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Abstract. We consider exponential functionals of a Brownian motion with drift in R
n, defined via a collection of linear functionals.

We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to
a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all
diffusions which can be interpreted as having the law of the Brownian motion with drift conditioned on the law of its exponential
functionals. In the case where the family of linear functionals is a set of simple roots, the Laplace transform of the joint law
of the corresponding exponential functionals can be expressed in terms of a (class-one) Whittaker function associated with the
corresponding root system. In this setting, we establish some basic properties of the corresponding diffusion processes.

Résumé. Nous étudions certaines fonctionelles d’un mouvement Brownien avec dérive dans R
n qui sont définies par une collection

de fonctionnelles linéaires. Nous donnons une caractérisation de la transformée de Laplace de leur loi jointe comme l’unique solu-
tion bornée, à une constante près d’une équation aux dérivées partielles de type Schrödinger. Nous déduisons une équation similaire
pour la densité. Nous caractérisons ensuite toutes les diffusions qui peuvent être interprétées comme ayant la loi d’un mouvement
Brownien avec dérive conditionné par la loi de ses fonctionelles exponentielles. Dans le cas où la famille des fonctionelles est un
ensemble de racines simples, la transformée de Laplace de la densité jointe des fonctionnelles exponentielles correspondantes peut
être exprimée en termes d’une fonction de Whittaker de classe 1 associée au système. Dans ce cadre, nous établissons quelques
propriétés du processus de diffusion correspondant.

MSC: 60J65; 60J55; 37K10; 22E27
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1. Introduction

Let (Xt , t ≥ 0) be a standard one-dimensional Brownian motion with drift μ. In the paper [19], Matsumoto and Yor
consider the process(

log
∫ t

0
e2Xs−Xt ds, t > 0

)
,

and prove that it is a diffusion process with infinitesimal generator given by

1

2

d2

dx2
+

(
d

dx
logKμ

(
e−x

)) d

dx
, (1)
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where Kμ is the Macdonald function. As explained in [19], this theorem can be regarded, by Brownian scaling and
Laplace’s method, as a generalization of Pitman’s ‘2M −X’ theorem [25,26] which states that, if Mt = max0≤s≤t Xs ,
then 2M − X is a diffusion process with infinitesimal generator given by

1

2

d2

dx2
+ μ coth(μx)

d

dx
. (2)

Note that μ coth(μx) = (−μ) coth(−μx) and Kμ = K−μ. Suppose μ > 0. Then the diffusion with generator (2)
can be interpreted as a Brownian motion with drift μ conditioned to stay positive. Similarly, the diffusion with gen-
erator (1) can be interpreted as the Brownian motion X conditioned on its exponential functional A = ∫ ∞

0 e−2Xs ds

having a certain distribution (a Generalised Inverse Gaussian law) in a sense which can be made precise [2,3]. The
relevance of these interpretations in the present context is as follows.

Set J = −mint≥0 Xt and let J̃ be an independent copy of J which is also independent of X. Then the process
X̃ = 2 max{M − J̃ ,0} − X has the same law as X and, moreover, J̃ = −mint≥0 X̃t . This is well known and can be
seen for example as a consequence of the classical output theorem for the M/M/1 queue [23]. From this we can see
that the process 2M − X has the same law as that of X conditioned (in an appropriate sense) on the event that J = 0;
in other words, 2M − X is a diffusion with infinitesimal generator given by (2), started from zero. This basic idea can
be used to obtain a multi-dimensional version of Pitman’s 2M − X theorem [4,5,24], which gives a representation of
a Brownian motion conditioned to stay in a Weyl chamber in R

n as a certain functional (which generalises 2M − X)
of a Brownian motion in R

n.
Similarly [19], if Ã is an independent copy of A, which is also independent of X, then the process

X̃t = log

(
1 + Ã−1

∫ t

0
e2(Xs−Xt ) ds

)
+ Xt, t ≥ 0,

has the same law as X and, moreover, Ã = ∫ ∞
0 e−2X̃s ds. This time, we conclude that, for each ε > 0, the process

log

(
ε +

∫ t

0
e2(Xs−Xt ) ds

)
+ Xt, t ≥ 0,

the same law as that of log ε + X conditioned on the event A = ε. Carefully letting ε → 0 yields the theorem of
Matsumoto and Yor [2]. The probabilistic proofs of the multi-dimensional versions of Pitman’s 2M − X theorem
given in the papers [4,24] carry over, in the same way, to the exponential functionals setting, although the task of
letting the analogue of ε go to zero is a highly non-trivial problem in the general setting. Nevertheless, it gives
a heuristic derivation that a certain functional of a Brownian motion in R

n should have the same law as a Brownian
motion conditioned on a certain collection of its exponential functionals. This leads us to the question considered in
the present paper.

We consider a Brownian motion B(μ) in R
n with drift μ, and a collection of linear functionals α1, . . . , αd such that

the exponential functionals

Ai∞ =
∫ ∞

0
e−2αi(B

(μ)
s ) ds, i = 1, . . . , d,

are almost surely finite. Our aim is to understand which diffusion processes can arise when we condition on the law
of A∞ = (A1∞, . . . ,Ad∞). The first step is to understand the law of A∞. We show that the Laplace transform of A∞
satisfies a certain Schrödinger-type partial differential equation and proceed to characterise all diffusion processes
which can be interpreted as having the law of B(μ) conditioned on the law of A∞.

In the case when α1, . . . , αd is a simple system (see Section 4 for a definition), these diffusion processes are closely
related to the quantum Toda lattice. The Schrödinger operator is

H = 1

2
Δ +

∑
i

θ2
i e−2αi ,
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where θ ∈ R
d , and the corresponding diffusion process has infinitesimal generator given by

1

2
Δ + ∇ logkμ · ∇, (3)

where kμ is a particular eigenfunction of H known as a class-one Whittaker function. In the case n = d = 1 and
α1(x) = x, the class-one Whittaker function is kμ(x) = Kμ(e−x) and the infinitesimal generator is given by (1).
More generally, for a simple system α1, . . . , αd , the diffusion process with generator given by (3) plays an analogous
role, in the exponential functionals setting, as that of a Brownian motion conditioned to stay in the Weyl chamber
{x ∈ R

n: αi(x) > 0, i = 1, . . . , d}. These processes have already found an application in the paper [22], where the
corresponding multi-dimensional version of the above theorem of Matsumoto and Yor in the ‘type A’ case has been
proved and used to determine the law of the partition function associated with a directed polymer model which was
introduced in the paper [23].

The outline of the paper is as follows. In Section 2 we work in a general setting and establish a Schrödinger type
partial differential equation satisfied by the characteristic function of exponential functionals of a multi-dimensional
Brownian motion. We also study a family of martingales related to the conditional laws of exponential functionals
that will later appear. In Section 3, we identify a family of diffusions which can be interpreted as having the law of
the Brownian motion with drift conditioned on the law of its exponential functionals. In Section 4, we restrict our
attention to the case where the collection of vectors used to define the exponential functionals is a simple system,
and give an overview of relevant facts about class-one Whittaker functions. In Section 5, we study properties of the
conditioned processes in this setting. In the final section, we present some explicit results for the ‘type A2’ case.

2. Exponential functionals and associated partial differential equations

In this section, we work in a general setting and establish a Schrödinger type partial differential equation satisfied by
the characteristic function of exponential functionals of a multi-dimensional Brownian motion. We also study a family
of martingales related to the conditional laws of exponential functionals that will later appear.

Let α1, . . . , αd be a collection of distinct, non-zero vectors in R
n such that

Ω = {
x ∈ R

n: αi(x) > 0 ∀i
}

(4)

is non-empty. Let B(μ) be a standard Brownian motion in R
n with drift μ ∈ Ω . For 0 ≤ t ≤ ∞, set

Ai
t =

∫ t

0
e−2αi(B

(μ)
s ) ds, i = 1, . . . , d.

Here, αi(β) = (αi, β) where (·, ·) denotes the usual inner product on R
n.

2.1. Partial differential equation for the characteristic function

The process (B
(μ)
t ,At )t≥0 is a diffusion with generator

1

2
Δx + (μ,∇x) +

d∑
i=1

e−2αi(x) ∂

∂ai

.

We first check that this operator is hypoelliptic.

Proposition 2.1. The operator

1

2
Δx + (μ,∇x) +

d∑
i=1

e−2αi(x) ∂

∂ai

is hypoelliptic on R
n+d and therefore, for t > 0 the random variable (B

(μ)
t ,At ) admits a smooth density with respect

to the Lebesgue measure.
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Proof. We use Hörmander’s theorem. Since the αi ’s are pairwise different and non-zero, there exists v ∈ R
n such that

i 	= j ⇒ αi(v) 	= αj (v).

Consider now the vector field

V =
n∑

i=1

vi

∂

∂xi

,

and let us denote

T =
d∑

i=1

e−2αi(x) ∂

∂ai

.

The Lie bracket between V and T is given by

LV T = [V,T ] = −2
d∑

i=1

αi(v)e−2αi(x) ∂

∂ai

.

Similarly, by iterating this bracket k times, we get

Lk
V T = (−1)k2k

d∑
i=1

αi(v)ke−2αi(x) ∂

∂ai

.

Since the αi ’s are pairwise different and non-zero, we deduce from the Van der Monde determinant that at every
x ∈ R

n the family{
Lk

V T ,1 ≤ k ≤ d
}

is a basis of R
d . It implies that the Lie bracket generating condition of Hörmander is satisfied so that the operator

1
2Δx + (μ,∇x) + ∑d

i=1 e−2αi(x) ∂
∂ai

is hypoelliptic. �

Let now θ ∈ R
d and, for x ∈ R

n, define

gθ
μ(t, x) = E

(
e−∑d

i=1 θ2
i e−2αi (x)Ai

t
)
, t ≥ 0,

and

jθ
μ(x) = E

(
e−∑d

i=1 θ2
i e−2αi (x)Ai∞

)
.

Proposition 2.2.

(1) The semigroup generated by the Schrödinger operator

1

2
Δ + (μ,∇) −

d∑
i=1

θ2
i e−2αi(x)

admits a heat kernel qθ
μ(t, x, y) and we have

gθ
μ(t, x) =

∫
Rn

qθ
μ(t, x, y)dy.
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(2) The function jθ
μ is the unique bounded function that satisfies the partial differential equation

1

2
Δjθ

μ(x) + (
μ,∇jθ

μ(x)
) =

(
d∑

i=1

θ2
i e−2αi(x)

)
jθ
μ(x)

and the limit condition

lim
x→∞,x∈Ω

jθ
μ(x) = 1.

Proof.

(1) It is a straightforward consequence of the Feynman–Kac formula that qθ
μ(t, x, y) exists and is given by

qθ
μ(t, x, y) = E

(
e−∑d

i=1 θ2
i e−2αi (x)Ai

t
∣∣B(μ)

t = y − x
) 1

(2πt)n/2
e−‖y−x−μt‖2/(2t).

Integrating this with respect to y, we obtain

gθ
μ(t, x) =

∫
Rn

qθ
μ(t, x, y)dy.

(2) It is again a straightforward consequence of the Feynman–Kac formula that jθ
μ solves the partial differential

equation, and the limit condition is easily checked. Let us now prove uniqueness. We have to show that if φ is a
bounded solution of the equation that satisfies

lim
x→∞,x∈Ω

φ(x) = 0,

then φ = 0. For that, let us observe that under the above conditions, for x ∈ R
n, the process

φ
(
B

(μ)
t + x

)
exp

(
−

d∑
i=1

θ2
i e−2αi(x)Ai

t

)

is a bounded martingale that goes to 0 when t → +∞. It follows that this martingale is identically zero almost
surely, which implies φ = 0.

�

For later reference, we rephrase the second part of the previous proposition as follows:

Corollary 2.3. The function hθ
μ(x) = eμ(x)j θ

μ(x) is the unique solution to

1

2
Δhθ

μ(x) −
d∑

i=1

θ2
i e−2αi(x)hθ

μ(x) = 1

2
‖μ‖2hθ

μ(x), (5)

such that e−μ(x)hθ
μ(x) is bounded and

lim
x→∞,x∈Ω

e−μ(x)hθ
μ(x) = 1.

Example 2.1. The following example has been widely studied (see, for example, [8,19] and references therein). Sup-
pose n = d = 1, θ2

1 = 1/2 and α1(x) = x. Then

A∞ =
∫ ∞

0
e−2(Bt+μt) dt, μ > 0,
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where (Bt , t ≥ 0) is a standard one-dimensional Brownian motion, and

jθ
μ(x) = E

(
exp

(
−1

2
e−2xA∞

))
, x ∈ R.

In this case, hθ
μ(x) = eμxjθ

μ(x) solves the equation

(
d2

dx2
− e−2x

)
hθ

μ = μ2hθ
μ.

This equation is easily solved by means of Bessel functions. By taking into account the boundary condition when
x → +∞, we recover the formula [19], Theorem 6.2:

jθ
μ(x) = 21−μ


(μ)
e−μxKμ

(
e−x

)
, (6)

where Kμ is the Macdonald function [18]:

Kμ(x) = 1

2

(
x

2

)μ ∫ +∞

0

e−t−x2/(4t)

t1+μ
dt. (7)

The formula (6) can also be derived using the fact [8] that A∞ has the same law as 1/2γμ, where γμ is a gamma
distributed random variable with parameter μ.

Example 2.2. The following example has also been studied in the literature [12,14]. Suppose n = 1, d = 2, θ2
1 = θ2

2 =
1/2, α1(x) = x and α2(x) = x

2 . Then

A1∞ =
∫ ∞

0
e−2(Bt+μt) dt, A2∞ =

∫ ∞

0
e−(Bt+μt) dt, μ > 0,

where (Bt , t ≥ 0) is a standard one-dimensional Brownian motion, and

jθ
μ(x) = E

(
exp

(
−1

2
e−2xA1∞ − 1

2
e−xA2∞

))
, x ∈ R.

In this case, hθ
μ(x) = eμxjθ

μ(x) solves the equation

(
d2

dx2
− e−x − e−2x

)
hθ

μ = μ2hθ
μ.

This is Schrödinger’s equation with the so-called Morse potential. It is solved by means of Whittaker functions and by
taking into account the boundary condition when x → +∞, we get

jθ
μ(x) = 2μ−1/2 
(1 + μ)


(2μ)
e(−μ+1/2)xW−1/2,μ

(
2e−x

)
,

where Wk,μ is the Whittaker function (see [18], p. 279):

Wk,μ(x) = xke−x/2


(1/2 + μ − k)

∫ +∞

0
e−t tμ−k−1/2

(
1 + t

x

)μ+k−1/2

dt.
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2.2. Conditional densities

We prove now that the random variable A∞ has a smooth density with respect to the Lebesgue measure of R
d and

moreover give an expression of the conditional densities only in terms of this density.

Proposition 2.4. The random variable A∞ has a smooth density p with respect to the Lebesgue measure of R
d and

for t ≥ 0

P(A∞ ∈ dy|Ft ) = e2
∑d

i=1 αi(B
(μ)
t )p

(
e2α1(B

(μ)
t )

(
y1 − A1

t

)
, . . . , e2αd(B

(μ)
t )

(
yd − Ad

t

))
1(0,y1)×···×(0,yn)(At )dy,

where F is the natural filtration of B(μ).

Proof. If we denote by φ the characteristic function of A∞:

φ(λ) = E
(
e−(λ,A∞)

)
, λ1, . . . , λd > 0,

then,

E
(
e−∑d

i=1 λiA
i∞|Ft

) = e−∑d
i=1 λiA

i
t E

(
e−∑d

i=1 λi(A
i∞−Ai

t )|Ft

)
= e−(λ,At )φ

(
e−2α1(B

(μ)
t )λ1, . . . , e−2αd(B

(μ)
t )λd

)
.

Therefore, the process e−(λ,At )φ(e−2α1(B
(μ)
t )λ1, . . . , e−2αd(B

(μ)
t )λd) is a martingale. This implies that the function

e−(λ,a)φ(e−2α1(x)λ1, . . . , e−2αd(x)λd) is harmonic for the operator 1
2Δx + (μ,∇x) + ∑d

i=1 e−2αi(x) ∂
∂ai

. This opera-

tor being hypoelliptic, this implies that A∞ has a smooth density with respect to the Lebesgue measure of R
d . The

result about the conditional densities stems from the injectivity of the Laplace transform. �

In particular, we deduce from the previous proposition that if for y ∈ R
d+, we denote

q(x, a, y) = e2
∑d

i=1 αi(x)p
(
e2α1(x)(y1 − a1), . . . , e2αd(x)(yd − ad)

)
for 0 < ai < yi, x ∈ R

d , then the process q(B
(μ)
t ,At , y)1(0,y1)×···×(0,yn)(At ) is a martingale. It implies that for any

y ∈ R
d+, q(x, a, y) satisfies the following partial differential equation:

1

2
Δxq + (μ,∇xq) +

d∑
i=1

e−2αi(x) ∂q

∂ai

= 0.

It also implies that p is a solution of the partial differential equation:

d∑
i,j=1

(αi, αj )yiyj

∂2p

∂yi ∂yj

+
d∑

i=1

((
αi(μ) + ‖αi‖2 + 2

d∑
j=1

(αi, αj )

)
yi − 1

2

)
∂p

∂yi

= −
(

d∑
i,j=1

(αi, αj ) +
d∑

i=1

αi(μ)

)
p.

Example 2.3. Suppose n = d = 1, θ2
1 = 1/2 and α1(x) = x. Then A∞ is distributed as 1/2γμ, where γμ is a gamma

law with parameter μ, that is

p(y) = 1

2μ
(μ)

e−1/(2y)

y1+μ
1R>0(y),
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and we have

q(x, a, y) = 1

2μ
(μ)

e−2μx−(1/2)(e−2x/(y−a))

(y − a)1+μ
1R>0(y − a).

Example 2.4. Suppose n = 1, d = 2, α1(x) = x and α2(x) = x
2 . Then, as seen before,

A1∞ =
∫ ∞

0
e−2(Bt+μt) dt, A2∞ =

∫ ∞

0
e−(Bt+μt) dt, μ > 0,

and for λ1, λ2 > 0,

E
(
e−(1/2)λ2

1A
∞
1 −(1/2)λ2

2A
∞
2

) = 2μ−1/2λ
μ−1/2
1


(μ + 1/2 + λ2
2/(2λ1))


(2μ)
W−λ2

2/(2λ1),μ
(2λ1)

= e−λ1


(2μ)

∫ +∞

0
e−t tμ+λ2

2/(2λ1)−1/2(2λ1 + t)μ−λ2
2/(2λ1)−1/2 dt.

By using in the previous integral the change of variable t = 2λ1
eλ1s−1

, we deduce the following nice formula

E
(
e−(1/2)λ2

1A
1∞

∣∣A2∞ = s
)
P
(
A2∞ ∈ ds

) = λ
2μ+1
1

2
(2μ)

e−λ1 cotanh(λ1s/2)

(sinh(λ1s/2))2μ+1
ds, s > 0.

This conditional Laplace transform can be inverted (see, for instance, [9]) but, unlike the one-dimensional case, it
does not seem to lead to a nice formula for p:

p(y1, y2) = 22μ


(2μ)
√

2π

+∞∑
j,k=0

(−1)j 2j

j !

(j + 2μ + 1 + k)

k!
(j + 2μ + 1)

1

y
j/2+μ+3/2
1

e−(1+y2(k+j+μ+1/2))2/(4y1)

× Dj+2μ+2

(
1 + y2(k + j + μ + 1/2)√

y1

)
,

where Dν is the parabolic cylinder function such that∫ +∞

0

e−θt

t1+ν
e−a2/(4t)D2ν+1

(
a√
t

)
dt = √

π2ν+1/2θνe−a
√

2θ ,

that is

Dν(x) =
√

2√
π

ex2/4
∫ +∞

0
tνe−t2/2 cos

(
xt − πν

2

)
dt, ν > −1.

3. Brownian motion conditioned on its exponential functionals

In this section, we study the Doob transforms of the process (B
(μ)
t ,At ) associated with the conditioning of A∞. We

first start with the bridges which are the extremal points.

Lemma 3.1 (Equation of the bridges). Let y ∈ R
d+. The law of the process (Bt + μt)t≥0 conditioned by

A∞ = y

solves the following stochastic differential equation:

dXt =
(

μ + (∇x lnq)

(
Xt,

∫ t

0
e−2α(Xs) ds, y

))
dt + dβt ,
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where (βt )t≥0 is a standard Brownian motion.

Proof. This follows directly from Proposition 2.4 and Girsanov’s theorem. �

Example 3.1. The following example is considered [21]. Suppose n = d = 1, θ2
1 = 1/2 and α1(x) = x. Then the

equation becomes

dXt =
(

−μ + e−2Xt

y − ∫ t

0 e−2Xs ds

)
dt + dβt .

Let P
μ be the law of B(μ) and π be the coordinate process on the space of continuous functions R+ → R

n. If ν is
a probability measure on R

d+, in what follows (see [3]), we call the probability

∫
R

d+
P

μ

(
·
∣∣∣ ∫ +∞

0
e−2α1(πs) ds = y1, . . . ,

∫ +∞

0
e−2αd(πs) ds = yd

)
ν(dy),

the law of the process (Bt + μt)t≥0 conditioned by

A∞
law= ν.

Proposition 3.1. Let v be a bounded and positive function such that
∫

Rd v(y)p(y)dy = 1. The law of the process
(Bt + μt)t≥0 conditioned by

A∞
law= v(x)p(x)dx

solves the following stochastic differential equation:

dXt =
(

μ + Fv

(∫ t

0
e−2α1(Xs) ds, . . . ,

∫ t

0
e−2αd(Xs) ds,Xt

))
dt + dβt ,

where, (βt )t≥0 is a standard Brownian motion and Fv : Rd × R
n → R

n is given by

Fv(a, x) = (∇x lnφv)(a, x)

with

φv(a, x) =
∫

Rd

p(z)v
(
a1 + e−2α1(x)z1, . . . , ad + e−2αd(x)zd

)
dz.

Proof. Following [3], we have to write the stochastic differential equation associated with the conditioning

A∞
law= p(x)v(x)dx.

But

E
(
v(A∞)|Ft

) = e2
∑d

i=1 αi(B
(μ)
t )

∫
Rd

p
(
e2α1(B

(μ)
t )

(
y1 − A1

t

)
, . . . , e2αd(B

(μ)
t )

(
yd − Ad

t

))
v(y)dy

= φv

(
At,B

(μ)
t

)
,

so that we get the expected conditioned stochastic differential equation by Girsanov theorem. �
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In the previous proposition, the drift Fv(a, x) depends only on x if, and only if,

v(x) = e−∑d
i=1 θ2

i xi

j θ
μ(0)

for some θ ∈ R
d . Therefore:

Corollary 3.2. For θ ∈ R
d , the law of the process (Bt + μt)t≥0 conditioned by

A∞
law= e−∑d

i=1 θ2
i xi

j θ
μ(0)

p(x)dx

is the law of a Markov process. Moreover, in that case, it solves in law the following stochastic differential equation

dXt = ∇ lnhθ
μ(Xt )dt + dβt . (8)

We now show that the pathwise uniqueness property holds for the stochastic differential equation (8). In what
follows, we denote

Lθ
μ = ∇ lnhθ

μ∇ + 1

2
Δ.

Let us observe that for the generator Lθ
μ, we have a useful intertwining with the Schrödinger operator 1

2Δ −∑d
i=1 θ2

i e−2αi(x) − 1
2‖μ‖2 that will be used several times in the sequel.

Proposition 3.3.

hθ
μLθ

μ =
(

1

2
Δ −

d∑
i=1

θ2
i e−2αi(x) − 1

2
‖μ‖2

)
hθ

μ.

Proof. If f is a smooth function then we have(
1

2
Δ −

d∑
i=1

θ2
i e−2αi(x) − 1

2
‖μ‖2

)(
hθ

μf
)

= 1

2

(
Δhθ

μ

)
f + 1

2
(Δf )hθ

μ + ∇f ∇hθ
μ −

(
d∑

i=1

θ2
i e−2αi(x) + 1

2
‖μ‖2

)(
hθ

μf
)
.

Since

1

2
Δhθ

μ =
(

d∑
i=1

θ2
i e−2αi(x) + 1

2
‖μ‖2

)
hθ

μ,

the result readily follows. �

We can now deduce:

Theorem 3.1. Let θ ∈ R
d . If (βt )t≥0 is a Brownian motion, then for x0 ∈ R

n, there exists a unique process (X
x0
t )t≥0

adapted to the filtration of (βt )t≥0 such that:

X
x0
t = x0 +

∫ t

0
∇ lnhθ

μ

(
Xx0

s

)
ds + βt , t ≥ 0. (9)
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Moreover, in law, the process (X
x0
t )t≥0 is equal to (Bt + μt + x0)t≥0 conditioned by:(∫ +∞

0
e−2αi(Bt+μt+x0) dt

)
1≤i≤d

law= e−∑d
i=1 θ2

i yi e2
∑d

i=1 αi(x0)p(e2α1(x0)y1, . . . , e2αd(x0)yd)

jθ
μ(x0)

dy.

Proof. Let x0 ∈ R
n. Since the function ∇ lnhθ

μ is locally Lipschitz, up to an explosion time e we have a unique
solution X

x0
t for Eq. (9). Our goal is now to show that almost surely e = +∞. For that, we construct a suitable

Lyapunov function for the generator Lθ
μ.

Let

U(x) = cosh 2(μ,x)

hθ
μ(x)

.

It is easily seen that when ‖ x ‖→ +∞, U(x) → +∞. Moreover, from the intertwining,

hθ
μLθ

μU =
(

1

2
Δ −

d∑
i=1

θ2
i e−2αi(x) − 1

2
‖μ‖2

)
cosh 2(μ,x) ≤ 3

2
‖μ‖2 cosh 2(μ,x).

Therefore

Lθ
μU ≤ 3

2
‖μ‖2U.

It implies that the process (e−(3/2)‖μ‖2t∧eU(X
x0
t∧e))t≥0 is a positive supermartingale. Since U(x) → +∞

when ‖ x ‖→ +∞, we deduce that almost surely e = +∞.
Consequently, there is a unique solution (X

x0
t )t≥0 for Eq. (9). The second part of the theorem is a direct conse-

quence of Corollary 3.2 and uniqueness in law for Eq. (9). �

Example 3.2. Suppose n = d = 1 and θ2
1 = 1/2 and α1(x) = x. Then

Lθ
μ =

(
μ + e−x Kμ−1(e−x)

Kμ(e−x)

)
d

dx
+ 1

2

d2

dx2
. (10)

Let us denote p
μ,θ
t (x, y) the heat kernel of Lθ

μ. From the intertwining, we have

p
μ,θ
t (x, y) = Kμ(e−y)

Kμ(e−x)
q

μ,θ
t (x, y),

where q
μ,θ
t (x, y) is the heat kernel of 1

2 ( d2

dx2 − e−2x − μ2). This kernel can be explicitly computed (see [1] or [20],
Remark 4.1):

q
μ,θ
t (x, y) = e−(μ2/2)t

∫ +∞

0
exp

(
−ξ

2
− e−2x + e−2y

2ξ

)
Θ

(
e−x−y

ξ
, t

)
dξ

ξ
,

with

Θ(r, t) = r√
2π3t

eπ2/(2t)

∫ +∞

0
e−ξ2/(2t)e−r cosh ξ sinh ξ sin

πξ

t
dξ.

We deduce from that

p
μ,θ
t (−∞, y) = 2e−μ2t/2Θ

(
e−y, t

)
Kμ

(
e−y

)
,
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so that −∞ is an entrance point for the diffusion with generator Lθ
μ.

The resolvent kernel of (−Lθ
μ + α2

2 )−1 is also easily computed:

Gμ,θ

(
x, y,−α2

2

)
= 2

Kμ(e−y)

Kμ(e−x)
I√

α2+μ2

(
e−y

)
K√

α2+μ2

(
e−x

)
, x ≤ y.

And we can observe that

Gμ,θ

(
−∞, y,−α2

2

)
= 2Kμ

(
e−y

)
I√

α2+μ2

(
e−y

)
.

Example 3.3. Suppose n = 1, d = 2, θ2
1 = θ2

2 = 1/2, α1(x) = x and α2(x) = x
2 . In that case

Lθ
μ =

(
1

2
− 2e−x

W ′−1/2,μ(2e−x)

W−1/2,μ(2e−x)

)
d

dx
+ 1

2

d2

dx2

and

p
μ,θ
t (x, y) = e1/2(y−x) W−1/2,μ(2e−y)

W−1/2,μ(2e−x)
q

μ,θ
t (x, y),

where q
μ,θ
t (x, y) is the heat kernel of 1

2 ( d2

dx2 − e−x − e−2x − μ2). We have (see [1] or [20], p. 342):

q
μ,θ
t (x, y) = e−(μ2/2)t

∫ +∞

0
e−ξ−(e−x+e−y)cotanhξΘ

(
2

e−(x+y)/2

sinh ξ
,

t

ξ

)
dξ

sinh ξ
.

The resolvent kernel of (−Lθ
μ + α2

2 )−1, is for x ≤ y:

Gμ,θ

(
x, y,−α2

2

)
= 
(1 + √

α2 + μ2)


(1 + 2
√

α2 + μ2)

W−1/2,μ(2e−y)

W−1/2,μ(2e−x)
W−1/2,

√
α2+μ2

(
2e−x

)
M−1/2,

√
α2+μ2

(
2e−y

)
,

and we get

Gμ,θ

(
−∞, y,−α2

2

)
= 
(1 + √

α2 + μ2)


(1 + 2
√

α2 + μ2)
W−1/2,μ

(
2e−y

)
M−1/2,

√
α2+μ2

(
2e−y

)
,

so that −∞ is also an entrance point for the diffusion with generator Lθ
μ.

Motivated by the two previous examples, the question of existence of entrance laws for the diffusion with generator
Lθ

μ is natural. As a general result, we can prove:

Proposition 3.4. Assume n = 1, α1, . . . , αd > 0 and θ ∈ R
d − {0}, then −∞ is an entrance point for the diffusion

with generator Lθ
μ.

Proof. Without loss of generality, we can assume that θ1 > 0. Let us recall hθ
μ solves the Schrödinger equation

1

2

(
hθ

μ

)′′ =
(

d∑
i=1

θ2
i e−2αix + 1

2
μ2

)
hθ

μ,

and that k
θ1
μ (x) = Kμ(θ1e−α1x) solves the equation:

1

2

(
kθ1
μ

)′′ =
(

θ2
1 e−2α1x + 1

2
μ2

)
kθ1
μ .
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Let W(x) = k
θ1
μ (x)(hθ

μ)′(x) − (k
θ1
μ )′(x)(hθ

μ)(x). Since

W ′(x) = kθ1
μ (x)

(
hθ

μ

)′′
(x) − (

kθ1
μ

)′′
(x)

(
hθ

μ

)
(x) ≥ 0,

we deduce that W is increasing. Moreover, it is easily seen that limx→−∞ W(x) = 0. Therefore W ≥ 0. Hence
(hθ

μ)′
hθ

μ
(x) ≥ −α1θ1e−α1x

K ′
μ(θ1e−α1x)

Kμ(θ1e−α1x)
.

Now, from the comparison principle for stochastic differential equations, we deduce that if, for x ∈ R, we denote
(Xx

t )t≥0 and (Y x
t )t≥0 the solutions of the stochastic differential equations,

Xx
t = x +

∫ t

0

(hθ
μ)′

hθ
μ

(
Xx

s

)
ds + βt ,

Y x
t = x +

∫ t

0
−α1θ1e−α1Y

x
s
K ′

μ(θ1e−α1Y
x
s )

Kμ(θ1e−α1Y
x
s )

ds + βt ,

where (βt )t≥0 is a standard Brownian motion, then we have almost surely

Xx
t ≥ Yx

t .

Since −∞ is an entrance point for the diffusion (Y x
t )t≥0,x∈R, we deduce that −∞ is an entrance point for the diffusion

with generator Lθ
μ. �

We conjecture the existence of entrance laws for n ≥ 1, but let us observe that, in general, we do not have unicity.
Indeed, let us consider the following example

n = 2, d = 1, α(x) = x2 − x1√
2

, θ2 = 1

2
.

In that case, by using one dimensional results, we compute:

hθ
μ(x) = 21−α(μ)


(α(μ))
eα∗(μ)α∗(x)Kα(μ)

(
e−α(x)

)
,

where α∗(x) = x2+x1√
2

. The heat kernel of Lθ
μ is also explicitly given by

p
μ,θ
t (x, y) = e−(1/2)‖μ‖2t

hθ
μ(y)

hθ
μ(x)

1√
2πt

e−(α∗(x)−α∗(y))2/(2t)

×
∫ +∞

0
exp

(
−ξ

2
− e−2α(x) + e−2α(y)

2ξ

)
Θ

(
e−α(x)−α(y)

ξ
, t

)
dξ

ξ
.

And we deduce that when α(x) → −∞ with α∗(x) → k ∈ R,

p
μ,θ
t (x, y) → 2e−(1/2)‖μ‖2t hθ

μ(y)e−kα∗(μ) 1√
2πt

e−(k−α∗(y))2/(2t)Θ
(
e−α(y), t

)
.

Therefore, in that case we get an infinite set of entrance laws when α(x) → −∞.

4. Whittaker functions

From now on we consider the case where Π = {α1, . . . , αd} is a simple system. In other words:

(1) The vectors α1, . . . , αd are linearly independent;
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(2) the group W generated by reflections through the hyperplanes

Hα = {
x ∈ R

n: α(x) = 0
}
, α ∈ Π,

is finite;
(3) {x ∈ R

n: α(x) ≥ 0,∀α ∈ Π} is a fundamental domain for the action of W on R
n;

(4) 2(α,β)/(α,α) ∈ Z for all α,β ∈ Π .

In this setting, the Schrödinger operator

H = 1

2
Δ −

d∑
i=1

θ2
i e−2αi(x)

is the Hamiltonian of the (generalized) quantum Toda lattice (see, for example, [27]). The function hθ
μ considered in

the previous section can be expressed in terms of a particular eigenfunction of H , known as a class-one Whittaker
function.

4.1. Class-one Whittaker functions

Class-one Whittaker functions associated with semisimple Lie groups were introduced by Kostant [17] and
Jacquet [15], and have been studied extensively in the literature. They are closely related to Whittaker models of
principal series representations and play an important role in the study of automorphic forms associated with Lie
groups [6]. They also arise as eigenfunctions of the (generalised) quantum Toda lattice [17,27]. For completeness we
will describe briefly the abstract definition of class-one Whittaker functions, following [13].

Let G be a connected, non-compact, semisimple Lie group with finite centre. Let g0 be the Lie algebra of G with
complexification g. Denote by B(·, ·) the Killing form on g. Let K be a maximal compact subgroup of G with Lie
algebra k0 and denote the complexification of k0 by k. Let p0 be the orthogonal complement of k0 in g0 with respect
to the Killing form. Let θ be the corresponding Cartan involution. Let a0 be a maximal Abelian subspace in p0 and
denote its complexification by a. Denote by Σ the set of all non-zero roots of g0 relative to a0. For α ∈ Σ , denote
by m(α) the dimension of the root space

gα
0 = {

X ∈ g0: ad(H)X = α(H)X for all H ∈ a0
}
.

Let Σ+ be a positive system of roots in Σ and let Π = {α1, . . . , αd} be the corresponding set of simple roots. Let
n0 = ∑

α∈Σ+ gα
0 and N = exp(n0). Then G = NAK is an Iwasawa decomposition of G. Let ψ be a non-degenerate

(unitary) character of N . Let η be the unique Lie algebra homomorphism of n0 into R such that ψ(n) = exp(iη(X))

for n = exp(X) ∈ N . For each α ∈ Σ+, let Xα,i (1 ≤ i ≤ m(α)) be a basis of gα
0 satisfying B(Xα,i , θXα,j ) = −δij (1 ≤

i, j ≤ m(α)). Denote by ηα the restriction of η to gα
0 and set |ηα|2 = ∑

1≤i≤m(α) η(Xα,i)
2. Denote by U(g) and U(a)

the universal enveloping algebras of g and a, respectively. Let γ denote the Harish–Chandra homomorphism from
U(g)k, the centraliser of k in U(g), into U(a). For ν ∈ a∗ and z ∈ U(g)k, define χν(z) = γ (z)(ν). The space of
Whittaker functions on G associated with ν ∈ a∗, denoted C∞

ψ (G/K,χν), is the space of smooth functions on G

which satisfy:

(1) f (ngk) = ψ(n)f (g) for n ∈ N , g ∈ G and k ∈ K , and
(2) zf = χν(z)f for z ∈ U(g)k.

Set ρ = 1
2

∑
α∈Σ+ m(α)α. For g ∈ G, define 1ν(g) = h(g)ν+ρ where g = n(g)h(g)k(g) is the Iwasawa decomposition

of g. Let s0 be the longest element in W . The class-one Whittaker function associated with ν ∈ a∗ is defined by

Wν(g) =
∫

N

1ν(s0ng)ψ−1(n)dn, g ∈ G. (11)

The convergence of this integral was established by Jacquet [15]. For ν ∈ a∗ and α ∈ Σ , write να = (α, ν)/(α,α). Let

D = {
ν ∈ a∗: �(να) > 0, for all α ∈ Σ+

}
.
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We record the following lemma for later reference.

Lemma 4.1. Let ν ∈ D. Then h−s0ν−ρWν(h) is uniformly bounded for h ∈ A.

Proof. Gindikin and Karpelevich [10] proved that the integral

c(ν) =
∫

N

1ν(s0n)dn

is absolutely convergent. From (11) we can write

Wν(h) = hs0ν+ρ

∫
N

1ν(s0n)ψ−1(hnh−1)dn, h ∈ A.

Since ψ is unitary, it follows that h−s0ν−ρWν(h) is bounded, as required. �

Remark 4.1. In the above, c(ν) is the Harish–Chandra c-function.

4.2. Fundamental Whittaker functions

Since Wν(nhk) = ψ(n)Wν(h), all of the important information about Wν is contained in its restriction to A. This
leads to a more concrete description which can be presented entirely in the context of the root system Σ . Readers not
familiar with root systems may find it helpful to think of the ‘type A’ case, for example, if G = SL(n,R). In this case,
we can identify a0 (and its dual) with

R
n
0 = {

λ ∈ R
n: λ1 + · · · + λn = 0

}
,

and take Σ = {ei −ej , i 	= j}, Σ+ = {ei −ej ,1 ≤ i < j ≤ n} and Π = {ei −ei+1,2 ≤ i ≤ n}, where {e1, . . . , en} is the
standard basis for R

n. In general, the root system Σ is crystallographic, that is, the numbers 2(α,β)/(α,α),α,β ∈ Π

are all integers, and the Z-span of Π is a regular lattice in a∗
0. Since the Killing form is positive definite on a∗

0, it induces
an inner product (·, ·) on a∗

0, which extends to a non-degenerate bilinear form on a∗. The following construction is
due to Hashizume [13]. Consider the lattice L = 2Z+(Π), and set ′a∗ = {ν ∈ a∗: (λ,λ) + 2(λ, ν) 	= 0,∀λ ∈ L\{0}}.
For each ν ∈ ′a∗, define a set of real numbers {cλ(ν), λ ∈ L} recursively as follows. Set c0(ν) = 1 and

(
(λ,λ) + 2(λ, ν)

)
cλ(ν) = 2

∑
α

|ηα|2cλ−2α(ν), λ ∈ L, (12)

with the convention that cλ(ν) = 0 if λ /∈ L. In [13] it is shown that the series

Φν(x) =
∑
λ∈L

cλ(ν)e−(λ+ν)(x),

converges absolutely and uniformly for x ∈ a and ν ∈ ′a∗. Define U to be the set of ν ∈ ′a∗ such that:

(1) να 	= 0 for all α ∈ Σ ;
(2) sν ∈ ′a∗ for all s ∈ W ;
(3) sν − tν /∈ ∑

α∈Π Zα for any pair s, t ∈ W such that s 	= t .

For s ∈ W denote by l(s) the length of s. For ν ∈ U , define M(s, ν) (s ∈ W), recursively as follows. For s = sα (α ∈
Π),

M(sα, ν) = (|ηα|/2
√

2(α,α)
)2να eα(ν)eα(−ν)−1,

where

eα(ν)−1 = 

((

να + m(α)/2 + 1
)
/2

)



((
να + m(α)/2 + m(2α)

)
/2

)
.
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If s ∈ W and α ∈ Π such that l(sαs) = l(s) + 1, then

M(sαs, ν) = M(s, ν)M(sα, sν).

Let Σ◦+ be the set of α ∈ Σ+ such that α/2 is not a root. The Harish–Chandra c-function is given by

c(ν) =
∏

α∈Σ◦+

dαfα(ν),

where

fα(ν) = 
(να)
((να + m(α)/2)/2)


(να + m(α)/2)
((να + m(α)/2 + m(2α))/2)

and

dα = 2(m(α)−m(2α))/2(π/(α,α)
)(m(α)−m(2α))/2

.

Now define, for ν ∈ U ,

Ψν(x) =
∑
s∈W

M(s0s, ν)c(s0sν)Φsν(x). (13)

Observe that Ψν satisfies the functional equations

Ψν(x) = M(s, ν)Ψsν(x), s ∈ W. (14)

Although the above construction places a restriction on ν, it is known that, for each x ∈ a0, Ψν(x) can be extended to
an entire function of ν ∈ a∗. In [13] it is shown that, for x ∈ a0, Wν(e−x) = e−ρ(x)Ψν(x), so that

Wν(g) = ψ
(
n(g)

)
h(g)ρΨν

(
logh(g)

)
.

The functions Vν defined by

Vν(g) = ψ
(
n(g)

)
h(g)ρΦν

(
logh(g)

)
,

are called fundamental Whittaker functions. In [13] it is also shown that, for each ν ∈ U , {Vsν, s ∈ W } form a basis
for C∞

ψ (G/K,χν).

4.3. The quantum Toda lattice

As observed by Kostant [17], Whittaker functions are eigenfunctions for the (generalised) quantum Toda lattice.
Denote by Δ the Laplacian on a0 corresponding to the Killing form. For ν ∈ a∗, the class-one Whittaker function Ψν

(as a function on a0) satisfies the partial differential equation

1

2
Δf (x) −

∑
α∈Π

|ηα|2e−2α(x)f (x) = 1

2
(ν, ν)f (x). (15)

For ν ∈ U , this can be seen directly via the recursion (12) for the coefficients in the series expansion of the fundamental
Whittaker functions Φν . In [13], Lemma 7.1, it was shown that, for ν ∈ D,

lim
x→∞,x∈Ω

es0ν(x)Ψν(x) = c(ν). (16)

By Lemma 4.1, if ν ∈ D, then es0ν(x)Ψν(x) is uniformly bounded for x ∈ a0. Recalling Corollary 2.3 – note that the
proof of uniqueness given there is valid for ν ∈ D – we deduce the following characterisation of Ψν .

Proposition 4.1. For ν ∈ D, the class-one Whittaker function Ψν (on a0) is the unique solution to (15) such that
es0ν(x)Ψν(x) is bounded and (16) holds.
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4.4. Weyl-invariant class-one Whittaker functions and an alternating sum formula

In this section we present a variation of the formula (13) which generalises a formula given in [16] for the case
G = SL(n,R) and leads naturally to a normalisation for the class-one Whittaker functions which is invariant under
the Weyl group W . Using this, we also confirm a conjecture of Stade [28] that a class-one Whittaker function can be
expressed as an alternating sum of appropriately normalised fundamental Whittaker functions.

Let

a(ν) =
∏

α∈Σ◦+

1

2

(|ηα|/√2(α,α)
)−να
(να).

Proposition 4.2. For ν ∈ U ,

c(ν)−1Ψν(x) = a(ν)−1
∑
s∈W

a(s0sν)Φsν(x).

Proof. From (13) we have

Ψν =
∑
s∈W

M(s0s, ν)c(s0sν)Φsν.

It therefore suffices to show that, for all s ∈ W ,

M(s, ν)c(sν)a(sν)−1 = c(ν)a(ν)−1.

We prove this by induction on l(s). If s = sα (α ∈ Π), we have

M(sα, ν) = (|ηα|/2
√

2(α,α)
)2να eα(ν)eα(−ν)−1,

c(sαν) = fα(−ν)fα(ν)−1c(ν),

a(sαν)−1 = (|ηα|/√2(α,α)
)−2να
(να)
(−να)−1a(ν)−1.

Using the duplication formula


(z)


(
z + 1

2

)
= 21−2z

√
π
(2z), (17)

we can write

eα(ν)/fα(ν) = π−1/22να−1+m(α)/2/
(να),

and so

M(sα, ν)c(sαν) = (|ηα|/√2(α,α)
)2να 
(−να)


(να)
c(ν).

Thus,

M(sα, ν)c(sαν)a(sαν)−1 = c(ν)a(ν)−1,

and the claim is proved for l(s) = 1. For s ∈ W and α ∈ Π with l(sαs) = l(s) + 1,

M(sαs, ν)c(sαsν)a(sαsν)−1 = M(s, ν)M(sα, sν)c(sαsν)a(sαsν)−1 = M(s, ν)c(sν)a(sν)−1 = c(ν)a(ν)−1,

by the induction hypothesis. �
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Consider the normalised Whittaker functions

wν(x) = a(ν)c(ν)−1Ψν(x), ν ∈ a∗, x ∈ a;
mν(x) =

∏
α∈Σ◦+

(|ηα|/√2(α,α)
)να
(1 + να)−1Φν(x), ν ∈ U,x ∈ a.

By the above proposition and the functional equation


(z)
(1 − z) = π

sinπz
, (18)

we have:

Corollary 4.3. For ν ∈ U ,

wν(x) = R(ν)−1
∑
s∈W

(−1)l(s0s)msν(x),

where

R(ν) =
∏

α∈Σ◦+

2 sinπνα

π
.

In particular, wν satisfies the functional equation

wsν(x) = wν(x), s ∈ W.

This confirms a conjecture of Stade [28], who obtained this formula for the case SL(3,R) and conjectured that such a
formula holds for all SL(n,R). In the case G = SL(n,R), the functions wν are essentially the same as those considered
in [16].

4.5. The type A1 case

Let G = SL(2,R). Then we can identify a0 with R, and take Σ = {±1}, Π = {1} and m(1) = 1. Let |η1|2 = 1/2. Then
L = 2Z+. For λ = 2n, write cn = cλ(ν). The recursion (12) becomes 4(n2 + νn)cn = cn−1 with c0 = 1. The solution
is given by

cn = 4−n
(ν + 1)

n!
(n + ν + 1)
,

and so

Φν(x) = 2ν
(1 + ν)
∑
n≥0

(e−x/2)2n+ν

n!
(n + ν + 1)

= 2ν
(1 + ν)Iν

(
e−x

)
,

where Iν is the modified Bessel function of the first kind. In this case, W � Z2 acts on R by multiplication. By the
duplication formula (17), we have

M(s1, ν) = 4−ν 
(−ν + 1/2)


(−ν + 1/2)
, c(ν) =

√
2π
(ν)


(ν + 1/2)
.



1114 F. Baudoin and N. O’Connell

Thus, using the functional equation (18), we obtain

Ψν(x) = M(s1, ν)c(−ν)Φν(x) + c(ν)Φ−ν(x) = 21−ν
√

2π


(ν + 1/2)
Kν

(
e−x

)
,

where

Kν(z) = π

2

I−ν(z) − Iν(z)

sinπν

is the Macdonald function. Note that a(λ) = 2λ−1
(λ) and the normalised Whittaker functions are given by mν(x) =
Iν(e−x) and wν(x) = Kν(e−x).

4.6. The type A2 case

In this case we can identify a0 with R
3
0 = {x ∈ R

3, x1 + x2 + x3 = 0} and take Π = {α1 = (e1 − e2)/
√

2, α2 =
(e2 − e3)/

√
2}, where {e1, e2, e3} is the standard basis for R

3. Set m(α1) = m(α2) = 1, m(2α1) = m(2α2) = 0 and
|ηα1 |2 = |ηα2 |2 = 2. For ν ∈ R(Π) and λ = 2nα1 + 2mα2 ∈ L = 2Z+(Π), write cn,m = cλ(ν). Set a = α1(ν) and
b = α2(ν). Then the recursion (12) becomes(

n2 + m2 − nm + an + bm
)
cn,m = cn−1,m + cn,m−1,

where c0,0 = 1 and cn,m = 0 for (n,m) /∈ Z
2+. The solution is given by the following formula, due to Bump [6]:

cn,m = 
(a + 1)
(b + 1)
(a + b + 1)
(n + m + a + b + 1)

n!m!
(n + a + 1)
(m + b + 1)
(n + a + b + 1)
(m + a + b + 1)
.

In the notation of [6,7],

wν(x) = π2

2
(y1y2)

−1W(ν1,ν2)(y1, y2),

where

ν1 = (a + 1)/3, ν2 = (b + 1)/3, y1 = 2e−α1(x), y2 = 2e−α2(x).

The following integral representation is due to Vinogradov and Takhtadzhyan [29]:

wν(x) = 1

2
(y1/y2)

(a−b)/3
∫ ∞

0
Ka+b

(
y1

√
1 + r

)
Ka+b

(
y2

√
1 + 1/r

)
r(a−b)/2 dr

r
. (19)

For a = b = 2/3, we have the following simplification:

W(5/9,5/9)(y1, y2) = 2√
3π

(y1y2)
1/3(y2/3

1 + y
2/3
2

)1/2
K1/3

((
y

2/3
1 + y

2/3
2

)3/2)
.

Using the integral representation (19), Bump and Huntley [7] derived an asymptotic expansion of W(ν1,ν2)(y1, y2)

which is valid for large values of y1 and y2. The leading term in the expansion is independent of the parameter ν and
given by√

2

3π
(y1y2)

1/3(y2/3
1 + y

2/3
2

)−1/4 exp
(−(

y
2/3
1 + y

2/3
2

)−3/2)
. (20)

From this we deduce the following lemma, which we record for later reference.
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Lemma 4.2. Let λ1, λ2 > 0. If y1, y2 → ∞ with y2/y1 → δ, then

W(ν1,ν2)(

√
y2

1 + 2λ1y1,

√
y2

2 + 2λ2y2)

W(ν1,ν2)(y1, y2)
→ exp

(−λ1ϕ(δ) − λ2ϕ(1/δ)
)
,

where

ϕ(d) = (
1 + d2/3) − d2/3(1 + d2/3)1/2 + d1/3(1 + d−2/3)1/2

.

4.7. Asymptotics for large x

Consider the analytic function on a∗ × a defined by

φ(ν, x) = h(ν)−1
∑
s∈W

(−1)l(s)esν(x),

where h(ν) = ∏
α∈Σ◦+ να . Set

Ω∗ = �(D) = {
ν ∈ a∗

0: να > 0, ∀α ∈ Π
}

and

Ω = {
x ∈ a0: α(x) > 0,∀α ∈ Π

}
.

Proposition 4.4. Let q = |Σ◦+|. For all x ∈ Ω and ν ∈ Ω∗,

lim
c↓0

(2c)qw−cν(x/c) = φ(ν, x).

Proof. First note that, since ν ∈ Ω , csν ∈ U for all s ∈ W and for all c > 0 sufficiently small. The claim follows from
Corollary 4.3 and the fact (see [13]) that there exists a constant k such that for all s ∈ W and c > 0 sufficiently small,∣∣∣∣ ∑

λ∈L\{0}
cλ(−css0ν)e−λ(x)/c

∣∣∣∣ ≤
∑
n≥1

(n + d − 1)!
(d − 1)!n!

kn

(n!)2
e−2 minα∈Π α(x)/c.

�

5. Whittaker functions and exponential functionals of Brownian motion

Define kλ = w−λ for λ ∈ a∗. Throughout this section we will identify a∗
0 with a0 via the Killing form and note that

Ω∗ = Ω . Let B(μ) be a Brownian motion in a0 with covariance given by the Killing form and drift μ ∈ Ω . Then, by
Corollary 2.3 and Proposition 4.1, we have:

Proposition 5.1.

E exp

(
−

∑
α∈Π

|ηα|2e−2α(x)

∫ ∞

0
e−2α(B

(μ)
t ) dt

)
= e−μ(x)c(−s0μ)−1Ψ−s0μ(x)

= e−μ(x)
∏

α∈Σ◦+

2
(|ηα|/√2(α,α)

)μα
(μα)−1kμ(x).

In this context, the diffusion considered in Section 3 has generator given by

Lμ = 1

2
Δ + ∇ logkμ · ∇.
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Note that this is well defined for all μ ∈ Ω . Set

Vμ(x) = 2
∑
α∈Π

|ηα|2e−2α(x) + (μ,μ),

and write V = V0. It follows from the intertwining

kμLμ = 1

2
(Δ − Vμ)kμ, (21)

that the heat semigroup associated with Lμ is given by

P
μ
t = k−1

μ Q
μ
t kμ, (22)

where (Q
μ
t ) is the heat semigroup associated with 1

2 (Δ − Vμ).
Let μ ∈ Ω̄ and consider the operator Λμ, defined (on a suitable domain) by

Λμeλ = kμ+λ, λ ∈ ia∗
0,

where eλ(x) = eλ(x). Set Kμ = k−1
μ Λμ. In the type A1 and A2 cases, for each x, kμ+λ(x) is a non-negative definite

function of λ and hence Kμ is a Markov operator. For the type A1 case, this follows from the integral representation
(7) and, for the type A2 case, it follows from the integral representation (19). We remark that in fact it can be seen
from an integral formula of Givental [11] in the type An case. We conjecture that Kμ is a Markov operator, in general.
In the type A1 case, it is shown in [19] that Kμ intertwines the semigroup associated with Lμ with the semigroup of
a Brownian motion with drift μ. This intertwining relation extends to the general setting:

Proposition 5.2. On a suitable domain,

LμKμ = Kμ

(
1

2
Δ + μ · ∇

)
.

Proof. For each λ ∈ ia∗
0, we have

(Δ − Vμ)Λμeλ = (Δ − Vμ)kμ+λ = (Vμ+λ − Vμ)kμ+λ

= (
(λ,λ) + 2(μ,λ)

)
kμ+λ = (

(λ,λ) + 2(μ,λ)
)
Λμeλ = Λμ(Δ + 2μ · ∇)eλ.

Thus,

(Δ − Vμ)Λμ = Λμ(Δ + 2μ · ∇).

Combining this with (21), we are done. �

5.1. Brownian motion in a Weyl chamber and Duistermaat–Heckman measure

Let μ ∈ Ω and, for c > 0, define kc
μ(x) = kcμ(x/c). By Proposition 4.4, the diffusion with generator

Lc
μ = 1

2
Δ + ∇ logkc

μ · ∇,

converges weakly as c ↓ 0 to a Brownian motion with drift μ conditioned (in the sense of Doob) never to exit the
Weyl chamber Ω (see [4] for a definition of this process). In the limiting case μ = 0, the generator of the Brownian
motion conditioned never to exit Ω is given by

1

2
Δ + ∇ logh · ∇,
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where h(x) = ∏
α∈Σ◦+ α(x). Note also that, as c ↓ 0,

Λceλ(x) := (2c)qΛ0ecλ(x/c) = (2c)qkcλ(x/c) → φ(λ, x).

Thus, the intertwining operator Λc converges, in a weak sense, to a positive integral operator with kernel given by
L(x,dt) = mx

DH (dt), where mx
DH is the Duistermaat–Heckman measure associated with the point x ∈ Ω , charac-

terised by∫
a0

eλ(t)mx
DH (dt) = φ(λ, x), λ ∈ a∗.

This operator is discussed in [4]. The intertwining

(Δ + 2∇ logh · ∇)L = LΔ

plays a meaningful role in the multi-dimensional generalisations of Pitman’s 2M − X theorem obtained in [4,5,24].
The operator Λ has recently been shown to play a similar role in the multi-dimensional version of the theorem of
Matsumoto and Yor obtained in [22] for the type An case; it is a positive integral operator with a kernel which can be
interpreted as a kind of ‘tropical’ analogue of the Duistermaat–Heckman measure.

6. The type A2 case

Consider the type A2 case, as in Section 4.6. For x ∈ R
3
0, α1(x) = (x1 −x2)/

√
2 and α2(x) = (x2 −x3)/

√
2. The Weyl

chamber is Ω = {x ∈ R
3
0: x1 > x2 > x3}. Let B(μ) be a Brownian motion in R

3
0 with drift μ ∈ Ω . For 0 ≤ t ≤ ∞, set

Ai
t =

∫ t

0
e−2αi(B

(μ)
s ) ds, i = 1,2.

Let ν = −s0μ = (−μ3,−μ2,−μ1). Then, in the notation of Section 4.6,

a = ν1 − ν2

√
2

, b = ν2 − ν3

√
2

, ν1 = a + 1

3
, ν2 = b + 1

3
.

Note that, for x ∈ R
3
0,

μ(x) = √
2
(
ν1 + ν2)α1(x) + √

2ν1α2(x) = 2a + 4b

3
α1(x) + 4a + 2b

3
α2(x)

= (2ν1 + 4ν2 − 2)α1(x) + (4ν1 + 2ν2 − 2)α2(x).

By Proposition 5.1 and the integral formula (19),

E

(
exp

(
−1

2
y2

1A1∞ − 1

2
y2

2A2∞
))

= 4π2y
2ν1+4ν2−3
1 y

4ν1+2ν2−3
2

2−a−b


(a)
(b)
(a + b)
W(ν1,ν2)(y1, y2)

= 22−a−b


(a)
(b)
(a + b)

∫ ∞

0
ya+b−1

1 Ka+b

(
y1

√
1 + r

)
ya+b−1

2 Ka+b

(
y2

√
1 + 1/r

)
r(a−b)/2 dr

r
.

Let us observe that this Laplace transform can be inverted. Indeed, by using the fact that

Ka+b(x) =
∫ +∞

0
e−x coshu cosh

(
(a + b)u

)
du



1118 F. Baudoin and N. O’Connell

we obtain

E

(
exp

(
−1

2
y2

1A1∞ − 1

2
y2

2A2∞
))

= 22−a−b


(a)
(b)
(a + b)
(y1y2)

a+b−1
∫ +∞

0

∫ +∞

0

∫ +∞

0
r(a−b)/2e−y1 coshu

√
1+re−y2 coshv

√
1+1/r

× cosh
(
(a + b)u

)
cosh

(
(a + b)v

)dr

r
dudv

and therefore, denoting p the density of (A∞
1 ,A∞

2 ), we get

p(y1, y2) = 4

π
(a)
(b)
(a + b)
(2y1y2)

−(a+b+1)/2

×
∫ +∞

0

∫ +∞

0

∫ +∞

0
r(a−b)/2e−(1+r) cosh2 u/(4y1)−(1+1/r) cosh2 v/(4y2)

× Da+b

(√
1 + r coshu√

y1

)
Da+b

(√
1 + 1/r coshv√

y2

)

× cosh
(
(a + b)u

)
cosh

(
(a + b)v

)dr

r
dudv.

6.1. The intertwining kernel

Suppose μ = 0. The intertwining operator Λ = Λ0 satisfies Λe−ν = wν . Let a = α1(ν), b = α2(ν) and write t =
t1α1 + t2α2. By the integral formula (19),

wν(x) = 1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
δ−1/3

√
r

uv

)a(
δ1/3 1

uv
√

r

)b

× exp

(
−y1

√
1 + r

2

(
u + 1

u

)
− y2

√
1 + 1/r

2

(
v + 1

v

))
du

u

dv

v

dr

r
,

where y1 = 2e−α1(x), y2 = 2e−α2(x) and δ = y2/y1. It follows, by a straightforward calculation, that we can write

Λe−ν(x) =
∫ ∞

−∞

∫ ∞

−∞
Λ(x, t)e−at1 e−bt2 dt1 dt2,

where

Λ(x, t) = K0
(√

y2
1

(
1 + δ2/3e−t1+t2

)(
1 + δ2/3et1

)(
1 + δ2/3e−t2

))
.

A plot of Λ(x, t), with x fixed, is shown in Fig. 1. As explained in [22], the measure with density given by Λ(x, ·) can
be interpreted as a kind of ‘tropical’ analogue of the Duistermaat–Heckman measure associated with the point x ∈ Ω .

6.2. Behaviour at −∞

From the asymptotic expansion of [7], for any λ we have kμ(x)−1kλ(x) → 1 as x → −∞ (in the sense that α1(x) →
−∞ and α2(x) → −∞). This suggests that the process with generator

Lμ = 1

2
Δ + ∇ logkμ · ∇
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Fig. 1. The intertwining kernel Λ(x, ·).

has a unique entrance law starting from −∞, given by

p
μ
t (dx) = e−(1/2)‖μ‖2t kμ(x)θt (dx),

where, for each t > 0,∫
kiτ (x)θt (dx) = e−(1/2)‖τ‖2t , τ ∈ Ω.

The existence of this entrance law is established (more generally, for type An) in the paper [22].
We conclude with the following observation:

Proposition 6.1. Let (X
x0
t )t≥0 be the diffusion with generator Lμ started at x0. If α1(x0) → −∞ and α2(x0) → −∞,

with α1(x0) − α2(x0) → κ , then

(
eα1(x0)

∫ +∞

0
e−2α1(X

x0
s ) ds, eα2(x0)

∫ +∞

0
e−2α2(X

x0
s ) ds

)

converges in probability to (ϕ(eκ ), ϕ(e−κ)), where

ϕ(d) = (
1 + d2/3) − d2/3(1 + d2/3)1/2 + d1/3(1 + d−2/3)1/2

.

Proof. Let λ1, λ2 > 0. We easily compute

E

(
exp

(
−λ1eα1(x0)

∫ +∞

0
e−2α1(X

x0
s ) ds − λ2eα2(x0)

∫ +∞

0
e−2α2(X

x0
s ) ds

))

= E exp(−(1/2)(y2
1 + 2λ1y1)A

1∞ − (1/2)(y2
2 + 2λ2y2)A

2∞)

E exp(−(1/2)y2
1A1∞ − (1/2)y2

2A2∞)
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with y1 = 2e−α1(x0), y2 = 2e−α2(x0). But, by Lemma 4.2, if y1, y2 → ∞ with y2/y1 → δ = eκ , then

E exp(−(1/2)(y2
1 + 2λ1y1)A

1∞ − (1/2)(y2
2 + 2λ2y2)A

2∞)

E exp(−(1/2)y2
1A1∞ − (1/2)y2

2A2∞)
→ e−λ1ϕ(δ)−λ2ϕ(1/δ). �
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