(θ,x) ≤ g(θ,y). Suppose that for fixed θ the map
x → g(θ,x) is continuous w.r.t. increasing limits. Suppose that, for the induced
map T , the sequence (T n(δ0), n ≥ 0) is tight. Then T n(δ0) → µ weakly, where the
limit µ is invariant and the associated invariant RTP is endogenous.

PROOF. This µ is thelower invariant measure of Lemma 4. Let(Xi) be the
associated RTP. For eachd there is a depth-d RTP (X

(d)
i ) such that dist(X(d)

i ) =
T d−gen(i)(δ0). Using the monotonicity hypothesis

0≤ X
(1)
∅ ≤ X

(2)
∅ ≤ · · · ≤ X∅ a.s.

Since dist(X(d)
∅ ) → µ we haveX(d)

∅ ↑ X∅ a.s., and then sinceX(d)
∅ isG-measurable

we see thatX∅ is G-measurable. �

2.7. Markov chains. Any Markov chain can be represented (distributionally)
as an iterated random functionXn = g(Xn−1, ξn) for i.i.d. (ξn) and someg. So the
stationary distributions (if any) are the solutions of

X
d=g(X, ξ).

This is the special case of RDEs for whichP(N = 1) = 1. In general when we talk
about RDEs we are envisaging the case whereP(N ≥ 2) > 0.

3. The linear case. The basic linear case is the caseg((ξ,Xi)) =∑N
i=1 ξiXi

on S = R. Note the(ξi) may be dependent. This and the extension (20) have
been studied quite extensively; our discussion focuses on analogies with the max-
type cases later. Where the state space isR

+, the key ideas are from [28] which
assumedN is nonrandom; the extensions to randomN (which is a frequent setting
for our max-type examples) have been developed in [49, 50]. Here is a typical
result (Corollaries 1.5 and 1.6 of [49]; the case of nonrandomN is in [28]; minor
nontriviality assumptions omitted).

THEOREM 16. Suppose ξi ≥ 0, with ξi > 0 iff 1 ≤ i ≤ N , for some random
0≤ N < ∞. Suppose N and

∑
i ξi have finite (1+ δ)th moments, for some δ > 0.

Write ρ(x) = E[∑i ξ
x
i ]. Suppose there exists 0 < α ≤ 1 such that ρ(α) = 1 and

ρ′(α) ≤ 0. Suppose either:

(i) α = 1; or
(ii) the measure

∑
i P (logξi ∈ ·) is not centered-lattice, that is to say, not

supported on sZ for any real s > 0.

Then the RDE

X
d=∑

i

ξiXi (S = R
+)(18)
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has an invariant distribution X with P(X = 0) < 1, and this solution is unique
up to multiplicative constants. In case (i), E(X) < ∞ if ρ′(α) < 0. In case (ii), if
α < 1, then P(X > x) ∼ cx−α as x →∞, for some 0< c < ∞.

One can study ([49], Theorem 6.1) the operatorT corresponding to (18) with
respect to the metricdα defined as at (7) but without the(·)1/α term. In the setting
of Theorem 16 it turns out that the contraction coefficient isρ(α) = 1 and hence
the contraction argument cannot be used directly. The proof of Theorem 16 instead
involves somewhat intricate analysis to find the moment generating function ofX.
See [38] for the case whereN may be infinite.

See [49] for many references to the appearance of the linear RDE (18) in the
study of branching processes and branching random walks, invariant measures of
infinite particle systems, and Hausdorff dimension of random Cantor-type sets.
See [26, 60] for many references to linear RDEs arising in probabilistic analysis of
algorithms which are analyzable by contraction. See [39, 40] for the specialization

X
d=

∞∑
i=1

h(ξi)Xi (S = R
+)

where (ξi) are the points of a Poisson process on(0,∞). Often, within one
model there are different questions which lead to both linear and max-type RDEs;
instances can be found in Sections 4.1, 5 and 7.4.

Questions of endogeny have apparently not been studied in this linear case. Note
that Example 2 provides a (degenerate?) case of a linear RDE onR which is not
endogenous. The following corollary deals with the simplest specialization of the
Theorem 16 setting.

COROLLARY 17. In the setting of Theorem 16, suppose (i) holds and
ρ′(1) < 0,so that the RDE (18)has a solution X with EX < ∞ and P(X = 0) < 1.
Then the associated RTP is endogenous.

PROOF. Consider a solution of the bivariate fixed point equation

(X,Y )
d=
(∑

i

ξiXi,
∑
i

ξiYi

)
.

Observe

|X − Y | d=
∣∣∣∣∣∑

i

ξi(Xi − Yi)

∣∣∣∣≤∑
i

ξi |Xi − Yi |

and the expectations of the leftmost and rightmost terms are equal. So the
inequality must be the a.s. equality∣∣∣∣∣∑

i

ξi(Xi − Yi)

∣∣∣∣∣=∑
i

ξi |Xi − Yi | a.s.(19)
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By Theorem 11(b) it is enough to showX = Y a.s. Suppose not. ThenXi − Yi

takes both positive and negative values. So we cannot haveP(ξ1 > 0, ξ2 > 0) > 0
or there would be nonzero chance of cancellation in the sum and (19) would fail.

Thus the RDE can only be of the formX d= ξ1X1. But this can only happen if
P(ξ1 = 1) = 1, which case is excluded by the hypothesisρ′(1) < 0. �

OPEN PROBLEM 18. Study endogeny in the other cases of Theorem 16.

It is worth pointing out that there is no very complete “general theory” for
S = R:

OPEN PROBLEM 19. Study analogs of Theorem 16 forS = R.

Of course the contraction method remains useful in particular cases. See [22]
for results on smoothness of solutions in the case of finite second moment.

3.1. The Quicksort RDE. A slight extension of the linear case is the case

g((ξi,Xi))
d= ξ0 +∑

i≥1

ξiXi.(20)

As a well-known concrete example, probabilistic analysis of the asymptotic
distribution of the number of comparisons in the Quicksort algorithm leads to the
study of the following RDE:

X
d=UX1 + (1−U)X2 +C(U) (S = R)(21)

whereC(x) := 2x logx + 2(1 − x) log(1 − x) + 1, andU
d=U(0,1). There is

a unique solution withE[X2] < ∞ becauseT is a contraction under the metricd2
at (7) [59]. But there are also other solutions.

THEOREM 20 ([31]). Let ν be the solution of the RDE (21) with zero mean
and finite variance. Then the set of all solutions is the set of distributions of the
form ν ∗ Cauchy(m,σ 2) where m ∈ R and σ 2 ≥ 0, and ∗ denotes convolution.

The next result basically says that none other than the “fundamental” solution
of the Quicksort RDE (21) is endogenous.

THEOREM 21. An invariant RTP associated with the Quicksort RDE (21) is
endogenous if and only if σ = 0.

PROOF. Let µ be a solution of the RDE (21), so using Theorem 20µ =
ν ∗ Cauchy(m,σ 2) for somem ∈ R and σ 2 ≥ 0. Suppose(X,Y ) is a solution
of the bivariate RDE with marginalsµ(

X

Y

)
=
(

UX1 + (1−U)X2 +C(U)

UY1 + (1−U)Y2 +C(U)

)
,(22)
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where(X1, Y1) and(X2, Y2) are i.i.d. having the same distribution as(X,Y ) and

are independent ofU d=Uniform[0,1].
First consider the caseσ = 0. In this case bothX and Y have finite second

moment and hence so doesD = X − Y . Naturally the distribution ofD satisfies
the RDE

D
d=UD1 + (1−U)D2 (onR),

whereDi = Xi − Yi , i ∈ {1,2}. Easy calculation shows thatE [D] = 0= E[D2].
ThusX = Y a.s. which proves endogeny for the invariant RTP with marginalµ,
by using part (b) of Theorem 11.

Now consider the other caseσ > 0. Let Q be a random variable with
distributionν and let(Z,W) be i.i.d. Cauchy(m,σ 2), independent ofQ. We claim
that(X,Y ) = (Q + Z,Q + W) is a solution of the bivariate equation (22). In that
caseX �= Y a.s. and hence part (a) of Theorem 11 implies that the invariant RTP
with marginalµ is not endogenous.�

So all that remains is to prove the claim, which will use the following lemma.

LEMMA 22. Let (Z1,Z2) be i.i.d. Cauchy(m,σ 2) for some m ∈ R and σ 2 > 0

and let U
d= Uniform[0,1] be independent of (Z1,Z2). Then V = UZ1 + (1 −

U)Z2 is a Cauchy(m,σ 2) random variable which is independent of U .

PROOF. We will calculate the characteristic function ofV conditioned onU .
Fix t ∈ R; then

E[eitV |U ] = E
[
eiUtZ1ei(1−U)tZ2|U ]

= E[eiUtZ1|U ] × E
[
ei(1−U)tZ2|U ]

= exp(imtU − σU |t |)× exp
(
imt (1−U)− σ(1−U)|t |)

= exp(imt − |t |)
as required.

Now let (Q1,Q2) be two independent copies ofQ and let(Z1,Z2,W1,W2) be
i.i.d. Cauchy(m,σ 2) which are independent of(Q1,Q2). DefineXi = Qi + Zi

and Yi = Qi + Wi for i ∈ {1,2}. Then (X1, Y1) and (X2, Y2) are two i.i.d.
copies of(X,Y ). Trivially UX1 + (1 − U)X2 + C(U) = Q′ + Z′ and UY1 +
(1 − U)Y2 + C(U) = Q′ + W ′, whereQ′ = UQ1 + (1 − U)Q2 + C(U), Z′ =
UZ1 + (1 − U)Z2 andW ′ = UW1 + (1 − U)W2. Notice thatQ′ d=Q and that
by Lemma 22,Z′ andW ′ are i.i.d. Cauchy(m,σ 2) which are independent ofQ′.
Hence(Q′ +Z′,Q′ +W ′) d= (X,Y ). This proves the claim.�
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3.2. Moment recursions. Another feature of the linear and the extended linear
cases is that one can give a recursion for the moments of the solutionsX, assuming
moments exist. For instance, in case (20)

E[X] = E[ξ0] +
(∑

i≥1

E[ξi]
)

E[X],

E[X2] = E[ξ2
0 ] +

(
2
∑
i≥1

E[ξ0ξi]
)

E[X]

+
( ∑

i,j≥1,i �=j

E[ξiξj ]
)
(E[X])2 +

(∑
i≥1

E[ξ2
i ]
)

E[X2].

Unfortunately one does not have analogous general explicit information in our
max-type setting.

4. Simple examples of max-type RDEs. The examples in this section are
“simple” in a particular sense: one can construct an explicit solution (typically in
terms of the stochastic process from which the RDE arises) without needing first
to solve the fixed point equation analytically.

4.1. Height of subcritical Galton–Watson trees. A Galton–Watson tree is the
family tree of a Galton–Watson branching process with offspring distributionN ,
say, and with one progenitor. Exclude as trivial the casesP(N = 0) = 1 and
P(N = 1) = 1. In the (sub)critical caseE[N] ≤ 1, it is well known by probabilistic
arguments that the branching process becomes extinct a.s., so that the random
variable

H := min{g|no individuals in generationg} = 1+ (height of the tree)

is a.s. finite. By conditioning on the numberN of offspring of the progenitor, we
see thatH satisfies the RDE

H
d=1+ max(H1,H2, . . . ,HN), H ∈ {1,2,3, . . .},(23)

where the max over an empty set equals zero. Lemma 14 shows this RDE has a
unique solution and is endogenous (of course this is also easy to check directly).

This RDE (23) is a natural prototype for max-type RDEs, and the following
section describes one direction of generalization.

Note that the total progenyZ in the Galton–Watson tree satisfies the linear
RDE in Example 1. This is one of several settings where aspects of the “typical”
behavior are governed by a linear RDE while aspects of the “extreme” behavior
are governed by a max-type RDE.
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4.2. Positive range of one-dimensional BRW. Consider a discrete-generation
process in which individuals are at positions on the real lineR. In generation 0
there is one individual, at position 0. In generation 1 we see that individual’s
offspring; there areN offspring (for random 0≤ N ≤ ∞) at positions∞ >

ξ1 ≥ ξ2 ≥ · · · , the joint distribution of(N; ξi, i ≥ 1) being arbitrary subject to
the moment condition (24) below. Inductively, each individual in generationn, at
positionx say, hasN ′ children at positions(x + ξ ′

i ), where the families(N ′; ξ ′
i )

are i.i.d. for different parents. This process is (discrete-time, one-dimensional)
branching random walk (BRW). The phrase “random walk” indicates the spatial
homogeneity (otherwise we would have abranching Markov chain). Some authors
use BRW for the more special case where different siblings’ displacements are
independent of each other and ofN ; we shall call this the IBRW (independent
BRW) case. Write

m(θ) = E

[∑
i

eθξi

]
.

The moment condition we shall assume throughout is

∃ θ > 0 such thatm(θ) < ∞.(24)

The underlying Galton–Watson process, obtained by ignoring spatial positions,
may be subcritical, supercritical or critical (depending onE[N], as usual).
Consider

Rn := position of rightmost individual in generationn

with Rn = −∞ if there is no such individual. Write nonextinction for the event
that the process survives forever. Standard results going back to [19] show:

PROPOSITION 23. If the BRW is supercritical, then there exists a constant
−∞ < γ < ∞ such that n−1Rn → γ a.s. on nonextinction. And γ is computable
as the solution of

inf
θ>0

(
logm(θ)− γ θ

)= 0.

Now considerR := maxn≥0 Rn, the position of the rightmost particle ever. If
the process becomes extinct a.s., or in the setting of Proposition 23 withγ < 0, we
clearly have 0≤ R < ∞ a.s. StudyingR generalizes the study (Section 4.1) of the
height of a Galton–Watson tree (takeξi = 1), as well as the study of the rightmost
position of a random walk [takeN = 1 and compare with (5)]. Applications to
queueing networks are given in [44]. Conditioning on the first-generation offspring
leads to the RDE below, and Lemma 15 establishes the other assertions.
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LEMMA 24. Suppose extinction is certain, or suppose supercritical with
γ < 0. Then

R
d= max

(
0,max

i
(Ri + ξi)

)
, 0≤ R < ∞.(25)

If extinction is certain, then R is the uniquesolution of this RDE and the RTP is
endogenous. In the supercritical case, R is the lower invariant measure for the
RTP, and the associated invariant RTP is endogenous.

There is an interestingcritical scaling question here—see Open Problem 30
later. The lemma also leaves open the question of whether there may be other
invariant measures in the supercritical case. A thorough treatment of the latter
question was given in [21] within a slightly more general setting, including the
next result showing thatnonuniqueness is typical.

PROPOSITION 25 ([21], Theorem 1). Under technical hypotheses (omitted
here) the RDE (25) has a one-parameter family of solutions X(γ ), 0 ≤ γ < ∞.
Here X(0) is the lower invariant measure. There exists α > 0 such that for each
γ > 0 we have P(X(γ ) > x) ∼ cγ exp(−αx) as x →∞, for some 0 < cγ < ∞.

Without needing to go into the proof of Proposition 25, we can observe the
following.

COROLLARY 26. Under the hypotheses of Proposition 25, for γ > 0 the
invariant RTP associated with X(γ ) is not endogenous.

PROOF. Let (Qi, i ∈ T ) be the associated BRW; that is,T is the family tree
of descendants of the progenitor, andQi is the position onR of individual i, with
Q∅ = 0. Fix d and consider the following construction. Let(Z

(d)
i : gen(i) = d) be

i.i.d. with some invariant distribution. Fori ∈ T define

Y
(d)
i = Z

(d)
i , gen(i) = d,

and then for gen(i) = d − 1, d − 2, . . . ,1,0 define

Y
(d)
i = max

(
0; Qj −Qi, gen( j) < d; Qj −Qi +Z

(d)
j , gen( j) = d

)
where j runs over all descendants ofi. One can check that(Y (d)

i ) defines an
invariant RTP of depthd. Now letAd be the event that, in the definition

Y
(d)
∅ = max

(
0; Qj, gen( j) < d; Qj +Z

(d)
j , gen( j) = d

)
the maximum is attained by some generation-d descendant. We use the following
straightforward lemma whose proof is given later.
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LEMMA 27. For an r.v. Y and δ > 0 define

conc
(
dist(Y ), δ

)= max
a

P (a ≤ Y ≤ a + δ).

Suppose (Zi) are i.i.d. with P(Z > x) ∼ ce−αx as x →∞. Then there exists δ > 0,
depending only on the distribution of Z, such that for every countable set (xi) of
reals for which Y := maxi (xi +Zi) < ∞ a.s., we have conc(dist(Y ), δ) ≤ 1− δ.

On the eventAd the r.v.Y (d)
∅ is of the form in the lemma, with the role of the

(xi) played by theGd -measurable r.v.’s(Qj : gen( j) = d), whereGd is theσ -field
generated by the firstd generations of the BRW. So the lemma, together with the
tail estimate in Proposition 25, implies

conc
(
dist

(
Y

(d)
∅ |Gd

)
, δ
)≤ 1− δ onAd.

This estimate remains true for an invariant RTP(Yi) of infinite depth. If the RTP is
endogenous, thenY∅ is G-measurable, and so the conditional distributions ofY∅

given Gd converge asd → ∞ to the unit mass atY∅; then the inequality above
impliesP(Ad) → 0. ButP(Ad) → 0 implies

Y∅ = max(Qi : i ∈ T )

and so the invariant distribution is just the lower invariant distribution.�

PROOF OFLEMMA 27. Suppose if possible the conclusion of the lemma is not
true. Then for everyδn ↓ 0+ we can find a countable collection of reals(xn

i )i≥1
such thatYn := maxi≥1(x

n
i +Zi) < ∞ a.s. and

P(0≤ Yn ≤ δn) ≥ 1− δn.(26)

By assumptionP(Z > x) ∼ ce−αx asx →∞, soYn < ∞ a.s. implies

0<

∞∑
i=1

eαxn
i < ∞.(27)

So in particularxn
i → −∞ as i → ∞ for every n ≥ 1. Thus without loss of

generality we can assume that(xn
i , i ≥ 1) are in decreasing order.

Let F be the distribution function ofZ, and writeF̄ (·) = 1−F(·). We calculate

P(0≤ Yn ≤ δn)

= 1− P(Yn /∈ [0, δn])
= 1− P(Zi < −xn

i for all i ≥ 1, or Zi > δn − xn
i for somei ≥ 1)

≤ 1−
∞∏
i=1

F(−λ− xn
i )− max

i≥1
F̄ (δn − xn

i ),
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for arbitrary fixedλ > 0. So from (26) we get
∞∏
i=1

F(−λ− xn
i )+ max

i≥1
F̄ (δn − xn

i ) ≤ δn.(28)

But maxi≥1 F̄ (δn − xn
i ) = F̄ (δn − xn

1), so using (28) we get

lim
n→∞ F̄ (δn − xn

1) = 0 �⇒ xn
1 →−∞ asn →∞.(29)

Now fix ε > 0. By hypothesis, there existsM > 0 such that

(1− ε)ce−αx ≤ F̄ (x) ≤ (1+ ε)ce−αx for all x > M − λ.(30)

Choosen0 ≥ 1 such that for alln ≥ n0 we havexn
1 < −M , and hencexn

i < −M

for all i ≥ 1. Now from (28)

δn ≥ F̄ (δn − xn
1) ≥ (1− ε)ce−α(δn−xn

1) �⇒ eαxn
1 ≤ 1

c(1− ε)
δne

αδn.(31)

Further, for anykn,

kn∏
i=1

F(−λ− xn
i ) =

kn∏
i=1

(
1− F̄ (−λ− xn

i )
)

≥ (1− F̄ (−λ− xn
1)
)kn

(32)
≥ (1− (1+ ε)ceαλeαxn

1
)kn

≥
(

1− 1+ ε

1− ε
eαλδne

αδn

)kn

,

where the last inequality follows from (31). Now takekn = 1√
δn

↑∞ to get

lim inf
n→∞

kn∏
i=1

F(−λ− xn
i ) ≥ 1.

This contradicts (28). �

4.3. An algorithmic aspect of BRW. In the setting of Section 4.2—a BRW sat-
isfying (24)—there is an algorithmic question. Suppose we are in the supercritical
case [say,P(N ≥ 1) = 1 to avoid any chance of extinction] and supposeγ > 0. So
there exist individuals at large positive positions—how do we find them? Suppose
we can access data only by making queries. A query
children of progenitor?

gets an answer
progenitor has child G at position -0.4 and child V at

position -0.8
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and a query
children of G ?

gets an answer
G has child GF at position 0.6 and child GJ at posi-

tion -1.6.
There is a naturalgreedy algorithm for finding individuals with large positive
positions. At each step, look at all individualsX named in previous steps for which
one has not already made the querychildren of X?; then make this query for
the individualX at rightmost position. See Figure 3.

This greedy algorithm was studied in [2], in the special setting of binary IBRW
which we now adopt (presumably much of what we say here holds in the general
BRW setting). In analyzing the performance of the greedy algorithm, a key role is
played by the positionL of the leftmost individual ever queried. On the one hand
this is given by

L = sup
(wi)

inf
i

Qwi
(33)

where the sup is over all lines of descent(wi) and whereQi is the position of
individual i. On the other hand, by conditioning on the positions(ξi) of the first-
generation children we see thatL must satisfy the RDE

L
d= min

(
0,max

i
(Li + ξi)

)
, −∞ < L ≤ 0.(34)

This is genuinely different from (25), that is, one cannot obtain (25) from (34) by,
for example, reflection. As shown in [2], Proposition 4.1, this RDE has a unique
solutionL, and from (33) we see the associated invariant RTP is endogenous.

The actual question of interest in this setting in thespeed of the greedy
algorithm, defined as the limit

speed:= lim
n

1

n
Qvn

FIG. 3. Algorithmic exploration of BRW. The individuals • have been queried in order 1,2,3,4;
the children × have not yet been queried. Individual 5 will be queried next.
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wherevn is thenth vertex examined by the greedy algorithm. It turns out there is
a simple formula for speed.

PROPOSITION28 ([2]). For binary IBRW,

speed= E[(ξ +L)+]
where L is the unique solution of the RDE (34) and ξ independent of L is the
displacement of a child.

So Proposition 28 is a prototype for one kind of indirect use of an RDE. From
this formula, but not a priori, one can deduce that the speed is strictly positive
wheneverγ > 0. This leads to the question ofnear-critical scaling. Given a one-
parameter family of distributions for offspring displacement(ξi), parametrized
by p say, and such thatγ (p) > 0 iff p > pcrit, we will typically have linear scaling
for γ :

γ (p) ∼ c(p − pcrit) asp ↓ pcrit.

But how does speed(p) scale? A special case permits explicit analysis.

THEOREM29 ([3], Theorem 6). Consider an IBRW where each individual has
exactly two children whose displacements ξ satisfy P(ξ = 1) = p, P (ξ =−1) =
1− p. The critical point pcrit is the smaller solution of 16pcrit(1− pcrit) = 1. The
solution L(p) of the RDE (34) satisfies

− logP
(
L(p) = 0

)= c(p − pcrit)
−1/2 +O(1) as p ↓ pcrit

for a certain explicitly defined constant c, and

speed(p) = exp
(−(c + o(1)

)
(p − pcrit)

−1/2) as p ↓ pcrit.

OPEN PROBLEM 30. In the context of more general one-parameter families
of offspring displacements(ξi):

(a) In the supercritical settingp ↓ pcrit, study whether the scaling for speed(p)

is as in Theorem 29.
(b) In the subcritical settingp ↑ pcrit, study the scaling of the rangeR(p) given

in Lemma 24.

4.4. Discounted tree sums. In this section we study the RDE

X
d=η + max

1≤i<∞ ξiXi (S = R
+)(35)

where(η; ξi,1≤ i ≤∗ N) has a given joint distribution, for randomN ≤∞. There
is a natural construction of a potential solution via what we will calldiscounted
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tree sums, as follows. Take the associated Galton–Watson treeT with offspring
distributionN . Put i.i.d. copiesηi of η at verticesi. On the edges from eachi to
its children(ij)j≥1 put independent copies(ξij ,1≤ j ≤∗ Ni) of (ξj ,1≤ j ≤∗ N).
For an edgee = (i, ij) we will write ξe to denote the edge weightξij . Consider
a path(∅ = v0, v1, . . . , vd). View the random variableηvd

as having “influence”
ηvd

∏d
j=1 ξ(vj−1,vj ) at the root; that is, the influence is decreased by a factorξ in

crossing an edge. From an infinite pathπ = (∅ = v0, v1, v2, . . .) we get a total
influence

∑∞
d=0 ηvd

∏d
j=1 ξ(vj−1,vj ), which we suppose to be a.s. finite. Finally set

X = sup
π=(∅=v0,v1,v2,...)

∞∑
d=0

ηvd

d∏
j=1

ξ(vj−1,vj ).(36)

If X < ∞ a.s., then clearly it is a solution of the RDE (35), and this solution is
endogenous.

But it is not so easy to tell, directly from the representation (36), whetherX is
indeed finite. So for the record we state

OPEN PROBLEM 31. Study conditions under which (36) defines an a.s. finite
random variableX.

This question makes sense when we allowP(ξi > 1) > 0, though the concrete
examples we know involve only the caseξi < 1 a.s. We content ourselves with
recording a simple contraction argument (essentially that of [58], (9.1.18), in the
setting of finite nonrandomN ) designed to handle the caseξi < 1 a.s.

THEOREM 32. Suppose 0 ≤ ξi < 1 and η ≥ 0 with E[ηp] < ∞ ∀p ≥ 1.
For 1 ≤ p < ∞ write c(p) := ∑∞

i=0 E[ξp
i ] ≤ ∞. Suppose c(p) < ∞ for some

1≤ p < ∞.

(a) The distribution µ of X at (36) is an endogenous solution of the RDE (35)

with all moments finite. For the associated operator T we have T n(δ0)
d→µ.

(b) Take p < ∞ such that c(p) < 1. Then T is a strict contraction on the usual
space Fp of distributions with finite pth moment. So µ is the unique solution of

the RDE with finite pth moment, and T n(µ0)
d→µ for any µ0 ∈ Fp.

PROOF. By assumptionc(p0) < ∞ for somep0, and then sinceξ1 < 1 we
clearly havec(p) ↓ 0 asp ↑∞. So choose and fix 1≤ p < ∞ such thatc(p) < 1.
Write Fp for the space of distributions onR+ with finite pth moment. We will first
check thatT (Fp) ⊆ Fp. Letµ ∈ Fp and let(X)i≥1 be i.i.d. samples fromµ which
are independent of(ξi)i≥1 andη. Define[µ]p as thepth moment ofµ. Observe
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that

E

[(
max
i≥1

(ξiXi)

)p]
= E

[
max
i≥1

(ξ
p
i X

p
i )

]

≤ E

[ ∞∑
i=1

ξ
p
i X

p
i

]

=
∞∑
i=1

E[ξp
i ]E[Xp

i ]

= [µ]p × c(p) < ∞.

Further we have assumed thatE[ηp] < ∞; thus using (35) we conclude thatT

mapsFp to itself.
Let dp be the usual metric (7) onFp. Fix µ,ν ∈ Fp. By a standard coupling

argument construct i.i.d. samples((Xi, Yi))i≥1 such that:

• they are independent of(ξi)i≥1 andη;

• Xi
d=µ andYi

d=ν for all i ≥ 1;
• (dp(µ, ν))p = E[|Xi − Yi |p].
PutZ = η+maxi≥1(ξiXi) andW = η+maxi≥1(ξiYi). Notice that from definition

Z
d=T (µ) andW

d=T (ν). Now(
dp

(
T (µ),T (ν)

))p ≤ E[|Z −W |p]

= E

[∣∣∣∣max
i≥1

ξiXi − max
i≥1

ξiYi

∣∣∣∣p]

≤ E

[ ∞∑
i=1

|ξiXi − ξiYi |p
]

=
∞∑
i=1

E[ξp
i ]dp

p (µ, ν)

= c(p)× dp
p (µ, ν).

So T is a strict contraction map with contraction factor(c(p))1/p < 1. Sincedp

is a complete metric onFp, the contraction method (Lemma 5) shows that there

exists a fixed pointµ ∈ Fp and thatT n(µ0)
d→µ for eachu0 ∈ Fp. In particular,

T n(δ0)
d→µ. But T n(δ0) is just the distribution of

X(n) := sup
π=(∅=v0,v1,v2,...,vn−1)

n−1∑
d=0

ηvd

d∏
j=1

ξ(vj−1,vj ).(37)
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Soµ is the distribution ofX at (36). Finally, we can choosep arbitrarily large, so
µ has all moments finite.�

While the argument in Theorem 32, bounding amax by asum, is crude, it does
serve to establish existence of solutions in the examples we will consider below.
Let us first say something about uniqueness.

COROLLARY 33. Consider the RDE (35). Suppose X at (36) is well defined
(which in particular holds under the hypotheses of Theorem 32).Write µ = dist(X)

for the lower invariant measure for the associated operator T . Consider the RDE
obtained by omitting η in (35):

X
d= max

1≤i<∞ ξiXi (S = R
+).(38)

If dist(Y ) is a nonzero solution of (38), then for 0≤ a < ∞ we have

T n(dist(aY )
) d→µa

and each µa is an invariant measure for T . If also

η is independent of (ξi); 0 is in the support of η,(39)

then each µa is distinct.

By analogy with Corollary 26 and Proposition 48 later we state:

CONJECTURE34. Under the assumptions of Corollary 33and (39),for a > 0
the invariant RTP associated with µa is not endogenous.

PROOF OFCOROLLARY 33. WriteW for the operator associated with (38).
Supposeν �= δ0 is invariant forW . Set up the RTP(Yi) associated with (38). So
for fixedn

Y∅ = sup
π=(∅=v0,v1,v2,...,vn)

Yvn

n∏
j=1

ξ(vj−1,vj )

and the(Yvn : gen(vn) = n) are independent with distributionν. And T n(ν) is the
distribution of

Z(n) = sup
π=(∅=v0,v1,v2,...,vn)

(
Yvn

n∏
j=1

ξ(vj−1,vj ) +
n−1∑
d=0

ηvd

d∏
j=1

ξ(vj−1,vj )

)
.(40)

Note the sample path monotonicity property

Z(n) ≤ Z(n+1) a.s.
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which holds for the following reason. Givenvn, there is avn+1 = vni at-
taining the maximumYvn = maxi ξvniXvni , and the right-hand side of (40) for
(v0, v1, . . . , vn+1) is not smaller than the right-hand side of (40) for(v0, v1,

. . . , vn).
This monotonicity, together with the facts

Z(n) ≤ X(n) + Y∅; X(n) ↑ X a.s.,

implies existence of the limit

Z(n) ↑ Z < ∞ a.s.

So

T n(ν) = dist
(
Z(n))→ dist(Z) := µ1 say

and by continuity,µ1 is invariant forT .
Now for arbitrarya ≥ 0 defineZ(n)

a by replacingYvn by aYvn in (40). As above
there exists a limitZ(n)

a ↑ Za < ∞ a.s., andµa := dist(Za) is invariant forT .
To prove the final assertion of Corollary 33, fix 0< a < b. ClearlyZa ≤ Zb a.s.,

so it is enough to proveP(Zb > Za) > 0. By Lemma 35 below (whose easy proof
we omit) it is enough to prove

P(aY∅ > X) > 0.(41)

Let H be theσ -field generated by the RTP(Yi) and by all theξv,v′ . By assumption
(39) the(ηi) are independent ofH , and it easily follows that

P(X ≤ ε|H) > 0 a.s., for eachε > 0.

SinceY∅ is H -measurable, this establishes (41).�

LEMMA 35. For i = 1,2 let fi ≥ 0 be a function such that f ∗
i := supfi < ∞.

For a ≥ 0 let q(a) := sup(af1 + f2). If af ∗
1 > f ∗

2 , then q(b) > q(a) for all b > a.

Corollary 33 hints that general solutions of the “discounted tree sum” RDE (35)
correspond to solutions of the homogeneous RDE (38). Unfortunately the latter is
not trivial to solve. For by taking logs (set̂X = logX, ξ̂ = logξ ) we see (38) is
equivalent to

X̂
d= max

i
(ξ̂i + X̂i)

and this RDE, to be studied in Section 5, is the fundamental example of a max-type
RDE which cannot be solved by any simple probabilistic construction. See [41] for
further discussion of (38).
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4.5. Examples of discounted tree sums.

EXAMPLE 36. TakeU d= Uniform(0,1) and consider the RDE

X
d=1+ max

(
UX1, (1−U)X2

)
(S = R

+).(42)

This arises [25] in the context of the probabilistic worst-case analysis of Hoare’s
FIND algorithm. Theorem 32 implies existence of a fixed point with all moments
finite, unique amongst possible fixed points with finite(1 + ε)th moments. In a
different way it can be proved [25] that any fixed point has all moments finite, and
hence the fixed point is unique.

EXAMPLE 37. Consider the RDE

X
d=η + c max(X1,X2)(43)

where 0< c < 1.

This arises [13] as a “discounted branching random walk.” One interpretation is
as nonhomogeneous percolation on the planted binary tree (the root has degree 1),
where an edge at depthd has traversal time distributed atcdη. ThenX is the time
for the entire tree to be traversed. Assumingη has all moments finite, Theorem 32
implies existence of a fixed point with all moments finite, unique amongst possible
fixed points with finite expectation. The same conclusion can be drawn in the
slightly more general setup of a Galton–Watson branching tree with offspring
distribution N . Instead of assumingη has all moments finite, make the weaker
assumption that there existsθ > 0 such that supx∈R xθP (η > x) < ∞ andmcθ < 1
wherem = E[N]. Under these assumptions, [13] shows that the RDE (43) has a
solution such thatP(X > x) = o(x−α) whereα = − logm/ logc. Moreover, this
solution is unique in the class of distributionsH such thatxα(1− H(x)) → 0 as
x →∞. But outside this class there may be other solutions.

EXAMPLE 38. Consider the RDE

X
d=η + max

i≥1
e−ξiXi (S = R

+),(44)

where(ξi, i ≥ 1) are the points of a Poisson rate 1 process on(0,∞) and where
η has Exponential(1) distribution independent of(ξi).

This is a new example, arising from a species competition model [29]. Time
reversal of the process in [29], together with a transformation of(0,1) to (0,∞)

by x → − log(1 − x), yields a branching Markov process taking values in the
space of countable subsets of(0,∞), which can then be extended to(−∞,∞) as
follows.
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Each individual at positionx at timet lives for an independent Exponential(ex)

lifetime, after which it dies and instantaneously gives birth to an infinite number
of children to be placed at positions(x + ξi)i≥1 where(ξi)i≥1 are points of an
independent Poisson rate 1 process on(0,∞). The result of [29], transformed as
above, shows that for eachλ < ∞ the Poisson rateλ process on(−∞,∞) is
a stationary law for this branching Markov process. We pose a different question.
What is the extinction timeX for the process started at time 0 with a single particle
at position 0? It is easy to see thatX satisfies the RDE (44).

For this example, easy calculation shows thatc(p) = 1/p for p ≥ 1, so
Theorem 32 implies existence of an invariant distribution with all moments finite
which is also endogenous.

Now in the setting of Corollary 33 consider thehomogeneous equation, that is,
with η ≡ 0

X
d= max

i≥1
e−ξiXi onS = R

+.(45)

The solutionX ≡ 0 of (45) corresponds to the solution of (44) with all moments
finite. We show below by direct calculation that there are other solutions of (45),
which by Corollary 33 correspond to other solutions of (44) with infinite mean.

PROPOSITION 39. The set (Xa, a ≥ 0) of all solutions of the RDE (45) is
given by

P(Xa ≤ x) =


0, if x < 0,

x

a + x
, if x ≥ 0.

(46)

In particular for a = 0 it is the solution δ0.

PROOF. Let µ be a solution of (45). Notice that the points{(ξi;Xi)|i ≥ 1}
form a Poisson point process, sayP, on (0,∞)2 with mean intensitydt µ(dx).
Thus ifF(x) = P(X ≤ x), then forx > 0

F(x) = P

(
max
i≥1

e−ξiXi ≤ x

)
= P

(
no points ofP are in{(t, z)|e−t z > x})

(47) = exp
(
−
∫ ∫

e−t z>x

dt µ(dx)

)

= exp
(
−
∫ ∞
x

1− F(u)

u
du

)
.

We note thatF is infinitely differentiable so by differentiating (47) we get

dF

dx
= F(x)(1− F(x))

x
for x > 0.(48)
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It is easy to solve (48) to verify that the set of all solutions is given by (46).�

Later results [Proposition 48(a) applied after taking logarithms] imply that for
a > 0 the invariant RTP associated withXa is not endogenous.

EXAMPLE 40. Nonhomogeneous percolation on the binary tree.

One can also consider the analog of (35) whenmax is replaced bymin,
though this situation does not seem to have been studied generally. One particular
occurrence is in the setting of Example 37, interpreted as nonhomogeneous
percolation, in which case the timeX taken to percolate to infinity satisfies the
RDE

X
d=η + c min(X1,X2).(49)

This setting has been studied from a different viewpoint in [17].

4.6. Matchings on Galton–Watson trees. Amongst many possible examples
involving Galton–Watson trees, the following rather subtle example provides a
warm-up to the harder example in Section 7.3.

Consider an a.s. finite Galton–Watson treeT with offspring distributionN . Fix
an arbitrary probability distributionν on (0,∞). Attach independentν-distributed
weights to the edges. Apartial matching on T is a subset of edges such that no
vertex is in more than one edge. Theweight of a partial matching is the sum of its
edge weights. So associated with the random treeT is a random variable

W := maximum weight of a partial matching.

In seeking to studyW via recursive methods, we quickly realize that a more
tractable quantity to study is

X := maximum weight of a partial matching
− maximum weight of a partial matching(50)

which does not include the root.

To see why, fix a childi of the root. Compare (a) the maximum-weight partial
matchingMi which matches the root toi with (b) the maximum-weight partial
matchingM− in which the root is not matched.

These matchings must agree on the subtrees of all first-generation children
excepti. On the subtree rooted ati, Mi is the maximum-weight partial matching
which does not includei, andM− is the maximum-weight partial matching. Thus
weight(Mi )−weight(M−) = ξi −Xi whereξi is the weight on edge(root, i) and
Xi is defined asX but in terms of the subtree rooted ati. Since in seeking the
maximum-weight partial matching we can use anyi, or noi, we deduce the RDE

X
d= max(0, ξi −Xi,1≤ i ≤ N)(51)



1080 D. J. ALDOUS AND A. BANDYOPADHYAY

where theXi are independent copies ofX and theξi are i.i.d. (ν). Uniqueness and
endogeny follow from Lemma 14.

This RDE, in the special case whereN has Poisson(1) distribution, arose in the
context of the problem

study the maximum weightWn of a partial matching on a uniform
randomn-vertex tree, in then →∞ limit.

The essential idea is that a randomly chosen edge of that tree splits it into
two subtrees, the smaller of which is distributed as a Galton–Watson tree with
Poisson(1) offspring. For the detailed story see Section 3 of [11], whose final result
is:

THEOREM 41. Suppose ν is nonatomic and has finite mean. Then

lim
n

n−1
EWn = Eξ1(ξ>X+Z)

where the r.v.’s on the right are independent, ξ has distribution ν, X is distributed
as the solution of the RDE (51)with Poisson(1) distributed N and Z is distributed
as the solution of the RDE

Z
d= max(X, ξ −Z)

where the r.v.’s on the right are independent.

Let us mention the explicit solutions of our RDE in two special cases.

LEMMA 42. Let N have Poisson(1) distribution.
(a) ([11], Lemma 2) If ν is the exponential(1) distribution, then the solution of

the RDE (51) is

P(X ≤ x) = exp(−ce−x), x ≥ 0,

where c ≈ 0.715 is the unique strictly positive solution of c2 + e−c = 1.
(b) If ν is the Bern(p) distribution, then the solution of the RDE (51) is the

Bern(1− x(p)) distribution, where x = x(p) solves x = e−px .

A closely related “dual” problem concerns independent sets. Recall that an
independent set in a graph is a subset of vertices, no two of which are linked by
an edge. Take as before a Galton–Watson tree withN offspring, and a probability
distributionν on (0,∞). Now assign independentν-distributed random weights to
eachvertex and consider

X := maximum weight of an independent set
− maximum weight of an independentset which does not include the root.

Similar to above, we can argue thatX is the solution of the RDE

X
d= max

(
0, ξ −

N∑
i=1

Xi

)
(52)

whereξ has distributionν, independent ofN .
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5. Rightmost position of BRW. Here we work in the setting of Section 4.2.
We have a BRW onR, where an individual has a random numberN of offspring,
whose random displacements from the parent’s position are∞ > ξ1 ≥ ξ2 ≥ · · · ,
distributed arbitrarily subject to the moment condition (24). For simplicity suppose
N ≥ 1 a.s. andP(N > 1) > 0. By Proposition 23, the positionRn of the rightmost
individual in generationn satisfies

n−1Rn → γ a.s.

For reasons to be explained in the next section, one expects that under minor extra
assumptions (including a nonlattice assumption) a much stronger result is true:
there exist constantsγn such that

Rn − γn
d→X asn →∞(53)

and thatX is the unique (up to translation) solution of the RDE

X
d= −γ + max

i
(ξi +Xi), −∞ < X < ∞.(54)

This is our first example of an RDE which is “not simple,” in the sense that we do
not know how to construct probabilistically a solution.

5.1. Tightness of Rn. At first sight it may be surprising that a limit (53) could
hold, since it presupposes that the sequence(Rn − median(Rn)) is tight, whereas
one might expect its spread to increase to infinity. However, tightness is quite easy
to understand.

LEMMA 43. If(
median(Rn+1)− median(Rn), n ≥ 0

)
is bounded above,(55)

then (
Rn − median(Rn), n ≥ 1

)
is tight.(56)

Harry Kesten (personal communication) attributes this type of argument to old
work of Hammersley: it is perhaps implicit in [36], page 662.

PROOF OF LEMMA 43. Givenε > 0 we can choosek < ∞ andB > −∞
such that

P
(
generationk has at least log2 1/ε individuals in[B,∞)

)≥ 1− ε.

Then by conditioning on the positions of generationk,

P
(
Rn+k < B + median(Rn)

)≤ 2ε.
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Writing A for an upper bound in (55), we deduce

P
(
Rn+k < B −Ak + median(Rn+k)

)≤ 2ε.

This establishes the tightness requirement for the left tail ofRn. For the right tail,
givenε < 1/4 we can choosek < ∞ andB > −∞ such that

P
(
generationk has at leastε−1 log 1/ε individuals in[B,∞)

)≥ 1− ε

(we changed the log2 1/ε term above toε−1 log1/ε). Writeqn for the 1−ε quantile
of Rn, so thatP(Rn ≥ qn) ≥ ε. Again by conditioning on the positions of the
generationk,

P(Rn+k < B + qn) ≤ ε + (1− ε)ε
−1 log1/ε ≤ 2ε < 1/2.

So median(Rn+k) ≥ B + qn, implying

qn ≤ median(Rn+k)−B ≤ median(Rn)+Ak −B.

Sinceqn is the 1− ε quantile ofRn, this establishes the tightness requirement for
the right tail ofRn. �

In the case where all displacementsξi are nonpositive (i.e., by reflection the
case where displacements are nonnegative and we are studying the position of the
leftmost particle) it is clear thatRn is decreasing and so (55) holds automatically,
and then the lemma implies (56). A slicker argument for this case is in [24],
Proposition 2. The same holds (by translation) if there is a constant upper bound
on displacement, that is, if

P(ξ1 ≤ x0) = 1 for some constantx0 < ∞.

From these tightness results it is natural to expect that, under rather weak regularity
conditions, we in fact have the convergence results

median(Rn+1)− median(Rn) → γ,(57)

Rn − median(Rn)
d→ X,(58)

for some limit distributionX. Our interest in these limits arises, of course, because
if (57) and (58) hold, then the limitX must satisfy the RDE (54).

5.2. Limit theorems. This topic has been studied carefully only in the
IBRW setting. We quote a recent result from [14], which provides an extensive
bibliography of earlier work. The proof uses a mixture of analytic and probabilistic
tools, for example, the “stretching” partial order (which goes back to the original
KPP paper [46]), and multiplicative martingales.
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THEOREM 44 ([14]). Consider an IBRW where E[N] < ∞, N ≥ 1, P(N >

1) > 0, and where the offspring displacement has density f (x) = e−κ(x) for some
convex function κ . Then the limit

Rn − median(Rn)
d→X

exists [and hence satisfies the RDE (54)]. If E[N logN] < ∞ and if a technical
assumption on φ(θ) := E[N] ∫ eθxf (x) dx (details omitted) holds, then the limit
distribution is of the form

P(X ≤ x) = E
[
exp
(−exp

(
θ0(Y + x)

))]
(59)

for some constant θ0 and random variable Y .

While the log-concave assumption plays a key role in the proof, it does not seem
intuitively to be essential for the result.

OPEN PROBLEM 45. Under what weaker hypotheses does Theorem 44
remain true?

5.3. Endogeny. The viewpoint of this survey is to seek to study existence and
uniqueness of solutions of RDEs separately from weak convergence questions.
This has not been done very systematically in the present context:

OPEN PROBLEM 46. Study existence and uniqueness of solutions to (54)
directly from its definition.

However, Proposition 48 will show that the associated RDE is generally not
endogenous.

We first need to exclude a degenerate case. Write

γ ∗ = esssupξ1.

If γ ∗ < ∞ and E#{i|ξi = γ ∗} > 1, then there exist embedded infinite Galton–
Watson trees on which the parent–child displacement equalsγ ∗; it easily follows
that there is the a.s. limit

Rn − nγ ∗ → X a.s.

and that the associated invariant RTP is endogenous. The next lemma (whose easy
proof is omitted) excludes this case.

LEMMA 47. Consider a BRW satisfying (24) and P(N ≥ 1) = 1. If

γ ∗ =∞; or γ ∗ < ∞ and E#{i|ξi = γ ∗} < 1,(60)

then n−1Rn → γ < γ ∗.
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PROPOSITION 48. Suppose X is a solution of the RDE (54). Under either
assumption (a) or assumption (b) below, the invariant RTP associated with this
solution is not endogenous.

(a) There exist constants c,α > 0 such that P(X > x) ∼ c exp(−αx) as
x →∞.

(b) Suppose there is a BRW satisfying (24), (60) with P(N ≥ 1) = 1 and
P(N > 1) > 0. Suppose there exist constants γn such that

Rn − γn
d→X, γn − γn−1 → γ,

so that necessarily γ = limn n−1Rn and X satisfies the RDE (54).

OPENPROBLEM 49. Weaken the assumptions in Proposition 48. In particular,
does nonendogeny hold under only the assumptions of Lemma 47?

From the viewpoint of the underlying BRW, nonendogeny is a property of the
RTP associated with ann → ∞ limit, so it is not obvious what its significance
for the BRW might be. Informally, the argument in Section 5.4 shows that
nonendogeny is related to a kind of “nonpredictability” property ofRn. Given
the ordered positions(Xn,i) of the nth-generation individuals, forN > n write
(pn,N(Xn,i), i ≥ 1) for the probability that the rightmost individual in generation
N is a descendant of theXn,i individual. Then there exist limitspn,∞(Xn,i) =
limN→∞ pn,N(Xn,i). For fixedn this is maximized at the rightmost individual
Xn,1, but it can be shown under suitable conditions thatpn,∞(Xn,1) → 0 as
n → ∞. Loosely, it is unpredictable which line of descent leads to the rightmost
individual at large times.

5.4. Proof of Proposition 48. Using the notation of Corollary 26 let(Qi,

i ∈ T ) be the associated BRW; that is,T is the family tree of the progenitor,
andQi is the position onR of the ith individual, withQ∅ = 0. Fix d ≥ 1 and let
{Z(d)

i |gen(i) = d} be i.i.d. copies ofX. For i ∈ T define

• Y
(d)
i = Z

(d)
i , when gen(i) = d;

• Y
(d)
i = max{Qj − Qi + Z

(d)
j |gen( j) = d andj is a descendant ofi}, when

gen(i) ∈ {d − 1, d − 2, . . . ,1,0}.
It is easy to check that(Y (d)

i ) defines an invariant RTP of depthd, for the
RDE (54).

Let Gd be theσ -field generated by the firstd generations of the BRW. So
Gd ↑ G, theσ -field generated by all theξi’s. Observe that

Y
(d)
∅ = max

{
Qj +Z

(d)
j |gen( j) = d

}
.(61)
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Case (a). Under the conditional distribution givenGd , the random variableY (d)
∅

has the same form as in Lemma 27, with the role of the(xi) being played by the
Gd -measurable random variables(Qj,gen( j) = d), and the role of the(Zi) being

played by the i.i.d. random variables(Z
(d)
j ,gen( j) = d). So Lemma 27 along with

our assumption (a) of exponential right tail, implies that there existsδ > 0 such
that

conc
(
dist

(
Y

(d)
∅ |Gd

)
, δ
)≤ 1− δ.(62)

This inequality is true for any invariant RTP of depth at leastd, so in particular
true for the invariant RTP(Yi) of infinite depth, so we get

conc
(
dist

(
Y∅|Gd

)
, δ
)≤ 1− δ �⇒ max−∞<a<∞P(a ≤ Y∅ ≤ a + δ|Gd) ≤ 1− δ.

Now suppose that the invariant RTP were endogenous, that is,Y∅ is G-measurable.
Using the martingale convergence theorem we get for each rationala

1(a≤Y∅≤a+δ) ≤ 1− δ a.s.

which is clearly impossible.
For case (b) we need two lemmas. The first is straightforward (proof omitted)

and the second is an analog of Lemma 27.

LEMMA 50. Let p0 < 1. For each n let (Cn,i, i ≥ 1) be independent events
with P(Cn,i) ≤ p0. Suppose there is a random variable M∗ taking values in
Z̄
+ = {0,1,2, . . . ;∞} such that∑

i

1Cn,i

d→M∗ as n →∞

in the sense of convergence in distribution on Z̄
+. Then either P(M∗ = 0) > 0 or

P(M∗ =∞) = 1.

LEMMA 51. Let (Zi) be i.i.d. nonconstant. For each n let (an,i , i ≥ 1) be real

constants. For k ≥ 1 let Mn,k be the kth largest of (an,i + Zi, i ≥ 1). If Mn,1
p→0

as n →∞, then for each k we have Mn,k
p→0 as n →∞.

PROOF. Write θ∗ = ess supZi . Arrange (an,i , i ≥ 1) in decreasing order.
Since an,1 + Z1 is asymptotically not greater than 0 it is easy to see that
lim supn an,1 ≤ −θ∗. From nonconstancy ofZ1 it follows that for all ε > 0 there
existp0 < 1 andn0 < ∞ such that

P(an,1 +Z1 ≥−ε) ≤ p0, n ≥ n0.

Apply Lemma 50 to the events{an,i + Zi ≥ −ε}, passing to a subsequence to
assume existence of a limit∑

i

1(an,i+Zi≥−ε)
d→M∗.
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By assumptionP(M∗ = 0) = 0, so by Lemma 50P(M∗ = ∞) = 1, implying

Mn,k
p→0.

Case (b). Recall the argument leading to (61). Take(Z̃
(d)
j ) to be further i.i.d.

copies ofX and set

Ỹ
(d)
∅ = max

{
Qj + Z̃

(d)
j |gen( j) = d

}
.

Then the joint distribution(Y (d)
∅ , Ỹ

(d)
∅ ) is the distributionT (2)n(µ ⊗ µ) appearing

in Theorem 11(c), and that theorem asserted that endogeny is equivalent to(
Y

(d)
∅ , Ỹ

(d)
∅

) d→ (X,X) asd →∞.(63)

Suppose, to obtain a contradiction, that (63) were true. WritingAd for the
Gd -measurable r.v. defined as the median of the conditional distribution ofY

(d)
∅

givenGd , (63) would easily imply

Y
(d)
∅ −Ad

p→0.

Now for k ≥ 1 consider

Bd,k = kth largest of
{
Qj +Z

(d)
j |gen( j) = d

}
.

So Bd,1 − Ad
p→0. Now apply Lemma 51 conditionally onGd , with the role

of the (an,i) being played by(Qj − Ad), to conclude that for eachk we have

Bd,k − Ad
p→0. (More pedantically, we need to detour through a subsequence

argument to justify conditional application of Lemma 51; we omit details.) So

Bd,1 −Bd,k
p→0.(64)

Next we exploit the underlying BRW. Write

Rm,k = position ofkth rightmost individual in generationm.

Fix d and u > 0. For an individualj in generationd, the displacement of its
rightmost descendant in generationm is asymptotically (m →∞) distributed asX,
independently asj varies, and so

lim inf
m

P (Rm,1 −Rm,k ≤ u) ≥ P(Bd,1 −Bd,k < u)

by considering the rightmost descendant of each of thek generation-d individuals
featuring in the definition ofBd,k . Now (64) implies

Rm,1 −Rm,k
p→0 asm →∞.

But this property (for eachk) states that an ever-increasing number of individuals
accumulate near the rightmost individual, easily implying

Rm+1,1 −Rm,1 − ess supξ1
p→0.

This in turn implies limm m−1Rm,1 = ess supξ1, contradicting Lemma 47.�



RECURSIVE DISTRIBUTIONAL EQUATIONS 1087

REMARK 1. Some multiplicative martingales used in the study of BRW (see,
e.g., [20]) are of the form

Zn(θ) = m−n(θ)
∑
i

exp(θY n
i )

where(Y n
i , i ≥ 1) are the positions of the generation-n individuals. The a.s. limit

Z(θ) = limn Zn(θ) satisfies the RDE

Z
d=∑

i

exp(θξi)Zi/m(θ)

This is an instance of an “average-case” RDE paralleling the “extreme-case”
RDE (54).

REMARK 2. Very recently Iksanov has shown (personal communication) that
one can derive existence of solutions to (54) by considering a related linear
RDE. Interestingly, all those solutions have exponential right tail and hence by
Proposition 48 none are endogenous.

6. Frozen percolation process on infinite binary tree. A different setting
where a particular “max-type” RDE plays the crucial role is thefrozen percolation
process on the infinite binary tree, studied in [5]. LetT3 = (V,E) be the infinite
binary tree, where each vertex has degree 3;V is the set of vertices andE is the set
of undirected edges. Let(Ue)e∈E be independent edge weights with Uniform(0,1)

distribution. Consider a collection of random subsetsAt ⊆ E for 0≤ t ≤ 1, whose
evolution is described informally by:

A0 is empty; for eache ∈ E , at timet = Ue setAt = At− ∪ {e} if each
end-vertex ofe is in a finite cluster ofAt−; otherwise setAt = At−.

(∗)

(A cluster is formally a connected component of edges, but we also consider it as
the induced set of vertices.) For comparison purposes, a more familiar process is
Bt := {e ∈ E |Ue ≤ t}, for 0≤ t ≤ 1; which gives the standard percolation process
onT3 [35]. It is elementary that the clusters ofBt can be described in terms of the
Galton–Watson branching process and that infinite clusters exist fort > 1

2 but not
for t ≤ 1

2. The evolution of the process(Bt , 0≤ t ≤ 1) can be described informally
by:

for eache ∈ E , at timet = Ue setBt = Bt− ∪ {e}.
We notice that any process satisfying (∗) must haveAt = Bt for t ≤ 1

2 butAt ⊆ Bt

for t > 1
2. Qualitatively, in the process(At ) the clusters may grow to infinite size

but, at the instant of becoming infinite, they are “frozen” in the sense that no extra
edge may be connected to an infinite cluster. The final setA1 will be a forest onT3
with both infinite and finite clusters, such that no two finite clusters are separated
by a single edge.
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Following [5] we call this process thefrozen percolation process onT3.
Although this process is intuitively quite natural, rigorously speaking it is not clear
that it exists or that (∗) does specify a unique process. In fact Itai Benjamini and
Oded Schramm (personal communication) have an argument that such a process
does not exist on theZ2-lattice with its natural invariance property. But for the
infinite binary tree case [5] gives a rigorous construction of a process satisfying (∗),
which can be summarized as follows (Theorem 1 and Proposition 2 of [5]).

THEOREM 52. There exists a joint law for (At ,0 ≤ t ≤ 1) and (Ue, e ∈ E)

such that (∗) holds and the joint law is invariant under the automorphisms of T3.
Furthermore for a prescribed edge e and vertex v of T3, and fixed t in (1

2,1), the
following are true:

(a) P(cluster containing e becomes infinite in [t, t + dt]) = 1
4t4 dt ,

(b) P(cluster containing v becomes infinite in [t, t + dt]) = 3
8t4 dt ,

(c) P(e in some infinite cluster of A1) = 7
12, P(e in some finite cluster of A1) =

1
16, P(e /∈ A1) = 17

48,
(d) P(v in some infinite cluster of A1) = 7

8, P(v in some finite cluster of A1) =
7
64, P(v /∈ A1) = 1

64.

6.1. 540◦ arguments. The phrasecircular argument has negative connota-
tions, but we will describe what we term a 540◦ (i.e., one and a half circles) argu-
ment. In summary, the three half-circles are:

• Suppose a process with desired qualitative properties exists. Do heuristic
calculations leading to an RDE.

• Solve the RDE. Use the associated RTP to make a rigorous construction of a
process.

• Repeat original calculations rigorously.

In the next three sections we outline how this argument is used to prove
Theorem 52. A similar 540◦ argument in a more sophisticated setting underlies
the mean-field minimal matching example of Section 7.3.

6.2. Stage 1. Suppose that the frozen percolation process exists onT3 and
has the natural invariance and independence properties. Define a modified tree
called theplanted binary tree, writtenT̃3 = (Ṽ, Ẽ), where one distinguished
vertex (we call it theroot) has degree 1 and the other vertices have degree 3.
Write ẽ for the edge at the root. ClearlỹT3 is isomorphic to the subtree ofT3
which can be obtained by first making some vertex the “root” and then removing
two edges coming out of the root and their induced subtrees. Given independent
Uniform(0,1) variables, say(Ue)e∈Ẽ , as the edge weights oñT3, we suppose we
can define a frozen percolation process on this modified tree. LetY be the time
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at which the component containing the edgeẽ becomes infinite, withY = ∞ if
never. Lete1 ande2 be the two edges which are coming out of the edgeẽ; write
the corresponding induced planted subtrees asT̃31 andT̃32. Let Y1 andY2 be the
respective times for the edgese1 ande2 to join an infinite cluster iñT31 or T̃32.
Now consider̃T3. If Uẽ < min(Y1, Y2), then the edgẽe joins an infinite component;
otherwise it never enters the process. Thus one can write

Y = �
(
min(Y1, Y2),Uẽ

)
,(65)

where� : I × [0,1]→ I , with I = [1
2,1] ∪ {∞} is defined as

�(x,u) =
{

x, if x > u,

∞, if x ≤ u.
(66)

Observe that the subtrees̃T31, T̃32 are isomorphic tõT3, and soY1 and Y2 are
independent and distributed asY . And so the law ofY on the setI satisfies the
RDE

Y = �
(
min(Y1, Y2),U

)
,(67)

where U
d= Uniform(0,1) and Y1, Y2 are i.i.d. and have the same law asY .

Fortunately this RDE is easy to solve.

LEMMA 53 ([5]). A probability law µ on I satisfies the RDE (67) if and only
if for some x0 ∈ [1

2,1]

µ(dx) = 1

2x2 dx,
1

2
< x ≤ x0; µ(∞) = 1

2x0
.(68)

PROOF. Suppose that a probability lawµ on I is a solution of (67) with
distribution functionF . Then from the definition of�

F(x) = P
(
U < min(Y1, Y2) ≤ x

)
, 1

2 ≤ x ≤ 1.

SupposingF has a densityF ′ on [1
2,1] (which can be proved by a more careful

rephrasing of the argument); we get

F ′(x) = 2x
(
1− F(x)

)
F ′(x), 1

2 ≤ x ≤ 1,

and hence it follows that

F(x) = 1− 1

2x
on
[1

2,1
]∩ support(µ).(69)

Since the functionx �→ 1− 1
2x

is strictly increasing, identity (69) can only happen
when support(µ) = [1

2, x0] for some1
2 < x0 ≤ 1.

Conversely it is easy to see that such a probability law onI satisfies the
RDE (67). �
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From the definition ofY in terms of frozen percolation on the planted binary
tree, we expect the support of its distribution to be all ofI = [1

2,1] ∪ {∞}, and
so we choose the particular solution (68) withx0 = 1, that is, the distributionν
defined by

ν(dy) = 1

2y2 dy,
1

2
≤ y ≤ 1, ν(∞) = 1

2
,(70)

or equivalently

ν((y,∞]) = 1

2y
,

1

2
≤ y ≤ 1.(71)

Continuing to argue heuristically, we can now do the calculations recorded in
Theorem 52: we give the argument for (a), and the other parts are similar. Write
e1, e2, e3, e4 for the edges adjacent to the edgee, and T̃31, T̃32, T̃33, T̃34 for the
corresponding planted binary trees which are all isomorphic toT̃3, and further let
Y1, Y2, Y3, Y4 be the times at which the respective edges enter an infinite cluster of
the frozen percolation processes restricted to the subtrees. WritingZ for the time
taken for the edgee to enter an infinite cluster (noteZ =∞ if never), then

Z =
{

min
1≤i≤4

Yi, if Ue < min
1≤i≤4

Yi,

∞, otherwise.
(72)

Thus the densityfZ of Z on [1
2,1] in terms of the lawν of Y can be written as

fZ(x) = x × 4
dν

dx
× ν3((x,∞)) = 4x × 1

2x2 ×
(

1

2x

)3

= 1

4x4 ,

as asserted in part (a).

6.3. Stage 2. We now start a rigorous construction based on knowing that the
distributionν at (70) solves the RDE (67). For each edgee ∈ E let  e and

 

e be the
two directed edges defined bye, and let  E be the set of all directed edges. Now
for the directed edges we have a natural language of family relationship: the edge
 e = (v,w) has twochildren of the form(w,x1) and(w,x2). It is not hard to use
the Kolmogorov consistency theorem and the fact thatν solves (67) to show

LEMMA 54 ([5]). There exists a joint law for ((U e, Y e),  e ∈  E) which is
invariant under automorphisms of T3 and such that for each  e ∈  E

Y e has law ν,
(73)

Y e = �
(
min

(
Y e1, Y e2

)
,U e

)
a.s.,

where  e1 and  e2 are children of  e, and where for each e ∈ E , U e = U

 

e = Ue.
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Now we can outline the rigorous construction of the frozen percolation process.
Essentially, one takes the heuristically obvious property (72) as a definition. In
more detail, for an undirected edgee, define∂e as the set of four directed edges
adjacent toe and directed away from it. Define

A1 := {e ∈ E |Ue < min(Ye′ : e
′ ∈ ∂e)}.(74)

Finally for 0≤ t < 1 define

At := {e ∈ A1|Ue ≤ t}.(75)

It is now clear that(At ) inherits from(Y e) the automorphism-invariance property,
as well as the property that the only possible time at which an edgee can join the
process is at timeUe. To check that(At ) actually satisfies (∗) and so it is a frozen
percolation process is somewhat more elaborate, and this part of the proof [5] of
existence is omitted here.

6.4. Stage 3. We can now repeat the argument leading to (72) in terms of the
explicit construction above and its modification on planted binary trees. This leads
to part (a) as shown in Stage 1, and the other parts are similar.

6.5. The endogenous property. If the RDE were nonendogenous, then the
frozen percolation process would have a kind of “spatial chaos” property, that the
behavior near the root was affected by the behavior at infinity. For several years we
conjectured in seminar talks that the RDE is nonendogenous, but recently proved
the opposite.

THEOREM 55 ([16]). The invariant RTP associated with (67), (70) is
endogenous.

7. Combinatorial optimization within the mean-field model of distance.
In problems involvingn random points ind-dimensional space, explicit calcu-
lations for n → ∞ asymptotics are often complicated by the obvious fact that
the

(n
2

)
inter-point distances are dependent r.v.’s. One can make a less realistic but

more tractable model by eliminating the ambientd-dimensional space and instead
assuming that the

(n
2

)
inter-point distances areindependent r.v.’s. This is themean-

field model of distance. Specifically, assume inter-point distances have exponential
distribution with meann, so nearest-neighbor distances are order 1. This model
mimics true inter-point distances ind = 1 dimension; other distributions can be
used to mimic otherd without changing essential aspects of what follows.

This model, and study of theminimal spanning tree and minimal matching
problems within it, are surveyed in some detail in Sections 4 and 5 of [11]. Here
we emphasize a different example, in Section 7.2, and only briefly record the
RDEs arising in the minimal matching, traveling salesman and variant problems
(Sections 7.3–7.6).



1092 D. J. ALDOUS AND A. BANDYOPADHYAY

FIG. 4. Part of a realization of the PWIT that shows just the first three children of each vertex. The
length is written next to each edge e.

7.1. The PWIT approximation. In the mean-field model above, the key feature
is that there is ann → ∞ “local weak limit” structure called the PWIT (Poisson
weighted infinite tree), which describes the geometry of the space as seen from a
fixed reference point. In brief (see [11] for more details) consider a Poisson point
process

0< ξ1 < ξ2 < ξ3 < · · ·(76)

of rate 1 on(0,∞). Take a root vertex∅. Let this root have an infinite number
of children 1,2,3, . . . , the edge-lengths to these children being distributed as the
Poisson process(ξi, i ≥ 1) at (76). Repeat recursively; each vertexi has an infinite
number of children(ij, j ≥ 1) and the edge-lengthsξij , j ≥ 1 are distributed
as the Poisson process (76), independent of other such Poisson processes. See
Figure 4.

7.2. Critical point for minimal subtrees. Consider the mean-field model on
n points as the complete graphKn on n vertices, and writeξe for the length of
edgee. For a subtreet, that is, a tree whose vertices are some subset of then

vertices, write

|t| = number of edges int,

L(t) =∑
e∈t

ξe = total length oft,

a(t) = L(t)/|t| = average edge-length oft.

A well-known result [32] on minimal spanning trees says that, if we insist on
|t| = n − 1, then the smallest we can makea(t) is aboutζ(3) :=∑

i i
−3. If we

fix 0 < ε < 1 and consider subtrees with aroundεn edges, then we guess that the
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smallest value ofa(t) should be aroundδ(ε) asn → ∞, for some deterministic
function δ(ε). It is not hard to show thatδ(ε) > 0 for largeε while δ(ε) = 0 for
smallε. So there must be acritical point at whichδ(·) leaves 0; this is analogous
to critical points in percolation theory. What is interesting is that the critical point
is determined by an RDE. It is convenient to turn the problem around and study
the maximum size of a subtreet subject to the constraint thata(t) ≤ c. For fixed
0< c < ∞ consider the RDE onS = [0,∞)

Y
d=

∞∑
i=1

(c − ξi + Yi)
+; (ξi) a Poisson rate 1 point process on(0,∞).(77)

PROPOSITION 56 ([4]). Define M(n, c) = max{|t| : t a subtree of Kn,

a(t) ≤ c}. Then there exists a critical point c(0) ∈ [e−2, e−1] such that

if c < c(0) then n−1M(n, c)
d→0,(78)

if c > c(0) then ∃η(c) > 0 such that P
(
n−1M(n, c) ≥ η(c)

)→ 1,(79)

and

c(0) = inf{c|RDE (77) has no solution on [0,∞)}.

The conceptual point to emphasize is that, by analogy with Example 2, we are
studying an “average” by studying whether an associated “compensated sum” is
finite or infinite.

First we explain how the RDE (77) arises. In the PWIT define, for integers
h ≥ 0,

Y (h) = sup{c|t| −L(t)|root∈ t,height(t) ≤ h},
where thesup is over subtreest of the PWIT, and where height(t) denotes the
maximum number of edges in a path int from the root. To obtain the maximizing
t one simply considers in turn each childi of the root and considers whether one
gets a positive contribution by including childi in t. The contribution equals

c − ξi + Y
(h−1)
i

whereξi is the length of edge from root to childi, andY
(h−1)
i is a sup over subtrees

ti of child i:

Y
(h−1)
i = sup{c|ti | −L(ti )|height(ti ) ≤ h− 1}.

So

Y (h) =
∞∑
i=1

(
c − ξi + Y

(h−1)
i

)+(80)
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where the(Y (h−1)
i ) are, by the recursive structure of the PWIT, independent copies

of Y (h−1). Writing Tc for the map on distributions associated with the RDE (77),
the last equality says

T h
c (δ0) = dist

(
Y (h)).

Lemma 15 then implies that forc < c(0),

T h
c (δ0)

d→µc ash →∞,

whereµc, supported on[0,∞), is the lower invariant measure; and that the RTP
is endogenous. Indeed,µc is just the distribution of

Y (∞) = sup{c|t| −L(t)|root∈ t, t finite}.

OUTLINE PROOF OFPROPOSITION56. Fix c < c(0). Roughly, the fact that
Y (∞) is finite implies that there cannot exist large subtrees of the PWIT with
average edge-length much greater thanc; the fact that the PWIT represents the
local structure ofKn for largen implies that the same should hold forKn; this is
the lower bound (78) of the proposition. Let us amplify this argument into four
steps. Fix an integerm.

Step 1. The connection betweenKn (the complete graph onn vertices with
random edge-lengths) and the PWIT is provided bylocal weak convergence of the
former to the latter—see [11], Theorem 3 for formalization. A soft consequence of
local weak convergence is

lim
n

dist max{c|t| −L(t)|t ⊂ Kn, root∈ t, |t| ≤ 3m}
(81)

is stochastically smaller thanT 3m
c δ0.

Indeed, we would have asymptotic equality if we required only thatt have depth
≤ 3m; but we make a stronger restriction.

Step 2. The quantity above can be used to bound the chance of the event: there
exists a small treet containing the root and withc|t| − L(t) ≥ x. Consider the
mean number of verticesv satisfying that event (withv in place of root) and apply
Markov’s inequality to deduce the following:

P
(∃ at leastδn verticesv s.t.∃ t ! v with c|t| −L(t) ≥ x and|t| ≤ 3m

)
is asymptotically≤ δ−1µc[x,∞].

Step 3. Any tree with at least 3m edges can be split into edge-disjoint subtrees,
each having betweenm and 3m edges.
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Step 4. We are assumingc < c(0), so interposec < c′ < c∗ < c(0). If the
desired conclusion (78) were false, there would be some “big” treet with |t| ≥ εn

anda(t) ≤ c. Use step 3 to split into “small” subtrees; a deterministic averaging
argument shows there would exist at leastδn verticesv in small treest′ with
a(t′) ≤ c′. Here δ depends onε, c, c′ but not onn,m. These trees now satisfy
c∗|t| − L(t) ≥ m(c∗ − c′). Applying step 2, the chance of this many small trees is
at mostδ−1µc∗[m(c∗ − c′),∞]. Sincem is arbitrary andµc∗(∞) = 0 we get the
lower bound (78). We are done.

The argument for the upper bound (79) is parallel. Forc > c(0) eachv has
nonvanishing chance of being in some large finite treet with a(t) ≥ ε(c), and one
can patch together these trees to get an�(n0-size treet with a(t)) ≥ ε(c). �

Incidentally, the lower boundc(0) ≥ e−2 stated in Proposition 56 arises from
the first moment method, and the upper boundc(0) ≤ e−1 comes from considering
paths as a special case of trees. Moreover, numericallyc(0) ≈ 0.263. See [4] for
details.

7.3. Minimal matching. Consider again the mean-field model of distance, that
is, the complete graphKn with random edge-lengths with exponential (meann)
distribution. Taken even and consider a (complete) matching, that is, a collection
of n/2 vertex-disjoint edges. Define

Mn = minimum total length of a complete matching.

This problem is often studied in the bipartite case ([61], Chapter 4) but the two
versions turn out to be equivalent in our asymptotic setting. The following limit
behavior was argued nonrigorously in [53] and proved (in the bipartite setting) in
[1, 6]. There are fascinating recent proofs [48, 55] of an underlying exact formula
for EMn in the bipartite, exponential distribution setting, but it seems unlikely that
the applicability of exact methods extends far into the broad realm of problems
amenable to asymptotic study.

THEOREM 57. 2
n
EMn → π2/6.

The technically difficult proof is outlined in moderate detail in Section 5 of [11].
Here we emphasize only the underlying RDE, and some analogous RDEs arising
in analogous problems.

The central idea is that, since the PWIT originates as a “local weak limit” ofKn,
one can relate matchings onKn to matchings on the PWIT. The technically hard,
though noncomputational, part of the proof is to show that the limit limn

2
n
EMn

must equal

inf{E(typical edge-length ofM) : M an invariant matching on the PWIT}.(82)
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Hereinvariant means, intuitively, that in defining the matchingM on the PWIT,
the root∅ must play no special role. Now one can see how to construct the optimal
matchingMopt on the PWIT by reusing two ideas we have seen earlier in this
survey. First, we use the 540◦ argument from Section 6.1: start with heuristically
defined quantities, obtain an RDE and use its solution as a basis for rigorous
construction. Second, we use the idea from Section 4.6 of seeking a recursion
for a quantity defined as adifference.

Write T for the PWIT. Consider the definition, analogous to (50),

X∅ = length of optimal matching onT
(83) − length of optimal matching onT \ {∅}.
Here we meantotal length, so we get∞ − ∞, and so this makes no sense
rigorously. But pretend it does make sense. Then for each childj of the root we
can defineXj similarly in terms of the subtreeTj rooted atj :

Xj = length of optimal matching onTj

− length of optimal matching onTj \ {j}.
One can now argue, analogously to (51),

X∅ = min
1≤j<∞(ξj −Xj),(84)

root is matched to the vertex argminj (ξj −Xj) in the optimal matching.(85)

Recall(ξi) is the Poisson process (76). This motivates us to consider the RDE

X
d= min

1≤i<∞(ξi −Xi) (S = R).(86)

Luckily, this turns out to be easy to solve.

LEMMA 58 ([6], Lemma 5). The unique solution of (86) is the logistic
distribution

P(X ≤ x) = 1/(1+ e−x), −∞ < x < ∞,(87)

or equivalently the density function

f (x) = (ex/2 + e−x/2)−2, −∞ < x < ∞.

Implementing the 540◦ argument, we will use the logistic solution or the RDE
to construct a random matching on the PWIT. Each edgee in the edge-setE of T
corresponds to two directed edges e,

 

e : write  E for the set of directed edges and
write ξ( e) = ξ(

 

e ) = ξ(e) for the edge-length. For a directed edge(v,w) we can
call the directed edges{(w,x)| x �= v} its children. The Kolmogorov consistency
theorem and the logistic solution of (86) imply (cf. Lemma 54)
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LEMMA 59. Jointly with the edge-lengths (ξ(e), e ∈ E) of the PWIT we can
construct {X( e),  e ∈  E} such that:

(i) each X( e) has the logistic distribution,
(ii) for each  e, with children  e1,  e2, . . . say,

X( e) = min
1≤j<∞

(
ξ(ej )−X( ej )

)
.(88)

Theorem 61 will show thatX(v, v′) depends only on the edge-lengths within
the subtree rooted atv′. Guided by the heuristic (85), for each vertexv define

v∗ = arg min
v′∼v

(
ξ(v, v′)−X(v, v′)

)
.(89)

In view of (82) an outline proof of Theorem 57 can be completed by proving

PROPOSITION 60 ([6], Lemma 16, Propositions 17 and 18). (a)The set of
edges (v, v∗) forms a matching Mopt on the PWIT.

Write  Mopt(∅) for the vertex to which the root ∅ is matched in Mopt, so that
the mean edge-length in Mopt can be written as Eξ(∅,  Mopt(∅)). Then:

(b) Eξ(∅,  Mopt(∅)) = π2/6.
(c) For any invariant matching M,

Eξ
(
∅,  M(∅)

)− Eξ
(
∅,  Mopt(∅)

)≥ 0.(90)

Let us indicate only the proofs of (a) and (b). For (a) we need only show that
(v∗)∗ = v. Note first

ξ(v, v∗)−X(v, v∗) < min
y �=v

(
ξ(v, y)−X(v, y)

)
by definition ofv∗

= X(v∗, v) by recursion (88)

or equivalently

ξ(v, v∗) < X(v, v∗)+X(v∗, v).(91)

And if z �= v∗ is another neighbor ofv, then

ξ(v, z)−X(v, z) > min
y �=v

(
ξ(v, y)−X(v, y)

)
= X(z, v)

or equivalently

ξ(v, z) > X(v, z)+X(z, v).

We conclude thatv∗ is theunique neighbor ofv satisfying (91). But the right-hand
side of (91) is symmetric, so applying this conclusion tov∗ shows(v∗)∗ = v.
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To prove (b) we calculate the mean length of the edge at the root. In order for this
length to bex, there must be an edge of lengthx from the root to some vertexj ,
and also (91) we must havex < X(root, j)+X(j, root). But these are distributed
as independent logistics, sayX1 andX2, and so

Eξ
(
∅,  Mopt(∅)

)= ∫ ∞
0

x dx P (x < X1 +X2)(92)

= 1
2E
(
(X1 +X2)

+)2 by a general formula

= 1
4E(X1 +X2)

2 by symmetry

= 1
2EX2

1

= π2/6,(93)

the last step using a standard fact that the logistic distribution has varianceπ2/3.

THEOREM 61 ([15]). The invariant RTP associated with the RDE (86) is
endogenous.

The significance of this result is pointed out in Section 7.5. The proof
involves somewhat intricate analytic study of the iteratesT (2)n(µ × µ) to verify
Theorem 11(c). We remark that we have not succeeded in using contraction
methods to prove Theorem 61. Indeed the operatorT associated with the RDE
(86) is not a strict contraction. To see this, it is easy to check thatT is well defined
on the subspaceP1 of distributions with finite mean. Moreover, ifX has logistic
distribution, then the distribution ofc + X is a fixed point forT 2 for any c ∈ R.
HenceT cannot be a strict contraction on the whole ofP1. This shows that the
logistic solution of (86) does not have full “domain of attraction,” but the question
of determining the domain of attraction remains open.

OPEN PROBLEM 62. Find the subsetD ⊂ P1 such thatT n(ν)
d→µ as

n →∞ if and only if ν ∈ D , whereµ is the logistic distribution.

REMARK. The way we started the heuristic argument at (83) may seem
implausible, because one might expect analogous quantities in finite-n setting to
have spreads which increase to infinity withn. But a better analogy is with the
positionRn of the rightmost point in BRW; its spread (Lemma 43) stays bounded
with n.

7.4. TSP and other matching problems. Here we follow Sections 6.1 and 6.2
of [6], which showed how earlier work [51, 52] fits into the current framework.

As suggested at the start of Section 7, one can define a mean-field model of
distance with any realpseudo-dimension 0 < d < ∞ to mimic distances between
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random points ind dimensions. Precisely, take the complete graphKn on n

vertices, and let the i.i.d. edge-lengths have distributionn1/dL where

P(L ≤ x) ∼ xd/d asx ↓ 0.

This scaling keeps nearest-neighbor distances as order 1. And in the local
approximation of thisKn by the PWIT, we simply change the distribution of edge-
lengths at a vertex in the PWIT: the homogeneous Poisson process of rate 1 is
replaced by an inhomogeneous Poisson process 0< ξ1 < ξ2 < · · · of ratexd−1; in
other words

E(number ofi with ξi ≤ x) = xd/d.

For minimum matching in pseudo-dimensiond, it is remarkable that (heuris-
tically, at least) the previous analysis is in principle unchanged. Theorem 57
becomes [cf. (92)]

lim
n

2

n
EMn =

∫ ∞
0

xdP (X1 +X2 > x)dx

whereX1 andX2 are independent copies of the solution of the RDE

X
d= min

1≤i<∞(ξi −Xi) (S = R).(94)

Thus the abstract structure of the limit theorem is unchanged in pseudo-
dimensiond. But for d �= 1 there is no known explicit solution of (94); and while
numerical methods indicate that there is indeed a unique solution, rigorous proof
remains elusive.

OPEN PROBLEM 63. Prove that for each real 0< d < ∞ there is a unique
solution to the RDE (94), and that the associated invariant RTP is endogenous.

Similarly, in the TSP (traveling salesman problem) in pseudo-dimensiond,
a variant of the argument leading to recursion (86) leads us to the recursion

X
d= min

1≤i<∞
[2](ξi −Xi) (S = R).(95)

Here min[2] denotes the second minimum, and the analog of Theorem 57 is that
the lengthSn of the optimal TSP satisfies

lim
n

1

n
ESn =

∫ ∞
0

xdP (X1 +X2 > x)dx

where X1 and X2 are independent copies of the solution of the RDE (95).
Numerically the limit is about 2.04 for d = 1. Again numerical methods indicate
that there is a unique solution for alld, but no rigorous proof is known even for
d = 1.
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OPENPROBLEM 64. Prove that for each real 0< d < ∞ (or at least ford = 1)
there is a unique solution to the RDE (95), and that the associated invariant RTP is
endogenous.

Instead of studying minimal matchings one could study Gibbs distributions on
matchings; this leads to a different RDE ([6], (46), and [62])

1/X
d=

∞∑
i=1

e−θξiXi (S = R
+)

which is somewhat in the spirit of the linear case.

7.5. The cavity method. The nonrigorouscavity method was developed in
statistical physics in the 1980s; see [54] for a recent survey. Though typically
applied to examples such as ground states of disordered Ising models, it can also
be applied to the kind of “mean-field combinatorial optimization” examples of the
last two sections. It turns out that the methodology used in [6] to make a rigorous
proof of the mean-field matching limit serves to provide a general methodology
for seeking rigorous proofs paralleling the cavity method in a variety of contexts.
This is a broad and somewhat complicated topic, and the time is not ripe for a
definitive survey, but it seems worthwhile to outline the ingredients of the rigorous
methodology, pointing out where RDEs and endogeny arise.

Start with a combinatorial optimization problem over some size-n random
structure.

• Formulate a “size-∞” random structure, then → ∞ limit in the sense of local
weak convergence.

• Formulate a corresponding combinatorial optimization problem on the size-∞
structure.

• Heuristically define relevant quantities on the size-∞ structure via additive
renormalization [cf. (83)].

• If the size-∞ structure is treelike (the only case where one expects exact
asymptotic solutions), observe that the relevant quantities satisfy a problem-
dependent RDE.

• Solve the RDE. Use the unique solution to find the value of the optimization
problem on the size-∞ structure.

• Show that the RTP associated with the solution is endogenous.
• Endogeny shows that the optimal solution is a measurable function of the data,

in the infinite-size problem. Since a measurable function is almost continuous,
we can pull back to define almost-feasible solutions of the size-n problem with
almost the same cost.

• Show that in the size-n problem one can patch an almost-feasible solution into
a feasible solution for asymptotically negligible cost.
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7.6. Scaling laws in mean-field combinatorial optimization. Here we indicate
current nonrigorous work on scaling exponents associated with mean field of
combinatorial optimization problems. As indicated in the methodology description
above, the main requirement for making rigorous proofs would be proofs of
uniqueness and endogeny for the RDEs which arise. So our discussion emphasizes
the RDEs.

7.6.1. Near-optimal solutions. In the context of mean-field minimum match-
ing, compare the optimal matchingM(n)

opt with a near-optimal matchingM(n) by
using the two quantities

δn

(
M(n))= n−1

E
[
number edges ofM(n) \M(n)

opt
]
,

εn

(
M(n))= n−1

E
[
cost

(
M(n))− cost

(
M(n)

opt
)]

.

Then define

εn∗(δ) = min
{
εn

(
M(n))|δn

(
M(n))≥ δ

}
.

We anticipate a limitε(δ) = limn εn∗(δ), and then can ask whether there is a scaling
exponent

ε(δ) " δα asδ → 0.

Such a scaling exponent provides a measure of how different an almost-optimal
solution can be from the optimal solution.

Remarkably, it is not so hard to study this question by an extension of the
methods of Section 7.3. It turns out [10] that the key is the extension of the RDE
(86) to the following RDE onS = R

3:

X

Y

Z

=


min

i
(ξi −Xi)

min
i

(
ξi − (Zi + λ)1(i = i∗)− Yi1(i �= i∗)

)
min

i
(ξi − Yi)

(96)

where

i∗ = argmin
i

(ξi −Xi)

and whereλ > 0 is a Lagrange multiplier. In terms of the solution of this RDE
one can define functionsε(λ) andδ(λ) which then define the limit functionε(δ).
Numerical study in [10] indicates the scaling exponentα = 3 in both minimal
matching and TSP problems in the mean-field model.
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7.6.2. TSP percolation function. In the context of the TSP in the mean-field
model of distance, one can study a function(p(u),0 < u ≤ 1) analogous to the
percolation function, defined as follows. RecallKn is the complete graph with
random edge-lengths. Over all cyclesπn,u in Kn containingun vertices, letCn,u

be the minimum average edge-length ofπn,u. We anticipate a limit

lim
n

ECn,u = p(u).

It turns out [8] that what is relevant is the following RDE for a distribution(X,Z)

on R
2:

(
X

Z

)
d=
 max

i
(λ− ξi +Xi −Z+

i )

max
i

(λ− ξi +Xi −Z+
i )+ max

i

[2](λ− ξi +Xi −Z+
i )

 .(97)

Hereλ > 0 is again a Lagrange multiplier. In terms of the solution of this RDE
one can define functionsp(λ) andu(λ) which then define the limit functionp(u).
Numerical study in [8] indicates a scaling exponentp(u) " uα asu ↓ 0 withα = 3.
Moreover, for both the present “percolation function” setting and the previous
“near-optimal solution” setting, one can pose analogous questions involving trees
in place of tours, and it turns out [8, 10] that for both these questions the scaling
exponent is 2. But at present we have no good conceptual explanation of these
fascinating observations.

7.6.3. First passage percolation. A somewhat different setup is appropriate
for a mean-field model of first passage percolation. Take the 4-regular treeT, with
in-degree 2 and out-degree 2 at each vertex; regard this as the mean-field analog of
the oriented latticeZ2. Attach independent exponential(1) random variablesξe to
the edges ofT. We studyflows f = (f (e)) on T, for which the in-flow equals the
out-flow at each vertex, with 0≤ f (e) ≤ 1. Associated with an invariant random
flow are two numbers

∂(f ) = Ef (e): the average density of the flow,

τ (f ) = Ef (e)ξ(e)

∂(f )
: the flow-weighted average edge-traversal time.

We study the function

δ∗(τ ) := sup{∂(f ) : f an invariant flow withτ(f ) = τ }, 0< τ < 1.

We haveδ∗(τ ) > 0 iff τ > τFPP, whereτFPP is the time constant in first passage
percolation onT. As above, to study scaling exponents the key is a certain RDE
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for S = R
+, which turns out [7] to be

Z
d= min

(
Z2 + ξ2 − a,Z3 + ξ3 − a,

3∑
i=1

(Zi + ξi − a)

)
(98)

− min

(
0,
∑

i=1,2

(Zi + ξi − a),
∑

i=1,3

(Zi + ξi − a)

)
.

Here a is a parameter∈ (τFPP,1). In terms of the solution of this RDE one
can define functionsδ(a) and τ(a) which then determine the functionδ∗(τ ).
Numerical study in [7] indicates a scaling exponent 2:

δ∗(τ ) ∼ 12.7(τ − τFPP)
2 asτ ↓ τFPP.

8. Complements.

8.1. Numerical and Monte Carlo methods. In the context of studying a fixed
point equationT (µ) = µ or the bivariate analog in Theorem 11, there are several
numerical methods one might try: solving the equation directly or calculating
iteratesT n(µ0) for some convenientµ0; discretization or working in a basis
expansion. But implementation is highly problem-dependent.

In contrast, given an RDEX d=g(ξ,Xi, i ≥ 1) the bootstrap Monte Carlo
method provides a very easy to implement and essentially problem-independent
method. Start with a list ofN numbers (takeN = 10,000 say) with empirical
distributionµ0. Regard these as “generation-0” individuals(X0

i ,1≤ i ≤ N). Then
T (µ0) can be approximated as the empirical distributionµ1 of N “generation-1”
individuals (X1

i , 1 ≤ i ≤ N), each obtained independently via the following
procedure. Takeξ with the prescribed distribution, takeI1, I2, . . . independent
uniform on{1,2, . . . ,N} and set

X1
i = g

(
ξ,X0

I1
,X0

I2
, . . .

)
.

Repeating for, say, 20 generations lets one see whetherT n(µ0) settles down to a
solution of the RDE. Note that as well as finding solutions of a given RDE, this
method can be used to study endogeny via Theorem 11(c).

8.2. Smoothness of densities. For linear RDEs, under appropriate assumptions
one can show that fixed points are unique and haveC∞ densities, and use this
as a basis for a theoretical “exact sampling” scheme; see [26]. In the Quicksort
example (21), smoothness of densities has been studied in [31]. It would be
interesting to seek general smoothness results for solutions of max-type RDE.
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8.3. Dependence on parameters. When an RDE depends on a parameter (e.g.,
our (77) and (96); see also examples involving multiplicative martingales for
branching processes, e.g., [23], Theorem 3.3), it is natural to ask whether the
solution depends continuously on the parameter. This has apparently not been
studied in any generality.

8.4. Continuous-time analogs. We set up recursive tree processes as discrete-
generation processes, analogous to discrete-time Markov chains. Let us mention
two contexts where continuous-parameter analogs of RTPs arise. The first is the
classical KPP equation, which is the analog of (54) for branching Brownian
motion; see [37] for a recent probabilistic account. The second concerns the
maximum X of standard Brownian excursion of length 1. By scaling, the

maximum Xt for Brownian excursion of lengtht satisfiesXt
d= t1/2X. Since

excursions above higher levels are independent (conditional on their lengths), we
can write (for infinitesimalδ)

X = δ + max
i

t
1/2
i (δ) Xi

where(ti(δ), i ≥ 1) are the lengths of excursions above levelδ within standard
Brownian excursion. See [18] for this kind of decomposition.

8.5. Process-valued analogs. There are examples where the distribution
arising in an RDE is the distribution of a stochastic process, rather than a single
real-valued random variable. Here is an illustration.

Birth and assassination process [9]. Start with one individual at time 0. During
each individual’s lifetime, children are born at the times of a Poisson (rateλ)
process. An individual cannot die before the time of its parent’s death (time 0, for
the original individual); after that time, the individual lives for a further random
time S, i.i.d. over individuals. Consider the random timeX at which the process
becomes extinct. It is not hard to show [9] thatX < ∞ a.s. under the assumption
infu>0 u−1

Eexp(uS) < 1/λ.
It does not seem possible to find an equation forX itself, but one can study

a process(X(t),0 ≤ t < ∞) for which X = X(0). Specifically, first set up the
process of all possible descendants; for a realization, for eacht let X(t) be time
until extinction, in the modification where the first individual has a “fictional
parent” who dies at timet . One can now argue that the process(X(t)) satisfies
the RDE

X(t)
d= t + S + max

i : ξi≤t+S

(
ξi +Xi(t + S − ξi)

)
where(ξi) are the points of a Poisson rateλ process on(0,∞). This RDE has not
been studied.

OPEN PROBLEM 65. Study the scaling behavior ofX in the limit as 1/λ ↓
infu u−1

Eexp(uS).
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8.6. Matchings in random regular graphs. Fix r ≥ 2 and consider a random
r-regularn-vertex graphG(n, r). Attach independent exponential(1) distributed
random weights(ξe) to edges. As in Section 4.6, letM(n, r) be the maximum
weight of a partial matching inG(n, r). Then →∞ limit of G(n, r), in the sense
of local weak convergence, is the infiniter-regular treeTr . Thus one can seek to
carry out the general program formalizing the cavity method (Section 7.5) in this
setting. Recent work [33] provides interesting positive and negative results. The
relevant RDE is [cf. (51)]

X
d= max

1≤i≤r−1
(0, ξi −Xi) (S = R

+).(99)

THEOREM66 ([33]). Let Tr−1 be the map associated with the RDE (99).Then
T 2

r−1 has a unique invariant distribution. Moreover, for (Xi) with the invariant
distribution,

lim
n

n−1
EM(n, r)

= 1

2
E

r∑
i=1

ξi1
(
ξi −Xi = max

1≤j≤r
(ξj −Xj) > 0

)

= rbr−1

2

∫ ∞
0

te−t (1− e−t (1− b)
)r−1

dt

+ r(r − 1)(1− b)

2

×
∫ ∞

0

∫ t

0
te−t e−z(1− e−z(1− b)

)r−2(1− e−t+z(1− b)
)r−1

dzdt

where b is the unique solution of b = 1− 1−br

r(1−b)
.

Similar results for matchings on the sparse random graph model are also derived
in [33]. But in the “dual” problem for independent subsets the relevant RDE
turns out to have nonunique solution forr ≥ 5, and nonuniqueness holds also for
independent sets in the sparse random graph model above a certain critical value.
So this setting provides an important test bed for the range of applicability of the
method.

8.7. Random fractal graphs. A recent thesis [42] studies RDEs arising in the
context of constructing random fractal graphs, and discusses examples such as the
following:

X
d=g(X1,X2, ξ) (S = R

+)
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where

ξ
d= Bern(p),

g(x1, x2,0) = 2min(x1, x2),

g(x1, x2,1) = 1
2 max(x1, x2).

However, the form of functionsg are chosen for mathematical convenience, rather
than being derived from an underlying richer model as in our examples.

8.8. List of open problems and conjectures. These can be fitted into four
categories.

Weakening hypotheses in general theorems.
Open Problem 12: bivariate uniqueness implies endogeny.
Open Problem 19: solving linear RDE onR.
Open Problem 18: endogeny for linear RDE onR

+.
Open Problem 31: finiteness of discounted tree-sums.
Open Problem 45: convergence of BRW extremes.
Open Problem 49: nonendogeny of extremes in BRW.

Existence and uniqueness of solution of particular RDEs. Here one can also
ask about endogeny.
Open Problem 46: extremes of branching random walk.
Open Problem 63: mean-field matching,d �= 1.
Open Problem 64: mean-field TSP.
All three RDEs in Section 7.6.

Endogeny and nonendogeny.
Conjecture 34: discounted tree-sums.
Open Problem 62: domain of attraction for minimum matching.

Scaling exponents.
Open Problem 30: range of BRW and speed of algorithmic BRW.
Open Problem 65: birth and assassination.
All three RDEs in Section 7.6.

9. Conclusion. Here we attempt to review the big picture.
1. RDEs in general, and max-type RDEs in particular, arise in the study of a

wide range of underlying stochastic models. Look again at the list of models in
Table 1.

2. While for linear RDEs one has hope of general theory, the diversity of forms
of the functiong(·) listed in Table 1 makes it hard to envisage a general theory
which encompasses many max-type examples in one axiomatic framework. Indeed
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it is not clear how to make any useful classification of our examples; we have
given only an informal “simple/not simple” classification (start of Sections 4 and 5)
based on whether there is a relatively easy a.s. construction of random variables
satisfying the RDE.

3. The cavity method (Section 7.5) provides a range of examples new to
the probability community. Existence and uniqueness of solutions has been
proved rigorously only in the special settings of mean-field matching in pseudo-
dimension 1 (Section 7.3) and matchings and independent sets in random graphs
(Section 8.6). It remains a challenge to establish existence and uniqueness in the
other examples of Sections 7.4 and 7.6.

4. What is new in this survey is the discussion of endogeny, both the (fairly
straightforward) general theory in Section 2, and the analysis of examples. In
some cases one can study endogeny in a model parameterized by a distributionξ

(e.g., Corollaries 17 and 26; Proposition 48) but in other cases (Theorems 21, 55
and 61) the argument relies on analytic calculations based on knowing an explicit
formula for the invariant distribution for a specificξ . For making the cavity method
rigorous, one would like techniques to establish endogeny without knowing such
explicit formulas.

REFERENCES

[1] A LDOUS, D. J. (1992). Asymptotics in the random assignment problem.Probab. Theory
Related Fields 93 507–534.

[2] A LDOUS, D. J. (1992). Greedy search on the binary tree with random edge-weights.Combin.
Probab. Comput. 1 281–293.

[3] A LDOUS, D. J. (1998). A Metropolis-type optimization algorithm on the infinite tree.
Algorithmica 22 388–412.

[4] A LDOUS, D. J. (1998). On the critical value for percolation of minimum-weight trees in the
mean-field distance model.Combin. Probab. Comput. 7 1–10.

[5] A LDOUS, D. J. (2000). The percolation process on a tree where infinite clusters are frozen.
Math. Proc. Cambridge Philos. Soc. 128 465–477.

[6] A LDOUS, D. J. (2001). Theζ(2) limit in the random assignment problem.Random Structures
Algorithms 18 381–418.

[7] A LDOUS, D. J. (2004). Cost-volume relationship for flows through a disordered network.
Unpublished manuscript.

[8] A LDOUS, D. J. (2005). Percolation-like scaling exponents for minimal paths and trees in the
stochastic mean-field model.Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci. To
appear.

[9] A LDOUS, D. J. and KREBS, W. B. (1990). The birth-and-assassination process.Statist.
Probab. Lett. 10 427–430.

[10] ALDOUS, D. J. and PERCUS, A. G. (2003). Scaling and universality in continuous length
combinatorial optimization.Proc. Natl. Acad. Sci. U.S.A. 100 11211–11215.

[11] ALDOUS, D. J. and STEELE, J. M. (2003). The objective method: Probabilistic combinatorial
optimization and local weak convergence. InProbability on Discrete Structures, Ency-
clopaedia of Mathematical Sciences 110 (H. Kesten, ed.) 1–72. Springer, New York.



1108 D. J. ALDOUS AND A. BANDYOPADHYAY

[12] ASMUSSEN, S. (1987).Applied Probability and Queues. Wiley, New York.
[13] ATHREYA, K. B. (1985). Discounted branching random walks.Adv. in Appl. Probab. 17 53–66.
[14] BACHMANN , M. (2000). Limit theorems for the minimal position in a branching random walk

with independent logconcave displacements.Adv. in Appl. Probab. 32 159–176.
[15] BANDYOPADHYAY, A. (2002). Bivariate uniqueness in the logistic fixed point equation.

Technical Report 629, Dept. Statistics, Univ. California, Berkeley.
[16] BANDYOPADHYAY, A. (2004). Bivariate uniqueness and endogeny for recursive distributional

equations: Two examples. Preprint.
[17] BARLOW, M. T., PEMANTLE, R. and PERKINS, E. (1997). Diffusion-limited aggregation on

a tree.Probab. Theory Related Fields 107 1–60.
[18] BERTOIN, J. (2003). The asymptotic behaviour of fragmentation processes.J. European Math.

Soc. 5 395–416.
[19] BIGGINS, J. D. (1977). Chernoff’s theorem in the branching random walk.J. Appl. Probab. 14

630–636.
[20] BIGGINS, J. D. (1977). Martingale convergence in the branching random walk.J. Appl.

Probab. 14 25–37.
[21] BIGGINS, J. D. (1998). Lindley-type equations in the branching random walk.Stochastic

Process. Appl. 75 105–133.
[22] CALIEBE, A. and RÖSLER, U. (2003). Fixed points with finite variance of a smoothing

transformation.Stochastic Process. Appl. 107 105–129.
[23] CHAUVIN , B., KREIN, T., MARCKERT, J.-F. and ROUAULT, A. (2004). Martingales and

profiles of binary search trees. Available at http://fermat.math.uvsq.fr/˜marckert.
[24] DEKKING, F. M. and HOST, B. (1991). Limit distributions for minima displacements of

branching random walks.Probab. Theory Related Fields 90 403–426.
[25] DEVROYE, L. (2001). On the probabilistic worst-case time of find.Algorithmica 31 291–303.
[26] DEVROYE, L. and NEININGER, R. (2002). Density approximation and exact simulation of

random variables that are solutions of fixed-point equations.Adv. in Appl. Probab. 34
441–468.

[27] DIACONIS, P. and FREEDMAN, D. (1999). Iterated random functions.SIAM Review 41 45–76.
[28] DURRETT, R. and LIGGETT, T. M. (1983). Fixed points of the smoothing transformation.

Z. Wahrsch. Verw. Gebiete 64 275–301.
[29] DURRETT, R. and LIMIC , V. (2002). A surprising Poisson process arising from a species

competition model.Stochastic Process. Appl. 102 301–309.
[30] ELIAS, P. (1972). The efficient construction of an unbiased random source.Ann. Math. Statist.

43 865–870.
[31] FILL , J. A. and JANSON, S. (2000). A characterization of the set of fixed points of the quicksort

transformation.Electron. Comm. Probab. 5 77–84.
[32] FRIEZE, A. M. (1985). On the value of a random minimum spanning tree problem.Discrete

Appl. Math. 10 47–56.
[33] GAMARNIK , D., NOWICKI, T. and SWIRSCSZ, G. (2003). Maximum weight independent sets

and matchings in sparse random graphs: Exact results using the local weak convergence
method. arXiv:math.PR/0309441.

[34] GEORGII, H.-O. (1988).Gibbs Measures and Phase Transitions. de Gruyter, Berlin.
[35] GRIMMETT, G. R. (1999).Percolation, 2nd ed. Springer, Berlin.
[36] HAMMERSLEY, J. M. (1974). Postulates for subadditive processes.Ann. Probab. 2 652–680.
[37] HARRIS, S. C. (1999). Travelling-waves for the FKPP equation via probabilistic arguments.

Proc. Roy. Soc. Edinburgh Sect. A 129 503–517.



RECURSIVE DISTRIBUTIONAL EQUATIONS 1109

[38] IKSANOV, A. M. (2004). Elementary fixed points of the BRW smoothing transforms with
infinite number of summands.Stochastic Process. Appl. 114 27–50.

[39] IKSANOV, A. M. and JUREK, Z. J. (2002). On fixed points of Poisson shot noise transforms.
J. Appl. Probab. 34 798–825.

[40] IKSANOV, A. M. and KIM , C.-S. (2004). On a Pitman–Yor problem.Statist. Probab. Lett. 68
61–72.

[41] JAGERS, P. and RÖSLER, U. (2004). Stochastic fixed points for the maximum. InMathematics
and Computer Science III (M. Drmota, P. Flajolet, D. Gardy and B. Gittenberger, eds.)
325–338. Birkhäuser, Basel.

[42] JORDAN, J. (2003). Renormalization of random hierarchical systems. Ph.D. thesis, Univ.
Sheffield, U.K. Available at www.shef.ac.uk/jhj/thesis.pdf.

[43] KAGAN, A. M., LINNIK , YU. V. and RAO, C. R. (1973).Characterization Problems in
Mathematical Statistics. Wiley, New York.

[44] KARPELEVICH, F. I., KELBERT, M. YA. and SUHOV, YU. M. (1994). Higher-order Lindley
equations.Stochastic Process. Appl. 53 65–96.

[45] KHAMSI, M. A. and KIRK, W. A. (2001).An Introduction to Metric Spaces and Fixed Point
Theory. Wiley, New York.

[46] KOLMOGOROV, A., PETROVSKY, I. and PISCOUNOV, N. (1937). Etude de l’équation de la
diffusion avec croissance de la quantité de matière et son application à un problème
biologique.Moscow Univ. Math. Bull. 1 1–25.

[47] LIGGETT, T. M. (1985).Interacting Particle Systems. Springer, Berlin.
[48] LINUSSON, S. and WÄSTLUND, J. (2004). A proof of Parisi’s conjecture on the random

assignment problem.Probab. Theory Related Fields 128 419–440.
[49] LIU, Q. (1998). Fixed points of a generalized smoothing transformation and applications to the

branching random walk.Adv. in Appl. Probab. 30 85–112.
[50] LIU, Q. (2001). Asymptotic properties and absolute continuity of laws stable by random

weighted mean.Stochastic Process. Appl. 95 83–107.
[51] MÉZARD, M. and PARISI, G. (1985). Replicas and optimization.J. Physique Lett. 46

L771–L778.
[52] MÉZARD, M. and PARISI, G. (1986). A replica analysis of the travelling salesman problem.

J. Physique 47 1285–1296.
[53] MÉZARD, M. and PARISI, G. (1987). On the solution of the random link matching problem.

J. Physique 48 1451–1459.
[54] MÉZARD, M. and PARISI, G. (2003). The cavity method at zero temperature.J. Statist. Phys.

111 1–34.
[55] NAIR, C., PRABHAKAR , B. and SHARMA , M. (2003). A proof of Parisi’s conjecture for the

finite random assignment problem. Unpublished manuscript.
[56] PROPP, J. and WILSON, D. (1998). Coupling from the past: A user’s guide. InMicrosurveys

in Discrete Probability. DIMACS Ser. Discrete Math. Theoret. Comp. Sci. (D. Aldous and
J. Propp, eds.)41 181–192.

[57] RACHEV, S. T. (1991).Probability Metrics and the Theory of Stochastic Models. Wiley,
New York.

[58] RACHEV, S. T. and RÜSCHENDORF, L. (1998).Mass Transportation Problems 2: Applica-
tions. Springer, New York.

[59] RÖSLER, U. (1992). A fixed point theorem for distributions.Stochastic Process. Appl. 42
195–214.

[60] RÖSLER, U. and RÜSCHENDORF, L. (2001). The contraction method for recursive algorithms.
Algorithmica 29 3–33.

[61] STEELE, J. M. (1997).Probability Theory and Combinatorial Optimization. SIAM, Philadel-
phia, PA.



1110 D. J. ALDOUS AND A. BANDYOPADHYAY

[62] TALAGRAND , M. (2003). An assignment problem at high temperature.Ann. Probab. 31
818–848.

[63] UCHAIKIN , V. V. and ZOLOTAREV, V. M. (1999).Chance and Stability. VSP, Utrecht.

DEPARTMENT OFSTATISTICS

UNIVERSITY OF CALIFORNIA

367 EVANS HALL #3860
BERKELEY, CALIFORNIA 94720
USA
E-MAIL : aldous@stat.berkeley.edu

INSTITUTE FORMATHEMATICS

AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 LIND HALL

207 CHURCH STREET

MINNEAPOLIS, MINNESOTA 55414
USA
E-MAIL : antar@ima.umn.edu


