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THE GENERALIZED SHRINKAGE ESTIMATOR FOR THE
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BRAIN SIGNALS1
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Brown University

We develop a new statistical method for estimating functional connec-
tivity between neurophysiological signals represented by a multivariate time
series. We use partial coherence as the measure of functional connectivity.
Partial coherence identifies the frequency bands that drive the direct linear
association between any pair of channels. To estimate partial coherence, one
would first need an estimate of the spectral density matrix of the multivariate
time series. Parametric estimators of the spectral density matrix provide good
frequency resolution but could be sensitive when the parametric model is
misspecified. Smoothing-based nonparametric estimators are robust to model
misspecification and are consistent but may have poor frequency resolution.
In this work, we develop the generalized shrinkage estimator, which is a
weighted average of a parametric estimator and a nonparametric estimator.
The optimal weights are frequency-specific and derived under the quadratic
risk criterion so that the estimator, either the parametric estimator or the non-
parametric estimator, that performs better at a particular frequency receives
heavier weight. We validate the proposed estimator in a simulation study and
apply it on electroencephalogram recordings from a visual-motor experiment.

1. Introduction. The goal of this paper is to estimate dependence between
multi-channel electroencephalogram (EEG) signals. In the time domain, partial
cross-correlation is used to measure the strength of direct linear dependence be-
tween a pair of channels. In the frequency domain, partial coherence is utilized to
identify the frequency bands that drive the direct linear association. To estimate
partial coherence, one first needs to estimate the spectral density matrix, which
is done via a parametric method (by fitting a parametric model to the EEGs) or
by some nonparametric procedure such as kernel-smoothing. Both of these proce-
dures have their strengths and weaknesses. In this paper we develop a generalized
shrinkage procedure which is a weighted average of the parametric and nonpara-
metric estimates. The frequency-specific weights are derived data-adaptively so
that the estimator (parametric versus nonparametric) that performs better at a par-
ticular frequency receives heavier weight.
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To obtain a parametric estimate of the spectral density matrix, one can fit a
model, such as the vector autoregressive model (VAR), which has been applied
extensively in the analysis of a variety of brain signals [e.g., Goebel et al. (2003);
Eichler (2005); Schlögl and Suppa (2006); Thompson and Siegle (2009)]. It is
simple and can be easily applied for assessing Granger-causality and the direction
of information between the signals [Kaminski and Blinowska (1991); Kaminski
et al. (2001)]. Moreover, when the lag order is sufficiently large, the VAR es-
timates are known to be well localized in frequency. Nonparametric estimators
are derived from periodogram matrices which are the data analog of the spectral
density matrix. One nonparametric estimator is obtained by smoothing the peri-
odograms across frequencies. The performance of these estimators is a function
of the smoothing parameter and so these estimators may not always give well-
localized estimates. However, they are asymptotically mean squared consistent and
robust to model specification. In this work we develop the generalized shrinkage
estimator which is a weighted average of the parametric estimator and the non-
parametric estimator and thus provides a good compromise between these two
estimators.

The remainder of the paper is organized as follows. In Section 2 we discuss
partial coherence and the past works on shrinkage estimation. Section 3 lays out
the framework for the generalized shrinkage estimator. In Section 4 we show the
performance of the generalized shrinkage estimator relative to the VAR estimator,
smoothed periodogram and the multitaper on a simulated data set. In Section 5
we use the generalized shrinkage estimator to analyze functional connectivity on
an EEG data set. And finally, in Section 6, we summarize the conclusions of this
research and briefly discuss properties of the generalized shrinkage estimator and
future directions.

2. Background. Coherence, the frequency domain analog of cross-correla-
tion, is a temporally invariant frequency-specific measure of linear association
between signals. Consider a trivariate time series (X(t), Y (t),Z(t))�. Denote
Xω(t), Yω(t) and Zω(t) to be the bandpass-filtered signals so that each of their
spectra is concentrated on some narrow frequency band around ω. Ombao and
van Bellegem (2008) showed that coherence has an appealing interpretation of
being the squared absolute cross-correlation between a pair of bandpass filtered
signals, so that in this case, the coherence between X(t) and Y(t) at frequency
ω can be interpreted as the squared cross-correlation between Xω(t) and Yω(t).
However, if the linear association between X(t) and Y(t) at frequency ω is con-
founded by Z(t), conclusions based on the associations between X(t) and Y(t)

may be misleading and misinterpreted because they may be related only indi-
rectly through Z(t). In other words, coherence does not model direct linear as-
sociation. We can obtain a direct measure of frequency-specific linear association
using partial coherence, which is interpreted as the squared cross-correlation be-
tween Xω(t) and Yω(t) at frequency ω after removing the temporally invariant
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linear effects of Z(t). To estimate partial coherence, we use a characterization that
expresses partial coherence as a function of the inverse of the spectral density ma-
trix [Dahlhaus (2000)]. In fact, this characterization was used in Eichler, Dahlhaus
and Sandkühler (2003) for neural spike trains, Salvador et al. (2005) for fMRI, and
Medkour, Walden and Burgess (2009) for EEG.

2.1. Characterization of partial coherence. Let X(t) = (X1(t), . . . ,XP (t))�
be a P -dimensional weakly stationary zero-mean real-valued discrete time series
with spectral density matrix f(ω). The diagonal elements of f(ω), denoted fpp(ω),
p = 1, . . . ,P , are the autospectra of the P channels and each of the off-diagonal
elements, denoted fpq(ω),p �= q , is the cross-spectrum between channels Xp(t)

and Xq(t). Define the matrix g(ω) = f−1(ω) whose (p, q)th element is denoted as

gpq(ω). Let h(ω) be a diagonal matrix whose elements are g
−1/2
pp (ω). Define the

matrix �(ω) to be

�(ω) = −h(ω)g(ω)h(ω).(2.1)

Then the partial coherence ρpq(ω) between the p and qth channels at frequency
ω is the square of the modulus of the (p, q)th element of �(ω), that is, ρpq(ω) =
|�pq(ω)|2. To estimate partial coherence, we must first estimate the spectral den-
sity matrix.

2.2. Related work on shrinkage estimation. Ledoit and Wolf (2004) proposed
shrinkage estimation of the variance–covariance matrix that combines a “classical
estimator” (the sample variance–covariance matrix) with a “highly-structured tar-
get.” Recently, the idea of a convex combination of a “classical estimator” with a
target has been extended for estimating the spectral density matrix of a multivariate
time series, which is the frequency-domain analog of the variance–covariance ma-
trix. Böhm and von Sachs (2009) developed the shrinkage estimator for the spec-
tral density matrix which shrinks the nonparametric estimator to the scaled iden-
tity matrix. When shrinking the nonparametric estimator toward the scaled identity
matrix the resulting estimate is well conditioned. However, the off-diagonals of the
estimator is shrunk to 0 and thus potentially biases the estimates of linear associa-
tion toward the null. To overcome this problem, one may shrink the nonparametric
estimator toward a more general shrinkage target. For factor models in economic
time series, Böhm and von Sachs (2008) proposed to shrink the nonparametric es-
timator toward a structured model, namely, the one-factor model. Here, we extend
these works by giving the shrinkage weight for any arbitrary shrinkage target.

3. The generalized shrinkage estimator. Let Xn(t), n = 1,2, . . . ,N and
t = 1,2, . . . , T , be the nth trial of a P -dimensional weakly stationary zero-mean
real-valued discrete time series with auto-covariance matrix �(h), each of whose
elements is absolutely summable. We shall assume that the trials are independent
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realizations from a common underlying process whose spectral properties (in par-
ticular, partial coherence) we wish to investigate. To achieve the goal of estimating
partial coherence, we shall first estimate the P ×P spectral density matrix defined
by f(ω) = 1

2π

∑
h∈Z �(h) exp(−iωh). Denote the parametric estimator of f(ω) to

be Ṽ(ω) and the nonnparametric estimator to be f̃(ω). The generalized shrinkage
estimator takes the weighted average of these two estimators and so takes the form

f∗(ω) = WT (ω)Ṽ(ω) + (
1 − WT (ω)

)̃
f(ω).(3.1)

Our procedure will use the class of vector autoregressive (VAR) models whose or-
der is selected by the Bayesian information criterion (BIC) for the parametric es-
timator and computes the nonparametric estimator with smoothing spans selected
from a plug-in unbiased risk estimation criterion. The weight at a particular fre-
quency is estimated data-adaptively so that a heavier weight is given to the estima-
tor that gives a better fit at that frequency. We first describe the three components
of the generalized shrinkage estimator before describing the estimation procedure.

3.1. Component 1: The parametric estimator.

3.1.1. The vector autoregressive process. Here, we use the class of vector
autoregressive models for obtaining a parametric estimator for the spectral den-
sity matrix. A multivariate time series X(t) has a VAR(K) representation if
X(t) = ∑K

k=1 �kX(t − k) + Z(t), where the �k’s are P × P coefficient matrices,
Z(t) is white noise with covariance matrix �Z , and other regularity conditions
are satisfied [Brockwell and Davis (1998)]. The spectral density matrix for the
VAR(K) time series takes the form

V(ω) = 1

2π

{(
IP − �1 exp(−iω1) − · · · − �K exp(−iωK)

)}−1 × �Z

(3.2)
× {(

IP − �1 exp(−iω1) − · · · − �K exp(−iωK)
)∗}−1

,

where IP is the P × P identity matrix and ∗ denotes the complex conjugate trans-
pose. The order K can be determined using some model selection criterion (such
as BIC).

3.1.2. N -trial least squares estimation. We now describe how to obtain the
least squares estimates of the coefficients of a VAR(K) model for a multivariate
time series recorded from N trials. The time series for the nth trial is modeled as

Xn(t) =
K∑

k=1

�kXn(t − k) + Zn(t),(3.3)

where Xn(t) = (X1n(t), . . . ,XPn(t))
�, Zn(t) = (Z1n(t), . . . ,ZPn(t))

�, t = 1,

. . . , T , and n = 1, . . . ,N . We extend the estimation for a single-trial multivari-
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ate time series in Lütkepohl (1993). Suppose we have K many presample val-
ues Xn(−K + 1), . . . ,Xn(0) for each trial of this time series. For each trial
n = 1, . . .N , define

Xn = (Xn(1), . . . ,Xn(T )) (P × T ),(3.4)

B = (�1, . . . ,�K) (P × PK),(3.5)

Yn,t =
⎛⎜⎝ Xn(t)

...

Xn(t − K + 1)

⎞⎟⎠ (PK × 1),(3.6)

Yn = (Yn,0, . . . ,Yn,T −1) (PK × T ),(3.7)

Zn = (Zn(1), . . . ,Zn(T )) (P × T ).(3.8)

Now let b�
k be the kth row of B and Xn,(k) = (Xkn(1), . . . ,Xkn(T ))� and Zn,(k) =

(Zkn(1), . . . ,Zkn(T ))�. With this notation, the nth trial VAR(K) model given by
equation (3.3) can be written as Xn,(k) = Y�

n bk +Zn,(k). Lütkepohl (1993) gave the
solution in case N = 1 and he showed that the solution is equivalent to OLS estima-
tion. Now for N > 1, the setting becomes analogous to that of repeatedly measured
multivariate data. From this perspective, one can see that the least squares estima-
tor for the VAR(K) model with N trials is b̂k = (

∑N
n=1 YnY�

n )−1(
∑N

n=1 YnXn,(k)).

Suppose that NT � PK . Our estimate of �Z = E(Z(t)Z(t)�) is

�̂Z = 1

NT − PK

N∑
n=1

{(Xn − B̂Yn)(Xn − B̂Yn)
�}.(3.9)

The degrees of freedom adjustment is due to the PK many coefficients in each of
the P equations in equation (3.3).

Note that in equation (3.3), there are KP 2 + P(P + 1)/2 parameters to esti-
mate. However, it is not unusual for the number of components of the time series
to be large and the number of time points per trial to be small. Therefore, it is not
efficient to estimate the parameters using only a single trial. Here, we have devel-
oped a method for estimating the parameters by pooling the data over all of the
trials. This is valid if one assumes that the data from each trial is a realization of a
common underlying VAR(K) process.

The least squares estimation procedure above requires the VAR order K to be
known. To select the order K in an N -trial multivariate time series framework,
we use the information criterion function IC(κ) = log |�̂Z(κ)| + Pen(T ,N,P, κ),
where �̂Z(κ) is the estimate of �Z obtained after fitting a VAR(κ) model and
Pen(T ,N,P, κ) is some penalty function for complexity. Here, we use the penalty
function in BIC, which is Pen(T ,N,P, κ) = log(NT )

NT
κP 2. The optimal order K is

selected so that K = arg minκ IC(κ).
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3.2. Component 2: The nonparametric estimator.

3.2.1. The smoothed periodogram matrix. Let dX,n(ω) = 1√
2π

∑T
t=1 Xn(t) ×

exp(−iωt) be the discrete Fourier transform of Xn(t). The nth trial raw peri-
odogram is defined to be In(ω) = 1

T
dX,n(ω)d∗

X,n(ω). Kernel smoothing is a com-
mon method for estimating the spectral density matrix. Let wT (α) be a kernel
(weight) function that has smoothing span MT such that, as T → ∞, MT → ∞ but
MT /T → 0. We compute the nth trial estimate of the (j, k)th element of f(ω) with
f̃n,jk(ω) = ∫ π

−π wT (ω − α)In,jk(α) dα. Under regularity conditions [Brillinger
(2001)], this estimate is an element-wise consistent estimator for f(ω). The fi-
nal estimate for f(ω) using all of the trials is the average over the trials, namely,
f̃(ω) = N−1 ∑N

n=1 f̃n(ω). Similarly, the elements of f̃(ω) are consistent for the el-
ements of f(ω). Note that in this setup, we can apply minimal smoothing per trial
because the final nonparametric estimator f̃(ω) undergoes further smoothing due
to the averaging across replicated trials.

3.2.2. Automatic selection of the optimal smoothing span. When MT is too
small, the resulting estimate can capture very localized peaks but may be too er-
ratic. Conversely, if it is too large, the resulting estimate will be very smooth but
may miss vital peaks that characterize the process. Optimal smoothing spans have
been studied for univariate time series. For example, the approach by Ombao et al.
(2001) used the full likelihood by minimizing the gamma deviance. Here, inspired
by Lee (1997) and Lee (2001), we develop an approach for span selection based
on the quadratic risk function.

Define the integrated risk function for a smoothing span h to be R(h) =∫ π
0 E(‖f(ω) − f̃h(ω)‖2) dω, where f̃h(ω) is the periodogram matrix smoothed

with a kernel having span size h and ‖ · ‖2 is the normalized Hilbert–Schmidt
norm defined by ‖A‖2 = P −1 tr(AA∗). The goal is to pick MT so that MT =
arg minh R(h). Such an MT is the global optimal smoothing span. However, we
cannot evaluate R(h) because f(ω) is unknown. An approach in the univariate
time series context is to use a plug-in unbiased risk estimation (PURE) procedure
by plugging in a pilot estimator f̃pilot(ω) for f(ω), where the pilot estimator is the
periodogram smoothed by a kernel with an arbitrarily picked smoothing span. This
gives an asymptotically unbiased estimate of R(h).

The proposed procedure for obtaining the optimal smoothing span for the nth
trial of a multivariate time series is as follows. We combine the PURE procedure
with a leave-one-out procedure. Let f̃n,h(ω) be the nth trial periodogram smoothed
with smoothing span h. Let f̂(−n)(ω) = (N − 1)−1 ∑N

j=1,j �=n Ij (ω). Since each

Ij (ω) is an approximately unbiased estimator of f(ω), then f̂(−n)(ω) is an unbiased
estimate of f(ω) and thus will serve as the pilot estimator. Then the nth trial inte-
grated PURE is R̂n(h) = ∫ π

0 ‖f̂(−n)(ω) − f̃n,h(ω)‖2 dω. We proceed by picking the

smoothing span M
(n)
T for the nth trial so that M

(n)
T = arg minh R̂n(h).
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3.3. Component 3: The theoretical shrinkage weight. Ideally, the frequency-
specific shrinkage weight corresponding to the parametric estimator, denoted
WT (ω), should be greater than 0.5 at frequencies where the parametric estimate
gives a better fit than the nonparametric estimate. In fact, as we will see later, the
shrinkage weight is a function of the mean squared error of each of the parametric
and nonparametric estimators. We formalize this in the following discussion.

First, we introduce the notation f0
T (ω) = E(̃fT (ω)), where f̃T (ω) is the smoothed

periodogram. For ease, we drop the subscript T in the notation. From Brillinger
(2001), f0(ω)− f(ω) → 0 as T → ∞. Here, f0(ω) will serve as the proxy for f(ω)

and will be utilized in deriving the weights for the generalized shrinkage estima-
tor. Define the squared error loss function L(f∗(ω), f0(ω)) = ‖f∗(ω) − f0(ω)‖2,

where the norm is the normalized Hilbert–Schmidt norm. Then the risk function is
R(f∗(ω), f0(ω)) = E(L(f∗(ω), f0(ω))). The optimal shrinkage weight WT (ω) is
the minimizer of the risk function. First, define

α2
T (ω) = MSE(Ṽ(ω)) = E

(‖Ṽ(ω) − f0(ω)‖2)
,(3.10)

β2
T (ω) = MSE(̃f(ω)) = E

(‖̃f(ω) − f0(ω)‖2)
(3.11)

and

δ2
T (ω) = E

(‖Ṽ(ω) − f̃(ω)‖2)
.(3.12)

Then it can be easily shown the optimal shrinkage weight is

WT (ω) = β2
T (ω) − 0.5(α2

T (ω) + β2
T (ω) − δ2

T (ω))

δ2
T (ω)

.(3.13)

This result generalizes that given by both Böhm and von Sachs (2008), whose
shrinkage target was that of a one-factor model, and Böhm and von Sachs (2009),
whose shrinkage target was the scaled identity matrix.

REMARKS. Upon inspection of the optimal shrinkage weight equation (3.13),
one can obtain insight that the generalized shrinkage estimator behaves analogous
to the Bayes estimators, where the prior estimator is given by the parametric esti-
mator and the data-driven estimator is given by the nonparametric estimator. Note
that the behavior of the shrinkage weight is a function of the relative performance
of each of the parametric and nonparametric estimators. In particular, if the para-
metric estimator models the spectral density matrix well so that α2

T (ω) → 0 at a
rate much faster than β2

T (ω) → 0, then the shrinkage weight will shift toward the
parametric estimator; otherwise, the shrinkage weight will shift toward the non-
parametric estimator. The second term of the numerator of equation (3.13) cor-
rects for the correlation between the parametric estimator and the nonparametric
estimator. Empirical Bayes estimators use the data to construct the prior estima-
tor. Our approach is analagous in the sense that we use the same data to construct
the parametric and nonparametric estimators, and so the second term takes into
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account that the two estimators are highly likely to be correlated. Back to equa-
tion (3.13), we see that the denominator makes the generalized shrinkage estimator
robust to the misspecification of the parametric estimator. The denominator is the
squared distance between the parametric and nonparametric estimators. So if the
parametric and nonparametric estimators are vastly different from each other, then
the denominator of the weight will be large, and so the weight will be larger for
the nonparametric estimator.

3.4. Constructing the generalized shrinkage estimator. The parametric and
nonparametric components of the generalized shrinkage estimator can be obtained
using standard procedures. To estimate the shrinkage weight, we need to construct
an estimate of each of α2

T (ω) and β2
T (ω), and δ2

T (ω).
Each of α2

T (ω) and β2
T (ω) is the expected distance from their respective es-

timator with f0(ω), and so we need to provide an estimate of f0(ω). An as-
ymptotically unbiased estimator of f0(ω) is the average of the periodograms:
f̂0(ω) = N−1 ∑N

n=1 In(ω). Consider β2
T (ω). Since f̃(ω) is an unbiased estimator

of f0(ω) by construction, then β2
T (ω) is the sum over the variances of each of the

elements of f̃(ω). Assuming that each element of f̂0(ω) varies slowly over fre-
quency, our proposed estimator is a type of sample variance, that is, we look at the
window of size CT around f̃(ω) for each ω:

β̂2
T (ω) = C−1

T

(CT −1)/2∑
k=−(CT −1)/2

‖̃f(ω) − f̂0(ω + ωk)‖2.(3.14)

Our simulation studies indicate the choice of this procedure is robust over a wide
choice for CT . We estimate α2

T (ω) using a type of plug-in estimator smoothed over
frequencies:

α̂2
T (ω) = C−1

T

(CT −1)/2∑
k=−(CT −1)/2

‖Ṽ(ω) − f̂0(ω + ωk)‖2.(3.15)

Our proposed estimator for δ2
T (ω) is constructed in a similar manner:

δ̂2
T (ω) = 1

2

[
C−1

T

(CT −1)/2∑
k=−(CT −1)/2

(‖̃f(ω + ωk) − Ṽ(ω)‖2

(3.16)

+ ‖Ṽ(ω + ωk) − f̃(ω)‖2)]
.

Then we can obtain a plug-in estimate of the optimal shrinkage weight using

ŴT (ω) = β̂2
T (ω) − 0.5(α̂2

T (ω) + β̂2
T (ω) − δ̂2

T (ω))

δ̂2
T (ω)

.(3.17)
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Note that due to estimation error in obtaining α̂2
T (ω), β̂2

T (ω) and δ̂2
T (ω), it is pos-

sible for our estimate of the shrinkage weight to fall outside the interval [0,1].
If this occurs, we truncate the estimated weight to 0 or 1. Finally, we plug in the
estimated weight to obtain an estimate of the generalized shrinkage estimator:

f̂∗(ω) = ŴT (ω)Ṽ(ω) + (
1 − ŴT (ω)

)̃
f(ω).(3.18)

4. Simulation study. We now compare the performance of the generalized
shrinkage estimator against competitors which are, namely, the VAR estimator
whose order is selected using the BIC criteria, the smoothed periodogram and
the multitaper [Percival and Walden (1993)]. The VAR estimator was estimated as
described in Section 3.1. The smoothed periodogram, as described in Section 3.2,
is obtained using the Hann kernel whose smoothing span is objectively determined
by the quadratic risk criterion described in Section 3.2.2. The multitaper estimator
was obtained by averaging the per-trial multitaper estimates, which is similar to
how we obtained the smoothed periodogram estimator. The optimal number of
tapers was also objectively determined using a PURE procedure similar to that
described in Section 3.2. The estimators are compared using the mean squared
error (MSE).

The true underlying process was a sum of a VAR(5) process and a first-order
vector moving average (VMA) process. The two processes were generated inde-
pendently so that the underlying spectral density matrix is the sum of that of the
VAR and the VMA. The vector time series had P = 12 dimensions, N = 120 trials,
and T = 256 time points. The values of the parameters are given in the Appendix.

The results of the simulation study are shown in Figure 1. Under this setting,
it is obvious that the VAR parametric estimator was incorrectly specified. How-
ever, as just noted earlier, a VAR can capture the peaks in the spectral density
matrix. Note that while the VAR estimator is the best estimator of the spectral den-
sity matrix in the sense that it accurately captured the peaks in the autospectra,
it was not necessarily the best estimator of partial coherence (because the latter
is a highly nonlinear function of the former). This can be seen in the high fre-
quencies as shown in Figure 1. In other words, the best estimator of the spectral
density matrix is not necessarily the best estimator for partial coherence. The non-
parametric estimators performed poorly relative to the parametric VAR estimator
in estimating the spectral density matrix because each oversmoothed the peaks in
the autospectra. The generalized shrinkage estimator performed well in estimating
both the spectral density matrix and partial coherence. It is clear that the gener-
alized shrinkage estimator borrowed strength from the parametric VAR estimator
to better capture the peaks in the autospectra so that it estimated the spectral den-
sity matrix much better than the nonparametric estimators. This can be seen by
the shrinkage weight, as shown in Figure 2. The shrinkage weight is near 1.0 at
frequencies near the location of the peaks of the autospectra.
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(a)

(b)

FIG. 1. Mean squared error estimated via Monte Carlo for the simulation. (a) Frequency-specific
mean squared error of each estimate of the spectral density matrix. (b) Frequency-specific mean
squared error of each estimate of the partial coherence matrix.
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FIG. 2. Shrinkage weight for the generalized shinkage estimator estimated via Monte Carlo for the
simulation.

5. Functional connectivity for EEG. The study of functional connectivity
of brain signals is the investigation of the dependencies between brain signals that
have been measured from spatially separated regions of the brain [Friston et al.
(1993)]. We investigated the dependency structure in the EEG signals between
certain regions and how it differs across experimental conditions in a visual-motor
task.

5.1. Data description and preprocessing. The EEG data were recorded from
the scalp using a 64-channel EEG system (EMS, Biomed, Korneuburg, Germany).
The electrodes were applied to the scalp using the standard International 10–20
system with a reference electrode on the nose-tip. The EEG signals were recorded
at 512 samples/second/channel and filtered using a high-pass filter of 0.02 Hz and
a low-pass filter of 100 Hz.

Participants of the study were required to make quick displacements of a hand-
held joystick from a central position either to the right or to the left from center
as instructed by a visual cue. The visual cue randomly selected the movement per
trial. From a standard montage of 64 scalp electrodes, our neuroscientist collabo-
rator selected a subset of P = 12 channels that were presumed, based on published
studies, to be recording the relevant neural processes for these visual-motor actions
[Marconi et al. (2001); Bédard and Sanes (2009)]. These electrode sites include the
fronto-central leads (FC) to measure activity related to premotor processing, the
central leads (C) to measure activity related to motor performance, and the pari-
etal (P) and occipital (O) leads to measure activity related to visual-motor transfor-
mations. We did not add more electrodes in the analysis because this will present
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FIG. 3. Relative placement of the twelve EEG channels preselected for the analysis. These chan-
nels were presumed to be recording the relevant neural processes for the visual-motor task in the
experiment.

unnecessary computing and modeling complications, which we will later discuss.
The relative locations of these 12 electrode sites are shown in Figure 3.

The methods that we have developed in this work have been for single-subject
analyses, and so here, we show results for only one subject. We analyze the first
0.5 seconds from stimulus onset of the EEG signals, yielding a multivariate time
series having length T = 256 per trial, and there were NL = 118 and NR = 138
trials for the leftward and rightward movements respectively. For the analysis, we
removed the linear and quadratic trends from the subject’s EEGs. The EEGs were
further filtered using a 4th-order low-pass Butterworth filter with stopband at 50 Hz
and then standardized to have unit variance. Figure 4 illustrates time plots of the
P = 12 filtered and detrended EEG signals obtained from a representative partici-
pant during leftward and rightward joystick movements.

5.2. Details on the statistical procedure. Our aim in this work was two-fold:
first, to estimate the strength of functional connectivity as measured by partial co-
herence, and second, to identify which connections differentiate between the “left”
and the “right” trials. The parametric component was computed using a VAR(19)
model where the order was selected using the BIC criterion and the parameters
were estimated using the N -trials least squares procedure. The nonparametric
component was obtained using the Hann kernel with smoothing span automati-
cally selected by our procedure. The mean smoothing span selected for the trials
for the “left” conditions was 23.37 with standard deviation 7.74 and for the “right”
conditions 22.04 with standard deviation 7.75. The estimated partial coherences
are shown in Figure 5. To perform a frequency-band analysis of functional con-
nectivity, we computed the partial coherences averaged over the frequencies in the
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FIG. 4. Representative 12-channel filtered and detrended EEG recorded from one trial for each of
the left and right conditions.

FIG. 5. Estimated partial coherence for all pairs of the twelve channels in the analysis for the
“right” condition (upper triangle) and the “left” condition (lower triangle).
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FIG. 6. Relative strength of functional connectivity measured by partial coherence at the alpha and
beta frequency bands for the “right” condition (upper triangle) and “left” condition (lower triangle).

band of interest. The partial coherences for each of the alpha band (8–12 Hz) and
beta band (18–30 Hz) for each of the “left” and “right” conditions are shown in
Figure 6.

To test for differences in strength of connectivity over a frequency band, we nor-
malized the partial coherence estimates using the Fisher’s Z-transform. We used
the jackknife to estimate the standard error of the estimated partial coherences over
the bands. This was done by, after leaving out one trial, estimating partial coher-
ence via the generalized shrinkage estimator of the spectral density matrix and then
using Fisher’s Z-transform to normalize these jackknifed partial coherence esti-
mates. This allowed us to obtain a jackknife sample of size NL estimates of partial
coherence for each of the frequency bands for the “left” condition and a jackknife
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FIG. 7. The absolute value of the t-statistics for testing for differences between “left” and “right”
conditions. The t-statistics marked with an asterisk (*) were declared significant after adjusting their
p-values at FDR level of 0.05.

sample of size NR estimates of partial coherence for each of the frequency bands
for the “right” condition. The point estimates for each of the conditions as well as
their standard errors, both estimated using a sample size NL or NR, allowed us to
create t-statistics to test for differences via a two-sample t-test across conditions.
These t-statistics are shown in Figure 7. Note that for each frequency band, we
performed 12 · (12 − 1)/2 = 66 tests, so that in all we are performing 132 tests.
To correct for multiple comparisons, we performed our tests controlling for FDR
at 0.05. The null hypotheses of no difference across conditions that were rejected
are marked with an asterisk in Figure 7.

5.3. Results. On the estimates of the autospectra. The estimated power spec-
tral densities for each channel are shown in Figure 8(a) and (b), and the estimated
shrinkage weight is shown in Figure 9. For the “left” condition, the VAR estimator
picks up a peak in the autospectra at the very low frequencies, and then a smaller
peak around 16 Hz. At these frequencies, the generalized shrinkage estimator dis-
agreed with the VAR estimator, and, in fact, the shrinkage weight was truncated to
0.0 at these frequencies. For the “right” condition, again the VAR estimator picks
up two peaks, one around 6 Hz and the other around 24 Hz, and the smoothed peri-
odogram oversmoothed these peaks. The estimate of the shrinkage weight was not
truncated at 0.0 at 4 Hz, and so the estimates given by the generalized shrinkage
estimator are showing a slight peak. The shrinkage weight was much less than 0.5,
and so the smoothed periodogram was favored. This implies that the VAR model
may not be an adequate model.
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(a)

(b)

FIG. 8. Estimated autospectra for each of the two conditions. Shown here are the three estimators:
the VAR(19) (blue), the smoothed periodogram (black), and the generalized shrinkage (red). (a) Es-
timated autospectra for the “left” condition. (b) Estimated autospectra for the “right” condition.
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FIG. 9. Estimated shrinkage weight.

On the estimates of partial coherence. Figure 10 shows the estimated coher-
ence for all pairs. Recall that coherence is the frequency domain analog of squared
cross-correlation. Coherence among the fronto-central leads and among the occip-
ital leads are strong, in fact, near 1.0 at some frequencies. The coherence between

FIG. 10. Estimated coherence for all pairs of the twelve channels in the analysis for the “right”
condition (upper triangle) and the “left” condition (lower triangle).
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the occipital leads and the fronto-central leads is smaller. Since coherence captures
both direct and indirect connectivity, then we can see that the occipital leads are
somehow connected with the fronto-central leads. Partial coherence captures only
the direct connectivity by removing the effects of the other leads in the analysis.
In Figure 5 we see that the strong direct connections are among the fronto-central
leads and the occipital leads. Moreover, the connections between the fronto-central
leads and the occipital leads are much weaker after partialization, suggesting that
the connection between these regions is more likely to be indirect.

On comparing connectivity between left vs right conditions. When testing for
differences of the “left” and “right” connections as shown in Figure 7, some of
the differences in strength of connections were deemed statistically significant.
However, upon closer inspection, many of these differences may be considered to
be irrelevant because the estimated strength of connection is very weak. For in-
stance, the difference in strength in the O1–FC4 connection in the beta band had
the largest t-statistic and was considered statistically significant, and yet, the esti-
mated partial coherence values for this connection are 0.0225 and 0.0116 for the
“left” and “right” conditions, respectively. Though this is nearly a 2-fold increase
in strength of connection, these squared correlation values are small and so the
connection may not be relevant to the visual-motor task. Among those pairs where
the estimated partial coherence is larger than 0.05 for at least one of the conditions,
differences between conditions were significant for the following pairs: C3–FC5,
P3–C3 and O2–OZ in the alpha band and FC3–FC5, FC3–FC4, C3–FC3 and P3–
C3 in the beta band.

Of these differences, the only connection where it is stronger in the “left” con-
dition is the P3–C3 connection; for the other differences, the “right” condition
yielded stronger connections. An analysis by Böhm et al. (2010) concluded that
the coherence between C3 and FC3 was the most discriminating feature between
the two conditions using frequency-domain characteristics of the EEG signals. Our
jackknife procedure is consistent with this finding and even provides additional in-
formation, namely, that a measure of the direct connection between C3 and FC3
may be used to distinguish between “left” and “right” conditions.

On the limitations of EEG. While EEGs have excellent temporal resolution,
they are not highly localized in space. Nevertheless, they remain highly utilized
in many studies because they have excellent temporal resolution and thus can be
used to probe into brain processes that occur at the millisecond level. Moreover,
they are relatively inexpensive to collect, noninvasive and highly portable, and thus
have the high potential for brain–computer interface applications.

On the limitations of partial coherence. Partial coherence is a tool for investi-
gating second-order dependencies for a given set of channels. Partial coherence
measures only the strength of direct dependencies and does not give information
of the direction of the dependencies, which can be captured using other metrics
of association [e.g., Kaminski et al. (2001)]. Moreover, certain regions may be
strongly connected but in a nonlinear manner, and if this is the case, we would
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FIG. 11. Relative strength of functional connectivity measured by partial coherence at the alpha
and beta frequency bands for the “right” condition (upper triangle) and “left” condition (lower
triangle) when P = 8 channels are analyzed.

have missed this in the present analysis because partial coherence measures only
linear associations between the signals and the spectral density matrix captures
only second-order dependencies. One can investigate nonlinear and higher order
dependencies in multivariate time series using metrics such as mutual information.

On the importance of the selection of the channels. Since partial coherence mea-
sures direct dependencies, the choice of the channels to include in the analysis is
important. We illustrate this by showing how the estimates of the partial coherence
are affected when signals from more and less channels are included in the analysis.

We first see the effects if channels were removed. Figure 11 shows the esti-
mates of partial coherence for P = 8. Compare the estimates of partial coherence
between FC3 and FC4 in the alpha band as shown in Figure 11 with that shown
in Figure 6. The partial coherence is larger for the case P = 8 because the signals
from the FC5 and FC6 channels were excluded. Then in the 12-channel analysis,
when computing partial coherence between FC3 and FC4, the effects of FC5 were
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FIG. 12. Relative strength of functional connectivity measured by partial coherence at the alpha
and beta frequency bands for the “right” condition (upper triangle) and “left” condition (lower
triangle) when P = 20 channels are analyzed.

removed from FC4, and since FC5 is highly conditionally dependent with FC3 (as
shown in Figure 6), this dampened the partial coherence between FC3 and FC4. In
fact, partial coherence estimates are larger for the P = 8 analysis, and this is due
to the exclusion of certain channels.

Consider now the situation when more channels are included. Figure 12 shows
the estimates of partial coherence for P = 20. Here, partial coherence estimates are
smaller due to the inclusion of certain channels. Let us look at the partial coherence
between P3 and C3 in the alpha band. Now for P = 20, partial coherence between
P3 and C3 removes the effects of each of C5 and P5. By removing the effects of
P5 from C3, one is also removing the effects of P3 because P3 and P5 are highly
conditionally dependent, and, similarly, by removing the effects of C5 from P3,
one is removing the effects of C3 because C3 and C5 are highly conditionally
dependent. Thus, the partial coherence between P3 and C3 is lower when C5 and
P5 are included in the analysis.

This motivates the importance of the choice of channels in the analysis. As we
have just shown, including or excluding channels can have an effect on the analy-
sis. However, one should not include everything in the analysis for two reasons.
First, there is the problem of high-dimensionality, which can lead to problems in
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inference because there are more connectivity measures to estimate. Second, we
note that many of these (neighboring) channels are highly correlated with each
other, which then introduces redundant information. So if all channels were in-
cluded in the analysis, we expect that many of the partial coherence estimates will
be dampened down to 0.

6. Discussion. Our main contribution for spectral analysis in multivariate
time series is a new estimator for estimating the spectral density matrix. Our
approach simply takes the weighted average of two known estimators, namely,
a parametric and nonparametric estimator. We derived the weights using a mul-
tivariate mean squared error criterion. We have made further developments in
shrinkage estimation for the spectral density matrix by giving freedom in the
choice of the shrinkage target and by giving the appropriate shrinkage weight for
this choice of the shrinkage target. Our shrinkage target in this work is the spectral
density matrix for a VAR model. We have proposed a method to take advantage
of the trials of an experiment for estimating the parameters of the VAR model.
Our nonparametric estimator is the classical smoothed periodogram. We have pro-
posed a method to take advantage of the trials of an experiment to select the op-
timal smoothing span of the smoothing kernel. We then outlined a simple method
for estimating the optimal shrinkage weight to construct the generalized shrinkage
estimator and then evaluated its performance on simulated data sets before using
it to analyze functional connectivity in an EEG data set.

The performance of the generalized shrinkage estimator is a function of the
performance of each of the parametric and nonparametric components. In fact, it
can be shown that the risk for the generalized shrinkage estimator is a weighted
average of the risk of each of the two components less a correction term for the
distance between the two components. If the true spectral density matrix can be
well approximated by that given by a VAR model, then an estimator based on the
VAR model alone will outperform the generalized shrinkage estimator. However,
one can never truly know how well the VAR model approximates the true spectral
density matrix. Our generalized shrinkage estimator first fits the VAR model, and
then adjusts this fit with the nonparametric smoothed periodogram. The optimal
shrinkage weight is picked by minimizing the risk over all P dimensions of the
multivariate time series simultaneously. This can be problematic if there is a wide
range of dynamics across the dimensions of the multivariate time series. For in-
stance, if the autospectra for all but one dimension were flat and there is a sharp
peak in that one dimension, then though the VAR estimator will capture that peak
and the smoothed periodogram oversmooths that peak, the generalized shrinkage
estimator will not give the VAR estimator a lot of weight just to capture that one
peak.

There is still a great amount of work to be done with the generalized shrink-
age estimator. It remains to show the large-sample behavior of the generalized
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shrinkage estimator for estimating the spectral density matrix. Large-sample re-
sults were given for the shrinkage estimators described by Böhm and von Sachs
(2008) and Böhm and von Sachs (2009). However, their work constrained the class
of shrinkage targets; Böhm and von Sachs (2009) used the scaled identity matrix
as the shrinkage target as a way of regularizing the smoothed periodogram and
the shrinkage target used by Böhm and von Sachs (2008) was specifically the one-
factor model. In both works they were able to show consistency of their shrinkage
estimator. In this work, though we used the VAR model as the shrinkage target,
when we developed the generalized shrinkage estimator we have refrained from
imposing conditions on the shrinkage target, and, in fact, our results on the opti-
mal shrinkage weight remains valid for any shrinkage target. Recall that the num-
ber of parameters in a VAR(K) model is of the order KP 2. It may be the case that
imposing more constraints to decrease the parameter space of the VAR model or
considering other shrinkage targets with a low-dimensional parameter space will
improve the performance of the generalized shrinkage estimator. In the future, we
would like to investigate the large-sample performance of the generalized shrink-
age estimator when constraints are imposed on the shrinkage target.

We do not have asymptotic distributions for the estimated partial coherence in
a frequency band via generalized shrinkage. Test statistics in the literature have
been for partial noncorrelation between two signals so that the test for zero partial
coherence is for all frequencies. Parametric tests for this null hypothesis have been
provided by, for example, Dahlhaus, Eichler and Sandkühler (1997) and Dahlhaus
(2000). Nonparametric tests, on the other hand, are difficult to construct; to create
a boostrap distribution, for instance, one would have to somehow preserve the
correlation structure that exists in the other frequency bands that are not of interest.
One approach is to shuffle the data across trials in order to completely destroy the
correlation structure, but tests on partial coherence over a frequency band using
this approach will have a larger Type I error than advertised. However, one can take
advantage of the multiple trials in the experiment and the multiple experimental
conditions to investigate the differences in connectivity across the experimental
conditions using nonparametric tests, as we have done here using the jackknife.

APPENDIX: SIMULATION SETTINGS

The coefficient matrix for the VMA process is as follows. First, let

θ1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0.20 0.15 0.15 0 −0.15
0.20 0 −0.20 0 0 0

−0.15 0.20 0 0 0 0
0 0 0 0 0.20 0.15
0 0 0 0.20 0 −0.20
0 0 0 −0.15 0.20 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the coefficient matrix is


1 =
(

θ1 06
06 θ1

)
.
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The coefficient matrices for the VAR process are as follows. Let

φ1 = (0.75,0.75,0.75).

Then the two coefficient matrices are

�1 = diag(φ1, φ1, φ1, φ1), �2 = −0.20 · I12, �3 = 012,

�4 = −0.15 · I12 and �5 = −0.05 · I12.

The noise process Z(t) is a zero-mean 12-dimensional Gaussian process with
variance–covariance matrix I12. A realization X(t) of the mixture process takes
the form X(t) = 0.65 · XMA(t) + 0.35 · XAR(t), where XMA(t) is a VMA and
XAR(t) is a VAR, and the two are independent. Because the two processes are in-
dependent, then the spectral density matrix of the mixture process is the weighted
sum of the spectral density matrix of the VMA process and the spectral density
matrix of the VAR process.
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