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TAIL OF A LINEAR DIFFUSION WITH MARKQV SWITCHING

BY BENOITE DE SAPORTA AND JIAN-FENG YAO

Université de Rennes 1
Let Y be an Ornstein—Uhlenbeck diffusion governed by a stationary and
ergodic Markov jump procesk: dY; = a(X;)Y; dt + o (X;) dWy, Yo = yo.
Ergodicity conditions fo¥ have been obtained. Here we investigate the tail
propriety of the stationary distribution of this model. A characterization of
either heavy or light tail case is established. The method is based on a renewal
theorem for systems of equations with distributionsifon

1. Introduction. The discrete-time modelg = (Y,,,n € N) governed by a
switching procesX = (X, n € N) fit well to the situations where an autonomous
processX is responsible for the dynamic (oegime of Y. These models are
parsimonious with regard to the number of parameters, and extend significantly
the case of a single regime. Among them, the so-called Markov-switching ARMA
models are popular in several application fields, for example, in econometric
modeling [see lmilton (1989, 1990)]. More recentlgontinuousitme versions
of Markov-switching models have been proposed in Basak, Bisi and Ghosh (1996)
and Guyon, lovleff and Yao (2004), where ergodicity conditions are established.
In this paper we investigate the tail property of the stationary distribution of
this continuous-time process. One of the main results (Theorem 2) states that
this model can provide heavy tails, which is one of the major features required
in nonlinear time-series modeling. Note that heavy tails may also be obtained
by using a Lévy-driven Ornstein—Uhlenbeck (O.U.) process (without Markov
switching); see Barndorff-Nielsen and Shephard (2001) and Brockwell (2001).

The considered process, called diffusion with Markov switchingis con-
structed in two steps:

First, theswitching procesX = (X;);>0 is @ Markov jump process [see Feller
(1966)], defined on a probability space, 4, Q), with a finite state spacg =
{1,..., N}, N > 1. We assume that the intensity functiorof X is positive and
the jump kerne (i, j) on E is irreducible and satisfiegi, i) =0, for each € E.

The procesX is ergodic and will be taken statioryawith an invariant probability
measure denoted hy.

Second, letW = (W;);>o be a standard Brownian motion defined on a
probability spacg®, 8, Q'), and letF = (¥;) be the filtration of the motion.
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We will consider the product spacg® x O, A x 8,(0, ® 0)),P=0® Q'
andE the associated expectation. ConditionallytpY = (Y;);>0 is a real-valued
diffusion process, defined, for eache 2 by:

1. Ypis arandom variable defined ¢®, 8, Q'), Fo-measurable;
2. Y is solution of the linear SDE

(1) dY,:a(X;)Y,dl‘-i—o’(X;)dW,, tZO

Thus(Y;) is a linear diffusion driven by an “exogenous” jump procexsg).

We say a continuous- or discrete-time proc&ss (S;),>o is ergodicif there
exists a probability measure such that when — oo, the law of S; converges
weakly tom independently of the initial conditioSp. The distributiorw is then
thelimit law of S. WhensS is a Markov processy is its unique invariant law.

In Guyon, lovleff and Yao (2004), it is proved that the Markov-switching
diffusion Y is ergodic under the condition

(2) o= a()u() <O0.
iek
The main results of the present paper are the following theorems. Note that
Condition 2 will be assumed satisfieldrdbughout the paper and we denoteiby
the stationary (or limit) distribution of .

THEOREM 1 (Light tail case). If for all i, a(i) < 0, then the stationary
distribution v of the proces¥ has moments of all ordethat is, for all s > 0
we have

/ [x]*v(dx) < o0.
R

THEOREM 2 (Heavy tail case). If there is ani such that (i) > 0, one can find
an exponent > 0 and a constanL > 0 such that the stationary distribution of
the procesd satisfies

“v(Jt, +oo]) — L,
—>400

t“v(]—oo,—t) — L.
t——400
Note that the two situations from Theorems 1 and 2 form a dichotomy.

Moreover, the characteristic exponentin the heavy tail case is completely
determined as following. Let

s1= min{i{)’a(l’) > 0},
a(i)

Y0

= (409555 et

) for0<s < sq.
i,jeE
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Thenk is the uniques €10, s1[ such that the spectral radius &f; equals to 1.

The proof of Theorem 1 is a consequence of a result of Guyon, lovleff and
Yao (2004), and the proof of Theorem 2 is based on a recent renewal theorem for
systems of equations reported in de Saporta (2003) and on an AR(1) recurrence
equation satisfied by the discretization ¥fthat we will define in Section 2. In
Section 3 we study an operator related to our problem and prove Theorem 1.
Sections 4-7 are devoted to the proof of Theorem 2. First we state two renewal
theorems for systems of equations. Then in Section 5 we derive the renewal
equations associated to our problem. In Sections 6 and 7 we prove Theorem 2, the
latter section being dedicated to the proof that the condtdatnonzero. Finally,
in Section 8 we give further details on the computation of the expanent

2. Discretization of the process and an AR(1) equation. First we give an
explicit formula for the diffusion process. For<0s <1, let

t
D(s, 1) = D5 4 (w) = eXp/ a(X,)du.
N
The procesd has the representation [see Karatzas and Shreve (1991)]:
t
Y =Yi(w) = @(0, t)[Yo + / ®(0,u) o (X,) qu],
0

and for O< s < ¢, Y satisfies the recursion equation
t
Y, = d>(s,t)|:YS +/ @(s,u)_la(Xu)qu}
N

=®(s, )Y +/t [exp/ta(Xv)dv}a(Xu)qu.

It is useful to rewrite this recursion as

3) Y, (@) = Dy (@) Yy (@) + Vil (0)ks 4,

whereg; ; is a standard Gaussian variable, functior{éf,, s <u <), and

Vii(w) = ft exp[Z/ta(Xv)dv]az(Xu)du.

Fors > 0, we will calldiscretization at step sizeof Y the discrete-time process
Y® = (Y,5)., Wwheren € N. Our study ofY is based on the investigations of these
discretizationr ¥ as in Guyon, lovleff and Yao (2004).

More precisely, for a fixed > 0, the discretizatiory ® follows an AR1)
equation with random coefficients:

(4) Yut 195 (@) = ®pg 1 (0) Vs (@) + VL3 (@)811,
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with

(n+1)38

Ppy1(w) = Ppi1(d)(w) = exp[/s a(Xy (w))du},

(n+1)8

V(@) = [

né

(n+1)8
exp[z / a(Xv(a)))dv}az(Xu(a)))du,

where (¢,) is a standard Gaussian i.i.d. sequence defined@®ns, Q). Note
that under Condition 2, all these discretizations are ergodic with the same limit
distributionv [see Guyon, lovleff and Yao (2004)].

3. Study of arelated operator. We now introduce a related operatérand
investigate its properties. Fix> 0 and$§ > 0. We define the operate¥ s5) by

Ags,0)9() =Ei[P1(8)e(Xs)],

for every functiong: E — R and everyi in E. It has the following semigroup
property:

PropPoOsSITIONL. Fixs > 0.Then foralls, y > 0 we have
As,0)Aes,y) = Als,54y)-

PROOF Setyp:E — Randi in E. We have

A5 A9 () =Ei [P A(s,) 9 (Xs)]
=E;[P1(O)Ex, [P (¥)e(X))]]

=E; [exp<s /08 a(Xy) du)IEX{S [exp(s /Oy a(Xy,) du)go(Xy)H.

Then the Markov property yields

S+y
Ags.0)Acs. 0 (0) =Ei[exp(s | a(xu>du)<p<xa+y>}
_ B[00+ 1)¢(Xs1y)]

= A(s.549)9(0). 0

Note thatA s ¢@i) = Z‘I/-\':lE,-[CD*ilxé:‘,-]go(j), and therefored( s5) can be
rewritten as the matriX(A,s))ij)1<i,j<v With (A s))ij = E;[P]1x,—;]. Note
also that it is a positive operator.
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3.1. Spectral radius. Now we investigate the properties of the spectral radius
of A. First, we recall a result from Guyon, lovleff and Yao (2004).

PROPOSITION2. Fix s > 0andé > 0. ThenA s) is irreducible aperiodic
and satisfies

(5) E (@1 P 1= Y Al 510 ) = pAf 51,
ick
wherel is the constant function equal fioon E.

We denote by (X) the spectral radius of a matriX. Proposition 2 yields the
following corollaries.

COROLLARY 1. We have

P(AGs.5) (Eul(@1--- Dp)° 1)~

= lim
k—o00

PROOF As A ) is a (component-wise) positive, irreducible and aperiodic
matrix, Theorem 8.5.1 of Horn and Johnson (1985) gives the existence of a
matrix B, s) with positive coefficients such that

(©) (Ag,8)" .
(p(As,s5)))t n—>00

This result and (5) yield the expected result]

Bs.s).

COROLLARY 2. For allfixeds > 0, the mapping — logp(A(s.s)) is convex
onR,.

Note that for all fixeds > 0 andi in E, we haveA @ s)1(i) = E;(1) = 1. Thus,
asAq,s) is a positive operator, it is also a stochastic matrix ad o s)) = 1.

ProPoOsSITION3. For all fixeds > 0, the right-hand derivative of the mapping
s — logp(As,s)) at0is negative

ProoE As all the functions considered are convex, we have

3 91
L 10g(p(Ass) = lim =2 logE,[(®1--- D)
o5 0g(p(As.s))) = lim -~ l0gE,[(®1 )]

n—oo g
— Iim EEM[(CDI‘ o (I)n)K ' Z?:llog q)i]
n—oo pn E,u[(cbl“‘cbn)'(]

The sequencéd,,) is stationary, thus the ergodic theorem yields

1 n
@) - ,;IOQ ®r — Eyllogdql, P,,-almost surely.
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ButE,[log®;1] < 0 because of Condition 2. Indeed, we have

) 8
E,[log®q] :EM[/O a(Xu)du] :/0 Eyla(X,)]du =8a <O0.

Thus we get, as expected,

d 1 "
lo A = lim —E log ®;
| oototauan = im 25, > oo

=[E,[log®,] <O. O

COROLLARY 3. Fix § > 0. We have the following dichotomy

(i) eitherforalls >0, p(Ag,s) <1,
(if) or there exists a unique > 0 such thatp(A( ) = 1, and in this case
p(Ai.s) > 1forall s >k andp(Ag,s) < 1forall 0<s <«.

3.2. Choice ofs. Now we are going to prove that the preceding dichotomy is
in fact independent of the value &f
ProPOsSITION4. Fix s > 0. The following propositions are equivalent

(i) there exist$ > 0 suchthato(A,s) < 1,
(i) forall § > Owe haveo(A,s) < 1.

The same equivalence is true if we repléeel” by*“> 1" or “=1."
PROOF Sets > 0 such thap(A,s) < 1, andy > 0. For all integen > 1 we

definem, € N* and 0< B, < § by ny =m,,§ + B8, (m, the integer part ofiy /8
andg, its fractional part multiplied by). Thus Proposition 1 yields

Alsyy = A6y = AGls A o)
But for all » we have

[ A, = maxE; [@3(8,)]
< exp(sﬁn max<al->)

< eXp<s8 m_ax(a,-)).
l
This upper bound is independentofThus we have

log || A{, .|| < log] A%"s | + ¢,
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wherec is a positive constant. We get

1
Iogp(A(S,}/)) = |I’r1n ; |Og ” A?s,y) ”

my ||

<limsu 1Io 1A
o n pn g (s,9)

Y
=3 logp(As,s)),

asm, ~nyd~—1. Hencep(A.y)) < p(A.0)"/% < 1.
For the case= 1,” fix §o and a corresponding such thato (A s,) = 1. The
mappings —> p(A,s,)) IS log-convex hence continuous. Thus we have

P(Ak.60)) = SUPP(A(s.50))-
S<K

Seté > 0. We want to prove that(A,s)) = 1. According to Corollary 3, for all
s <k we havep(Ag,sy)) < 1. Thus the preceding study yields that for ak «
we also havep (A 5)) < 1. Hence we have

P(A.5)) = Supp(Ags,5) < 1.
S<K

Suppose thap (A.s)) < 1, then the first case implies again thatA . 5,)) < 1,
which is impossible. Thus we hay&A . s)) = 1 as expected.
The case & 1" is a consequence of these two cases and Corollary3.

In the following we will write A, instead ofA (s 5y each time it is nonambiguous.
We have an easy criterion to know in which case we are.

PrRoPOSITIONS. The following properties are equivalent

() foralliin E,a(i) <0,
(i) foralls >0, p(A,) < 1.

PROOF Suppose that for all in E we havea(i) < 0. Fix§ > 0. Then for all
s >0, we haved] < 1. Thus for alli, A;1(i) = E;[®]] < 1, and component-wise
we haveA;1 < 1, which implies thato(A) < 1 for all s > 0. Corollary 3 then
yields that for alls, we have actually(Ay) < 1.

Now suppose there exists gnsuch that:(ig) > 0. Fix s > 24 (ig)a(ig) L. Itis
proved in Guyon, lovleff and Yao (2004) that for all functigrfrom E into R and
all i in E we have for smalf,

®)  Asp() =[1+8(sali) — 2(D)]p@) +81G) DY _[q G, Ne()] + o).
J#
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Let v be the function fromE into R such thaty (i) = 1 andy (i) = 0 for all
i #io. Then for alli #ip we haveA;y (i) = E;[®]1x;=i,] > 0 and fori = ip we
have

Asr(io) = 14 8(sa(io) — () + 0(8) > 14 5%400)

+0(9)

as we have chosen> 2x(i)a(io) 1. Thus component-wise, for small enough
we have

sa(io)

Agyr > (1+8 —1—0(8))1//

> (1+5saii°))w.

Thusp(Ay) > 1+ 8240 > 1. O

This proposition ends thproof of Theorem 1 since we have the following result
from Guyon, lovleff and Yao (2004) that relates the spectral radius,atfo the
moments of the stationary law

PROPOSITIONG. Sets > 0.If p(Ay) < 1, then the stationary law of Y has
a moment of ordes.

The proof of Theorem 1 is now complete.

4. Renewal theory for systems. Now we proceed to prove Theorem 2. From
now on, we will assume that there is asuch that: (i) > 0. Our approach is based
on a new renewal theorem for systems of renewal equations. First we introduce
some notation and conventions that we will apply throughout.

Let F = (Fij)1<i,j<p be a matrix of distributions: nondecreasing, right-
continuous functions of® into R with limit O at —oo. For all p x r matrix H
of Borel-measurable, real-valued functios onR that are bounded on compact
intervals, we define theonvolution producf « H by

p 00
(Fs 0= [ Higlt =) Futdw
k=1

where it exists.

The transpose of a vector or matrk will always be denoted’. We study
the renewal equatio = F x Z + G, whereG = (G4, . ..,Gp)/ is a vector
of Borel-measurable, real-valued functions, bounded on compact intervals, and
Z = (Z1,...,Z,) is a vector of functions. The renewal theorem will give the
limit of Z at+o0.

For all realr, we set:
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(@) B = (bij)1<i,j<p Whereb;; = [uF;;(du) if it exists, the expectation af

(b) FO@) = (6ij(1)1<i, j<p Wheres;; (t) = 1,0 if i = j and O otherwise, so
that 7@ x H = H for all H as in the definition above,

(c) F™(t) = F x F*=D(¢), then-fold convolution of F,

(d) U@) =322, F™ (1), therenewal functiorassociated witlF .

We will also assume that all the measurgsare finite:
Fl'/'(OO): lim Fi/'(t)<OO,
’ t—00 X

and thatF'(oo) is an irreducible matrixF (co) being an irreducible nonnegative
matrix, we can use the Perron—Frobenius theorem: its spectral radii(so)) is

a simple eigenvalue with right and left positive eigenvectors. We will also assume
thatp (F(c0)) =1, and we choose two positive eigenvectarandu so that

p p
F(oco)m =m, u'F(oo)=u', Zml- =1, Zuimi =1
i=1 i=1

We also assume that the sequelit€(c0)”|)) is bounded [e.g., IfF (c0) is
aperiodic, this is true]. We recall the following definitiod: is lattice if the
following conditions are satisfied:

(a) Foralli # j, F;; is concentrated on a set of the fofm + A;; Z.

(b) For alli, F;; is concentrated on a set of the founZ.

(c) Eacha;; is an integral multiple of the same number. We tak® be the
largest such number.

(d) For all a;;, ajk, a;rx points of increase off;;, Fjir, Fix, respectively,
a;j + ajx — a;i is an integral multiple of.

We can now state the renewal theorem. It extends a previous result of Crump
(1970) and Athreya and Rama Murthy (1976) which deals with the positive case:
each distributionF;; has support oiR,.. The proof of this theorem is given in
de Saporta (2003).

RENEWAL THEOREM A. Assume thaF is as above and thain addition, it
is a nonlattice matrixthat its expectatiorB exists and that for allr € R, U(¢)
is finite If G is directly Riemann integrablpsee Feller(1966)],andZ =U * G
exists then for alli, we have

p 00
imoozim=cmizl[uj/_m6j<y>dy],
i

wherem andu are the eigenvectors defined above anrd («’Bm)~1 (under these
assumptions:’ Bm # 0).
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We also recall Theorem 2.3 of Athreya and Rama Murthy (1976) that will
be used in Section 7. Note that this theorem can now be seen as a corollary of
Theorem A.

RENEWAL THEOREM B. Let F be a nonlattice matrix of distributions with
support on the positive half-linsuch that

() p(F(0) <1,
(ii) F(oo) is finite irreducible and aperiodic
(iii) there exist and j such thatF;; (0) < F;;(c0).

Assume also that there is am > O such thatp(F,) = 1, where (Fy);; =
Jo e *"Fjj(du). Then for allh > 0,and alli, j, we have
t+h

lim e YU;j(dy) = cmju jh,

t—00 J;
wherem andu are right and left eigenvectors d@f,, with the same normalization
as abovec = (u'Bm)~L, and B = b;; with b;; = [5° ue *"F;j(du), ¢ being
interpreted as zero if sontg; is equal to infinity

5. Therenewal equations. Now we are going to derive the renewal equations
associated to our problem. In the following, we will suppose that the assumptions
of Theorem 2 are satisfied. We set 1, andx will denote the unique positive
solution of p(Ay) = 1. We are going to study the discretizatiBf".

5.1. Notation. As X is a stationary process, we can extend it to negataued

define the coefficient®,,, V,, andg, for negative values of. Letb,, = an/zé,, and

00
Ry, = Z D, D1 q)n—k+1bn—k
k=0

(instead ofY,) be the unique stationary solution of (&;.411 = ®n+1Rn + bpi1.
The limit law v of Y is also the law ofR;. Thus we are going to study the random
variableR;.

The tail of the stationary solution of such recursive equations has already been
studied in various cases. In the i.i.d. multidimensional cdseare matrices and
R, andb, vectors, renewal theory is used in Kesten (1973) to prove a heavy tail
property when theb,, either have a density or are nonnegative. These results were
extended in Le Page (1983) to a wider class of i.i.d. random matrices. Finally,
in Goldie (1991) a new specific implicit renewal theorem is proved and the same
results are derived in the i.i.d. one-dimensional case. This theorem also applies to
the study of the tail of several other random recurrences implying i.i.d. random
variables. Recently, Goldie’s results were extended in de Saporta (2004) to the
case wherg®,,) is a finite state space Markov chain. Hef®,,) is not a Markov
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chain, but conditionally taX,,, ®,, and ®,,.1 are independent. Our proof is thus
very similar to that of de Saporta (2004), but we will repeat all the details for
completeness.

Note thatg, are standard Gaussian random variables, thus they are symmetric,
and they are also independent from the sequefiegsand(V,). Hence we have

o
PM(Z O1Pg--- DPo_pb1 i > l)
k=0
a 1/2
=P, ( Z ®1Pgp--- cDZ—lelkfl—k > t)
k=0

o0
2
=P, ( Z D1Pg--- Do Vllfk(—él—k) > t)
k=0

o
=P, (— Z O 1Py - DPo_b1 ik > l).
k=0

Thus we have(]t, +oo[) = v(] —oo, —t[) for all ; hence if one of the limits stated
in Theorem 2 exists, the other exists too and equals the same value. Therefore we
need study only one limit.

To study the tail ofR1, we introduce a new function. For alin R, we set

t

e
72(t) = e_t/ u“P(R1>u)du.
0

Lemma 9.3 of Goldie (1991) ascertains that{f) has a limit whery tends to
infinity, thens*P(R1 > t) also has the same limit.
For alli in E andr in R, we also set

!

e
Z; (1) =e_’/ u“P(R1>u, X1=1i)du,
0

so thatz(r) = vazl Z;(t). We are now going to prove th&t = (Z1,..., Zy)
satisfies a system of renewal equations.

5.2. The renewal equations.As R, satisfies (4), we hav&1 = ®1Ro + b1;
thus for allz in R, we have

Py(R1>u, X1=1) =P, (P1Ro > u, X1=1) + ¥; (u),
where
Vi) =Pt —b1 < P1Ro<t,X1=1) =P, (t <P1Ro <1t — b1, X1 =1).
We setG; (1) = e~ [ u v (u) du, andG ='(G1, ..., Gy). Then we have

N el

HOEDY [e—f/ u*P,(®1Ro > u, X1 =i)du + G; (t)].
. 0
i=1
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We have®; > 0 and conditionally toXo, ®; and Rg are independent. Thus, a
simple change of variable and stationarity yield
!

e
e_t/O u*P,(®P1Ro>u, X1 =1i)du

!

e
! /0 WP, (D1Ro > 1, X1=i|Xo = j)u(j)du

-

1

~.
1

!

e
et /0 WP (®1Ro > u, X1 =) (j) du

-

~.
[
e

t—log®q

Il
M=

Ej cb'ilxlzie_(t_bgq)l) /0

u“P;(Ro > u) du],u(j)

~.
1
[N

t—log®q

|
.MZ
=

~
[|
-

[@5Lmie 0900 [© 0w, (Ro > ulXo= ) du |

et —log®g

-

E;| 51y, _je 109D /0

uPy(Ry>u, X1=j) dui|.

~.
[
e

Thus we get the following system of equations: foriah E, we have

N
Zi(1t)=) [Ej[®{1x,=i Z;(t —log®D)]] + Gi (1)

j=1
©) N
Z Fij % Z;(D]+ Gi(0),

where F;;(t) = E;[®]1x,=i1i>logo,]. Thus F = (F;j); jee IS a matrix of
distributions in the sense of Section 4, and system (9) is a system of renewal
equations that can be rewritten Zs= F %« Z 4+ G. To apply Theorem A, we now
have to prove thaF andG satisfy its assumptions.

6. Proof of Theorem 2, partl. AsE is afinite setd1 is bounded. Therefore,
foralli, j in E, the measures;; are finite andr;; (oo) = E;[®]1x,—;]. Note that
F(o0) = Al,. As A is irreducible and aperiodic by Proposition 2, s&i&o), and
its spectral radius also equals to 1. Besides, we bhgve E;[P]1y,—; logd1],
thus theF;; have finite expectation.

We are going to prove that the other assumptions of Theorem A are valid here
in the following sections.
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6.1. F is nonlattice. Seta,, = min;cg{a(i)}, ay = maxcei{a(@)} andip, jo
in E such thatu(ip) = a,, anda(jo) = ay.

PropPoOSITION7. Foralli, jin E, x € la,, ay[ and small enough > 0, we
have

1
IP’,-(/ a(Xy)du € 1x — &;x + ¢, X1=J‘) >0,
0

that is x is a point of increase dbg ®; conditionally toXg=i andX; = ;.

PrROOF Setx € la,,, ay[ and O< ¢ < 1 such thate =ta,, + (1 — t)ay,. Fix
i andj in E. As g is an irreducible matrix, we can find integers<d <m <n

andky, ..., k, in E such thatqi,qukl,kz Gk ig > 0, Giokii1Dkisakiss " D, jo > 0
andgq jo k1 Qs ko *** Qhy.j > 0. S€tAISY = a (i) +a(ky) +--- +a(k) — (I +
Day +alkiy1) +---+alky) — (n — 1+ Day + alkpi1) +--- +alky) +a(j),
andz =min{e|y| Lt + 1L, A —1)(n — I +1)~1}. Then we have

1
]P’i(/ aX,)duelx —e; x +¢l, Xl=j>
0

>Pi(X,=ion[0;nl, X, =kyon[n; 2nl,..., X, =k on[ln; ( + Dnl,
Xy =ioon[(l +Dn,t[, Xy =ktron[t;t+n[, X, =ki20n
(20) [t+mt+2n ..., Xyu=kpon[t+m—1—Dn;t+ (m —Dnl,
Xy=joon[t+(m—0n;1—(n—m+Dnl, Xy =kns10n
M-—mnm—m+Dny;1—mn—mnl,..., X, =k, on[l—2n;1—nl,
Xy=jon[l—n;1]; nel0;zl).

Indeed, on this event we have

/Ola(Xu) du

=na(i) +na(ky) + - +nalk) + (¢ — ¢ + Dn)am + natki+1)
+ -+ natkn) + (L —1) — (n =1+ Dn)ay + nalkp+1)
+ - +nalky) +na(j)

=tam + (1 —1t)ay +ny

=x+ny,
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thus ify < e|y| 1, then we have a(X,) du € ]x —¢; x +¢[. Probability (10) can
be computed [see, e.g., Norris (1998)]:

(10) = w(@)Gi k1 Gky.kp * * * DhrvioGiokiss - ** D, jod jokmss * * * Dhn, j
X M)A (k) - Akp)A (o) (I — DA(jo)(n — 1+ 1)

» /Z [+ =+t
0
M =G0~ 1= D) =k (o) At (n=+ D =20 g

Thus our choice oky, ..., k, andz ascertains that this probability is positive,
which proves the proposition.C]

Therefore none of thé;; () = E;[®] 1x,—; 1.>0g,] Can be concentrated on a
lattice set, and in particuldr is nonlattice.

6.2. Finiteness ofU. We are going to prove that for all j in E andt in R,
U;j (1) is finite. We start with computing the-fold convolution ofF'.

LEMMA 1. Forall n,i, j,t we have

Fi(jn)(’) =E;[®] - ) Liogd; .-, >r1x,=i]-

PROOE Forn =1, itis the definition ofF. Suppose the formula is true for a
fixedn. Then the Markov property and stationarity yield

1
Fl‘(jn+ ) (t)

N N
=Y FuxFP 0= / F(t — u) Fe(du)
k=1 k=1
N
= Z/Ej[q)'{~~~CDZ1|ogq>1---q>ngr—ulxn=k]Ek[ 18,(log®1)1y,—;]
k=1

N
= Z/Eu[q’f'“q’leog@l---@ngr—u1Xn=klxo=j]
k=1

1
X B[ 1200009 P ), =il =] s
N
= Z E,[®@] - @) Liogay-d, <t—log ®, 41 Lxo=711x,=k]
k=1

(k)
X B[Py 11, 0=l 1x, =k | —=

n(j)
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al (k)

=D B, [®F - Df P, 1 Liogayd, <t—logd, 1 Lxo=j 1x, s 1=i [ 1x, =k ] ——
=1 n(j)

1
=Eu[®] - P 1liog @, 1<t Lxo=j 1, 1= |
wn(j)
=E;[®] - PP} 41 Llogdsd,@,1<r Lx, =i

Thus the formula is also true far+ 1 and the lemma is proved]

We have seen that (oco) = A... Proposition 1 and the preceding lemma also
imply that for alln we haveF ™ (c0) = (A")' = F(oco)". We can prove a more
general result.

LEMMA 2. Forall n and0 <r <k we have
o0
f e FM (du) = (A" ).
—00
PrRooOF Foralli, j in E, Proposition 1 and the preceding lemma yield
> (n)
/ e "MF; (du)
o0
:/ eUE;[0F -+ 965, (Iog D1 -~ D)y, ]
—00

=E,j[@] - Pfe 09 Py ]
=E;[®17" - @ 1y, =i]
= (A} _)ji- O

Now fix 0 < r < k. We have
o0

o0 t
Uy =Y FP@) <e" / ey FP(du)
n=0 - n=0
(11) © oo 00
< erl‘ Z/ e_r“Fi(jn)(du) — erl‘ Z(Az_r)jh
n=0"" n=0
according to the preceding lemma. But Corollary 3 says thidt._,) < 1. Thus
the series in (11) converges. Herlég(t) < oo for all i, j in E andt in R.

6.3. Proof of Z =U = G. lterating the renewal equation (9) yields, for =l

n—1
(12) Z=F"x7z+Y FPxqG.
k=0
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The same change of variable as in Section 5.2 yields
N o
DFM D))= f u Py (@1®2: - @y Ro > u)du.
; 0
i=1
But we have seen at (7) that we habe- - - &, — 0 whenn tends to infinity. Thus
the bounded convergence Theorem yieEﬁ_l(F(") * Z);i(x,1) — 0 asn tends
to infinity. Each term of this sum is nonnegative, thus each term tends to 0. Letting
n tend to infinity in (12), we thus g = U % G.

6.4. G is directly Riemann integrable.As the G; are clearly continuous in,
it is sufficient to prove that

o0

> sup [Gi(n)] <oo
oo l<t<I+1
[see Feller (1966)]. But for all, ¢, we haveG; (1) = Gl-l(t) — Gl-z(t), where

!

e
Gil(t) = e_’/ uP,(u—by < P1Ro<u,X1=i)du>0,
0

!

e
Gl-z(t) =e_’/ uP,(u < ®1Ro<u—b1,X1=i)du>0.
0

For all reals, we haveG; () < GL(t) < e f§ udu = /D (c + 1)~L. In
particular,G; is directly Riemann integrable dR_. We still have to stud;Gl.1
and Gl.2 on R;. These two functions being of the same kind, we only give the
detailed study of the first one.
The proof is adapted from Le Page (1983). 8et 10; 1] such that—1 <
k — (1—¢) <0. Thus we have
Et
0<e'GH1) < f u“P,(by > u®, X1 =1i)du
0
(13) y
+/ uPy(u—u® <P1Ro<u,X1=1i)du.
0

We are going to give an upper bound for each one of these two terms.

Firstterm. Chebychev inequality yields

o et(l—l—K(l—e))
14 / P (by > ut, Xy = i)du < By by
(14) - w(br>uf, X1 =1i)du <E,|b| Tr<d 9

Note thatb; has moments of all order. Indeed, we have, by independence,
Eylby)¢ = EM(Vf/Z)IEMP;‘lV‘, andé&; is a standard Gaussian variable avidis

bounded.
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Second term. We have

e
/0 uP,(u—u® < ®1Ro<u,Xs=1i)du

ef
:/O MKIP)M(QMRO >u—u®, Xs=i)du

! te

e —e
—/ u*P,(P1Ro > u, Xs =i)du
0

!

e
< / u[1—1,51(u—u®) (1— sue_l)]]P’M(CblRo >u—u®, Xs=i)du.
0

Set O< r < k. As @1 is bounded, there exists a positive constantich that for
all u > 0 we have
. Eu|Rol"
Pu(®1Ro>u, X1=1i) < CT,
which is bounded by Proposition 6. Thus we get

!

e
(15) / MKPM(M —u® <®1Rg<u,X1=i)du < Cet(’(_r"‘s—l)’
0

whereC is a positive constant. Now sgt=maxXk +¢ —r; 1+« —xe} € ]0; 1[.
Then (13)—(15) yielde’G}(t) < ce’ for all + > 0. Thus G1(t) < ce!#D is
directly Riemann integrable dR...

6.5. Tail of the distribution. We have now proved that and G satisfy the
assumptions of Theorem A. Thus we get, foriall

N

o0
(16) Zi(t) — cm; Zuj/ G;(y)dy.
t—00 ] 0
Summing up these terms, we get
N o0
(17) w0y [ Gy,
t—00 = —0

asy m; = 1. We still have to prove that this limit is nonzero.

7. Proof of Theorem 2, part I1. Now we are going to prove that there exists
a positive constant’ such that“P,(|R1| > t) > C > 0 whent tends to infinity.
First, we give a lower bound of this probability involving the produdts - - ©,,,
and then we study the asymptotic behavior of such products.
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7.1. Lower bound forv{x:|x| > t}. The following proof is adapted from
Goldie (1991) and de Saporta (2004).

PrRoOPOSITION8. There exist > 0 and a corresponding positive constait
such that for large enoughwe have

2t
Pu(IR1 > 1) > C]P’M<sup(q31- D) > ;).
n

For the i.i.d. case, the key to such a lower bound is an inequality established in
Grincevtius (1980) that extends Lévy’s symmetrization inequality [see Chow and
Teicher (1978)]. Here we need first to extend this inequality.

Recall thatRy = Y 2o ®1Po- - - Po_rb1—k. For alln > 1, we set

? = Z D1Pg---Po_b1—x and I, =P1Pg--- Py_y,.

If x is ao(X;, Ws,a <t < b)-measurable random variable, let med be a
median ofx conditionally toX; =i and med (x) = min;{med (x)}.

LEMMA 3. Forall r > 0andn > 1, we have

R? — R}
P ( max {RJ +1I1; med- (Q)} > t) < 2P, (R} > 1).
<J<n H/
PROOF  SetT =inf{j <n t.q.R{ + I1; med_(IT;*(R} — R{)) > 1} if this
set is not emptys + 1 otherwise, and; = {med_(l'[_l(R” R]) < M (RY —

R{)} The even{T = j) is in theo -field generated be,, W, (1—j) <t <1,
andB; is in theo -field generated byX;, W;, (1 —n) <t < (1— j)). Therefore
these events are independent conditionallXte_;,. Besides, for ali andj we

haveP, (B;|Xa—j) =i) > P (med (IT;} (R} — R])) < TI;1(RY — RD X - j) =
i) > 1/2. Thus, as the product$; are posmve or zero, we have

P (R} > 1) > IPM< U nr = j)])

j=1

n N
= > Pu(BjlXa—j = )P(T = jIX1—j) = i) (i)

j=1li=1

1
= E]PJ'M(T <n)

1 j R!—R]
= EIPM(ITJ%Z {R +11; med(Tj)} > t). 0
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Under our assumption®/ tends toR; whenn tends to infinity, and for fixed,
H;l(Rf — R}) converges to a random variabRethat has theAsame distribution
as Ry. Setmg = med_(R1) = min;{med R1|X1 = i)} = med_(R), and lettingn
tend to infinity in Lemma 3, we get, for all> 0,

Pu<sgp{R{ +I1,mo} > z) <2P,(Ry>1).
J
ReplacingR1 by —R; yields a similar formula; thus, for all> 0 we get
(18) ]P’M<qu|R{+Hjmo| >t> < 2P, (|R1| > 1).
J
Furthermore, as proved in Goldie [(1991), page 157], for alljmg| we have
IP’M<S:LJ|:{R’11 + I, mo} > t)

> Py (3n S.LI(RT + T, pamo) — (R + ymo)| > 2),
whereR? = 0 andIT = 1. But we have
(RY ™ 4 Ty amo) — (RY + T,ymo)
=P1P0- - P2_pb1—p + (M1 — [y)mo
=11, (b1—n + (®1-, — Dmo).
Thus (18) yields, for alt > 0,
P,(|R1| > 1) > %]P’M(Eln s.t. |, (b1—n + (®1-n — Dymo)| > 2¢)

(19)
1 2t
> EIEDM(EIn s.t.|I1,| > — and|b1_,, + (®1_, — Dmg| > e).
&

Now we give an extension of Feller—Chung’s inequality adapted to the present
case [see Chow and Teicher (1978)]:

LEMMA 4. Forall r > |mg| ande > 0, we have

2t
P, (Eln st. |I1,| > — and|b1_, + (®1_, — Dmg| > 8)
&

. 2t
> min IP’,-(lbo + (®g— Dmg| > e)IP’M (Eln st I, > —)
1<i<N &
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PROOF SetAg= @, A, = {|[1,| > 2t~} and B, = {|b1_n + (®1_, —
1)mo| > ¢}. Conditionally toX1_,), B, is independent ofAo, ..., A,. Thus we
have

IP’M( 14, n B,,])

n=1

00 n—1
=> Py (Bn NA, ()[B; ﬂAj]")

j=0

j=0

n=1

00 n—1
Z (Bn NA, () Ajt)
oo N n—1

ZZ[ (BalX@m =i)P M(An ﬂA;i]Xa_n):i)u(i)}
n=1i=1 j=0

where A¢ denotes the complementary set 4f But, by stationarity we have
P (Bl X 1-n) =) =P;(lbo + (Pg — Dymg| > ¢). Thus we get

[e.e] o0
IP’,L< U4, n Bn]) > lg_\ianIP’,-ﬂbo + (®g — Dymg| > E)PM(FZL_JlA,Z). -

n=1

Now we can give theqof of Proposition 8.

PROOF OFPROPOSITION8. Equation (19) and Lemma 4 yield, for al
|mo| ande > 0,

1 . 2t
P, (IR >1) > > 1;rl_\|SnNIP>,-(|b0 + (Pg — Dmo| > E)IP)M(Hn S.t|I,_1] > ;).

We havebg = Vol/zéo, Vo and &g are bounded, but is not bounded as it is a
Gaussian variable. Thus equaliby + (®g — 1)mg = 0 cannot holdP;-almost
surely. Thus we can fingl> 0 such that min<; <y P; (|bo+ (Po — Dmg| > ) > O.
Hence, as expected there is a constant 0 such that for alt > |mg|, we have

2t
]P’M(|R1|>t)zC]P’M(sup|l'In|>;). N

7.2. Asymptotic behavior of the products - -- ®,,. To estimate the probabil-
ity P, (sup, IT1,| > 1), we use the ladder height method given by Feller (1966) for
the study of the maximum of random walks.
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7.2.1. Notation. First we introduce some notation. S& = 0 and for all
positiven, we set

n 1
Sp="_log(®2-¢) =logIl, :/ a(X,)du.
k=1 (1=m)
Thefirst ladder epoclof this random walk is = 71 = inf{n > 1 s.t.S,, > 0}, and
thefirst ladder heighis S;. We denote by (¢) the matrix of distributions of;
with the following coordinates:

Hij(1) =P, (t <00,8; <1, X(1_v) = jIX1=1).

As S; > 0, H is distributed on the positive half-line. Moreovét, > 0, S1_, <0
and the®,, are bounded, thus we hawe < suplogd, < supa(i) < oo, andH
has bounded support.

We define also theth ladder epoch by, = inf{n > 7,_1 s.t.S, > S;,_,}, and
S, is the corresponding ladder height. We check that we have

H (1) =Py (ty < 00, Sr, <1, X1og,) = jIX1=1),

where H™ is then-fold convolution of H. Let ¥ = 32 s H™ be the renewal
function associated with .

7.2.2. The random walkS;,. To investigate the asymptotic behavior (©F, )
we are going to use a renewal theorem as in Feller (1966) for the i.i.d. case, namely,
Theorem B. We want to apply it faf = H anda = «, thus we have to prove that
H satisfies its assumptions.

As H(0) = 0, we havep(H(0)) < 1, thus the first assumption is true. In
addition, H;; are probability measures, thereforg is finite. H has bounded
support becausﬁ, 1 <0, S; >0 and® is bounded. Thus3, the expectation
of Hc(00) = [5° e " H (du) is well defined. Proposition 7 yields again ttfatis
also nonlattlce

Irreducibility and aperiodicity. For alli, j in E, we have
H;j(00) =Pu(r <00, X1 = j|X1=1)
>Pu(t=1 Xo=jlX1=1)
w(j)

p(i)
:IP,(/ a(X,)du>0, X1 =i )“((J))

and Proposition 7 implies that the last term is positive &s]6,,; ay/[. Thus the
second assumption of Theorem B is valid. We have also proved that foarad j
we have 0= H;;(0) < H;;(00), so that the third assumption is also valid.

=]P’j(logd>1> 0, X1=1i)
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Spectral radius o, (c0). Now we define a new probability lai®, on2 x ©.
For all boundedaA x B-measurable functiong which first coordinate depends
onlyon(X;,(1—n) <t <1), we set

IP)I((f) = Ek(f)
E/J.((q)l“‘q)Z—n)K) '
SetH, (t) = [§e " H(du). We have
Pe(t <00, 8; <t, X(l—r) =jlX1=1)
E,((P1--- P1-1)*, T < 00)
_ (He)ij ()
E,u((q)l Dy )F T < 00) ’

(H)ij (1) =

where(HK:)l-j (1) =P (r < 00,8 <t,Xa-r) = jlX1 =) describes the behavior
of the ladder heights of our random walk under the new probabilitytaw
The computation we made in the proof of Proposition 3 yields

0 1 Z
e Iog(lo(Ar)):nll_)mOO;El((;Iqu)i)

=E,(log®).

But we have log(Ag) = logp(A,) = 0; this function is convex (Corollary 2)
and its right-hand derivative at 0 is negative (Proposition 3). Thus its left-hand
derivative atx is positive, that isE, (log®1) > 0. Under the lawP, our random
walk thus drifts to+oo, hence for alk andi, we have(lP,); (1, < o0) =1 andH*
is a stochastic matrix, therefore its spectral radius equals to 1.

For alln, we have

(Hy (00))"
E,((®1--- ®p_r,)<, T <00)

H™ (00) = (Hy (00))" =

thus p(H, (00)) = lim(E, ((®1--- d2_;,)*, T < 00))~¥" and we now have to
prove that this limit equals to 1. But for all, we haver, > n, and the event
(1, = k) depends only oiX;, (1 — k) <t < 1). Thus we have

EM((CI)l o, cbl—r,,)’(’ T, < OO)

o0

(20) = Z E,u((d>1' D) T = k)
k=n

= Pe(ty =kE,((P1--- P11 ).
k=n
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Sete > 0. For large enough, our choice ok and (5) and (6) yield
,bLAZl —e< EIJ_(((I)]_ .. (D]__n)K) < /LAZl-i— E.

Thus for large enough, (20) yields

(nAGL—e) Y Pe(ty =K)
k=n

(0.0}
<E.((®1- P1-q,)"  Tw <00) < (uALL+6) > Pty =),
k=n

and asP, (7, < o0) =1, we have
pAIL—e <E,((P1-- P1-7,) T <00) < nAll+e.

Thus ash — oo we have, with the notation of Corollary E,, ($1--- ®1_,,) ~
1B, 1. Hence we have, as expect®,((d1--- ®1_4,)*, 7, < 00)¥/" — 1.

Thus all the assumptions of Theorem B are valid here. We are going to use it in
the following part.

7.2.3. Asymptotic behavior of the maximuniet M = sup, S, = sup, S, be
the maximum of our random walk. Using the definition Bf, we get, for all
1<i<N,

Py(M <t|X1=1)
00
= Z]P’p_(‘rn < 00,8z, <t, Thy1 =0 X1 = i)
n=1
oo N

. A1)
=ZZPM(TVL<OO, Sz, <t Tup1 =00, X1 =1i|X(1-1,) = J)—
=11 (i)

oco N
(21) =ZZ[P,M(Tn<OO7 an St,X(l—fn)=j|Xl=i)
n=1;=1

x (1- Pu(fn—i-l <00l X(1-1,) = J)]

yy [Hé’”m(l -y ij@o)ﬂ

n=1j=1 k=1
N N
=y [wu (t) (1 -> H,-k<oo))}.
j=1 k=1



TAIL OF MARKOV-SWITCHING DIFFUSIONS 1015
Theorem B applied to (21) yields, whemends to infinity,

1-Pu(M <t|X1=1)

N N 00
=) [(1 -> ij(OO)) / e_K”(eK"‘Pij)(du)}
=1 k !

=1

(22)
N N o
e |:<1— ZH]k(OO)> / e_KuEﬁiﬁj du:|
j=1 k=1 d
N N
= Z |:<1 — Z ij(oo))Enﬁiﬁj:|e_’”,
=1 k=1

wheren andu are right and left eigenvectors éf, (co) with positive coordinates
with the same normalization as in Section 4, @ard (‘uBm) 1 > 0.

7.3. Conclusion. We still have to prove that there is A< N such that
1— Y% 4 Hjx(c0) > 0. But the mapping — H, (c0) = [5° ¢ H (du) is clearly
increasing component-wise. As these matrices are nonnegative and irreducible,
Corollaries 8.1.19 and 8.1.20 of Horn and Johnson (1985) imply that the mapping
r —> p(H,(00)) is also increasing. Ag (H, (c0)) = 1, we havep(Hp(o0)) =
p(H (00)) < 1. This is a substochastic, nonstochastic matrix, thus there exjsts a
such that we have "% | Hjx(co) > 0.

We have now proved that the right-hand side term in (22) is positive, thus there
is a constanC > 0 such that, whentends to infinity, we have

N
(23) Pu(M >1) =) 'Pu(M >1t|X1=i)u(i) > C.
i=1

Putting together this result and Proposition 8, we get, for large enqugh
(24) t“P,(IR1] > 1) > K > 0.

With the notation of Theorem 2, it means tlHat- 0, which ends the proof of this
theorem.

8. Determination of k. Sets; = min{A(i)a(i)"L|a(i) > 0}, and letM, be the
matrix with componentsg (i, j)A(i)(A(i) — sa(i))~1}. This matrix is well defined
for all s < s1. We can precisely compare the spectral radiug oénd that ofM;.

PropPOSITION 9. For all 0 < s < s1, we havep(M;) < 1 if and only if
0(Ay) < 1,and we havep (M;) > 1ifand only if p(A;) > 1.



1016 B. DE SAPORTA AND J.-F. YAO

PROOF Suppose thab (M) < 1. M, is a positive irreducible matrix agis,
A being positive and < s;. Thus the Perron—Frobenius theorem [see, e.g., Horn
and Johnson (1985)] gives the existence of a vegtaith positive coordinates
such thatM,¢ = p(Ms)¢p < ¢. Hence for alli in E, we have

. .. Ai) .
(i) > ;C](l,])mfﬂ(ﬂ,
that we can rewrite, since< s1, as
(25) (sa(@) — 1)) +k(i)Zq(i,j)90(j) <0.

J

Proposition 4 enables us to choose a small enduglich that (8) is valid here.
Equation (25) thus yields

Asp(i) = [1+8(sali) — 1()]p() +81G) Y [q (i, NHe ()] + 0(8)
J#

=) + 5[(50(1') —2()e) + 1) Y _q(, j)w(j)} +0(3)

j
< @(i).

Thus component-wise we gdte < ¢, which implies thatp(Ay) < 1. The proof
thatp(M;) > 1 impliesp(A;,) > 1 runs the same, the inequalities being reversed.
Suppose now thap(A;) < 1. A is a positive irreducible matrix, thus the
Perron—Frobenius theorem gives the existence of a vegtowith positive
coordinates such thad;y¥ = p(As)Y¥ < . Hence for alli in E, and small

enoughs, we have

8 [(sa(i) —A@D)Y ) + 2D Y g, jwu)} +0(8) = As¥r(i) — ¥
J

< 0.

Hence, for alli, we get(sa(i) — A(@)Y (@) + A@) X qG, )Y (j) <0, or, as
s <81,

: A(D) o
Vi) > s ;m DY),
and thusMy < . As M, is a positive matrix, we conclude thatM,) < 1. Here
again the proof thap(Ay) > 1 implies p(M;) > 1 runs the same with reversed
inequalities. O

PrROPOSITION10. The spectral radius oM, tends to infinity when tends
10 s1.
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PROOF Setig € E such thati(ig)a(ig) 1 = s1, ande;, the row vector with
zero coordinates except thigth which is set to be 1. Sat;, = A(ig)(A(ig) —
sa(ip)) 1. We havee;, M, = vj,q (io, -) > viyei, @Sq is a positive matrix. A/, is
also positive, for alk < s1, we getp (M) > v;, = A(io)(A(ig) — sa(ig)) L. Hence
this spectral radius tends to infinity wheends tos;. O

COROLLARY 4. Thereis a unique € 10; s1[ such thato(M,) = 1, and thiss
equals the unique such thato(A,) = 1.

PROOF Foralls < «, we haveo(Ay) < 1 by Corollary 3; thus Proposition 9
yields p(M;) < 1 for all 0 < s < min{«, s1}. As p(My) — oo ass tends tosy,
we also haveo(A;) > 1 for s close tos1. Thereforex < s1, and p(4;) > 1
for all k < s < s1. Hencep(M;) > 1 for all k < s < s1. AS M, has continuous
coordinates, its spectral radius is also continuous; g, ) = 1 and is the
only value ofs € ]0; s1[ satisfying this equation.]

We now give an illustration by computing the valuexoivhenE = {1, 2}. The
jump kernelg then equals to
_ (0 1
9=\1 o)

and the invariant law of the processis u = (A(2), A(1))/(A(1) + A(2)). We
suppose that (1) or a(2) is positive. Condition 2 becomes

(26) A(D)a(2) + 1(2a(l) <O.

Foralli in E, setr; = ig—g We haver; +r2 < 0,r1r2 > 0 andsy = max{r; +, 5 ).
Fors € [0, s1[, the matrixM, equals to

1
0 1
MS: 1 —S}"]_ ,
0
1—sro

1

and its spectral radius i1 — sr1)(1 — sr2)]~Y2. It equals to 1 forc = r; =+

rst=1(2a@ A Da(D) L
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