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MERGING FOR INHOMOGENEOUS FINITE MARKOV CHAINS,
PART II: NASH AND LOG-SOBOLEV INEQUALITIES

BY L. SALOFF-COSTE1 AND J. ZÚÑIGA2

Cornell University and Stanford University

We study time-inhomogeneous Markov chains with finite state spaces us-
ing Nash and logarithmic-Sobolev inequalities, and the notion of c-stability.
We develop the basic theory of such functional inequalities in the time-
inhomogeneous context and provide illustrating examples.

1. Introduction.

1.1. Background. This article is part of a series of works where we study quan-
titative merging properties of time inhomogeneous finite Markov chains. Time in-
homogeneity leads to a great variety of behaviors. Moreover, even in rather simple
situations, we are at a loss to study how a time inhomogeneous Markov chain
might behave. Here, we focus on a natural but restricted type of problem. Consider
a sequence of aperiodic irreducible Markov kernels (Ki)

∞
1 on a finite set V . Let πi

be the invariant measure of Ki . Assume that, in a sense to be made precise, all Ki

and all πi are similar and the behavior of the time homogeneous chains driven by
each Ki separately is understood. Can we then describe the behavior of the time
inhomogeneous chain driven by the sequence (Ki)

∞
1 ?

To give a concrete example, on VN = {0, . . . ,N}, consider a sequence of aperi-
odic irreducible birth and death chain kernels Ki , i = 1,2, . . . , with

1/4 ≤ Ki(x, y) ≤ 3/4 if |x − y| ≤ 1

and with reversible measure πi satisfying 1/4 ≤ (N + 1)πi(x) ≤ 4, for all x ∈ VN .
What can we say about the behavior of the corresponding time inhomogeneous
Markov chain?

Remarkably enough, there is very little known about this question. What can we
expect to be true? What can we try to prove? Let K0,n(x, ·) denote the distribution,
after n steps, of the time inhomogeneous chain described above started at x. It is
not hard to see that such a chain satisfies a Doeblin type condition that implies

lim
n→∞‖K0,n(x, ·) − K0,n(y, ·)‖TV = 0.
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In the absence of a true target distribution and following [4], we call this property
merging. Of course, this does not qualify as a quantitative result. Extrapolating
from the behavior of each kernel Ki taken individually, we may hope to show that,
if limN→∞ tN/N2 = ∞ then

lim
N→∞‖K0,tN (x, ·) − K0,tN (y, ·)‖TV = 0.

The aim of this paper and the companion paper [32] is to present techniques
that apply to this type of problem. The simple minded problem outlined above
is actually quite challenging and we will not be able to resolve it here without
some additional hypotheses. However, we show how to adapt techniques such as
singular values, Nash and log-Sobolev inequalities to time inhomogeneous chains
and provide a variety of examples where these tools apply. In [32], we discussed
singular value techniques. Here, we focus on Nash and log-Sobolev inequalities.
The examples treated here (as well as those treated in [32, 33]) are quite partic-
ular despite the fact that one may believe that the techniques we use are widely
applicable. Whether or not such a belief is warranted is a very interesting and, so
far, unanswered question. This is deeply related to the notion of c-stability that
is introduced here and in [32]. The examples we present here and in [30, 32, 33]
are about the only existing evidence of successful quantitative analysis of time
inhomogeneous Markov chains.

A more detailed introduction to these questions is in [32]. The references [17,
30] discuss singular value techniques in the case of time inhomogeneous chains
that admit an invariant distribution [all kernels Ki in the sequence (Ki)

∞
1 share

a common invariant distribution]. Time inhomogeneous random walks on finite
groups provide a large collection of such examples (see also [24] for a particu-
larly interesting example: semirandom transpositions). The papers [7, 14] are also
concerned with quantitative results for time inhomogeneous Markov chains. In
particular, the techniques developed in [7] are closely related to ours and we will
use some of their results concerning the modified logarithmic Sobolev inequality.
References on the basic theory of time inhomogeneous Markov chains are [19, 26,
35–37]. For a different perspective, see also [3].

A short review of the relevant aspects of the time inhomogeneous Markov chain
literature, including the use of “ergodic coefficients” can be found in [34]. The vast
literature on the famous simulated annealing algorithm is not very relevant for our
purpose but we refer to [6] for a recent discussion. The paper [5] concerned with
filtering and genetic algorithms describes problems that are related in spirit to the
present work.

1.2. Basic notation. Let V be a finite set equipped with a sequence of kernels
(Kn)

∞
1 such that, for each n, Kn(x, y) ≥ 0 and

∑
y Kn(x, y) = 1. An associated

Markov chain is a V -valued random process X = (Xn)
∞
0 such that, for all n,

P(Xn = y|Xn−1 = x, . . . ,X0 = x0) = P(Xn = y|Xn−1 = x)

= Kn(x, y).
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The distribution μn of Xn is determined by the initial distribution μ0 and given by

μn(y) = ∑
x∈V

μ0(x)K0,n(x, y),

where Kn,m(x, y) is defined inductively for each n and each m ≥ n by

Kn,m(x, y) = ∑
z∈V

Kn,m−1(x, z)Km(z, y)

with Kn,n = I (the identity). If we interpret the Kn’s as matrices, then this defi-
nition means that Kn,m = Kn+1 · · ·Km. This paper is mostly concerned with the
behavior of the measures K0,n(x, ·) as n tends to infinity. In the case of time ho-
mogeneous chains where all Ki = Q are equal, we write K0,n = Qn.

Our main interest is in ergodic like properties of time inhomogeneous Markov
chains. In general, one does not expect μn = μ0K0,n to converge toward a limiting
distribution. Instead, the natural notion is that of merging of measures as discussed
in [4].

DEFINITION 1.1. Fix a sequence of Markov kernels as above. We say the
sequence is merging if for any x, y, z ∈ V ,

lim
n→∞K0,n(x, z) − K0,n(y, z) = 0.(1.1)

REMARK 1.2. If the sequence (Ki)
∞
1 is merging then, for any two starting

distributions μ0, ν0, the measures μn = μ0K0,n and νn = ν0K0,n are merging, that
is, μn − νn → 0. Since we assume the set V is finite, merging is equivalent to
limn→∞‖K0,n(x, ·) − K0,n(y, ·)‖TV = 0. Hence, we also refer to this property as
“total variation merging.”

Total variation merging is also referred to as weak ergodicity in the literature
and there exists a body of work concerned with understanding when weak ergod-
icity holds. See, for example, [19, 25–27, 35]. A main tool used to show weak
ergodicity is that of contraction coefficients. Furthermore, in [16], Birkhoff’s con-
traction coefficient is used to study ratio ergodicity which is equivalent to what
we will later call relative-sup merging. However, it should be noted that even for
time homogeneous chains Birkhoff coefficients and related methods fail to provide
useful quantitative bounds in most cases.

Our goal is to develop quantitative results in the context of time inhomogeneous
chains in the spirit of the work of Aldous, Diaconis and others. In these works, pre-
cise estimates of the mixing time of ergodic chains are obtained. Typically, a family
of Markov chains indexed by a parameter, say N , is studied. Loosely speaking, as
the parameter N increases, the complexity and size of the chain increases and one
seeks bounds that depend on N in an explicit quantitative way. See, for example,
[1, 2, 8–13, 15, 22, 23, 28]. Efforts in this direction for time inhomogeneous chains
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are in [7, 14, 16–18, 24, 30, 32]. Still, there are only a very small number of re-
sults and examples concerning the quantitative study of merging as defined above
for time inhomogeneous Markov chains so that it is not very clear what kind of
results should be expected and what kind of hypotheses are reasonable. We refer
the reader to [32] for a more detailed discussion.

The following definition is useful to capture the spirit of our study. It indicates
that the simplest case we would like to think about is the case when the sequence
Ki is obtained by deterministic but arbitrary choices between a finite number of
kernels Q = {Q1, . . . ,Qk}.

DEFINITION 1.3. We say that a set Q of Markov kernels on V is merging in
total variation if for any sequence (Ki)

∞
0 with Ki ∈ Q for all i, we have

∀x, y, z ∈ V lim
n→∞‖K0,n(x, ·) − K0,n(y, ·)‖TV = 0.

In the study of ergodicity of finite Markov chains, the convergence toward the
target distribution is measured using various notions of distance between probabil-
ity measures. These include the total variation distance

‖μ − ν‖TV = sup
A⊂V

{μ(A) − ν(A)},
the chi-square distance (w.r.t. ν. Note the asymmetry between μ and ν.)(∑

y

∣∣∣∣μ(y)

ν(y)
− 1

∣∣∣∣
2

ν(y)

)1/2

,

and the relative sup-distance (again, note the asymmetry)

max
y

{∣∣∣∣μ(y)

ν(y)
− 1

∣∣∣∣
}
.

These will be used here to measure merging.

1.3. Merging time. In the quantitative theory of ergodic time homogeneous
Markov chains, the notion of mixing time plays a crucial role. For time inhomoge-
neous chain, we propose to consider the following definitions.

DEFINITION 1.4. Fix ε ∈ (0,1). Given a sequence (Ki)
∞
1 of Markov kernels

on a finite set V , we call max total variation merging time the quantity

TTV(ε) = inf
{
n : max

x,y∈V
‖K0,n(x, ·) − K0,n(y, ·)‖TV < ε

}
.

DEFINITION 1.5. Fix ε ∈ (0,1). We say that a set Q of Markov kernels on V

has max total variation ε-merging time at most T if for any sequence (Ki)
∞
1 with

Ki ∈ Q for all i, we have TTV(ε) ≤ T , that is,

∀t > T max
x,y∈V

{‖K0,t (x, ·) − K0,t (y, ·)‖TV} ≤ ε.
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Of course, merging can be measured in ways other than total variation. Also
merging is a bit less flexible than mixing in this respect since there is no reference
measure. One very natural and much stronger notion than total variation is relative
sup-distance. For time inhomogeneous chains, total variation merging does not
necessarily imply relative-sup merging as defined below. See [32].

DEFINITION 1.6. We say a sequence (Ki)
∞
1 of Markov kernels on a finite set

V is merging in relative-sup if for all x, y, z ∈ V

lim
n→∞

K0,n(x, z)

K0,n(y, z)
= 1

with the convention that 0/0 = 1 and a/0 = ∞ for a > 0. Fix ε ∈ (0,1), we call
relative-sup merging time the quantity

T∞(ε) = inf
{
n : max

x,y,z∈V

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

< ε

}
.

DEFINITION 1.7. We say a set Q of Markov kernels on V is merging in
relative-sup if any sequence (Ki)

∞
1 with Ki ∈ Q for all i is merging in relative-sup.

Fix ε ∈ (0,1). We say that Q has relative-sup ε-merging time at most T if for
any sequence (Ki)

∞
1 with Ki ∈ Q for all i, we have T∞(ε) ≤ T , that is,

∀t > T max
x,y,z∈V

{∣∣∣∣K0,t (x, z)

K0,t (y, z)
− 1

∣∣∣∣
}

≤ ε.

The following problem is open. It is a quantitative version of the problem stated
at the beginning of the introduction.

PROBLEM 1.8. Let VN = {0, . . . ,N} and c ∈ [1,∞). Let QN be the set of
all birth and death chains Q on VN with Q(x,y) ∈ [1/4,3/4] if |x − y| ≤ 1, and
reversible measure π satisfying 1/4 ≤ (N + 1)π(x) ≤ 4, x ∈ VN .

1. Prove or disprove that there exists a constant A independent of N such that QN

has total variation ε-merging time at most AN2(1 + log+ 1/ε).
2. Prove or disprove that there exists a constant A independent of N such that QN

has relative-sup ε-merging time at most AN2(1 + log+ 1/ε).

REMARK 1.9. This problem is open (in most cases) even if one considers
a sequence (Ki)

∞
1 drawn from a set Q = {K1,K2} of two kernels. Observe that

the hypothesis that the invariant measures πi are all comparable to the uniform
plays some role. How to harvest the global hypothesis of comparable stationary
distributions πi is not entirely clear. See Theorem 1.14 below for a partial solution.

If π1 and π2 are not comparable, it is possible for (K1, π1) and (K2, π2) to have
the same mixing time yet for Q = {K1,K2} to have a merging time of a higher
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order. Assume that K1 and K2 are two biased random walks with equal drift, one
drift to left, the other to the right. Despite the fact that each of these random walks
has a relative-sup mixing time of order N , the inhomogeneous chain driven by the
sequence K1K2K1K2 · · · has a relative-sup merging time of order N2, see [32].

1.4. Stability. In this section, we consider a property, c-stability, that plays
a crucial role in the techniques we develop to provide quantitative bounds for
time inhomogeneous Markov chains. This property was introduced and discussed
in [32]. It is a straightforward generalization of the property of sharing the same
invariant measure. Unfortunately, it is hard to check.

DEFINITION 1.10. Fix c ≥ 1. A sequence of Markov kernels (Kn)
∞
1 on a

finite set V is c-stable if there exists a measure μ0 such that

∀n ≥ 0, x ∈ V c−1 ≤ μn(x)

μ0(x)
≤ c,(1.2)

where μn = μ0K0,n. If this holds, we say that (Kn)
∞
1 is c-stable with respect to

the measure μ0.

DEFINITION 1.11. A set Q of Markov kernels is c-stable with respect to a
measure μ0 if any sequence (Ki)

∞
1 such that Ki ∈ Q for all i is c-stable with

respect to μ0.

REMARK 1.12. If all Ki share the same invariant distribution π then (Ki)
∞
1

is 1-stable with respect to π .

REMARK 1.13. Suppose a set Q of aperiodic irreducible Markov kernels is
c-stable with respect to a measure μ0. Let π be an invariant measure for some
Q ∈ Q. Then we must have

x ∈ V,
1

c
≤ π(x)

μ0(x)
≤ c.

Hence, Q is also c2-stable with respect to π and any two invariant measures π,π ′
for kernels Q,Q′ ∈ Q must satisfy

x ∈ V,
1

c2 ≤ π(x)

π ′(x)
≤ c2.

The following theorem which relates to a special case of Problem 1.8 illustrates
the role of c-stability.

THEOREM 1.14. Let VN = {0, . . . ,N}. Let QN be the set of all birth and
death chains Q on VN with

Q(x,y) ∈ [1/4,3/4] if |x − y| ≤ 1
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and reversible measure π satisfying 1/4 ≤ (N + 1)π(x) ≤ 4, x ∈ VN . Let (Ki)
∞
1

be a sequence of birth and death Markov kernels on VN with Ki ∈ QN . Assume
that (Ki)

∞
1 is c-stable with respect to the uniform measure on VN , for some con-

stant c ≥ 1 independent of N . Then there exists a constant A = A(c) (in particu-
lar, independent of N ) such that the relative-sup merging time for (Ki)

∞
1 on VN is

bounded by

T∞(ε) ≤ AN2(1 + log+ 1/ε).

This will be proved later in a stronger form in Section 2.4. In [32] the weaker
conclusion T∞(ε) ≤ AN2(logN + log+ 1/ε) was obtained using singular value
techniques. Here, we will use Nash inequalities to obtain T∞(ε) ≤ AN2(1 +
log+ 1/ε).

It is possible that the set QN is c-stable with respect to the uniform measure
for some c. Indeed, it is tempting to conjecture that this is the case although the
evidence is rather limited (see also the discussion in [34]). If this is true, then
Theorem 1.14 solves Problem 1.8. However, we do not know how to approach the
problem of proving c-stability for QN .

REMARK 1.15. While the assumption of c-stability in Theorem 1.14 is quite
strong, Sections 4.2 and 5 of [32] give specific examples of families QN for which
it holds. Further, we note that the question of whether or not c-stability holds is
extremely natural and interesting in itself.

2. Singular values and Nash inequalities. One key idea in the study of
Markov chains is to associate to a Markov kernel K the operator K :f �→ Kf =∑

y K(·, y)f (y). In the case of time homogeneous chains, one uses the basic fact
that this operator acts on �p(π) with norm 1 when π is an invariant measure.

In the case of time inhomogeneous chains, it is crucial to consider K as an op-
erator between �p spaces with different measures in the domain and target spaces.
The following simple observation is key.

Given a measure μ and a Markov kernel K on a finite set V , set μ′ = μK . Fix
p ∈ [1,∞) and consider K as a linear operator

K = Kμ :�p(μ′) → �p(μ), Kf (x) = ∑
y

K(x, y)f (y).(2.1)

Then

‖K‖�p(μ′)→�p(μ) = sup
{‖Kf ‖�p(μ) :f ∈ �p(μ′),‖f ‖�p(μ′) ≤ 1

} = 1.(2.2)

This follows from Jensen’s inequality. See, for example, [7, 32]. We will use the
notation Kμ whenever we need to emphasize the fact that K is viewed as an op-
erator between �p(μK) and �q(μ) for some 1 ≤ p,q ≤ ∞. When the context is
clear, we will drop the subscript μ as was done above.
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2.1. Using various distances. Given a sequence of Markov kernels (Ki)
∞
1 , fix

a starting measure μ0 and set μn = μ0K0,n. We will assume that μn > 0 for all n.
Note that if μ0 > 0 and Kn are all irreducible then μn > 0 for all n ≥ 0. We are
interested in the behavior of

dp(K0,n(x, ·),μn) =
(∑

y

∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
p

μn(y)

)1/p

, p ≥ 1.

For p ≥ 1, a classical argument involving the duality between �p and �q where
1 = 1/p + 1/q , yields

dp(K0,n(x, ·),μn) = sup
{∣∣∣∣∑

y

[K0,n(x, y)f (y) − μn(y)f (y)]
∣∣∣∣ :‖f ‖�q(μn) ≤ 1

}

and one checks that the function

n �→ dp(K0,n(x, ·),μn)

is nonincreasing (see [32]). Of course,

2‖K0,n(x, ·) − μn‖TV = d1(K0,n(x, ·),μn)

and, if 1 ≤ p ≤ r ≤ ∞,

dp(K0,n(x, ·),μn) ≤ dr(K0,n(x, ·),μn).

In particular,

2‖K0,n(x, ·) − μn‖TV ≤ d2(K0,n(x, ·),μn)(2.3)

and

‖K0,n(x, ·) − K0,n(y, ·)‖TV ≤ max
x∈V

{d2(K0,n(x, ·),μn)}.(2.4)

Further, if

max
x,z

{∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣
}

≤ ε ≤ 1/2,

then

max
x,y,z

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

≤ 4ε.

To see the last inequality, note that if 1 − ε ≤ a/b, c/b ≤ 1 + ε with ε ∈ (0,1/2)

then

1 − 2ε ≤ 1 − ε

1 + ε
≤ a

c
≤ 1 + ε

1 − ε
≤ 1 + 4ε.
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2.2. Singular values. In [32], we developed basic inequalities for d2(K0,n(x,
·),μn) based on singular value decompositions. The basic fact here is that, if μ is
a probability measure on V , K a Markov kernel and μ′ = μK then

d2(K(x, ·),μ′)2 =
|V |−1∑
i=1

|ψi(x)|2σ 2
i ,

where σi , i = 0, . . . , |V | − 1, are the singular values of Kμ :�2(μ′) → �2(μ) in
nonincreasing order, that is the square root of the eigenvalues of KμK∗

μ :�2(μ) →
�2(μ) where K∗

μ :�2(μ) → �2(μ′) is the adjoint of Kμ :�2(μ′) → �2(μ). The ψi’s
form an orthonormal basis for �2(μ) and are eigenfunctions of KμK∗

μ, ψi being
associated with σ 2

i . Of course, the σ 2
i ’s can also be viewed as the eigenvalues of

K∗
μKμ :�2(μ′) → �2(μ′).
In any case, a crucial fact for us here is that σ1, the second largest singular value

of Kμ :�2(μ′) → �2(μ), is also the norm of K − μ′ = Kμ − μ′ :�2(μ′) → �2(μ),
that is,

sup
{‖(K − μ′)f ‖�2(μ) :f ∈ �2(μ′),‖f ‖�2(μ′) = 1

} = σ1.

Given a sequence (Ki)
∞
1 of Markov kernels on V and a positive measure μ0,

set μn = μ0K0,n and let σ1(Ki,μi−1) be the second largest singular value of
Ki :�2(μi) → �2(μi−1). Noting that

(K0,n − μn) = (K1 − μ1)(K2 − μ2) · · · (Kn − μn),

we obtain

‖K0,n − μn‖�2(μn)→�2(μ0)
≤

n∏
1

σ1(Ki,μi−1).(2.5)

This inequality seems very promising and this is rather misleading. There is
very little hope to compute or estimate the singular values σi(Ki,μi−1), even if
we have a good grasp on the kernel Ki . The reason is that σ1(Ki,μi−1) depends
very much on the unknown measure μi−1. This is similar to the problem one faces
when studying an irreducible aperiodic time homogeneous finite Markov chain for
which one is not able to compute the stationary measure (although this case is
rarely discussed, it is the typical case). For positive examples and a more detailed
discussion, see [32].

2.3. Dirichlet forms. Given a reversible Markov kernel Q with reversible
measure π on a finite set V , the associated Dirichlet form is

E (f, f ) = EQ,π(f, f ) = 〈(I − Q)f,f 〉π
= 1

2

∑
x,y

|f (x) − f (y)|2π(x)Q(x, y).
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This definition is essential for the techniques considered in this paper. To illustrate
this, we note that the singular value σ1(Kμ,μ) associated to a Markov kernel K

and a positive probability measure μ is the square root of the second largest eigen-
value of K∗

μKμ :�2(μ′) → �2(μ′), μ′ = μK . This operator is associated with the
Markov kernel

P(x, y) = 1

μ′(x)

∑
z

μ(z)K(z, x)K(z, y),

which is reversible with respect to μ′ and has associated Dirichlet form

EP,μ′(f, f ) = 1

2

∑
x,y,z

|f (x) − f (y)|2μ(z)K(z, x)K(z, y).

Hence, using the classical variational formula for eigenvalues, we have

1 − σ1(K,μ) = inf
{ EP,μ′(f, f )

Varμ′(f )
:f ∈ �2(μ′),Varμ′(f ) �= 0

}
,

where Varμ′(f ) = ‖f ‖2
�2(μ′) − μ′(f )2 = ∑

x |f (x) − μ′(f )|2μ′(x).

2.4. Nash inequalities. The use of Nash inequalities to study the convergence
of ergodic (time homogeneous) finite Markov chains was developed in [11] (Sec-
tion 7 of [11] discusses time homogeneous chains that admits an invariant mea-
sure). We refer the reader to that paper for background on this technique. In this
section, we observe that it can be implemented in the context of time inhomoge-
neous chains. We start with some basic material.

DEFINITION 2.1. Let V be a state space equipped with a Markov kernel K

and probability measures μ and ν. If 1 ≤ p,q ≤ ∞ then

‖K‖�p(μ)→�q(ν) = sup
‖f ‖�p(μ)≤1

{‖Kf ‖�q(ν)

}
.

If p and q are conjugate exponents, that is, if 1/p + 1/q = 1, then

‖f ‖�p(μ) = sup
‖g‖�q (μ)≤1

{〈f,g〉μ}.

The following proposition is well known in a much more general context.

PROPOSITION 2.2. Let K be a Markov kernel. Let Kμ :�2(μK) → �2(μ) be
the Markov operator on V with adjoint K∗

μ :�2(μ) → �2(μK) with respect to the
inner product

〈Kf,g〉μ = 〈f,K∗g〉μK.

If 1 ≤ p, r, s ≤ ∞, 1/p + 1/q = 1 and 1/r + 1/s = 1 then

‖K‖�p(μK)→�r (μ) = ‖K∗‖�s(μ)→�q(μK).
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Let now (Ki)
∞
1 be a sequence of Markov kernels on V . Fix a positive probabil-

ity measure μ0 and set μn = μ0K0,n as usual. Consider Ki :�2(μi) → �2(μi−1),
its adjoint K∗

i :�2(μi−1) → �2(μi) and Pi = K∗
i Ki :�2(μi) → �2(μi). The opera-

tor Pi is given by the Markov kernel

Pi(x, y) = 1

μi(x)

∑
z

μi−1(z)Ki(z, x)Ki(z, y).(2.6)

This kernel is reversible with reversible measure μi . We let

EPi,μi
(f, f ) = 1

2

∑
x,y

|f (x) − f (y)|2μi(x)Pi(x, y)

be the associated Dirichlet form on �2(μi).

THEOREM 2.3. Referring to the setup and notation introduced above, let
N ≥ 1 and assume that there are constants C,D > 0 such that for 1 ≤ m ≤ N

the following Nash inequalities hold

∀f :V → R ‖f ‖2+1/D

�2(μm)
≤ C

(
EPm,μm(f,f )

(2.7)

+ 1

N
‖f ‖2

�2(μm)

)
‖f ‖1/D

�1(μm)
.

Then, for 0 ≤ m ≤ n ≤ N ,

max
{‖Km,n‖�2(μn)→�∞(μm),‖Km,n‖�1(μn)→�2(μm)

} ≤
(

4CB

n − m + 1

)D

,(2.8)

where B = B(D,N) = (1 + 1/N)(1 + �4D�).

PROOF. Let (Ki)
∞
0 be a sequence of Markov kernels on V such that the Nash

inequalities (2.7) hold. Pick a function f such that ‖f ‖�1(μn) = 1. For 1 ≤ m ≤
n ≤ N define

tn(n − m) = ‖Km,nf ‖2
�2(μm)

.

Note that for any n > 0, (tn(i))
n
i=0 is nonincreasing. Indeed, using the contraction

property (2.2), we have

tn(i + 1) = ‖Kn−i−1,nf ‖2
�2(μn−i−1)

= ‖Kn−iKn−i,nf ‖2
�2(μn−i−1)

≤ ‖Kn−i,nf ‖2
�2(μn−i )

= tn(i).

Moreover, note that for any 0 ≤ i − 1 ≤ n ≤ N

tn(i)
1+1/(2D) ≤ C

(
tn(i) − tn(i + 1) + tn(i)/N

)
,
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where C and D are the constants in (2.7). This follows by applying the Nash
inequality to the function Kn−i,nf . Corollary 3.1 of [11] then yields that

tn(i) ≤
(

CB

i + 1

)2D

, 0 ≤ i ≤ n ≤ N,

where B = B(D,N) = (1 + 1/N)(1 + �4D�). In particular, if 0 ≤ m ≤ n ≤ N ,

‖Km,n‖�1(μn)→�2(μm) ≤ (
(CB)/(n − m + 1)

)D
.

From Proposition 2.2 it follows that, for 0 ≤ m ≤ n ≤ N ,

‖K∗
m,n‖�2(μm)→�∞(μn) ≤ (

(CB)/(n − m + 1)
)D

.

Next we bound ‖K∗
m,n‖�1(μm)→�∞(μn) for 0 ≤ m ≤ n ≤ N . Consider the quantity

M(N) where

M(N) = max
0≤m≤n≤N

{
(n − m + 1)2D‖K∗

m,n‖�1(μm)→�∞(μn)

}
.

Let l = �n−m
2 � + m, so that 0 ≤ m ≤ l ≤ n ≤ N . We have

‖K∗
m,n‖�1(μm)→�∞(μn) ≤ ‖K∗

m,l‖�1(μm)→�2(μl)
‖K∗

l,n‖�2(μl)→�∞(μn)

≤
(

CB

n − l + 1

)D

‖K∗
m,l‖�1(μm)→�2(μl)

.

Note that for all 0 ≤ m ≤ l ≤ N

‖K∗
m,l‖�1(μm)→�2(μl)

≤ ‖K∗
m,l‖1/2

�1(μm)→�∞(μl)
‖K∗

m,l‖1/2
�1(μm)→�1(μl)

.(2.9)

This follows from the fact that for any function f

‖K∗
m,lf ‖�2(μl)

≤ ‖K∗
m,lf ‖1/2

�∞(μl)
‖K∗

m,lf ‖1/2
�1(μl)

.

By (2.2), we have

‖K∗
m,n‖�1(μm)→�∞(μn) ≤

(
CB

n − l + 1

)D

‖K∗
m,l‖1/2

�1(μm)→�∞(μl)

≤
(

CB

(n − l + 1)(l − m + 1)

)D

M(N)1/2

≤
(

4CB

(n − m + 1)2

)D

M(N)1/2.

The last inequality follows from the fact that

n − l + 1 ≥ n − m + 1

2
and l − m + 1 ≥ n − m + 1

2
.
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So we have M(N) ≤ (4CB)2D and it follows that for all 0 ≤ m ≤ n ≤ N

‖K∗
m,n‖�1(μm)→�∞(μn) ≤

(
4CB

n − m + 1

)2D

.

By duality, we get that

‖Km,n‖�1(μn)→�∞(μm) ≤
(

4CB

n − m + 1

)2D

.

Next, we use the Riesz–Thorin interpolation theorem, see [38], page 179, which
gives us the desired result. �

The next results show how Theorem 2.3 together with the singular value tech-
nique of Section 2.2 yields merging results.

THEOREM 2.4. Referring to the above setup and notation, let N ≥ 1 and as-
sume that there are constants C,D > 0 such that for 1 ≤ m ≤ N the Nash inequal-
ities

∀f :V → R ‖f ‖2+1/D

�2(μm)
≤ C

(
EPm,μm(f,f ) + 1

N
‖f ‖2

�2(μm)

)
(2.10)

× ‖f ‖1/D

�1(μm)

hold. Let σ1(Km,μm−1) be the second largest singular value of Km :�2(μm) →
�2(μm−1), that is, the square root of the second largest eigenvalue of Pm. Then,
for n > m, N ≥ m ≥ 0, we have

d2(K0,n(x, ·),μn) ≤
(

8C(1 + �4D�)
(m + 1)

)D n∏
m+1

σ1(Ki,μi−1).(2.11)

Moreover, for any n = 2m + u, 0 ≤ m ≤ N , we have

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

≤
(

8C(1 + �4D�)
(m + 1)

)2D m+u∏
m+1

σ1(Ki,μi−1).(2.12)

PROOF. We have

max
x∈V

{d2(K0,n(x, ·),μn)
2} = ‖K0,n − μn‖2

�2(μn)→�∞(μ0)
,

where μn is understood as the expectation operator f �→ μn(f ). Moreover, for
any 0 ≤ m ≤ n,

K0,n − μn = K0,m(Km,n − μn),
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because K0,mμnf = K0,mμn(f ) = μn(f ). Hence, for 0 ≤ m ≤ N ,

d2(K0,n(x, ·),μn)
2 ≤ ‖Km,n − μn‖2

�2(μn)→�2(μm)
‖K0,m‖2

�2(μm)→�∞(μ0)

≤
(

n∏
m+1

σ1(Ki,μi−1)
2

)(
4CB

m + 1

)2D

.

Using B = N−1(N + 1)(1 + �4D�), gives (2.11). To obtain the stronger result
(2.12), write

max
x,y∈V

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

= ‖K0,n − μn‖�1(μn)→�∞(μ0)

and

‖K0,n − μn‖�1(μn)→�∞(μ0)

≤ ‖Kn−m,n‖�1(μn)→�2(μn−m) × ‖Km,n−m − μn−m‖�2(μn−m)→�2(μm)

× ‖K0,m‖�2(μm)→�∞(μ0)
.

The stated bound (2.12) follows. �

Just as we did for singular values, let us emphasize that the powerful looking
results stated in this theorem are actually extremely difficult to apply. Again, the
point is that the Dirichlet form EPm,μm , the space �2(μm), and the singular values
σ1(Km,μm−1) all involve the unknown sequence of measures μn = μ0K0,n, n =
0, . . . . The following subsection gives similar but more applicable results under
additional hypotheses involving the notion of c-stability.

2.5. Nash inequality under c-stability. We state two results that parallel The-
orems 5.9 and 5.10 of [32].

THEOREM 2.5. Fix c ∈ (1,∞). Let (Ki)
∞
1 be a sequence of irreducible

Markov kernels on a finite set V . Assume that (Ki)
∞
1 is c-stable with respect to

a positive probability measure μ0. For each i, set μi
0 = μ0Ki and let σ(Ki,μ0)

be the second largest singular value of Ki = Ki,μ0 as an operator from �2(μi
0)

to �2(μ0). Let P 0
i = K∗

i,μ0
Ki,μ0 . Let N ≥ 1 and assume that there are constants

C,D > 0 such that for 1 ≤ m ≤ N the Nash inequalities

∀f :V → R ‖f ‖2+1/D

�2(μ0
m)

≤ C

(
EP 0

m,μ0
m
(f,f ) + 1

N
‖f ‖2

�2(μ0
m)

)
(2.13)

× ‖f ‖1/D

�1(μ0
m)
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holds. Then, for n > m, N ≥ m ≥ 0, we have

d2(K0,n(x, ·),μn) ≤
(

8Cc2+3/2D(1 + �4D�)
(m + 1)

)D

(2.14)

×
n∏

m+1

(
1 − 1 − σ(Ki,μ0)

2

c2

)1/2

.

Moreover, for any n = 2m + u, 0 ≤ m ≤ N , we have

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

≤
(

8Cc2+3/2D(1 + �4D�)
(m + 1)

)2D

×
m+u∏
m+1

(
1 − 1 − σ(Ki,μ0)

2

c2

)1/2

.

PROOF. First note that since μi−1/μ0 ∈ [1/c, c], we have μi
0/μi ∈ [1/c, c].

Consider the operator Pi with kernel

Pi(x, y) = 1

μi(x)

∑
z

μi−1(z)Ki(z, x)Ki(z, y).

By assumption

μi(x)Pi(x, y) ≥ c−1μi
0(x)

[
1

μi
0(x)

∑
z

μ0(z)Ki(z, x)Ki(z, y)

]
,

where the term in brackets on the right-hand side is the kernel of P 0
i . This ker-

nel has second largest eigenvalue σ(Ki,μ0)
2. A simple eigenvalue comparison

argument yields

1 − σ1(Ki,μi−1)
2 ≥ 1

c2

(
1 − σ(Ki,μ0)

2)
.

Further, comparison of measures and Dirichlet form yields the Nash inequality

∀f :V → R ‖f ‖2+1/D

�2(μm)
≤ Cc2+3/2D

(
EPm,μm(f,f ) + 1

N
‖f ‖2

�2(μm)

)

× ‖f ‖1/D

�1(μm)
.

Together with Theorem 2.4, this gives the stated result. �

The next result is based on a stronger hypothesis.

THEOREM 2.6. Fix c ∈ (1,∞). Let Q be a family of irreducible aperiodic
Markov kernels on a finite set V . Assume that Q is c-stable with respect to some
positive probability measure μ0.
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Let (Ki)
∞
1 be a sequence of Markov kernels with Ki ∈ Q for all i. Let πi be the

invariant measure of Ki . Let P̃i = K∗
i Ki where Ki :�2(πi) → �2(πi). Let σ1(Ki)

be the second largest singular value of Ki as an operator on �2(πi). Let N ≥ 1
and assume that there are constants C,D > 0 such that for 1 ≤ m ≤ N the Nash
inequalities

∀f :V → R ‖f ‖2+1/D

�2(πm)
≤ C

(
E

P̃m,πm
(f, f ) + 1

N
‖f ‖2

�2(πm)

)
(2.15)

× ‖f ‖1/D

�1(πm)
.

Then, for n > m, N ≥ m ≥ 0, we have

d2(K0,n(x, ·),μn) ≤
(

8Cc4+3/D(1 + �4D�)
(m + 1)

)D

(2.16)

×
n∏

m+1

(
1 − 1 − σ1(Ki)

2

c4

)1/2

.

Moreover, for any n = 2m + u, 0 ≤ m ≤ N , we have

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
−1

∣∣∣∣
}

≤
(

8Cc4+3/D(1 + �4D�)
(m + 1)

)2D m+u∏
m+1

(
1− 1 − σ1(Ki)

2

c4

)1/2

.

PROOF. Note that the hypothesis that Q is c-stable implies πi/μj ∈ [1/c2, c2]
for all i, j . Consider again the operator Pi and its kernel

Pi(x, y) = 1

μi(x)

∑
z

μi−1(z)Ki(z, x)Ki(z, y).

By assumption

μi(x)Pi(x, y) ≥ c−2πi(x)

[
1

πi(x)

∑
z

πi(z)Ki(z, x)Ki(z, y)

]

≥ c−2πi(x)P̃i(x, y).

A comparison argument similar to the one used in the previous proof yields the
desired result. �

3. Examples involving Nash inequalities. This section describes applica-
tions of the Nash inequality technique to several examples. All these examples
are of the following general type.

(1) There is a basic reversible model (K,π) on a space VN (growing with N )
that is well understood because:

• We have good grasp on the second largest singular value σN of (K,π).
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• The model (K,π) satisfies a good Nash inequality, that is, an inequality of the
form

‖f ‖2+1/D

�2(π)
≤ BTN

(
EK∗K,π(f, f ) + 1

bTN

‖f ‖2
�2(π)

)
‖f ‖1/D

�1(π)

with B,b independent of N and TN � (1 − σN)−1. Here, f � g implies that
there exist constants d,D > 0 such that dg ≤ f ≤ Dg.

• Together, the Nash inequality and second largest singular value estimate yield
the mixing time estimate

max
x,y

{∣∣∣∣K
t(x, y)

π(y)
− 1

∣∣∣∣
}

≤ η, t ≥ A(1 + log+ 1/η)

1 − σN

,

where A is independent of N .

(2) We are given a sequence (Ki)
∞
1 or a set QN of Markov kernels on VN which

satisfies:

• (Ki)
∞
1 or QN is c-stable with respect to a measure μ0 which is either equal or

at least comparable to π .
• The Markov kernels Ki or the elements of QN are all bounded perturbations of

K in the sense that Ki(x, y)/K(x, y) is bounded away from 0 and away from
∞ for all (x, y) ∈ V 2

N . In particular, Ki(x, y) = 0 if and only if K(x,y) = 0.

Under such circumstances, Theorem 2.5 (or Theorem 2.6) applies and yields
the conclusion that the time inhomogeneous Markov chain associated with the
sequence Ki under investigation has a relative-sup merging time T∞(η) bounded
by

T∞(η) ≤ A′(1 + log+ 1/η)

1 − σN

for some constant A′ independent of N .
The most obvious basic model is, perhaps, the simple random walk on Z/NZ

(with some holding if N is even to avoid periodicity). This model has 1 − σN �
1/N2 and satisfies the desired Nash inequality with D = 1/4. The first subsection
presents applications to a perturbation of this model.

3.1. Asymmetric perturbation at the middle vertex. In this example, VN =
Z/pNZ is a finite circle. It will be convenient to enumerate the points in VN

by writing VN = {−(N − 1), . . . ,−1,0,1, . . . , (N − 1),N} if pN = 2N and
VN = {−N, . . . ,−1,0,1, . . . ,N} if pN = 2N + 1. The simple random walk in
V has kernel

Q(x,y) =
{

1/2, if |x − y| = 1,
0, otherwise,

(3.1)
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FIG. 1. The asymmetric perturbation.

and reversible measure u ≡ 1
pN

. For any ε > 0, define the perturbation kernel

	ε(x, y) =
⎧⎨
⎩

ε, if (x, y) = (0,1),
−ε, if (x, y) = (0,−1),
0, otherwise.

(3.2)

For ε ∈ (−1/2,1/2), the Markov kernel Qε = Q + 	ε is a perturbation of Q. See
Figure 1.

For any fixed 0 < ε < 1/2, set

Q(ε) = {Qδ : δ ∈ [−ε, ε]}.
We shall see below that Q(ε) is c-stable.

DEFINITION 3.1. Let SN(ε) be the set of all probability measures on VN

which satisfy the following two properties:

(1) for all x ∈ VN , there exist constants aμ,x such that aμ,x = −aμ,−x and

μ(x) = (1/pN) + aμ,x

(2) for all x ∈ VN we have that |aμ,x | ≤ 2ε/pN .

REMARK 3.2. Note that we always have aμ,0 = 0 (since −0 = 0) and, in the
case when pN = 2N , aμ,N = 0.

CLAIM 3.3. Let μ ∈ SN(ε) defined above, then for any K ∈ Q(ε) we have
that μK ∈ SN(ε).

PROOF. Let μ ∈ SN(ε) and K = Qδ ∈ Q(ε), δ ∈ [−ε, ε]. We show that μK

has the properties required to be in SN(ε).
(1) Any measure μ ∈ SN can be written as μ = u + mμ where mμ is the (non-

probability) measure mμ(x) = aμ,x . A simple calculation yields that

mμQ(x) = (aμ,x−1 + aμ,x+1)/2.
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Since aμ,x = −aμ,−x , we obtain that

mμQ(x) = −mμQ(−x) and mμQ(0) = 0.

The fact that μQ = (u+mμ)Q = u+mμQ implies that μQ satisfies property (1)

in the definition of SN(ε). To see that μQδ ∈ SN(ε) also satisfies this property, we
note that

μ	δ(x) =
⎧⎨
⎩

δμ(0), if x = 1,
−δμ(0), if x = −1,
0, otherwise.

It now follows that μQδ ∈ SN has property (1) in the definition of SN(ε) since
μQδ = μ(Q + 	δ).

(2) We consider the measure μK . For x /∈ {−1,1} property (2) of SN(ε) follows
easily from the fact that |aμ,x | ≤ 2ε/pN and

μK(x) = 1/pN + 1/2(aμ,x−1 + aμ,x+1).

For x = 1, we note that

μK(1) ≤ μ(0)(1/2 + ε) + μ(2)(1/2) = 1/pN + ε/pN + (1/2)aμ,2

≤ 1/pN + 2ε/pN.

Similarly

μK(1) ≥ μ(0)(1/2 − ε) + μ(2)(1/2) = 1/pN − ε/pN − (1/2)aμ,2

≥ 1/pN − 2ε/pN.

The proof now follows from the fact that aμK,1 = −aμK,−1 as proved in part (1)
above. �

CLAIM 3.4. The family Q(ε) is 1+2ε
1−2ε

-stable with respect to any μ0 ∈ SN(ε).

PROOF. Claim 3.3 implies that for any sequence (Ki)
∞
0 such that Ki ∈ Qε

and any measure μ0 ∈ SN(ε) we have μn = μ0K0,n ∈ SN(ε) for all n ≥ 0. Note
that for any measure ν ∈ SN(ε) we have that

ν(x) = 1/pN + aν,x ≤ (1 + 2ε)/pN and ν(x) = 1/pN + aν,x ≥ (1 − 2ε)/pN .

Hence,

1 − 2ε

1 + 2ε
≤ μn(x)

μ0(x)
≤ 1 + 2ε

1 − 2ε
. �

When pN = 2N , the kernels Qδ yield periodic chains on VN . In this case, we
will study the merging properties of

Qlazy(ε) = {1
2(I + K) :K ∈ Q(ε)

}
,
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that is, the so-called lazy version of Q(ε). We set

Qδ = 1
2(I + Qδ).

For any μ ∈ SN(ε), we consider the kernel

Pδ,μ(x, y) = 1

μQδ(x)

∑
z

μ(z)Qδ(z, x)Qδ(z, y),

which is the kernel of K∗K where K = Qδ :�2(μQδ) → �2(μ). This is 0 unless
y = x, x ± 1, x ± 2 and we compare it to

P(x, y) = P0,u(x, y) = 1

u(x)

∑
z

u(z)Q(z, x)Q(z, y)

= ∑
z

Q(z, x)Q(z, y),

which is 3/8 if y = x, 1/4 if y = x ± 1, 1/16 if y = x ± 2 and 0 otherwise. The
definitions of Qδ and SN(ε) yield

μQδ(x)Pδ,μ(x, y) ≥ (1 − 2ε)(1 − 2δ)2

(1 + 2ε)
u(x)P (x, y)

≥ (1 − 2ε)3

(1 + 2ε)
u(x)P (x, y).

This yields

EP,μ(f, f ) ≤ (1 + 2ε)

(1 − 2ε)3 EPδ,μ,μQδ
(f, f ),(3.3)

whereas the stability property implies that the relevant measures μQδ and u satisfy

(1 − 2ε)

(1 + 2ε)
u ≤ μQδ ≤ (1 + 2ε)

(1 − 2ε)
u.(3.4)

In the case when pN = 2N + 1, we may work directly with the kernels Qδ as
they are not periodic. An analysis similar to that above will give versions of (3.3)
and (3.4) for Qδ .

Applying the line of reasoning explained at the beginning of this section and
using Theorem 2.6, we get the following result.

THEOREM 3.5. Fix ε ∈ (0,1/2). For any η > 0 the total variation η-merging
time of the family Qlazy(ε) on VN = Z/2NZ [resp., Q(ε) on VN = Z/(2N + 1)Z]
is at most B(ε)N2(1 + log+ 1/η) for some constant B(ε) ∈ (0,∞). In fact, we can
choose B(ε) such that

∀n ≥ B(ε)N2(1 + log+ 1/η) max
x,y∈VN

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

≤ η

for any sequence Ki ∈ Qlazy(ε) [resp., Ki ∈ Q(ε)].
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3.2. Perturbations of some birth and death chains. In [29], Nash inequalities
are used to study certain birth and death chains on VN = {−N, . . . ,0, . . . ,N} with
reversible measures which belong to one of the following two families:

π̂α(x) = ĉ(α,N)(N − |x| + 1)α, α ≥ 0,

and

π̌α(x) = č(α,N)(|x| + 1)α, α ≥ 0.

Here, we consider α ∈ [0,∞) to be a fixed parameter and are interested in what
happens when N tends to infinity. From this perspective, the normalizing constants
ĉ(α,N), č(α,N) are comparable and behave as

ĉ(α,N) � č(α,N) � N−α−1.

Set

ζ(α,N) =
N∑
0

(1 + i)−α �
⎧⎨
⎩

1, if α > 1,
logN, if α = 1,
N−α+1, if α ∈ [0,1).

Here, all � must be understood for fixed α and the implied comparison con-
stants depend on α. Let M̂α (resp., M̌α) be the Markov kernel of the Metropolis
chain with basis the symmetric simple random walk on VN with holding 1/3 at
all points except at the end points where the holding is 2/3, and target π̂α , (resp.,
π̌α). Let λ̂(α,N), λ̌(α,N) be the corresponding spectral gaps. Let T̂ (α,N,η),
Ť (α,N,η) be the relative-sup mixing times of these chains. It is proved in [29]
that

λ̂(α,N) � 1/N2, T̂ (α,N,η) � N2(1 + log+ 1/η),

whereas

λ̌(α,N) � č(α,N)/ζ(α,N),

Ť (α,N,η) � (
N2 + [č(α,N)/ζ(α,N)] log+ 1/η

)
.

Note that

č(α,N)/ζ(α,N) �
⎧⎨
⎩

N−(1+α), if α > 1,
(N2 logN)−1, if α = 1,
N−2, if α ∈ [0,1).

These results are based on the Nash inequalities satisfied by these chains. Namely,
letting Eα = E

M̂α,π̂α
or Eα = E

M̌α,π̌α
and πα = π̂α or πα = π̌α , there are constants

Aα,aα ∈ (0,∞) such that

‖f ‖2+1/Dα

�2(πα)
≤ AαN2

(
Eα(f, f ) + 1

aαN2 ‖f ‖2
�2(πα)

)
‖f ‖1/Dα

�1(πα)

with Dα = 1 + α. See [29].
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In cite [32], the authors consider the class of birth and death chains Q on VN =
{−N, . . . ,0, . . . ,N} that are symmetric with respect to the middle point, that is,
satisfy Q(x,x + 1) = Q(−x,−x − 1), Q(x,x − 1) = Q(−x,−x + 1), Q(x,x) =
Q(−x,−x), x ∈ {0,N}. For any such chain Q, let ν be the reversible measure. It
satisfies ν(x) = ν(−x). Consider the perturbation set

QN(Q,ε) = {Q + 	s : s ∈ [−ε, ε]}, ε ∈ [0, q0),

where q0 = Q(0,±1), 	s(0,±1) = ±s and 	(x,y) = 0 otherwise. These pertur-
bations at the middle vertex have reversible measure νs that satisfy

νs(0) = ν(0), νs(±x) = ν(±x)(1 ± s/q0), x ∈ {1, . . . ,N}.
The main point of this construction is the following.

PROPOSITION 3.6. Fix Q, ν as above and ε ∈ [0, q0). The set QN(Q,ε) is
c-stable with respect to μ0 = ν with c = (q0 + ε)/(q0 − ε).

In order to apply this results to our example M̂α, M̌α , we observe that

q̂0(α) = M̂α(0,−1) = 1

3

(
N

N + 1

)α

and

q̌0(α) = M̌α(0,−1) = 1
3 .

Now, Theorem 2.6 yields the following result.

THEOREM 3.7. Fix α ∈ [0,∞) and set ε̂N,α = 1
6(N/(N + 1))α , ε̌N,α = 1/6.

1. There exists a constant A independent of N such that, for any sequence (Ki)
∞
1

with Ki ∈ QN(M̂α, ε̂N,α), we have

T∞(η) ≤ AN2(1 + log+ 1/η).

2. There exists a constant A independent of N such that, for any sequence (Ki)
∞
1

with Ki ∈ QN(M̌α, ε̌N,α), we have

T∞(η) ≤ A

⎧⎪⎨
⎪⎩

N2 + N1+α log+ 1/η, if α > 1,
N2 + (N2 logN) log+ 1/η, if α = 1,
N2(1 + log+ 1/η), if α ∈ (0,1).
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4. Logarithmic Sobolev inequalities. This section develops the technique of
logarithmic Sobolev inequality for time inhomogeneous finite Markov chains. It
should be noted that the logarithmic Sobolev technique has been mostly applied in
the literature in the context of continuous time chains. In [21], Miclo tackled the
problem of adapting this technique to discrete time (time homogeneous) chains.
There are two different ways to use logarithmic Sobolev inequality for mixing
estimates. One, the most powerful, provides results for relative-sup merging and
is based on hypercontractivity. The other is based on entropy and only produces
bounds for total variation merging. We will discuss and illustrate both approaches
below in the context of time inhomogeneous chains. The entropy approach is al-
ready treated in [7].

4.1. Hypercontractivity. Recall that, for any positive probability distribu-
tion μ, a Markov kernel K can be thought of as a contraction

Kμ :�2(μ′) → �2(μ) for μ′ = μK .

The adjoint K∗
μ :�2(μ) → �2(μ′) has kernel

K∗
μ(x, y) = K(y,x)μ(y)

μ′(x)
.

Set P = K∗
μKμ :�2(μ′) → �2(μ′). We define the logarithmic Sobolev constant

l(P ) = inf
{ EP,μ′(f, f )

L(f 2,μ′)
: L(f 2,μ′) �= 0, f �= constant

}
,

where the �2 relative entropy L(f 2, ν) of a function f with respect to the measure
ν is defined by

L(f 2, ν) = ∑
x∈V

f 2 log
(

f 2

‖f ‖2
�2(ν)

)
ν(x).

The following proposition is a slight generalization of [21], Proposition 2, in
that it allows for the necessary change of measure.

PROPOSITION 4.1. Let K and μ be a Markov kernel and a probability mea-
sure, respectively. For all q0 ≥ 2 and q ≤ [1 + l(P )]q0, then

‖K‖�q0 (μ′)→�q(μ) ≤ 1.

In order to prove the proposition above, we will need the following two lemmas
from [21].

LEMMA 4.2 ([21], Lemma 3). Let ν be a probability measure. For all q ≥
q0 ≥ 1,

‖f ‖�q(ν) − ‖f ‖�q0 (ν) ≤ q − q0

q0q
‖f ‖1−q

�q(ν)L(f q/2, ν).
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LEMMA 4.3 ([21], Lemma 4). Fix ν ≥ 0 and q ≥ 2, then for any t ≥ 0 and
−t ≤ s ≤ νt we have that

(t + s)q ≥ tq + qtq−1s + g(q, ν)
(
(t + s)q/2 − tq/2)2

,

where

g(q, v) = (1 + ν)q − 1 − qν

((1 + ν)q/2 − 1)2 .

The proof of Proposition 4.1 follows directly that of Proposition 2 in [21].

PROOF OF PROPOSITION 4.1. To prove Proposition 4.1 is suffices to only
consider positive functions. For f > 0, we begin by writing

‖Kf ‖�q(μ) − ‖f ‖�2(μ′) = ‖Kf ‖�q(μ) − ‖f ‖�q(μ′)
(4.1)

+ ‖f ‖�q(μ′) − ‖f ‖�2(μ′).

The difference of the last two terms on the right-hand side is controlled by Lem-
ma 4.2. To control the first two terms, we will use the concavity result

∀a, b ≥ 0 a1/q − b1/q ≤ 1

q
b1/q−1(a − b).

It follows that

‖Kf ‖�q(μ) − ‖f ‖�q(μ′) ≤ 1

q
‖f ‖1−q

�q(μ′)
(‖Kf ‖q

�q(μ) − ‖f ‖q

�q(μ′)
)
.

Set

ν(K) = max{1/K(x, y) :K(x,y) > 0} − 1.

Following the notation of Lemma 4.3, fix x, y ∈ V and set ν = ν(K), t = Kf (x)

and t + s = f (y). If K(x,y) > 0, then −t ≤ s ≤ νt and so

f (y)q ≥ Kf (x)q + qKf (x)q−1(
f (y) − Kf (x)

)
+ g(q, ν(K))

(
f (y)q/2 − Kf (x)q/2)2

.

Fix x and integrate with respect to the measure K(x, ·) to get

Kf q(x) ≥ (Kf (x))q + g(q, ν(K))
∑
y∈V

K(x, y)
(
f (y)q/2 − Kf (x)q/2)2

.

We also have∑
y∈V

K(x, y)
(
f q/2(y) − (Kf (x))q/2)2 ≥ min

c∈R

∑
y∈V

K(x, y)
(
f q/2(y) − c

)2

= ∑
y∈V

K(x, y)
(
f q/2(y) − K(f q/2)(x)

)2

= Kf q(x) − (Kf q/2(x))2.
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Hence,

Kf q(x) ≥ (Kf (x))q + g(q, ν(K))
(
Kf q(x) − (Kf q/2(x))2)

.

Integrating with respect to μ gives us that

‖f ‖q

�q(μ′) ≥ ‖Kf ‖q
�q(μ) + g(q, ν(K))EP,μ′(f q/2, f q/2).(4.2)

It follows from Lemma 4.2, (4.1) and (4.2) that

‖Kf ‖�q(μ) − ‖f ‖�2(μ′)

≤ 1

q
‖f ‖1−q

�q(μ′)

(
q − q0

q0
L(f q/2,μ′) − g(q, ν(K))EP,μ′(f q/2, f q/2)

)
.

In [21], it is noted that for all ν > 0 and q ≥ 2 we have g(q, ν) ≥ 1. So if q ≤
[1 + l(P )]q0 then q ≤ [1 + g(q, ν(K))l(P )]q0. Hence,

‖Kf ‖�q(μ) − ‖f ‖�2(μ′)

≤ 1

q
‖f ‖1−q

�q(μ′)g(q, ν(K))
(
l(P )L(f q/2,μ′) − EP,μ′(f q/2, f q/2)

)
.

Since l(P ) is the logarithmic Sobolev constant, we get our desired result,

‖Kf ‖�q(μ) − ‖f ‖�2(μ′) ≤ 0. �

COROLLARY 4.4. Let (Kn)
∞
0 be a sequence of Markov kernels on a fi-

nite set V and μ0 be an initial distribution on V . Set μn = μ0K0,n. Consider
Ki :�2(μi) → �2(μi−1) and Pi = K∗

i Ki :�2(μi) → �2(μi). Let l(Pi) be the loga-
rithmic Sobolev constant of Pi . Then for any q0 ≥ 2 and q ≤ ∏n

i=1(1 + l(Pi))q0,
we have that

‖K0,n‖�q0 (μn)→�q(μ0) ≤ 1.

PROOF. When n = 2, set q1 = (1 + l(P2))q0, then q = (1 + l(P1))q1. It fol-
lows from Proposition 4.1 that

‖K0,2‖�q0 (μ2)→�q(μ0) ≤ ‖K2‖�q0 (μ2)→�q1 (μ1)‖K1‖�q1 (μ1)→�q2 (μ0) ≤ 1.

The proof by induction follows similarly. �

We now relate the results above to bounds on merging times.

THEOREM 4.5. Let V be a finite set equipped with a sequence of Markov
kernels (Kn)

∞
0 and an initial distribution μ0. Let μn = μ0K0,n. Consider Ki :

�2(μi) → �2(μi−1) and Pi = K∗
i Ki :�2(μi) → �2(μi). Let l(Pi) be the logarith-

mic Sobolev constant of Pi . Set

mx = min

{
t ∈ N :

t∑
i=1

log
(
1 + l(Pi)

) ≥ log log(μ0(x)−1/2)

}
.
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Then for n ≥ mx , we have that

d2(K0,n(x, ·),μn)
2 ≤ e2

n∏
i=mx+1

σ1(Ki,μi−1)
2.

PROOF. Fix x, and let m = mx . If 0 ≤ m ≤ n, K∗
0,n = K∗

m,nK
∗
0,m. Indeed, for

any f ∈ �2(μ0) and g ∈ �2(μn) we have that

〈K∗
0,nf, g〉μn = 〈f,K0,ng〉μ0 = 〈K∗

0,mf,Km,ng〉μm = 〈K∗
m,nK

∗
0,mf, g〉μn.

Moreover, if μm is thought of as the expectation operator μm :�2(μm) → �2(μn),
f �→ μm(f ), then (K∗

m,n − μm)∗ = Km,n − μn. Let

δx(z) =
{

μ0(x)−1, if z = x,
0, otherwise.

Set q = q(m) = 2
∏m

i=1(1+ l(Pi)) and q ′(m) to be the conjugate exponent of q(m)

so that 1/q(m) + 1/q ′(m) = 1. By duality, we have

d2(K0,n(x, ·),μn)

=
∥∥∥∥K0,n(x, ·)

μn(·) − 1
∥∥∥∥
�2(μn)

=
∥∥∥∥K∗

0,n(·, x)

μ0(x)
− 1

∥∥∥∥
�2(μn)

= ‖(K∗
0,n − μ0)δx‖�2(μn) = ‖(K∗

m,n − μm)K∗
0,mδx‖�2(μn)

≤ ‖K∗
m,n − μm‖�2(μm)→�2(μn)‖K∗

0,mδx‖�2(μm)

≤ ‖δx‖�q′(m)(μ0)
‖K∗

0,m‖
�q′(m)(μ0)→�2(μm)

‖K∗
m,n − μm‖�2(μm)→�2(μn)

≤ μ0(x)−1/q(m)‖K0,m‖�2(μm)→�q(m)(μ0)
‖Km,n − μn‖�2(μn)→�2(μm).

By assumption, we have that q(m) ≥ log(μ0(x)−1), it now follows from Corol-
lary 4.4 that

d2(K0,n(x, ·),μn) ≤ e

n∏
i=m+1

σ1(Ki,μi−1).
�

4.2. Logarithmic Sobolev inequalities and c-stability.

THEOREM 4.6. Fix c ∈ (1,∞). Let V be a finite set equipped with a sequence
of irreducible Markov kernels, (Ki)

∞
1 . Assume that (Ki)

∞
1 is c-stable with respect

to a positive probability measure μ0. For each i, set μi
0 = μ0Ki and let σ1(Ki,μ0)

be the second largest singular value of the operator Ki :�2(μi
0) → �2(μ0) and

l(K∗
i Ki) the logarithmic Sobolev constant for the operator K∗

i Ki :�2(μi
0) →

�2(μi
0). If

m̃x = min

{
t ∈ N :

t∑
i=1

log
(
1 + c−2l(K∗

i Ki)
) ≥ log log(μ0(x)−1/2)

}
,
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then for n ≥ m̃x we have that

d2(K0,n(x, ·),μn)
2 ≤ e2

n∏
i=m̃x+1

(
1 − c−2(

1 − σ1(Ki,μ
i
0)

2))
.

PROOF. First, we note that μi/μ
i
0 ∈ [c−1, c]. Let Pi be the Markov kernel de-

scribed in the statement of Theorem 4.5. By the same arguments as in Theorem 2.5,
we get that for all x, y ∈ V

μi(x)Pi(x, y) = ∑
z

μi−1(z)Ki(z, x)Ki(z, y) ≥ c−1μi
0(x)K∗

i Ki(x, y).

A simple comparison argument similar to those used in the proof of Theorem 2.5
(see also [10, 12]) yields that

l(Pi) ≥ c−2l(K∗
i Ki) and 1 − σ(Ki,μi−1)

2 ≥ c−2(
1 − σ(Ki,μ

i
0)

2)
.

The first inequality implies that m̃x ≥ mx where mx is defined in the proof of
Theorem 4.5. Using the results of Theorem 4.5 and the second inequality above
gives the desired result. �

The next result is when we have a c-stability assumption on a family of kernels.

THEOREM 4.7. Let c ∈ (1,∞). Let Q be a family of irreducible aperiodic
Markov kernels on a finite set V . Assume that Q is c-stable with respect to some
positive probability measure μ0. Let (Ki)

∞
1 be a sequence of Markov kernels with

Ki ∈ Q for all i. Let πi be the invariant measure of Ki . Let σi(Ki) be the second
largest singular value for the operator Ki :�2(π) → �2(π). Let l(K∗

i Ki) be the
logarithmic Sobolev constant for the operator K∗

i Ki where K∗
i is the adjoint of

Ki :�2(π) → �2(π). If

m̃x = min

{
t ∈ N :

t∑
i=1

log
(
1 + c−4l(K∗

i Ki)
) ≥ log log(μ0(x)−1/2)

}
,

then for n ≥ m̃x we have that

d2(K0,n(x, ·),μn)
2 ≤ e2

n∏
i=mx+1

(
1 − c−4(

1 − σ1(Ki)
2))

.

PROOF. Let μi = μ0K0,i . If Q is c-stable, then μi/πi ∈ [c−2, c2]. Similar
arguments to those used in Theorem 4.6 give the desired result. �
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4.3. The relative sup norm. To control the relative-sup merging time by this
method, we need an additional hypothesis. In the case of the �2 distance, we
only required a control over the logarithmic Sobolev constant of the kernel Pi =
K∗

i Ki :�2(μi) → �2(μi). In this case, we will also need to control the logarithmic
Sobolev constant of P̌i = KiK

∗
i :�2(μi−1) → �2(μi−1) where K∗

i is the adjoint of
the operator Ki from �2(μi) to �2(μi−1).

THEOREM 4.8. Let V be a finite set equipped with a sequence of Markov ker-
nels (Kn)

∞
0 and an initial distribution μ0. Let μn = μ0K0,n and Pi = K∗

i Ki :
�2(μi) → �2(μi) and P̌i = KiK

∗
i :�2(μi−1) → �2(μi−1) where K∗

i is the ad-
joint of Ki with respect to the measure μi . Let l(Pi) and l(P̌i) be the logarithmic
Sobolev constants of Pi and P̌i , respectively. If μ#

i = minx{μi(x)} and

m#
0 = min

{
t ∈ N :

t∑
i=1

log
(
1 + l(Pi)

) ≥ log log(μ#
0
−1/2)

}
,

m#
n = min

{
t ∈ N :

n∑
i=n−t

log
(
1 + l(P̌i)

) ≥ log log(μ#
n
−1/2)

}
,

then for any n ≥ 2m,

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

≤ e2
n−m∏

i=m+1

σ1(Ki,μi−1),

where m = max{m#
0,m

#
n}.

REMARK 4.9. This innocent looking theorem is not easy to apply. For in-
stance, m depends on n and without some control on this dependence the result is
useless.

PROOF OF THEOREM 4.8. Write

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

= ‖K0,n − μn‖�1(μn)→�∞(μ0)

and

‖K0,n − μn‖�1(μn)→�∞(μ0)

≤ ‖Kn−m,n − μn‖�1(μn)→�2(μn−m) × ‖Km,n−m − μn−m‖�2(μn−m)→�2(μm)

× ‖K0,m − μm‖�2(μm)→�∞(μ0)
.

Note that

‖Km,n−m − μn−m‖�2(μn−m)→�2(μm) ≤
n−m∏

i=m+1

σ1(Ki,μi−1)
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so we just need to bound the remaining terms in the right-hand side of the
inequality above. To bound ‖Kn−m,n − μn‖�1(μn)→�2(μn−m) set q∗ = q∗(m) =
2

∏m
i=1(1 + l(P̌n−m+i )) and write

‖Kn−m,n − μn‖�1(μn)→�2(μn−m)

= ‖K∗
n−m,n − μn−m‖�2(μn−m)→�∞(μn)

= ‖I (K∗
n−m,n − μn−m)‖�2(μn−m)→�∞(μn)

≤ ‖K∗
n−m,n − μn−m‖�2(μn−m)→�q∗

(μn)‖I‖�q∗
(μn)→�∞(μn)

≤ ‖K∗
n−m,n‖�2(μn−m)→�q∗

(μn)‖I‖�q∗
(μn)→�∞(μn).

It follows from Corollary 4.4 that

‖Kn−m,n − μn‖�1(μn)→�2(μn−m) ≤ ‖I‖�q∗
(μn)→�∞(μn) ≤ μ#

n
−1/q∗

.

By assumption, we have that q∗ = q∗(m) ≥ log(μ#
n
−1) so we get

‖Kn−m,n − μn‖�1(μn)→�2(μn−m) ≤ e.

To bound ‖K0,m − μ0‖�1(μm)→�2(μ0)
set q = q(m) = 2

∏m
i=1(1 + l(Pi)) and write

‖K0,m − μ0‖�2(μm)→�∞(μ0)
≤ ‖K0,m − μ0‖�2(μm)→�q(μ0)

‖I‖�q(μ0)→�∞(μ0).

It follows from Corollary 4.4 that

‖K0,m − μ0‖�2(μm)→�∞(μ0)
≤ ‖I‖�q(μ0)→�∞(μ0) ≤ μ#

0
−1/q .

Since q = q(m) ≥ log(μ#
0
−1) we get ‖Kn−m,n − μn‖�1(μn)→�2(μn−m) ≤ e. �

THEOREM 4.10. Fix c ∈ (1,∞). Let V be a finite set equipped with a
sequence of Markov kernels (Kn)

∞
1 . Assume that (Kn)

∞
1 is c-stable with re-

spect to a positive probability measure μ0. For each i, set μi
0 = μ0Ki and

μi
n = μnKi . Let σ1(Ki,μ

i
0) be the second largest singular value of the operator

Ki :�2(μi
0) → �2(μ0). Let l(K∗

i Ki) be the logarithmic Sobolev constant of the op-
erator K∗

i Ki :�2(μi
0) → �2(μi

0) where K∗
i is the adjoint of Ki :�2(μi

0) → �2(μ0).
Let l(KiK

∗
i ) be the logarithmic Sobolev constant of the operator KiK

∗
i :�2(μn) →

�2(μn) where K∗
i is the adjoint of Ki :�2(μi

n) → �2(μn). If μ#
i = minx{μi(x)} and

m̃#
0 = min

{
t ∈ N :

t∑
i=1

log
(
1 + c−2l(K∗

i Ki)
) ≥ log log(μ#

0
−1/2)

}
,

m̃#
n = min

{
t ∈ N :

n∑
i=n−t

log
(
1 + c−6l(KiK

∗
i )

) ≥ log log(μ#
n
−1/2)

}
,
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then for any n ≥ 2m̃

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

≤ e2
n−m̃∏
i=m̃

(
1 − c−2(

1 − σ1(Ki,μ
i
0)

2))1/2
,

where m̃ = max{m̃#
0, m̃

#
n}.

PROOF. Note that μi/μ
i
0 ∈ [c−1, c] and μi/μ

i
n ∈ [c−2, c2]. Let Pi and P̌i be

the Markov kernels described in Theorem 4.8 with kernels

Pi(x, y) = 1

μi(x)

∑
z

μi−1(z)Ki(z, x)Ki(z, y),(4.3)

P̌i(x, y) = ∑
z

μi−1(y)

μi(z)
Ki(x, z)Ki(y, z).(4.4)

Similar reasoning to that of Theorem 4.6 gives

l(Pi) ≥ c−2l(K∗
i Ki) and 1 − σ(Pi)

2 ≥ c−2(
1 − σ(Ki,μ

i
0)

2)
,

where K∗
i above is the adjoint of Ki :�2(μi

0) → �2(μ0). This implies that m̃#
0 ≥ m#

0
where m#

0 is defined in Theorem 4.8.
In the case of P̌i , equation (4.4) gives

P̌i ≥ c−4
∑
z

μn(y)

μi
n(z)

Ki(x, z)Ki(y, z) = c−4KiK
∗
i (x, y),

where K∗
i is the adjoint of the operator Ki :�2(μi

n) → �2(μn). A simple compari-
son argument yields

l(P̌i) ≥ c−6l(KiK
∗
i )

and so m̃#
n ≥ m#

n where m#
n is defined in Theorem 4.8. The desired result now

follows from Theorem 4.8. �

The next theorem gives us similar results when we have c-stability for a family
of kernels.

THEOREM 4.11. Fix c ∈ (1,∞). Let Q be a family of irreducible aperiodic
Markov kernels on V . Assume that Q is c-stable with respect to some positive
probability measure μ0. Let (Kn)

∞
1 be a sequence with Ki ∈ Q for all i ≥ 1. Let

πi be the invariant measure of Ki and σ1(Ki) the second largest singular value
of the operator Ki acting on �2(πi). Let l(K∗

i Ki) and l(KiK
∗
i ) be the logarithmic

Sobolev constants of the operators K∗
i Ki and KiK

∗
i where K∗

i is the adjoint of
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Ki :�2(πi) → �2(πi). If μ#
i = minx{μi(x)} and

m̃#
0 = min

{
t ∈ N :

t∑
i=1

log
(
1 + c−4l(K∗

i Ki)
) ≥ log log(μ#

0
−1/2)

}
,

m̃#
n = min

{
t ∈ N :

n∑
i=n−t

log
(
1 + c−6l(KiK

∗
i )

) ≥ log log(μ#
n
−1/2)

}
,

then for any n ≥ 2m̃

max
x,y

{∣∣∣∣K0,n(x, y)

μn(y)
− 1

∣∣∣∣
}

≤ e2
n−m̃∏
i=m̃

(
1 − c−4(

1 − σ1(Ki)
2))1/2

,

where m̃ = max{m̃#
0, m̃

#
n}.

PROOF. First, note that μi/πi ∈ [c−2, c2]. Equation (4.3) implies that

l(Pi) ≥ c−4l(K∗
i Ki) and 1 − σ(Ki,μi)

2 ≥ c−4(
1 − σ(Ki)

2)
.

To bound l(P̌i), we use (4.4) to get that for all x, y ∈ V

P̌i(x, y) ≥ c−4KiK
∗
i (x, y).

This implies that l(P̌i) ≥ c−6l(KiK
∗
i ). It follows that m̃ ≥ m where m is defined

in Theorem 4.8. Applying Theorem 4.8 now gives us the desired result. �

4.4. An inhomogeneous walk on the hypercube. Denote by V = {0,1}2N the
2N -dimensional hypercube, we say that x, y ∈ V are neighbors, or x ∼ y if

N∑
i=1

|xi − yi | = 1,

where xi is the ith coordinate of x ∈ V . The simple random walk on V is driven
by the kernel

K(x,y) =
⎧⎨
⎩

1

2N
, if x ∼ y,

0, otherwise.

It is easy to check that μ, the uniform measure on V , is stationary for K .
Fix ε ∈ (0,1) and consider the following perturbed version of K .

Kε(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2N
, if x ∼ y and |x| �= N ,

1 + ε

2N
, if x ∼ y and |x| = N,y = |N | + 1,

1 − ε

2N
, if x ∼ y and |x| = N,y = |N | − 1,

0, otherwise.
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For ε ∈ (0,1), set

Q(ε) = {Kδ : δ ∈ [−ε, ε]}.
The example of time inhomogeneous Markov chains associated to Q(ε) above is
related to the binomial example in [32]. See Remark 4.17 below.

We shall show that Q(ε) is c-stable. First, consider the following definition.

DEFINITION 4.12. Let S2N be the set of probability measures on V = {0,
1}2N that satisfy the following three properties:

(1) For all x ∈ V with |x| = N we have ν(x) = 1
4N .

(2) For all i ∈ {−N, . . . ,−1,1, . . . ,N} there exists constants aν,i such that aν,i =
−aν,−i and for any x with |x| = N + i we have

ν(x) = 1

4N
+ aν,i .

(3) For all i ∈ {−N, . . . ,−1,1, . . . ,N} we have |aν,i | ≤ ε/4N .

CLAIM 4.13. Let ν be in S2N defined above, then for any K ∈ Q(ε) we have
that νK ∈ S2N .

PROOF. Let ν ∈ S2N and Q ∈ Q(ε), then Q = Kδ for some δ ∈ [−ε, ε]. We
will check each condition needed for νQ to be in S2N separately.

(1) For any x with |x| = N we have that νQ(x) = νK(x). The desired result
now follows from the definition of S2N .

(2) For i such that |i| /∈ {1,N}, consider an element x such that |x| = N + i.
Then

νQ(x) = ∑
y∼x

|y|=|x|+1

ν(y)Q(y, x) + ∑
y∼x

|y|=|x|−1

ν(y)Q(y, x)

=
(

1

2N

)( ∑
y∼x

|y|=|x|+1

ν(y) + ∑
y∼x

|y|=|x|−1

ν(y)

)

=
(

1

2N

)[(
1

4N
+ aν,i+1

)
|x| +

(
1

4N
+ aν,i−1

)
(2N − |x|)

]

= 1

4N
+ 1

2N

(
aν,i+1|x| + aν,i−1(2N − |x|)).

A similar computation as above yields that for an element x with |x| = N − i we
have

νQ(x) = 1

4N
− 1

2N

(
aν,i+1|x| + aν,i−1(2N − |x|)).
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When i = N , and x is such that |x| = N + i = 2N , we have

νQ(x) = ∑
y∼x

|y|=2N−1

ν(y)Q(y, x)

=
(

1

2N

)(
1

4N
+ aν,N−1

)
(2N)

= 1

4N
+ aν,N−1.

When i = −N , and x is such that |x| = N − i = 0 we get νQ(x) = 1
4N − aν,N−1

as desired.
Finally, we check that cases for elements x with |x| = N ± 1. Consider an x

such that |x| = N − 1, then

νQ(x) = ∑
y∼x

|y|=N−2

ν(y)Q(y, x) + ∑
y∼x

|y|=N

ν(y)Q(y, x)

=
(

1

2N

)(
1

4N
− aν,2

)
(N − 1) +

(
1 − δ

2N

)(
1

4N

)
(N + 1)

= 1

4N
− 1

2N

(
aν,2(N − 1) + δ(N + 1)

4N

)
.

When |x| = N + 1, then

νQ(x) = ∑
y∼x

|y|=N

ν(y)Q(y, x) + ∑
y∼x

|y|=N+2

ν(y)Q(y, x)

=
(

1 + δ

2N

)(
1

4N

)
(N + 1) +

(
1

2N

)(
1

4N
+ aν,2

)
(N − 1)

= 1

4N
+ 1

2N

(
aν,2(N − 1) + δ(N + 1)

4N

)

as desired. We can now concluded that aνQ,i = −aνQ,−i .
(3) From the calculations in part (2), we know that for x with x = N + i and

|i| /∈ {1,N} and |i| = N we have

νQ(x) = 1

4N
+ 1

2N

(
aν,i+1|x| + aν,i−1(2N − |x|))

and

νQ(x) = 1

4N
+ aν,N−1,
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respectively. It follows from the fact that for all i, |aν,i | ≤ ε/4N that for both cases
above |aνQ,i | ≤ ε/4N . When |i| = 1, we have that for x with |x| = N + i = N ± 1

νQ(x) ≤ 1

4N
+ 1

2N

(
aν,2(N − 1) + ε(N + 1)

4N

)

≤ 1

4N
+ 1

2N

(
ε(N − 1)

4N
+ ε(N + 1)

4N

)

= 1 + ε

4N
.

A similar calculation yields νQ(x) ≥ 1−ε
4N . The proof now follows from the fact

that aνQ,i = −aνQ,−i . �

CLAIM 4.14. The set Q(ε) is 1+ε
1−ε

-stable with respect to any measure in S2N .

PROOF. Let μ0 ∈ S2N . Let (Ki)
∞
1 be any sequence of kernels such that Ki ∈

Q(ε) for all i ≥ 1. Let μn = μ0K0,n, then by Claim 4.13 we have that μn ∈ S2N

and so for any x ∈ V

1 − ε

1 + ε
≤ μn(x)

μ0(x)
≤ 1 + ε

1 − ε
. �

The kernels Kδ ∈ Q(ε) drive periodic chains that will alternate between points
with an even number of 1’s and odd number of 1’s. So we will study following
random walk driven by the kernel

Qδ = 1
2(I + Kδ),

where I is the identity. Set

Q(ε) = {Qδ : δ ∈ [−ε, ε]}.

CLAIM 4.15. Let (Ki)
∞
1 be a sequence of Markov kernels such that Ki ∈

Q(ε) for all i ≥ 1. Let μ0 ∈ S2N be a positive measure, and let μn = μ0K0,n. Set
Pi = K∗

i Ki :�2(μi) → �2(μi) where K∗
i is the adjoint of Ki :�2(μi) → �2(μi−1).

Let σ1(Ki,μi) and be the second largest singular value of Ki :�2(μi) → �2(μi−1).
Let l(Pi) be logarithmic Sobolev constant of Pi . Then

σ1(Ki,μi) ≤ 1 − C(ε)
1

2N
and l(Pi) ≥ C(ε)

4N
,

where C(ε) = (1 + ε)−2(1 − ε)4.

PROOF. Let Q = 2−1(I + K0) and u be the uniform measure on {0,1}2N .
Let Pi(x, y) = K∗

i Ki :�2(μi) → �2(μi). Using the 1+ε
1−ε

-stability of the sequence
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(μn)
∞
0 , we get that

μi(x)Pi(x, y) = ∑
z

μi−1(z)Ki(z, x)Ki(z, y)

≥ 1 − ε

1 + ε

u(x)

u(x)

∑
z

u(z)Ki(z, x)Ki(z, y)

≥ (1 − ε)3

1 + ε

u(x)

u(x)

∑
z

u(z)Q(z, x)Q(z, y)

≥ (1 − ε)3

1 + ε
u(x)Q(2)(x, y).

A simple comparison yields

EPi,μi
(f, f ) ≥ (1 − ε)3(1 + ε)−1EQ(2),u(f, f ).

Further comparison gives that

1 − σ1(Ki,μi) ≥ C(ε)
(
1 − σ1(Q)

)
,(4.5)

l(Pi) ≥ C(ε)l
(
Q(2)).(4.6)

It is well known that for K0 :�2(u) → �2(u) (the simple random walk) we have
2l(K0) = 1 − σ1(K0) = 1/N . This implies that σ1(Q) = 1 − 1/2N . The singular
value inequality in Claim 4.15 now follows from (4.5). For the rest of the proof,
we note that Lemma 2.5 of [11] tells us that EQ(2),u(f, f ) ≥ EQ,u(f, f ), and so we
get l(Q(2)) ≥ l(Q). The logarithmic Sobolev inequality now follows from (4.6)
and the fact that l(Q) = 1/4N . �

By applying Theorem 4.5 and Claim 4.15, we get the following theorem.

THEOREM 4.16. For any ε ∈ (0,1) there exists a constant D(ε) such that
the total variation merging time of the sequence (Ki)

∞
1 with Ki ∈ Q(ε) for all

i ∈ {1,2, . . .} is bounded by

TTV(η) ≤ D(ε)N(logN + log+ 1/η).

Moreover, we can chose D(ε) such that

∀n ≥ D(ε)N(logN + log+ 1/η) max
x,y,z∈V

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

≤ η.

We note that the relative-sup merging time bound is obtained with the same
arguments as those used at the end of the proof of Theorem 2.4.
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REMARK 4.17. The theorem above is closely related to the example in Sec-
tion 5.2 of [32] which studies a time inhomogeneous chain on {−N, . . . ,N} result-
ing from perturbations of a birth and death chain with binomial stationary distri-
bution. Both [32] and Theorem 4.16 give the correct upper bound on the merging
time yet [32] requires knowledge about the entire spectrum of the operators driving
the chain while the theorem above uses logarithmic Sobolev techniques.

4.5. Modified logarithmic Sobolev inequalities and entropy. Let ν and μ > 0
be two probability measures on V . Define the relative entropy between μ and ν as

Entμ(ν) = ∑
x∈V

μ(x) log
(

μ(x)

ν(x)

)
.

It is well known that
√

2‖μ − ν‖TV ≤ √
Entν(μ). Let (Kn)

∞
0 be a sequence of

Markov kernels on V , μ0 be some initial distribution on V and μn = μ0K0,n. It
follows by the triangle inequality that for any x, y ∈ V

‖K0,n(x, ·) − K0,n(y, ·)‖TV ≤ √
2 max

x∈V

√
Entμn(K0,n(x, ·)).

Let α = α(K,ν) be the largest constant such that for any probability measure μ

EntνK(μK) ≤ (1 − α)Entν(μ).

Let μ′ = μK and K∗ :�2(μ) → �2(μ′) be the adjoint of K :�2(μ′) → �2(μ). Set

P̌ = KK∗ :�2(μ) → �2(μ).

In [7], the contraction constant α is related to the so-called modified logarithmic
Sobolev constant

l′(P̌ ) = inf
{ E

μ,P̌
(f 2, log(f 2))

L(f 2,μ)
: L(f 2,μ) �= 0, f �= constant

}
.

PROPOSITION 4.18 ([7], Proposition 5.1). There exists a universal constant
0 < ρ < 1 such that for any Markov kernel K and any probability measure μ,

ρl′(P̌ ) ≤ α(K,μ) ≤ l′(P̌ ),

where P̌ = KK∗ and K∗ is the adjoint of the operator K :�2(μ′) → �2(μ), μ′ =
μK .

PROPOSITION 4.19. Referring to the proposition above,

ρ ≥ log 2
(

1 − log 2

2

)
.
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PROOF. The proof of Proposition 5.1 in [7] uses the fact that there exists some
0 < ρ̃ < 1 such that for all x ∈ [−1,∞)

0 ≤ ϕ(x) ≤ ρ̃−1ϕ(x/2),

where

ϕ(x) = (1 + x) log(1 + x) − x.

Let f (x) = ϕ(x) − (2/(1 − log 2))ϕ(x/2). We will show that for all x ∈ [−1,∞)

then f (x) ≤ 0. By differentiating f we get

f ′(x) = log(1 + x) −
(

1

1 − log 2

)
log

(
2 + x

2

)

and

f ′′′(x) = 4 log 2(1 + x) + x2 log 2 − 3 − 2x

(1 + x)2(2 + x)2(1 − log 2)
.

In particular, for x ∈ [−1,0] we have f ′′′(x) ≤ 0. This along with the fact that

f ′(−0.9) ≤ 0, f ′(−0.1) > 0 and f ′(0) = 0

implies that there exists only one z ∈ (−1,0) such that f ′(z) = 0. It follows that
f is decreasing on [−1, z] and f is increasing on [z,0]. Since f (−1) = f (0) = 0,
then for x ∈ [−1,0] we have that f (x) ≤ 0.

For x ∈ [0,∞), we note that

f ′′(x) = 1

1 + x
− 1

(1 − log 2)(2 + x)
≤ 0,

which implies that f ′(x) ≤ f ′(0) = 0. The fact that f (x) ≤ f (0) = 0 implies
ρ̃ = 2/(1 − log 2). The desired result follows from the fact that the proof of Propo-
sition 5.1 in [7] shows that

α(K,μ) ≥ ρ̃ log(2)l′(P̌ ). �

The results in [7] allow us to study merging via logarithmic Sobolev constants.

PROPOSITION 4.20. Let V be a finite state space equipped with a sequence of
Markov kernels (Kn)

∞
1 and an initial distribution μ0. Let μn = μ0K0,n and P̌i =

KiK
∗
i :�2(μi−1) → �2(μi−1) where K∗

i is the adjoint of Ki :�2(μi) → �2(μi−1).
Set μ∗

0 = minx μ0(x) then for any x, y ∈ V

‖K0,n(x, ·) − K0,n(y, ·)‖TV ≤ √
2 log

(
1

μ∗
0

)1/2 n∏
i=1

(
1 − ρl′(P̌i)

)1/2
,

where ρ is given in Propositions 4.18 and 4.19.
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PROOF. We note that for any x, y ∈ V

‖K0,n(x, ·) − K0,n(y, ·)‖TV ≤ √
2 max

x,y

√
Entμn(K0,n(x, ·)).

Proposition 5.1 in [7] gives that

Entμn(K0,n(x, ·)) ≤ Entμ0(δx)

n∏
i=1

(
1 − ρl′(P̌i)

)
.

The desired result now follows from the fact that

Entμ0(δx) = log
(

1

μ0(x)

)
≤ log

(
1

μ∗
0

)
. �

4.6. Biased shuffles. In this section, we present two examples where the mod-
ified logarithmic Sobolev inequality technique yields the correct merging time
while the regular logarithmic Sobolev inequality technique does not. Let Vn = Sn

be the symmetric group equipped with the uniform probability measure u. Let Q̃i

be the the kernel of transpose i with random, that is,

Q̃i(x, y) =
{

1/n, if x−1y = (i, j) for j ∈ [1, n],
0, otherwise.

Let Qi = 2−1(I + Q̃i) be the associated lazy chain. It is known that the lazy chain
has a mixing time of of 2n logn. More precisely,

t ≥ 2n(logn + c) ⇒ max
x,y

{
Qt

i(x, y)

u(y)
− 1

}
≤ 2e−2c ∀x ∈ Sn.

See, for example, [31]. The results of [18] show that the modified logarithmic
Sobolev constant for Qi is bounded by

1

n − 1
≥ l′(Qi) ≥ 1

4(n − 1)
.

Set Q = {Qi, i = 1, . . . , n}. Since all Qi are reversible with respect to the uni-
form distribution u, the set Q is 1-stable with respect to u. Using the methods of
[30] (see also [17, 24]), one can prove that for any sequence (Ki)

∞
1 with Ki ∈ Q

for all i ≥ 1 we have

t ≥ 2n(logn + c) ⇒ max
x,y

{
K0,n(x, y)

u(y)
− 1

}
≤ 2e−2c ∀x ∈ Sn.

The inequality above is due to the fact that the Qi are driven by probability mea-
sures so the �2 distance bounds the �∞ distance and the eigenvectors in Theo-
rem 3.2 of [32] drop out to give

d2(K0,t (x, ·), u)2 ≤
n!−1∑
i=1

t∏
j=1

σi(Kj )
2.(4.7)
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One can then group the singular values in the equality above since the Qi ’s are
all are images of each other under some inner automorphism of Sn which implies
σj (Qi) = σj (Qk) for all i, j, k. For a more detailed discussion, see [30].

We now consider two variants of this example that cannot be treated using the
singular values techniques of [17, 30, 32] or the logarithmic Sobolev inequality
technique of Sections 4.1–4.4 but where the modified logarithmic Sobolev in-
equality does yield a successful analysis. This technique can be applied to the
two examples in this section because of the following three reasons:

(1) any sequence (Ki)
∞
1 of interest can be shown to be c-stable with respect to

some well chosen initial distribution;
(2) all the kernels Ki driving the time inhomogeneous process are directly com-

parable to the Qi ’s and,
(3) due to (1) and the laziness of the Qi ’s we can successfully estimate the modi-

fied logarithmic Sobolev constants l′(QiQ
∗
i ) = l′(Q(2)

i ) to be of order 1/n.

4.6.1. Symmetric perturbations in Sn. For the first variant, fix ε ∈ (0,1) and
consider the set Q#(ε) of all Markov kernels K on Sn such that:

(a) K(x,y) = K(y,x) (symmetry) and
(b) ∀x, y we have (1 − ε)Qi(x, y) ≤ K(x,y) ≤ (1 + ε)Qi(x, y) for some i ∈

{1, . . . , n}.
Hence, Q#(ε) is the set of all symmetric edge perturbations of kernels in Q. As we
require symmetry, the uniform distribution is invariant for all the kernels in Q#(ε).
Now, what can be said of the merging properties of sequences (Ki)

∞
1 with Ki ∈

Q#(ε)? Unlike Q, the kernels in Q#(ε) are not invariant under left multiplication
in Sn. So the eigenvectors of Theorem 3.2 in [32] do not drop out, and we only get

d2(K0,t (x, ·), u)2 ≤ n!
t∏

i=1

σ1(Ki, u)2.

Singular value comparison yields σ1(Ki, u) ≤ 1 − (1 − ε)/(2n) which gives

t ≥ (1 − ε)−1n(n logn + 2c) ⇒ d2(K0,t (x, ·), u) ≤ e−c ∀x ∈ Sn.

This indicates merging after order n2 logn steps instead of the expected order
n logn steps. For any sequence (Ki)

∞
1 with Ki ∈ Q#(ε) for all i ≥ 1 set P̌i = KiK

∗
i

where K∗
i is the adjoint of the operator Ki :�2(u) → �2(u). A simple comparison

argument gives

P̌i(x, y) ≥ (1 − ε)2Q2
j (x, y)

for some j ∈ [1, n]. Further comparison yields l′(P̌i) ≥ (1−ε)2l′(Q2
j ). Lemma 2.5

of [11] implies that l′(Q2
j ) ≥ l′(Qj ) so l′(P̌i) is of order at least 1/n. Hence, there

exists some constant C(ε) independent of n such that

‖K0,t (x, ·) − K0,t (y, ·)‖TV ≤
√

2 logn!(1 − C(ε)/n
)t/2

.
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In particular, for some constant D(ε) we get TTV(η) ≤ D(ε)n(logn+ log+ 1/η).
To obtain a result for the relative-sup norm, one can use the (nonmodified) logarith-
mic Sobolev technique as the modified logarithmic Sobolev technique only gives
bounds in total variation. It is known that the logarithmic Sobolev constant for top
to random is of order 1/(n logn), see [20], leading to results that are off by a factor
of logn. This technique yields the best available result,

t ≥ C(ε)n
(
(logn)2 + c

) ⇒ max
x,y,z

{∣∣∣∣K0,t (x, z)

K0,t (y, z)
− 1

∣∣∣∣
}

≤ e−c.

4.6.2. Sticky permutations. We now consider a second variation on the trans-
pose cyclic to random example. Let ρ ∈ Sn, δ ∈ (0,1−Q1(ρ,ρ)) and consider the
Markov kernel

K(x,y) =
⎧⎨
⎩

Q1(x, y), if x �= ρ,
Q1(x, y) + δ, if x = y = ρ,
Q1(x, y) − δ/(n − 1), if x = ρ and x−1y = (1, j) for j ∈ [2, n].

In words, K is obtained from Q1 by adding extra holding probability at ρ, making
ρ “sticky.” Next, if σ is the cycle (1, . . . , n), let

Ki(x, y) = K(σ i−1xσ−i+1, σ i−1yσ−i+1).

In words, Ki is Qi with some added holding at ρi = σ−i+1ρσ i−1.
We would like to consider the merging properties of the sequence (Ki)

∞
1 . Un-

like the previous example, the uniform probability is not invariant under Ki . How-
ever, this type of construction is considered in [33].

Let

ε = δ∑
z �=ρ Q1(ρ, z)

so that K(x,y) ≥ (1−ε)Q1(x, y). It is proved that (Ki)
∞
1 is (1−ε)−1-stable with

respect to the probability measure μ0 = π̃ , where π̃ is the invariant probability
measure of the Markov kernel K̃(x, y) = K(x,σ−1yσ). From the analysis in [33],
Section 5, one can see that

(1 − ε)u ≤ π̃ ≤ (1 − ε)−1u.

Applying the singular value techniques used in Section 5 of [33] would give us an
upper bound on the relative sup merging time of order n2 logn.

Set P̌i = KiK
∗
i :�2(μi−1) → �2(μi−1) where K∗

i is the adjoint of the operator
Ki :�2(μi) → �2(μi−1). Since Ki(x, y) ≥ (1−ε)Qi(x, y), for x �= y we can write

P̌i(x, y) = ∑
z

Ki(x, z)Ki(y, z)μi−1(y)μi(z)
−1 ≥ (1 − ε)4Q2

i (x, y).
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It follows by comparison that l′(P̌i) ≥ (1 − ε)5l′(Q2
i ). We can successfully esti-

mate l′(Q2
i ) due to Lemma 2.5 of [11] which implies l′(Q2

i ) ≥ l′(Qi). So we have
that l′(P̌i) is at least (1 − ε)5/(4(n − 1)). Proposition 4.20 gives us that

‖K0,t (x, ·) − K0,t (y, ·)‖TV ≤ √
2 log

(
n!

1 − ε

)1/2(
1 − ρ(1 − ε)5

4(n − 1)

)t/2

,

where ρ is as in Proposition 4.19. So for some constant D = D(ε), we get

TTV(η) ≤ Dn
(
logn + log+(1/η)

)
.
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