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In this article we describe a method for carrying out Bayesian estimation
for the double Pareto lognormal (dPlN) distribution which has been proposed
as a model for heavy-tailed phenomena. We apply our approach to estimate
the dPlN/M/1 and M/dPlN/1 queueing systems. These systems cannot be
analyzed using standard techniques due to the fact that the dPlN distribu-
tion does not possess a Laplace transform in closed form. This difficulty is
overcome using some recent approximations for the Laplace transform of the
interarrival distribution for the Pareto/M/1 system. Our procedure is illus-
trated with applications in internet traffic analysis and risk theory.

1. Introduction. Heavy-tailed distributions have been used to model a variety
of phenomena in areas such as economics, finance, physical and biological prob-
lems; see Adler, Feldman and Taqqu (1999). In particular, a number of variables
in teletraffic engineering, such as file sizes, packet arrivals, etc., have been shown
to possess heavy-tailed distributions; this can be found, for example, in Paxson
and Floyd (1995). Also, in an actuarial context, insurance claim sizes can often be
very large and in such cases, may be modeled as long tailed; see, for example, Em-
brechts, Klüppelberg and Mikosch (1997). For a detailed review of heavy-tailed
distributions, we refer the reader to Sigman (1999).

The Pareto distribution has often been applied to model the heavy-tail behavior
of teletraffic variables [Resnick (1997)] and insurance claims [Philbrick (1985)]. In
particular, in Ramirez, Lillo and Wiper (2008) a mixture of k Pareto distributions
(k-Par) is used to model ethernet packets interarrival times. However, although
the Pareto distribution often models the tails of a distribution well, it is unimodal
and decreasing, which means that it will not model the body of the distribution
correctly in many modeling situations as is shown in some of the examples in this
paper.

Reed and Jorgensen (2004) recently introduced the double Pareto lognormal
(dPlN) distribution as a versatile model for heavy-tailed data and considered var-
ious frequentist approaches to inference for this distribution. They did not recom-
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mend the method of moments as an estimation method, and observed that the EM
algorithm sometimes encounters convergence problems. In this work we focus on
the Bayesian approach, which may be preferred for problems where the interest is
not only in inference but also in prediction; see, for example, Robert (2001). The
first objective of this paper is thus to develop an algorithm to implement Bayesian
inference for the dPlN distribution.

The study of congestion in teletraffic systems and of ruin problems in insurance
is directly related to the analysis of queueing systems, where the arrival or ser-
vice process are defined by a heavy-tailed distribution. In this paper we consider
the dPlN/M/1 and M/dPlN/1 queues, which, to our knowledge, have not been
considered before in the literature.

The usual moment generating function approach to obtaining the equilibrium
distribution of a queue [Gross and Harris (1998)] is difficult to implement be-
cause the dPlN distribution lacks a moment generating function in closed form.
An alternative, which we shall apply, is based on a direct approximation of the
nonanalytical Laplace transform using a variant of the transform approximation
method (TAM); see Harris and Marchal (1998), Harris, Brill and Fischer (2000)
and Shortle et al. (2004). The first version of the TAM, known as Uniform TAM or
U-TAM, was implemented in Ramírez, Lillo and Wiper (2008), where estimation
of the k-Par/M/1 queue was considered. In this paper we propose a variant of
the TAM based on both the Uniform and Geometrical TAMs. By combining this
variant of the TAM with the Bayesian inference method for the dPlN distribution,
we can obtain estimates of queueing properties of interest such as the probability
of congestion.

This paper is organized as follows. In Section 2 we review the definition and
key properties of the dPlN distribution and present an approach to Bayesian infer-
ence for this distribution, illustrating our procedure with simulated and real data.
In Section 3 we examine the dPlN/M/1 queueing system and show how the TAM
approach can be used to approximate the Laplace transform of the dPlN distrib-
ution. Our results are then applied to a real example of internet traffic arrivals. In
Section 4 we study the M/dPlN/1 queueing system and show how the waiting
time distribution of this system can be estimated. We then apply our results to the
estimation of the ruin probability given real insurance claims data. Conclusions
and possible extensions to this work are considered in Section 5.

2. Bayesian inference for the double Pareto lognormal distribution.

2.1. The double Pareto lognormal distribution. A random variable Y is said
to have a Normal Laplace distribution (NL), denoted Y ∼ NL(α,β, ν, τ 2) if Y =
Z +W , where Z ∼ N(ν, τ 2), and W is a skewed Laplace distributed variable with
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density function

fW(w|α,β) =

⎧⎪⎪⎨
⎪⎪⎩

αβ

α + β
eβw, if w ≤ 0,

αβ

α + β
e−αw, if w > 0,

independent of Z, for α,β > 0. The density function of Y is

fY (y|α,β, ν, τ 2) = αβ

α + β
φ
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y − ν

τ

)
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R

(
ατ − (y − ν)/τ

) + R
(
βτ + (y − ν)/τ

)]
,

where R(z) is the Mill’s ratio defined by

R(z) = �c(z)/φ(z),(2.1)

where �c(z) = 1 − �(z) and φ(z) and �(z) are the standard normal density and
cumulative distributions respectively.

A random variable, X, is said to have a dPlN distribution with parameters
(α,β, ν, τ 2) if X = exp(Y ) where Y is Normal Laplace distributed.

The usual change of variable to the density of Y gives the density of X to be

fX(x|α,β, ν, τ 2) = αβ

α + β

(
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x

)
φ

(
logx − ν

τ
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× [
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ατ − (logx − ν)/τ
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(
βτ + (logx − ν)/τ
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.

Also, Reed and Jorgensen (2004) show that the dPlN(α,β, ν, τ 2) can be repre-
sented as a mixture as

fX(x|α,β, ν, τ 2) = β

α + β
f1(x|α, ν, τ 2) + α

α + β
f2(x|β, ν, τ 2),

where the densities

f1(x|α, ν, τ 2) = αx−α−1eαν+α2τ 2/2 �

(
log(x) − ν − ατ 2

τ

)
,(2.2)

f2(x|β, ν, τ 2) = βxβ−1e−βν+β2τ 2/2 �

(
log(x) − ν + βτ 2

τ

)
(2.3)

are, respectively, the limiting forms (as β → ∞ and α → ∞) of the dPlN(α,β,

ν, τ 2) distribution.
Reed and Jorgensen (2004) illustrate the form of the dPlN density function for

various different groups of parameter values. In particular, they show that it ex-
hibits upper power-tail behavior in that fX(x) → kx−α−1 as x → ∞. The dPlN
distribution does not possess a moment generating function in closed form. How-
ever, if r < α, the moment of order r exists:

E(Xr |α,β, ν, τ 2) = αβ

(α − r)(β + r)
erν+r2τ 2/2.
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Reed and Jorgensen (2004) also illustrate a procedure for frequentist inference for
the dPlN distribution using the EM algorithm and note that under certain condi-
tions, this approach suffers from problems of convergence. An alternative proce-
dure which has not been examined thus far is to take a Bayesian approach, as we
do here.

2.2. Bayesian inference. Given a random sample x = (x1, . . . , xn) from the
dPlN(α,β, ν, τ 2), the goal is to compute a posterior distribution f (α,β, ν, τ 2|x).
For ease of notation, we define θ = (α,β, ν, τ 2) in what follows. It is easier com-
putationally to work with the normal Laplace, hence, we define y = (y1, . . . , yn),
where yi = log(xi), i = 1, . . . , n, and compute the posterior density function
f (θ |y) using the normal Laplace likelihood.

The definition of a normal Laplace random variable Y ∼ NL(α,β, ν, τ 2) sug-
gests the use of a Gibbs sampler where one considers the two components of Y as
auxiliary variables to be sampled along with θ so that sampling θ then reduces to
sampling (α,β) and (ν, τ 2) from distributions with truncated skewed Laplace and
Gaussian likelihoods respectively. The classical EM algorithm developed in Reed
and Jorgensen (2004) was based on a similar idea, but, as noted earlier, this can
show convergence problems.

The conditional distribution of Z|Y = y,α,β, ν, τ 2 is a mixture of two trun-
cated normal variables as stated in the following proposition.

PROPOSITION 1. The conditional distribution of Z|Y,α,β, ν, τ 2 is a weighted
mixture of two truncated normal densities:

fZ|y(z|y,α,β, ν, τ 2) =
(
R(yβ)

φ(zβ)

τ�c(yβ)
Iz≥y + R(yα)

φ(zα)

τ�c(yα)
Iz<y

)
(2.4) /(

R(yα) + R(yβ)
)
, z ∈ R,

where R(·) is given in (2.1), and

yα = ατ − (y − ν)/τ, yβ = βτ + (y − ν)/τ,

yα = y − (ν + τ 2α)

τ
, yβ = y − (ν − τ 2β)

τ
,

zα = z − (ν + τ 2α)

τ
, zβ = z − (ν − τ 2β)

τ
.

For a proof of Proposition 1 see Appendix A.
Note now that we can express the skewed Laplace distribution as the difference

of two exponential variables, that is,

W = E1 − E2 where E1|α ∼ E (α) and E2|β ∼ E (β).

The following proposition specifies the conditional distribution of E1|W .
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PROPOSITION 2. The distribution of E1|W,α,β is a truncated exponential
with support [max{w,0},∞),

fE1|W(e1|w,α,β) = (α + β)e−(α+β)e1

Iw<0 + e−(α+β)wIw≥0
(2.5)

for e1 > max{w,0}.

The proof of Proposition 2 can be found in Appendix B. Given a sample,
(y1, . . . , yn) conditional on the parameters (α,β, ν, τ 2), then we can generate
(z1, . . . , zn) from the formula in Equation (2.4). Also, we can define w = y − z,
w1 = y1 − z1, . . . , wn = yn − zn and then generate e1 = (e1,1, . . . , e1,n) from the
formula in Equation (2.5) and define e2 = e1 − w. To undertake inference for ν,
and τ 2, let us suppose that we use a normal, inverse gamma prior distribution

ν|τ 2 ∼ N
(
m,

τ 2

k

)
,(2.6)

1

τ 2 ∼ G
(

a

2
,
b

2

)
.(2.7)

Then, from standard Bayesian theory [see, e.g., Box and Tiao (1973)],

ν|τ 2, z ∼ N
(

km + nz̄

k + n
,

τ 2

k + n

)
,

1

τ 2

∣∣z ∼ G
(

a + n

2
,
b + (n − 1)s2

z + (kn/(k + n))(m − z̄)2

2

)
,

where z̄ = ∑n
i=1 zi/n and s2

z = ∑n
i=1

∑
(zi − z̄)2/(n − 1). Also, given gamma

priors α ∼ G(cα, dα), β ∼ G(cβ, dβ), then

α|e1 ∼ G(cα + n,dα + nē1),(2.8)

β|e2 ∼ G(cβ + n,dβ + nē2).(2.9)

Of course, many other prior structures are possible. In particular, it might be as-
sumed that ν and τ 2 are independent a priori, or that there is some prior depen-
dence between α,β and ν, τ 2. In the presence of real prior information, the use
of such alternative structures could lead to more flexible modeling. However, the
main disadvantage is that the semi conjugate structure implied given the proposed
prior distributions is lost and more complex MCMC algorithms would have to be
used to undertake inference.

Therefore, we can define the following Gibbs algorithm:

1. Set initial values α(0), β(0), ν(0), τ 2(0)
.

2. For t = 1, . . . , T

a. For i = 1, . . . , n,
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a1. Generate z
(t)
i from f (z|α(t−1), β(t−1), ν(t−1), τ 2(t−1)|yi).

a2. Set w
(t)
i = yi − z

(t)
i .

a3. Generate e
(t)
1,i from f (e1|wi,α

(t−1), β(t−1)).

a4. Set e
(t)
2,i = e

(t)
1,i − w

(t)
i .

b. Generate τ 2(t) ∼ f (τ 2|z(t)).

c. Generate ν(t) ∼ f (ν|z(t), τ 2(t)
).

d. Generate α(t) ∼ f (α|e(t)
1 ).

e. Generate β(t) ∼ f (β|e(t)
2 ).

In the presence of little prior information, it would appear natural to use a non-
informative, improper prior distribution. However, it is easy to show that in this
case, the posterior distribution is also improper.

PROPOSITION 3. If an improper prior distribution for α and β is used in
the sense that

∫ ∞
a f (α|β)dα diverges for all a ≥ 0, β > 0 or

∫ ∞
b f (β|α)dβ is

a divergent integral for any b ≥ 0, α > 0, then the posterior distribution is also
improper.

The proof of Proposition 3 can be found in Appendix C. This implies that in
order to carry out Bayesian inference, it is fundamental to use a proper prior dis-
tribution for α,β .

2.3. Illustration with simulated and real data sets.

EXAMPLE 1. As an illustration of the proposed Gibbs sampler with simu-
lated data, consider a sample of size 1000, generated from dPlN(0.25,0.5,1,1).
The Gibbs algorithm was run for 500,000 iterations with initial values set to
θ (0) = (0.2625,0.5529,1.1992,0.8147), the maximum likelihood estimates. The
hyperparameters were set to m = 0, k = 4 in (2.6), a = b = 1 in (2.7) and
cα = cβ = dα = dβ = 1 in (2.8)–(2.9), and from now on these are the values used
in the rest of the examples. In order to avoid high autocorrelation, we did thinning
and took one sample out of 50. Gibbs sampler code was written in Matlab and,
when run on Intel Core Duo at 2.4 GHz and 2 GB of DDR3 RAM, took approx-
imately 19 minutes to perform 100,000 iterations. Figure 1 illustrates the mixing
properties of the algorithm. We found E(θ |y) = (0.2578,0.4995,1.065,1.1848)

close to the maximum likelihood estimates. In addition, we computed credible in-
tervals and correlations in the posterior as measures of precision of the estimates.
Credible intervals (95%) for the parameters α β , ν and τ 2 were

Cα = [0.2377,0.2906], Cβ = [0.4702,0.6401],
Cν = [0.7044,1.4409], Cτ 2 = [0.7178,1.7352].
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FIG. 1. MCMC trace plots for Example 1. The Gibbs algorithm was applied to a sample of 1000
data generated from a dPlN distribution with parameters θ = (0.25,0.5,1,1).

With respect to the posterior correlations, we found⎛
⎜⎜⎜⎜⎝

α β ν τ 2

α 1 0.1449 0.5525 0.5568
β 1 −0.4936 0.4534
ν 1 0.2362
τ 2 1

⎞
⎟⎟⎟⎟⎠ .

Notice that, for example, the parameters β and ν are negatively correlated a poste-
riori and α and ν positively, a consequence of the definition of a Normal-Laplace
distribution as the sum of a normal and skewed Laplace variables.

In Figure 2 the fitted density function, estimated for the data (in log-scale), and
almost undistinguishable from the theoretical one, is depicted. The fitted curve
has been computed by simple averaging over the Gibbs sampled values, that is,
fY (y|y) has been estimated by

1

T

T∑
t=1

fY

(
y|α(t), β(t), ν(t), τ 2(t))

.

We should point out that, if instead of starting the MCMC from the maximum
likelihood estimates, we start further from this point, the results are very simi-
lar to those obtained starting from the ML estimates, as long as the initial value
of α is not very large. It has been observed that, if the starting value of α is large
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FIG. 2. Histogram, fitted (dotted line) and theoretical (solid line) pdf for the simulated data set of
Example 1.

and the sample has long tails (small α, as in this example), then convergence can
be extremely slow and the Gibbs algorithm often remains stuck in the tail of the
distribution for a long time. Because of this fact we suggest starting the MCMC
algorithm with small values for α (not necessarily the ML estimates).

Finally, one may wonder how sensitive the method is to the hyperparameters.
We performed several analyses and our experience is that if the real α or β are
not very large, then the results are not affected by the choice of hyperparameters.
For instance, in this example, we also set m = 2, k = 4, a = b = 2, cα = cβ = 0.5,
and dα = dβ = 0.2, and found E(θ |y) = (0.2609,0.5005,1.1833,1.0157) with
credible intervals

Cα = [0.2440,0.2927], Cβ = [0.4373,0.5988],
Cν = [0.9188,1.6039], Cτ 2 = [0.6210,1.6226],

whose lengths are very similar to that found with the first choice of hyperparame-
ters. Also, the fit to the data is almost the same as in Figure 2. The next example
illustrates the performance of the method when α and/or β are large.

EXAMPLE 2. Reed and Jorgensen (2004) state that if there is evidence in the
analyzed data of heavy-tailed behavior just in one tail, then it is better to fit one
of the limiting components f1 (2.2) or f2 (2.3); otherwise, a frequentist approach
may result in the nonconvergence of the optimization algorithm. Here we apply the
proposed Bayesian procedure to analyze simulated data from a dPlN(α,β, ν, τ 2)

with large α, β . Specifically, we consider three data sets S1., S2. and S3., sim-
ulated from dPlN(10,0.5,1,1) (left heavy tail), dPlN(0.5,10,1,1) (right heavy
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TABLE 1
Starting values (MLE) and posterior estimates for the considered simulated data S1., S2. and S3.

in Example 2, where α or/and β take large values. Also, credible intervals for the large
parameters are shown

S1: dPlN(10,0.5,1,1) S2: dPlN(0.5,10,1,1) S3: dPlN(10,10,1,1)

θ0 = θMLE (4.34,0.50,0.83,1.05) (0.56,4.53,1.28,1.04) (4.67,5.53,0.92,0.91)

E(θ |y) (22.74,0.49,1.09,1.07) (0.55,3.81,1.32,1.02) (40.81,1.8921,1.52,0.81)

Cα [1.5811,30.4547] — [3.0217,50.9491]
Cβ — [1.7914,9.7827] [1.4307,3.9651]

tail) and dPlN(10,10,1,1) (similar to a Normal distribution but with heavier tails)
distributions, respectively. We assumed the same hyperparameters as in Example 1,
(m, k, a, b, cα, cβ, dα, dβ) = (0,4,1,1,1,1,1,1). Table 1 shows the starting val-
ues θ0 (ML estimates), posterior estimates E(θ |y) and 95% credible intervals for
the large parameters. We would like to point out the high variability in the in-
tervals, especially if α is large. However, as it can be seen in Figure 3, both the
frequentist and Bayesian approaches perform similarly when fitting the pdf to the
histogram of the data. This indicates that, as pointed out by Reed and Jorgensen
(2004), when α or β are large, the density function approaches to the three para-
meters limit case f2 (2.3) or f1 (2.2), and, thus, there is small difference in the
dPlN density function between multiple values of α or β .

To show the versatility of the dPlN model, we next consider two real data sets
from the insurance and internet context, respectively.

EXAMPLE 3. The first data set has been analyzed in Beirlant et al. (1998)
and Beirlant et al. (2004) and and can be found in http://lstat.kuleuven.be/Wiley/.
This contains 1668 claim sizes (expressed as a fraction of the sum insured) from
a fire insurance portfolio provided by the reinsurance brokers Boels & Bégaul Re
(AON). The data concern claim information from office buildings. Next to the
size of the claims, the sum insured per building was provided. The Gibbs sampler
was run under the same conditions as in the simulated-data example and posterior
estimates E(θ |y) = (0.51,4.99,7.78,0.76) were found. Note that the posterior
estimate for α indicates a clear long tail. Figure 4 shows the fit to the histogram
of the data in log-scale of the dPlN model (solid line) in comparison with the fit
provided by a mixture of Pareto distributions (dashed line), where the number of
the components in the mixture, k, may change at each iteration. Estimation for
the k-Par distribution was undertaken in Ramírez, Lillo and Wiper (2008), and
as it was commented in Section 1, here the Pareto (or mixture of Pareto) distri-
bution fails to capture the body of the distribution. In addition, the Bayesian ap-
proach considered in Ramírez, Lillo and Wiper (2008) is more time consuming

http://lstat.kuleuven.be/Wiley/
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FIG. 3. Fitted pdfs using the ML values (solid line) and the posterior estimates from the Bayesian
approach (dashed line), for data sets S1., S2. and S3. in Example 2.

than the Gibbs sampler developed here. That algorithm was based on a Birth–
Death MCMC method, where at each iteration a Metropolis–Hastings step is car-
ried out. The Gibbs sampler has a number of well-known advantages over standard
Metropolis–Hastings samplers. For example, the Gibbs sampler requires no tuning,
which for Metropolis–Hastings algorithms can be time consuming—especially for
long data sets where the algorithm takes longer to run.

EXAMPLE 4. The second real example that we consider is from the tele-
traffic context. It can be found in the Internet Traffic Archive (BC trace),
http://www.sigcomm.org/ITA/, where 4 million packet traces of LAN and WAN
traffic seen on an Ethernet at the Bellcore Morristown Research and Engineer-
ing facility are recorded. The considered trace, BC-pAug89, began at 11.25 on
August 29, 1989, and ran about 3142 seconds (until 1 million packets had been
captured). The measurement techniques in making the traces are described in Le-
land and Wilson (1991) and are a subset of those analyzed in Leland et al. (1994).
The data set analyzed here consists of the measured transferred bytes/sec within
the 3142 consecutive seconds.

http://www.sigcomm.org/ITA/
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FIG. 4. Histogram and fitted pdf in Example 3, for the Aon data set (claim sizes in a fire insurance
portfolio) in log-scale, under the dPlN model (solid line) and mixture of Pareto components model
(dashed line).

We applied the Gibbs algorithm and found posterior estimates E(θ |y) =
(8.59,4.52,11.83,0.59). The mode of this data set is not close to zero, as can
be observed in Figure 5, and, thus, the mixture of Pareto distributions shows a
poor performance. Here again, the dPlN model performs well, not only capturing
the tail but also the body of the set, as can be seen in the same figure.

Thus, from our experience the dPlN distribution has two advantages over
the k-Par for fitting heavy-tailed data: first, it is able to capture both the
tail and body of the distribution, and second, the estimation procedure for
fitting the dPlN distribution is faster computationally than that proposed in
Ramírez, Lillo and Wiper (2008), for the k-Par density.

3. Inference for the dPlN/M/1 queueing system. In this section we shall
consider the dPlN distribution as a model for the arrival process in a single-server
queueing system with independent, exponentially distributed service times. The
next section reviews this queueing system, denoted as dPlN/M/1.

3.1. The dPlN/M/1 queueing system. The dPlN/M/1 system is an exam-
ple of the G/M/1 queueing system, whose properties are well known [see Gross
and Harris (1998)]. In particular, for the dPlN/M/1 system with parameters
θ = (α,β, ν, τ 2), standard results for G/M/1 queues imply that the mean inter-
arrival time does not exist if α ≤ 1. In this case, the queueing system is automati-
cally stable whatever the service rate μ [that is, E(S) = 1/μ, where S denotes the
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FIG. 5. Histogram and fitted pdf in Example 4, for the teletraffic data set (number of bytes per
second), under the dPlN model (solid line) and mixture of Pareto components model (dashed line).

service time]. Otherwise, the traffic intensity is given by

ρ = (α − 1)(β + 1)

μαβeν+τ 2/2
.(3.1)

If the system is stable (ρ < 1), then the steady-state probability for the number
of customers Q in the system just before an arrival, the stationary time Wq spent
queueing for service, and time W spent in the system are

P(Q = n) = (1 − r0)r
n
0 for all n ∈ N,

P (Wq ≤ x) = 1 − r0e
−μ(1−r0)x,

P (W ≤ x) = 1 − e−μ(1−r0)x,

where r0 ∈ (0,1) is the unique real root of the equation

r0 = f ∗(
μ(1 − r0)

)
,(3.2)

and f ∗(·) is the Laplace–Stieltjes transform of the interarrival-time density func-
tion f (·) defined as

f ∗(s) =
∫ ∞

0
e−sxf (x) dx for Re(s) > 0.

However, the Laplace transform of the dPlN distribution is analytically intractable
so that the standard techniques for finding the root of Equation (3.2) cannot be
applied. Thus, an alternative approach to obtaining the steady state distributions is
needed. The next section outlines such an approach.
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3.2. A variety of the transform approximation method. The transform approx-
imation method (TAM) was developed informally by Harris and Marchal (1998)
and Harris, Brill and Fischer (2000) for the case of approximating the Laplace
transform of the single parameter Pareto distribution and was later extended by
Shortle et al. (2004). Here we describe the approach in the case of the dPlN distri-
bution. To approximate the Laplace transform f ∗(s) of the distribution of a random
variable X, the basic algorithm is as follows:

1. Pick a set of N probabilities, pi , 0 < p1 < · · · < pN < 1.
2. Find the quantile ti of order pi , P(X ≤ ti) = pi .
3. Assign to each point ti the probability

w1 = p1 + p2

2
,

wi = pi+1 − pi−1

2
for i = 2, . . . ,N − 1,

wN = 1 − pN−1 + pN

2
.

4. Approximate the Laplace Transform f ∗(s) by f ∗
N(s) = ∑N

i=1 wie
−sti .

For the dPlN case and once the probabilities pi have been selected, the quantiles
in step 2 are approximated numerically by Newton–Raphson, with initial values
obtained from the empirical distribution function of the data.

Harris, Brill and Fischer (2000) and Shortle et al. (2004) consider different al-
ternatives for the defining probabilities pi , although, as they point out, the choice
of the optimal probabilities is an open question. The natural approach, known as
uniform TAM or U-TAM, is to define uniform probabilities, pi = (i − 1)/N . How-
ever, this approach leads to poor approximations in the tail of the distribution. An
alternative algorithm applied in Shortle et al. (2004), which better captures heavy-
tailed behavior, is the geometric or G-TAM algorithm which sets pi = 1 − qi , for
q ∈ (0,1). But even when q → 0, few quantiles are selected from the body of
the distribution and a poor approximation of this part may be obtained with this
approach.

We have found that a combination of both algorithms works better than applied
separately. We used the U-TAM algorithm to obtain a proportion r of percentiles
from the body of the distribution and the G-TAM algorithm is used to find the
other (1 − r) proportion of percentiles covering the heavy tail. We consider that
the body of the distribution is defined by those percentiles ti such that P(X ≤ ti) ≤
P(X ≤ E[X]), in the case that E[X] exists (otherwise, we use the median). Other
alternatives (with larger quantiles) may be used, but in practice we have found that
it makes little difference.

Formally, if r denotes the proportion of percentiles before E[X], and q is the
geometric rate, then (r, q) ∈ {rmin, . . . , rmax} × {qmin, . . . , qmax} form a grid where



1546 RAMIREZ-COBO, LILLO, WILSON AND WIPER

the optimal value (r
, q
) is chosen so that the TAM mean (
∑N

i=1 witi) (or the TAM
median: ta/

∑a
i=1 wi ≤ 0.5 and

∑a+1
i=1 wi > 0.5) matches the mean (or median) of

the original distribution. In our examples we have found that a grid of size 8 × 17
is enough to get a distance less than 10−3 between the TAM mean/median and
the theoretical mean/median. The proposed methodology satisfies the conditions
of Theorem 1 in Shortle et al. (2004) so that convergence of f ∗

N(s) to f ∗(s) is
assured as N → ∞.

3.3. Bayesian estimation of the dPlN/M/1 queueing system. Given the prior
distributions and a sample of dPlN distributed interarrival data, we have seen
that the Gibbs algorithm can be used to produce a sample of values θ (t) =
(α(t), β(t), ν(t), τ (t)) for t = 1, . . . , T from the posterior distribution of the dPlN
parameters.

Supposing now that the service rate, μ, is known, then it is straightforward to
estimate the probability that the system is stable,

P(ρ < 1|y) = 1

T

T∑
t=1

I
(
ρ(t) < 1

)
,(3.3)

where ρ(t) is the value of ρ calculated from Equation (3.1) setting θ = θ (t) and I (·)
is an indicator function. Given that this probability is high, then for each set θ (t) of
generated parameters such that ρ(t) < 1, the root r

(t)
0 can be generated using (3.2)

and the TAM and, therefore, the conditional posterior distributions of queue size
and waiting times, given stability, can be estimated by Rao Blackwellization, that
is, by simply averaging over the parameters satisfying the stability condition. Thus,
for example, the posterior distribution of queue size P(Q = n|y) is estimated by

1

S

S∑
s=1

P
(
Q = n|θ (s),μ

)
,

where θ (1), . . . , θ (S) is the set of parameters satisfying the stability condition.
One point to note, however, is that, as commented in Wiper (1997), the means of

the fitted equilibrium queue size and waiting time distributions do not exist. This
is a typical feature for Bayesian inference in G/M/· or M/G/· queueing systems.
Thus, if posterior summaries of these distributions are required, it is preferable to
use the median and quantiles.

When the service parameter is unknown, then, given an independent sam-
ple of service time data, conjugate inference for the service rate can be carried
out as in, for example, Armero and Bayarri (1994). For a Monte Carlo sample,
μ(1), . . . ,μ(T ) from the posterior distribution of the service rate, the traffic in-
tensity may be estimated by calculating ρ(t) given (θ (t),μ(t)) and averaging as
in (3.3). In order to condition on the existence of equilibrium, only those parame-
ter sets (θ (t),μ(t)) such that ρ(t) < 1 are retained.
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3.4. Application to internet traffic analysis. Internet traffic data has lately be-
come a wide field of study and numerous works have characterized it as having
some unusual statistical properties such as self similarity and heavy tails; see, for
example, Willinger, Paxson and Taqqu (1998). In particular, as shown in Paxson
and Floyd (1995), internet arrival traffic cannot be well modeled by a Poisson
process. As an alternative, heavy-tailed distributions can be considered.

Figure 6 shows the histogram of a set of interarrival times (in seconds) of a
trace of 1 million ethernet packets, derived from BC-pAug89 in the Internet Traf-
fic Archive (described in Example 3 of Section 2.3). The first (according to the
outcome) 50,000 interarrival times (in sec) are analyzed here. Superimposed (in
solid line) is the fitted dPlN density generated using the Bayesian algorithm de-
scribed in Section 2. Also superimposed (dashed line) is the fitted Pareto density.
In this example the Pareto distribution captures the tail of the distribution but has
a poorer performance in the body of the distribution. It can be seen in Ramírez,
Lillo and Wiper (2008) that a mixture of two Pareto components provides a good
fit of this data set, however, the high computational cost of that algorithm makes
this one based on the dPlN distribution preferable. The posterior mean parameter
estimates for the dPlN model were E(θ |x) = (2.15,1.07,−6.00,0.36).

Now we shall consider the queueing aspects. Given the dPlN arrival process,
we shall assume that arrivals are processed by a single server with exponentially
distributed service times with rate μ. Table 2 shows the posterior probability of
equilibrium (third column) and the expected value for the traffic intensity (fourth

FIG. 6. Histograms and fitted pdf for the internet data (50,000 real interarrival times) in log-scale,
under the dPlN model (solid line) and Pareto model (dashed line).
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TABLE 2
Probability of equilibrium and traffic intensity. When μ is large (faster service on average),

the probability of stability of the system increases

μ E(S) P(ρ < 1|y) E(ρ|y)

1500 0.0006 1 0.2616
1000 0.001 1 0.3923
500 0.002 1 0.7844
400 0.0025 1 0.9798
395 0.002531 0.8257 0.9946
394 0.002538 0.7869 0.9969
393 0.002544 0.6115 0.9979
392 0.002510 0.4562 1.0008
391 0.002550 0.4284 1.0040
390 0.002564 0.2519 1.0065
385 0.002597 0 1.0194

column) for an assortment of values of μ [the expected service time is E(S) =
1/μ]. From this table, it is clear that there is a high probability that the system
is stable (that is, no congestion occurs) for values of μ greater than 394. Figure 7
depicts the fitted system waiting time W , and queue waiting time Wq , distributions
for values of μ greater than 400. Table 3 illustrates the distribution of the number Q

of clients in the system in equilibrium. We can see that as the service rate increases
(i.e., the service is faster), then the median queueing and system waiting times and
the number of clients in the system decrease, as would be expected.

FIG. 7. Predictive system and queue waiting times distributions for the internet data set for an
assortment of service rates (◦: μ = 400, ∗: μ = 500, +: μ = 1000 and �: μ = 1500). As expected,
when the service is faster (μ increases), then the probability of waiting less than a short time is
larger.
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TABLE 3
Predictive system size distribution just before an arrival for the internet data set, for an assortment

of service rates μ. As expected, for faster services (large μ) the probability of an empty system
is larger than for slower services

μ P(Q = 0) P(Q = 1) P(Q = 2) P(Q = 3)

1500 0.3167 0.2161 0.1475 0.1008
1000 0.2813 0.2019 0.1449 0.1042

500 0.2182 0.1703 0.1330 0.1039
400 0.1955 0.1570 0.1260 0.1014
395 0.1948 0.1569 0.1260 0.1013
394 0.1946 0.1565 0.1259 0.1013

In this example we have also compared the queueing results obtained with the
dPlN model with those obtained from the queueing systems Pareto/M/1 and
M/M/1. Different estimates of the system and queue waiting time distributions
under the different queueing models were obtained. The fitted system size distrib-
ution just before an arrival among these different queues also varies, for example,
the probability that the system size is larger than 2 or than 3, P(Q > 2), P(Q > 3)

is larger with the dPlN model than with the Pareto or Exponential models. On the
contrary, the values P(Q > 0), P(Q > 1) are smaller with the dPlN model than
with the other ones.

4. The M/dPlN/1 queueing system and ruin probabilities. In this section
we consider the M/dPlN/1 queueing system, with independent, exponentially dis-
tributed interarrival times and dPlN service times, and show how the Bayesian ap-
proach to estimate the dPlN can be used to estimate the probability of ruin from
actuarial data.

4.1. The M/dPlN/1 queueing system. The general properties of the M/G/1
queueing system are well known; see, for example, Gross and Harris (1998). In
particular, if the service time S is assumed to follow a dPlN distribution with
θ = (α,β, ν, τ 2), then, if α ≤ 1, E(S) = ∞ and the queueing system is never
stable, whatever the interarrival rate λ. When α > 1, the traffic intensity is given
by

ρ = λαβeν+τ 2/2

(α − 1)(β + 1)
.

The Laplace transform W ∗
q (s) of the equilibrium waiting time in the queue is

related to the Laplace transform B∗(s) of the (dPlN) service time by

W ∗
q (s) =

∫ ∞
0

e−st dWq(t) = (1 − ρ)s

s − λ(1 − B∗(s))
,
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where Wq(t) is the distribution function of the waiting time. In order to obtain
the distribution function of the waiting time Wq(t), we first apply the TAM to
approximate B∗(s) as earlier. Second, we can use a standard numerical approach
to invert the Laplace transform, W ∗

q (s); see, for example, Shortle, Fischer and
Brill (2007) for a review. In this case, we apply the recursion method by Fischer
and Knepley (1977).

4.2. Application to fire insurance claims. In an insurance context, it is often
assumed that claim sizes, Ci , are independent and identically distributed heavy-
tailed random variables; see, for example, Rolski et al. (1999). Here, we shall
assume that claim sizes can be modeled as dPlN random variables. Often, it is also
supposed that the interclaim times, Ti , are independent, exponentially distributed
variables with rate λ. Let u denote the initial reserve of an insurance company and
let r be the rate at which premium accumulates. Then, the company’s wealth, or
risk portfolio at time t, is

R(t) = u + rt −
N(t)∑
i=1

Ci,

where N(t) = sup(n :
∑n

i=1 Ti ≤ t) is a Poisson counting process with rate λ.
Clearly, the insurance company will be interested in the probability that they

may eventually be ruined, given their initial capital and premium rate, that is,

ψ(u, r) = P
(
R(t) < 0 for some t ≥ 0 | initial capital u, premium rate r

)
.(4.1)

If the mean claim size does not exist, then eventual ruin is certain. Otherwise,
we can define the traffic intensity of this system as ρ = λE[Ci]/r and it is well
known that ruin is certain if ρ ≥ 1. In the case that ρ < 1, then in, for example,
Prabhu (1998), it is shown that the ruin probability can be computed as the steady
state probability that the waiting time exceeds u/r in a M/G/1 queueing system,
where the interarrival time and service time distributions are the same as the dis-
tributions of Ti and Ci/r respectively. Table 4 shows this duality. Thus, estimating

TABLE 4
Duality between the probability of ruin in a risk theory context

and the M/G/1 queueing sytem with steady-state queue
waiting time distribution Wq

Queueing theory Risk theory

Interarrival times Interclaim times

Service times Claim sizes

P(Wq > u) Probability of ruin
for a M/G/1 with initial reserve u
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the M/dPlN/1 queue allows us to estimate the probability of ruin where the claims
sizes are assumed to follow a dPlN distribution.

Note that by scaling appropriately, it can be assumed without loss of generality
that the premium rate, r , is equal to 1 and we shall do this from now on, writing
ψ(u) for the ruin probability of Equation (4.1).

Assuming the M/dPlN/1 model and given some initial reserve u and claim
arrival rate λ and a sample of claim sizes, then the posterior parameter distribution
of the dPlN claim size distribution can be estimated using the Bayesian approach
as outlined in Section 2 and this can be combined with the TAM and recursion
algorithms to estimate the ruin probability.

To illustrate this approach, we consider data treated in Beirlant and Goegebeur
(2003) and Beirlant et al. (2004) representing 9181 fire claims values for the period
1972–1992 from a Norwegian insurance portfolio. Together with the year of oc-
currence, the values (×1000 Krone) of the claims are known. They can be found in
http://ucs.kuleuven.be/Wiley/index.html. The left panel of Figure 8 shows the data
in log-scale (values of the claims) and the Bayesian dPlN fit. The right panel of
Figure 8 illustrates the log-transformed fitted Pareto (dotted line) and Exponential
(dashed line) models to this data set. Again, the Pareto model does not capture the
body of the distribution; the Exponential fit is even worse, it captures neither the
body, nor the tail.

Assuming that the system is stable, we can now estimate the ruin probability
for different interclaim rates and initial reserves. In this case, the expected claim
size, conditional on this existing (i.e., that α > 1), is approximately 2915, which
implies that in order to avoid extremely high probabilities of ruin, we should typi-
cally consider plausible values of λ to be below 1/2915. Figure 9 depicts the pos-
terior probability of ruin, E(ψ(u)|data), for a grid of values of different average
interclaim times, 1/λ, and various initial reserve levels, u. As would be expected,

FIG. 8. Histograms and fitted pdf for the Norwegian data (claim sizes) in log-scale, under the dPlN
(left panel, solid line), the Pareto (right panel, dotted line) and Exponential (right panel, dashed line)
models.

http://ucs.kuleuven.be/Wiley/index.html
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FIG. 9. Probabilities of ruin (z-axis) for the Norwegian data insurance company, for an assortment
of initial reserves u (values from 0 to 4×104) and mean interclaims times 1/λ. As would be expected,
when the initial reserve is low and the claims occur frequently on average (low values of 1/λ), then
the probability of ruin increases.

when both the initial reserve u and the expected interclaim times 1/λ are low, then
the ruin probability increases.

As we did for the dPlN/M/1 queueing system with the teletraffic data set, given
theses claim sizes, we have also compared the performance of the M/dPlN/1
queue with the M/Pareto/1 and M/M/1 queueing system, assuming a rate λ =
1/4000. When fitting a Pareto distribution to the data with a Bayesian approach, it
was found that a posteriori, the sampled parameters of the Pareto distribution led to
a lack of moment of order one, indicating that, since E(S|y) = ∞, then the corre-
sponding M/Pareto/1 system is not stable, given the data. For the M/M/1 model
something similar was found: 1 < ρ(t) < ∞ for most of the iterations, and, thus,
the posterior probability that the system is stable was very low. Thus, we could not
predict the probability of ruin, under these models. Finally, the same comments as
in Section 3, concerning the estimation of the arrival rate λ (interclaim times rate)
when it is considered as an unknown parameter, can be also applied here.

5. Conclusions. In this work we have developed Bayesian inference for the
double Pareto lognormal distribution and have illustrated that this model can cap-
ture both the heavy-tail behavior and also the body of the distribution for real data
examples. Bayesian inference was implemented with the Gibbs sampler, although,
since θ is only 4 dimensional, several alternatives exist and were attempted. The
use of importance sampling was difficult because of a lack of good distributions
for the initial sample that avoided degeneracy. A block Metropolis algorithm us-
ing a multivariate normal proposal, with covariance matrix estimated by maximum
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likelihood, was also attempted but exhibited poor mixing for τ and slower compu-
tation time. This suggests that the Gibbs procedure should be preferred.

Second, we have combined this approach with techniques from the queueing
literature in order to estimate posterior equilibrium distributions for the dPlN/M/1
and M/dPlN/1. To do this, we have adapted the transform approximation method,
in order to estimate the Laplace transform of the dPlN distribution and the waiting
time distribution in the M/dPlN/1 system.

Finally, we have illustrated this methodology with real data sets, estimating first
waiting times and congestion in internet and computing the probability of ruin in
the insurance context, making use of the duality between queues and risk theory.
Comparisons with the M/M/1, Pareto/M/1 and M/Pareto/1 have been also car-
ried out. Differences among these queueing systems, especially when the service
process is heavy-tailed, were found.

A number of extensions are possible. First, we could extend our results to the
case of a multiple number of servers, that is, to the dPlN/M/c and M/dPlN/c

queueing systems or to finite capacity systems. It would be also interesting to study
the optimal control of the systems, that is, when to open or close the queue and
which is the optimum number of servers, following the lines of Ausin, Lillo and
Wiper (2007).

Also, in this article, we have just considered semi-Markovian queueing systems
where either the service or interarrival times were exponential. An extension is to
explore more general distributions, in particular the so-called phase-type distribu-
tions.

It would be interesting, too, to consider a nonparametric estimate of the Laplace
transform from data, so that a parametric specification of the distribution entirely
would be avoided. This has been suggested by one of the referees, and will be
considered in future work.

Finally, in terms of the application to insurance, it would also be important to
explore the estimation of transient or finite time ruin probabilities which are also
of interest to insurers.

All Matlab codes and real data utilized in the examples are available in the
supplemental material Ramirez et al. (2010).

APPENDIX A: PROOF OF PROPOSITION 1

For ease of notation, we write z|y,α,β, ν, τ 2 as z|y throughout this proof:

fZ|y(z|y) = fY,Z(y, z)

fY (y)

= fZ(z)fW (y − z)

fY (y)

= 1

fY (y)

1

τ
φ

(
z − ν

τ

)
αβ

α + β
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× [
exp

(
β(y − z)

)
Iz≥y + exp

(−α(y − z)
)
Iz<y

]

= e−ν2/(2τ 2)

τfY (y)

αβ

α + β

[
exp

(
− 1

2τ 2 [z2 − 2z(ν − τ 2β) − 2τ 2βy]
)
Iz≥y

+ exp
(
− 1

2τ 2 [z2 − 2z(ν + τ 2α) + 2τ 2αy]
)
Iz<y

]

= e−ν2/(2τ 2)

τfY (y)

αβ

α + β

×
[
exp

(
− 1

2τ 2

[(
z − (ν − τ 2β)

)2 − 2τ 2βy − (ν − τ 2β)2])
Iz≥y

+ exp
(
− 1

2τ 2

[(
z − (ν + τ 2α)

)2 + 2τ 2αy − (ν + τ 2α)2])
Iz<y

]

= e−ν2/(2τ 2)

τfY (y)

αβ

α + β

×
[
eβy+(ν−τ 2β)2/2τ 2

exp
(
− 1

2τ 2

(
z − (ν − τ 2β)

)2
)
Iz≥y

+ e−αy+(ν+τ 2α)2/2τ 2
exp

(
− 1

2τ 2

(
z − (ν + τ 2α)

)2
)
Iz<y

]

= e−ν2/(2τ 2)

fY (y)

αβ

α + β

[
eβy+(ν−τ 2β)2/2τ 2

�c(yβ)
φ(zβ)

τ�c(yβ)
Iz≥y

+ e−αy+(ν+τ 2α)2/2τ 2
�(yα)

φ(zα)

τ�(yα)
Iz<y

]

= 1

fY (y)

αβ

α + β

[
e(2βy−2νβ+τ 2β2)/2�c(yβ)

φ(zβ)

τ�c(yβ)
Iz≥y

+ e(−2αy+2να+τ 2α2)/2�c(yα)
φ(zα)

τ�(yα)
Iz<y

]

= 1

fY (y)

αβ

α + β
φ

(
y − ν

τ

)

×
[
�c(yβ)

φ(yβ)

φ(zβ)

τ�c(yβ)
Iz≥y + �c(yα)

φ(yα)

φ(zα)

τ�c(yα)
Iz<y

]
,

which gives the conditional density

fZ|y(z|y) =
(
R(yβ)

φ(zβ)

τ�c(yβ)
Iz≥y + R(yα)

φ(zα)

τ�c(yα)
Iz<y

)/(
R(yα) + R(yβ)

)
.
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APPENDIX B: PROOF OF PROPOSITION 2

Since

W = E1 − E2 where E1 ∼ E (α) and E2 ∼ E (β),

then, the distribution of E1|W is

fE1|W(e1|w) = fE1,W (e1,w)

fW (w)

= fE1,E2(e1, e1 − w)

fW(w)

= fE1(e1)fE2(e1 − w)

fW(w)

=
⎧⎪⎨
⎪⎩

0, if e1 ≤ max{w,0},
αe−αe1βe−β(e1−w)

(αβ/(α + β))[eβwIw<0 + e−αwIw≥0] , for e1 > max{w,0}

= (α + β)e−(α+β)e1

Iw<0 + e−(α+β)wIw≥0
for e1 > max{w,0}.

APPENDIX C: PROOF OF PROPOSITION 3

Note first that

P(w1 > 0, . . . ,wn > 0|y, θ) = P(z1 < y1, . . . , zn < yn|y, θ)

=
n∏

i=1

�

(
yi − ν

τ

)
> 0

for any set y and where � is the standard normal cumulative distribution. There-
fore,

P(w1 > 0, . . . ,wn > 0|y) =
∫

P(w1 > 0, . . . ,wn > 0|y, θ)f (θ |y) dθ > 0

for any y. Similarly, P(w1 < 0, . . . ,wn < 0|y) > 0 for any y.
Now consider the posterior distribution of α,β|w,

f (α,β|w) ∝ f (w|α,β)f (α,β)

∝
(

αβ

α + β

)n

exp

(
β

n∑
i=1

wiI (wi < 0)

)
exp

(
−α

n∑
i=1

wiI (wi > 0)

)

× f (α,β).

In the case that all wi < 0, then when α → ∞, for any given β ,

f (α|β,w) ∝ f (α,β|w) → c(β)f (α|β)
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for some c(β) > 0. Equally, if all wi > 0, then when β → ∞, for any given α,

f (β|α,w) ∝ f (α,β|w) → d(α)f (β|α)

for some d(α) > 0. Therefore, if
∫ ∞
a f (α|β)dα is divergent for any a ≥ 0, then we

have immediately that when α → ∞, f (α|w, β) → c(β)f (α|β), which implies
that the posterior distribution of α is improper and similarly in the case of an
improper prior for β|α.
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SUPPLEMENTARY MATERIAL

Supplement: Matlab Toolbox (DOI: 10.1214/10-AOAS336SUPP; .zip). The
Matlab toolbox performs Bayesian estimation for the double Pareto Lognormal
(dPlN) distribution, and for the queueing systems dPlN/G/1 and M/dPlN/1.
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