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A COMPLETE SOLUTION TO BLACKWELL’S UNIQUE
ERGODICITY PROBLEM FOR HIDDEN MARKOV CHAINS

BY PAVEL CHIGANSKY1 AND RAMON VAN HANDEL

Hebrew University and Princeton University

We develop necessary and sufficient conditions for uniqueness of the
invariant measure of the filtering process associated to an ergodic hidden
Markov model in a finite or countable state space. These results provide a
complete solution to a problem posed by Blackwell (1957), and subsume ear-
lier partial results due to Kaijser, Kochman and Reeds. The proofs of our main
results are based on the stability theory of nonlinear filters.

1. Introduction. The interest in the stationary behavior of hidden Markov
models dates back at least to a 1957 paper by Blackwell [2], who was motivated
by the following problem from information theory. Suppose that (Xn)n≥0 is a sta-
tionary Markov chain which takes values in a finite set. The entropy rate of such
a chain admits a simple expression in terms of its transition probabilities and sta-
tionary distribution. The purpose of the paper by Blackwell was to obtain a similar
expression for the entropy rate of the stochastic process Yn = h(Xn), where h is a
noninvertible function. The latter expression does not involve directly the station-
ary distribution of the process (Xn)n≥0, but rather a particular stationary distribu-
tion of the associated filtering process (πn)n≥0, which is a measure-valued Markov
process defined as πn := P(Xn ∈ ·|Y1, . . . , Yn).

The result of Blackwell raises a natural question: does the filtering process pos-
sess a unique stationary measure or, in other words, is the filtering process uniquely
ergodic? Blackwell conjectured that the filter is uniquely ergodic, provided that
the underlying Markov chain (Xn)n≥0 is irreducible. However, as is pointed out
by Kaijser [8], one of Blackwell’s own counterexamples demonstrates that this
conjecture is incorrect. The problem of finding a complete characterization of the
unique ergodicity of the filtering process has hitherto remained open. The present
paper provides one solution to this problem (in a more general setting).

1.1. The contributions of Kaijser, Kochman and Reeds. To our knowledge,
the only direct contributions to the problem studied in this paper are contained in
Blackwell’s 1957 paper [2], in a 1975 paper by Kaijser [8] and in two recent papers
by Kochman and Reeds [10] and by Kaijser [9], which we presently review.

Received October 2009.
1Supported by ISF Grant 314/09.
AMS 2000 subject classifications. Primary 93E11; secondary 37A50, 60J05, 60J10, 93E15.
Key words and phrases. Hidden Markov models, filtering, unique ergodicity, asymptotic stability.

2318

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/10-AAP688
http://www.imstat.org
http://www.ams.org/msc/


UNIQUE ERGODICITY AND HIDDEN MARKOV CHAINS 2319

In the 1975 paper [8], Kaijser observes that the filtering process can be ex-
pressed as the ratio of two quantities which are defined in terms of products of ran-
dom matrices. Therefore, the unique ergodicity problem can be studied by means
of the Furstenberg–Kesten theory of random matrix products. Such an analysis
leads Kaijser to introduce a certain subrectangularity condition on the matrices
that define the filter [Condition (K) in Section 6]. This rather strong condition is
sufficient, but not necessary for unique ergodicity. It should be noted that Black-
well’s original paper [2] already gives a sufficient condition for unique ergodicity,
which is, however, even stronger than Kaijser’s subrectangularity condition.

In their 2006 paper [10], Kochman and Reeds introduce a weaker sufficient con-
dition for unique ergodicity of the filter, which requires that the closure of a certain
cone of matrices contains an element of rank one [Condition (KR) in Section 2.3].
Kochman and Reeds demonstrate by means of an explicit computation that Kai-
jser’s condition implies the rank one condition, but a counterexample shows that
the latter condition is strictly weaker. Besides providing a generalization of Kai-
jser’s result, Kochman and Reeds employ a different method of proof that is based
on a general result in the ergodic theory of Markov chains in topological state
spaces (which is applied to the filtering process).

Finally, in a recent paper [9], Kaijser presents an extension of the result of
Kochman and Reeds to hidden Markov models where the underlying Markov chain
(Xn)n≥0 takes values in a countable state space. (It should be noted that Kochman
and Reeds, as well as Kaijser, admit a more general observation structure than in
Blackwell’s original problem.) The extension is far from straightforward, as the
ergodic theory employed by Kochman and Reeds is restricted to Markov chains in
locally compact state spaces, while the space of probability measures on a count-
able set is certainly not locally compact. A large part of this lengthy paper is taken
up with the development of a rather specialized ergodic theorem for Markov chains
in Polish spaces, from which a condition similar in spirit to Kochman and Reeds’
rank one condition [Condition (B1) in Section 6] can be derived.

1.2. The approach of Kunita and filter stability. Independently from Black-
well’s unique ergodicity problem, a general study of the ergodic theory of non-
linear filtering processes was initiated in the seminal 1971 paper of Kunita [11].
Kunita studies a somewhat different problem, in continuous time and with white
noise type observations, but which otherwise bears strong similarities to the prob-
lem studied by Blackwell. In contrast to the approaches developed by Kaijser,
Kochman and Reeds, who study the equations that define the filter using general
methods (products of random matrices and ergodic theory of Markov chains), Ku-
nita studies the nonlinear filter directly through its characterization as a conditional
expectation (an approach we called intrinsic in [5]). The techniques developed by
Kunita are in fact extremely general and can be applied also to Blackwell’s prob-
lem, though this approach has not previously been systematically exploited.
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Kunita characterizes the invariant measures of the filtering process by means of
the convex ordering. When the signal (Xn)n≥0 is uniquely ergodic, all invariant
measures of the filter are sandwiched between two distinguished invariant mea-
sures which are minimal and maximal with respect to the convex order, respec-
tively (see Remark 3.2 below for a more precise statement). The filter is uniquely
ergodic precisely when the minimal and maximal invariant measures coincide. The
main result of Kunita’s paper claims that this is always the case, when the signal
is ergodic in a certain sense. Unfortunately, the proof of this result contains a se-
rious gap [1]; indeed, the correctness of the proof is already contradicted by the
counterexample given in Kaijser [8] (see [1, 4] for extensive discussion).

The gap in Kunita’s main result is now largely resolved [14], but under an ad-
ditional nondegeneracy assumption on the observation structure [Condition (N)
of Section 6 in the present setting]. This assumption holds, for example, if Yn =
h(Xn) + εξn where ξn is an independent Gaussian random variable and ε > 0 is
an arbitrarily small noise strength, but breaks down in the noiseless case ε = 0.
The nondegeneracy assumption evidently captures the phenomenon that observa-
tion noise has a stabilizing effect on the filter, as is the case in a large number of
interesting applications. Unfortunately, it is the degenerate case that is chiefly of
interest in Blackwell’s problem, and unique ergodicity turns out to be more deli-
cate in this setting as is demonstrated by various counterexamples [1, 8, 10].

In recent years, there has been considerable interest in the somewhat differ-
ent problem of filter stability (see the survey [5]). Roughly speaking, the filtering
process is called stable if πn becomes independent of its initial condition π0 as
n → ∞ in a certain pathwise sense (e.g., as in Theorem 3.1). However, it is now
well established that when the signal (Xn)n≥0 is ergodic, filter stability and unique
ergodicity of the filter are essentially equivalent properties [4, 6, 12]. In the present
setting, this has two important consequences. First, filter stability can be used as
a tool to study unique ergodicity of the filter, a fact that is heavily exploited in
this paper. Second, previous work on the filter stability problem provides a set of
sufficient conditions for Blackwell’s unique ergodicity problem which are distinct
from those proposed by Kaijser, Kochman and Reeds.

1.3. Contributions of this paper. The present paper was inspired by the obser-
vation that the conditions of Kochman and Reeds [10] and Kaijser [9] are reminis-
cent of the filter stability property, albeit along a single sample path. It is therefore a
natural step to make the connection with filter stability theory and Kunita’s ergodic
theory. Our results demonstrate that this approach is both natural and fruitful.

Our first main result, Theorem 2.6, establishes that a certain Condition (C) is
necessary and sufficient for unique ergodicity of the filter in the case where Xn

and Yn both take values in an (at most) countable state space. It is easily shown,
as we do in Section 6, that the sufficient conditions given in Kaijser’s recent paper
[9] imply Condition (C). It should be noted that the proof of Theorem 2.6 is sur-
prisingly easy and natural—that is, provided the connection between filter stability
and Kunita’s ergodic theory (given in Theorem 3.1) is taken for granted.
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Our second main result, Theorem 2.7, shows that the rank one Condition (KR)
of Kochman and Reeds is necessary and sufficient for unique ergodicity of the filter
in the case where Xn takes values in a finite state space. Sufficiency was already
proved by Kochman and Reeds [10], though we give here an entirely different
proof of this fact by showing that Condition (KR) implies Condition (C). The ne-
cessity of Condition (KR) is new, and answers in the affirmative the question posed
on the last page of [10]. Thus the necessity and sufficiency of Condition (KR) pro-
vides a complete solution to the original problem posed by Blackwell [2].

Our main results subsume all of the sufficient conditions introduced in the pa-
pers of Kaijser, Kochman and Reeds. In addition, we discuss in Section 6 some
sufficient conditions of a different nature which are inherited from results in the
filter stability literature. Though these conditions are not necessary, they may be
substantially easier to check in practice than Condition (C) or (KR). Moreover,
such conditions remain of independent interest, as we were not able to verify by
an explicit computation that they imply Condition (C) or (KR) (of course, this
implication follows indirectly from the necessity of these conditions).

1.4. Organization of the paper. The remainder of this paper is organized as
follows. In Section 2 we introduce the basic hidden Markov model, and we fix
once and for all the notation and standing assumptions that are presumed to be in
force throughout the paper. We also state our main results, Theorems 2.6 and 2.7.
In Section 3, we introduce the connection between filter stability and unique ergod-
icity of the filter. The main result of this section, Theorem 3.1, adapts the necessary
theory to the setting of this paper and forms the foundation for the proofs of our
main results. Section 4 is devoted to the proof of Theorem 2.6, while Section 5 is
devoted to the proof of Theorem 2.7. Section 6 develops various sufficient condi-
tions for unique ergodicity within the setting of this paper. Finally, the Appendix
is devoted to the proofs of various results that were omitted from the body of the
paper.

2. Preliminaries and main results.

2.1. The canonical setup and standing assumptions. Throughout this paper,
we operate in the following setup. We consider the stochastic process (Xn,Yn)n∈Z,
where Xn takes values in the state space E, and Yn takes values in the state space F .
We will always presume that the following assumptions are in force:

• E is either finite (E = {1, . . . , p}) or countable (E = N).
• F is a Polish space [endowed with its Borel σ -field B(F )].

We realize the stochastic process (Xn,Yn)n∈Z on the canonical path space � =
�X ×�Y with �X = EZ and �Y = FZ, such that Xn(x, y) = x(n) and Yn(x, y) =
y(n). Denote by F the Borel σ -field on �, and introduce the σ -fields

F X
m,n = σ {Xk :k ∈ [m,n]}, F Y

m,n = σ {Yk :k ∈ [m,n]}
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for m,n ∈ Z, m ≤ n. The σ -fields F X−∞,n, F X
m,∞, etc., are defined in the usual

fashion (e.g., F X−∞,n = ∨
m≤n F X

m,n). For future reference, we define

Gm,n = F X−∞,m ∨ F Y−∞,n, G−∞,n = ⋂
m≤n

Gm,n

(note that F Y−∞,n ⊂ G−∞,n, a fact that will be used frequently in the following).
Finally, the shift � :� → � is defined as �(x,y)(m) = (x(m + 1), y(m + 1)).

We now define a probability measure on (�, F ) under which (Xk,Yk)k∈Z is a
hidden Markov model. Our model is specified by the following ingredients:

(1) A σ -finite reference measure ϕ on F .
(2) A nonnegative matrix function M :F → R

E×E+ such that

sup
i∈E

∑
j∈E

Mij (y) < ∞ for ϕ-a.e. y ∈ F,

and such that the matrix

P = (Pij )i,j∈E, Pij :=
∫

Mij (y)ϕ(dy)

defines the transition matrix of an irreducible and positive recurrent (but not
necessarily aperiodic) Markov chain in the state space E.

As P is irreducible and positive recurrent, there is a unique probability measure
λ on E that is invariant λP = λ (as is usual, we identify measures and functions
on a countable space with row and column vectors, respectively). A standard ex-
tension argument allows us to construct a probability measure P on (�, F ) under
which (Xk,Yk)k∈Z is a stationary Markov chain with transition probabilities

P(Xk = j,Yk ∈ A|Xk−1 = i, Yk−1 = y) =
∫
A

Mij (y
′)ϕ(dy′)

for i, j ∈ E, y ∈ F , A ∈ B(F ). It should be noted that under P, the process (Xk)k∈Z

is a stationary Markov chain with transition matrix P , and (Yk)k∈Z are condition-
ally independent given (Xk)k∈Z. This is precisely the defining property of a hidden
Markov model. The process (Xk)k∈Z represents an unobserved or “hidden” signal
process, while (Yk)k∈Z is the observation process. The canonical probability space
(�, F ,P) thus constructed will remain fixed throughout the paper.

REMARK 2.1. A hidden Markov model is often assumed to satisfy the addi-
tional assumption that Yk is a (noisy) function of Xk only. In this case, one can
factor Mij (y) = PijRj (y), where Rj(y) is the density of P(Yk ∈ ·|Xk = j) with
respect to ϕ. In the present setting, the conditional law of Yk can depend on both
Xk and Xk−1. The generalization afforded by this model is minor, but allows us to
include the partitioned transition matrices of [9, 10] as a special case.
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REMARK 2.2. The boundedness condition supi∈E

∑
j∈E Mij (y) < ∞ a.e. is

automatically satisfied in the following cases:

• When E is a finite set, the condition holds trivially.
• When E is countable and F is at most countable, the condition always holds.

Indeed, note that in this case
∑

y∈F

∑
j∈E Mij (y)ϕ({y}) = ∑

j∈E Pij = 1, so
that supi∈E

∑
j∈E Mij (y) ≤ ϕ({y})−1 < ∞ for ϕ-a.e. y ∈ F .

The significance of this assumption is that it ensures the Feller property of the
filter.

For any Polish space S we denote by B(S) the Borel σ -field of S, by P(S)

the space of probability measures on S, and by Cb(S) the space of bounded con-
tinuous functions on S. We will always endow P(S) with the topology of weak
convergence of probability measures [recall that P(S) is then itself Polish], and
we write μn ⇒ μ if the sequence (μn) ⊂ P(S) converges weakly to μ ∈ P(S).
The total variation distance between probability measures μ,ν ∈ P(S) is defined
as

‖μ − ν‖ = sup
‖f ‖∞≤1

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣.
Finally, let us recall that as E is at most countable and P is irreducible, the invariant
measure λ must charge every point of E. Therefore μ � λ for every μ ∈ P(E),
and we can define the probability measures Pμ on (�, F ) as

dPμ

dP
= dμ

dλ
(X0), μ ∈ P(E).

The restriction of Pμ to F X
0,∞ ∨ F Y

1,∞ defines a hidden Markov model with the
same transition probabilities as under P, but with the initial distribution X0 ∼ μ.
If the initial distribution is a point mass on x ∈ E, we will write Px instead of Pδx .

2.2. Nonlinear filtering. The purpose of nonlinear filtering is to compute the
conditional distribution of the hidden signal given the available observations. In
this paper we will encounter several variants of the nonlinear filter, defined as
follows:

πn = P(Xn ∈ ·|F Y
1,n), πμ

n = Pμ(Xn ∈ ·|F Y
1,n), πx

n = Px(Xn ∈ ·|F Y
1,n)

for n ∈ Z+, μ ∈ P(E), x ∈ E (here π0 = λ, π
μ
0 = μ and πx

0 = δx) and

πmin
n = P(Xn ∈ ·|F Y−∞,n), πmax

n = P(Xn ∈ ·|G−∞,n)

for n ∈ Z. Though the relevance of πmin
n and πmax

n may not be entirely evident at
present, their role will be clarified in Section 3 below.

The following elementary results are essentially known; short proofs are pro-
vided in Appendix A.1 for the reader’s convenience.
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LEMMA 2.3 (Filtering recursion). For any m,n ∈ Z, n > m we have P-a.s.

πmin
n = πmin

m M(Ym+1) · · ·M(Yn)

πmin
m M(Ym+1) · · ·M(Yn)1

, πmax
n = πmax

m M(Ym+1) · · ·M(Yn)

πmax
m M(Ym+1) · · ·M(Yn)1

.

Similarly, for any n > m ≥ 0, we have Pμ-a.s.

πμ
n = π

μ
mM(Ym+1) · · ·M(Yn)

π
μ
mM(Ym+1) · · ·M(Yn)1

.

The recursion for πn,π
x
n is obtained by choosing μ = λ or μ = δx , respectively.

It should be noted that π
μ
n is defined only up to a Pμ-null set. Indeed,

Pμ(
(Y1, . . . , Yn) ∈ A

) =
∫
A

μM(y1) · · ·M(yn)1ϕ(dy1) · · ·ϕ(dyn),

that is, μM(y1) · · ·M(yn)1 is the density of the law of (Y1, . . . , Yn) under Pμ.
Similarly, it is easily seen that π

μ
mM(ym+1) · · ·M(yn)1 is the density of the law

of (Ym+1, . . . , Yn) under the conditional measure Pμ(·|Y0, . . . , Ym). Therefore, the
denominator in the filtering recursion can only vanish on a Pμ-null set. Similar
considerations hold for πmin

n ,πmax
n , which are defined up to a P-null set.

LEMMA 2.4 (Markov property). (πmin
n )n∈Z, (πmax

n )n∈Z are stationary P(E)-
valued Markov chains under P, whose transition kernel � is defined by∫

f (ν)�(μ,dν) =
∫

f

(
μM(y)

μM(y)1

)
μM(y)1ϕ(dy), f ∈ Cb(P(E)).

Similarly, (π
μ
n )n∈Z+ is a Markov chain under Pμ with transition kernel �.

REMARK 2.5. As (πmin
n )n∈Z, (πmax

n )n∈Z are stationary Markov chains with
transition kernel �, the laws of πmax

0 and πmin
0 must be invariant for �. Therefore,

the filter always possesses at least one invariant measure.

2.3. Main results. This paper aims to resolve the following question: when
does the filter possess a unique invariant measure, that is, when does the equation
M� = M possess a unique solution M ∈ P(P(E))?

We begin by establishing a general sufficient condition for unique ergodicity,
which is also necessary when the observation state space F is at most countable.

CONDITION (C). For every ε > 0, there exist an integer N ∈ N and subsets
S ⊂ P(E) and O ⊂ FN such that the following hold:

(1) P(πmin
0 ∈ S and πmax

0 ∈ S) > 0 and ϕ⊗N(O) > 0.
(2) μM(y1) · · ·M(yN)1 > 0 for all μ ∈ S and (y1, . . . , yN) ∈ O.
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(3) For all μ,ν ∈ S and (y1, . . . , yN) ∈ O∥∥∥∥ μM(y1) · · ·M(yN)

μM(y1) · · ·M(yN)1
− νM(y1) · · ·M(yN)

νM(y1) · · ·M(yN)1

∥∥∥∥ < ε.

THEOREM 2.6. Suppose that Condition (C) holds. Then the filter admits a
unique invariant measure M, and we have n−1 ∑n

k=1 M0�
k ⇒ M as n → ∞ for

any M0 ∈ P(P(E)). If, in addition, the signal transition matrix P is aperiodic,
then we have M0�

n ⇒ M as n → ∞ for any M0 ∈ P(P(E)).
Conversely, suppose that the observation state space F is a finite or countable

set, and that the filter is uniquely ergodic. Then Condition (C) holds.

The proof of this result is given in Section 4.
Next, we consider the following condition, due to Kochman and Reeds [10], for

the case where the signal state space E is a finite set.

CONDITION (KR). Let E be a finite set, and define the cone of matrices

K = {cM(y1) · · ·M(yn) :n ∈ N, y1, . . . , yn ∈ F, c ∈ R+}.
Then the closure cl K contains a matrix of rank 1.

Kochman and Reeds prove that this condition is sufficient for uniqueness of the
invariant measure of the filter (in [10], both E and F are presumed to be finite).
The following result shows that Condition (KR) is in fact equivalent to unique
ergodicity of the filter, as well as to Condition (C) above, when the signal state
space is a finite set. This provides a complete solution to a problem posed by
Blackwell [2], and answers in the affirmative the question posed at the end of [10].

THEOREM 2.7. Suppose E is a finite set and that one of the following hold:

• F is a finite or countable set, and ϕ is the counting measure; or
• F = R

d , ϕ is the Lebesgue measure, and y �→ M(y) is continuous.

Then the following are equivalent:

(1) The filter admits a unique invariant measure M.
(2) Condition (KR) holds.
(3) Condition (C) holds.

When any of these conditions hold, we have n−1 ∑n
k=1 M0�

k ⇒ M as n → ∞ for
any M0 ∈ P(P(E)). If, in addition, the signal transition matrix P is aperiodic,
then we have M0�

n ⇒ M as n → ∞ for any M0 ∈ P(P(E)).

The proof will be given in Section 5.
Finally, various sufficient conditions for unique ergodicity of the filter were

given by Kaijser [8, 9]. These conditions are easily shown to imply Condition (C),
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as is discussed in Section 6. We therefore reproduce Kaijser’s results using a much
simpler proof. Similarly, various conditions that have been introduced in the con-
text of filter stability [5, 14, 15] are shown in Section 6 to imply unique ergodicity
of the filter. None of the latter sufficient conditions is also necessary; however,
when they apply, they are often easier to check than Condition (C) or (KR).

3. Ergodic theory and stability of nonlinear filters. The proofs of our main
results are based on a general circle of ideas connecting the ergodic theory [11,
12] and asymptotic stability [5, 14] of nonlinear filters. Indeed, it is by now well
established [4, 6] that unique ergodicity and stability of the filter are essentially
equivalent properties. The purpose of this section is to introduce the relevant results
in this direction that will be needed in what follows. Though the results in this
section are adapted to the setting of this paper, their proofs largely follow along the
lines of [6, 11, 12, 14]. We have therefore relegated the proofs to the Appendix.

The following characterization will be of central importance.

THEOREM 3.1. Consider the following conditions:

(1) The filter possesses a unique invariant measure M ∈ P(P(E)).
(2) πmax

0 = πmin
0 P-a.s.

(3) ‖πμ
n − πν

n‖ → 0 as n → ∞ Pμ-a.s. whenever μ � ν.
(4) n−1 ∑n

k=1 M0�
k ⇒ M as n → ∞ for any M0 ∈ P(P(E)).

(5) M0�
n ⇒ M as n → ∞ for any M0 ∈ P(P(E)).

Conditions 1–4 are equivalent. If, in addition, the signal transition matrix P is
aperiodic, then conditions 1–5 are equivalent.

The proof is given in Appendix A.2.

REMARK 3.2. Condition 1 is the desired unique ergodicity property of the
filter. Condition 3 is the filter stability property. Conditions 4 and 5 characterize
the convergence of the law of the filter to the invariant measure.

Condition 2 in Theorem 3.1 stems from an ingenious device introduced by Ku-
nita in the seminal paper [11] and used in the proof of Theorem 3.1. By Lemma 2.4,
(πmin

n )n∈Z and (πmax
n )n∈Z are stationary Markov processes. Therefore, the laws

Mmax,Mmin ∈ P(P(E)) of the P(E)-valued random variables πmax
0 , πmin

0 are in-
variant for the filter transition kernel �. Kunita shows that any invariant measure
M for � is sandwiched between Mmax and Mmin in the sense that∫

f (μ)Mmin(dμ) ≤
∫

f (μ)M(dμ) ≤
∫

f (μ)Mmax(dμ)

for every convex function f ∈ Cb(P(E)). In other words, within the family of
�-invariant measures, Mmin is minimal and Mmax is maximal with respect to the
convex ordering. The identity πmax

0 = πmin
0 ensures that the maximal and minimal

invariant measures are identical, so that there can be only one invariant measure.
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EXAMPLE 3.3. Some intuition may be obtained from the following simple
example [10], which is a typical case where the filter fails to be uniquely ergodic.
Let E = F = {0,1} (endowed with the counting measure), and let

M(0) =
(

0 1/2
1/2 0

)
, M(1) =

(
1/2 0
0 1/2

)
.

Note that P = M(0) + M(1) is irreducible and aperiodic with invariant measure
λ0 = λ1 = 1/2, and Yk = I{Xk−1=Xk} for all k ≥ 1.

As (Yk)k≥1 reveals exactly when the transitions of (Xk)k≥0 occur, we evidently
have Xk ∈ σ {Xm,Ym+1, Ym+2, . . . , Yn} for every m ≤ k ≤ n. It follows that Gm,n =
F X−∞,n for every m ≤ n, so that in particular G−∞,n = F X−∞,n. Therefore

πmax
n = δXn, Mmax = 1

2{δδ0 + δδ1}.
On the other hand, it follows immediately from the filtering recursion that πn = λ

for all n. It is therefore not difficult to show that πmin
n = λ also, so that

πmin
n = λ, Mmin = δλ = δ(δ0+δ1)/2.

With a little more work, one can show that any invariant measure M is of the form

M =
∫ 1/2

0

δεδ0+(1−ε)δ1 + δ(1−ε)δ0+εδ1

2
m(dε)

for some probability measure m on [0,1/2]. It is easily seen that any such M does
indeed lie between Mmax and Mmin in the convex ordering.

Besides the characterization of unique ergodicity in Theorem 3.1, we will re-
quire the following convergence property which holds regardless of unique ergod-
icity.

LEMMA 3.4. limn→∞ ‖πmax
n − πmin

n ‖ exists P-a.s.

The proof of this result is also given in Appendix A.2. Its relevance is due to
the following observation. In order to prove πmax

0 = πmin
0 (hence unique ergodic-

ity by Theorem 3.1), it suffices to show that limn→∞ ‖πmax
n − πmin

n ‖ = 0 P-a.s.,
as (πmin

n )n∈Z and (πmax
n )n∈Z are stationary processes. But by virtue of Lemma

3.4, it then suffices to show only that ‖πmax
n − πmin

n ‖ converges to zero along
a sequence of stopping times. The main idea behind the proof of Theorem 2.6
is that Condition (C) allows us to construct explicitly such a sequence stopping
times.
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4. Proof of Theorem 2.6.

4.1. Sufficiency of Condition (C). We will need the following lemma.

LEMMA 4.1. The sequence (Xk,Yk)k∈Z is ergodic under P.

PROOF. As the signal transition matrix P is presumed to be irreducible and
positive recurrent, it is easily established that the pair (Xk,Yk)k∈Z is a Markov
process that possesses a unique invariant measure. This measure is therefore triv-
ially an extreme point of the set of invariant measures, hence ergodic. �

We will also use the following simple result.

LEMMA 4.2. Let the set S ⊂ P(E) and O ⊂ FN be as in Condition (C). Then
we have P(πmin

0 ∈ S, πmax
0 ∈ S, (Y1, . . . , YN) ∈ O) > 0.

PROOF. Let us write for simplicity Y = (Y1, . . . , YN). As πmin
0 and πmax

0 are
G−∞,0-measurable by construction, we have

P(πmin
0 ∈ S, πmax

0 ∈ S, Y ∈ O)

= E
(
IS (πmin

0 )IS (πmax
0 )P(Y ∈ O|G−∞,0)

)
= E

(
IS (πmin

0 )IS (πmax
0 )

∫
O

πmax
0 M(y1) · · ·M(yN)1ϕ(dy1) · · ·ϕ(dyN)

)
.

It is now easily seen that Condition (C) implies the result. �

We now proceed with the proof of the sufficiency part of Theorem 2.6. Suppose
that Condition (C) holds, and fix an arbitrary decreasing sequence εk ↘ 0. Then for
every k we can find Nk ∈ N, Sk ⊂ P(E), and Ok ⊂ FNk such that the properties
1–3 of Condition (C) are satisfied. Define the events

An,k = {πmin
n ∈ Sk,π

max
n ∈ Sk, (Yn+1, . . . , Yn+Nk

) ∈ Ok}.
Then, by the stationarity of (Xn,Yn,π

min
n ,πmax

n )n∈Z (Lemma A.1), we have

lim
T →∞

1

T

T∑
n=1

IAn,k
= lim

T →∞
1

T

T∑
n=1

{IA0,k
◦ �n} = P(A0,k) > 0 P-a.s.,

where we have used Birkhoff’s ergodic theorem together with Lemmas 4.1 and 4.2.
Thus, for any k, the event An,k occurs at a positive rate, so that certainly

P

( ∞⋂
k=1

lim sup
n→∞

An,k

)
= 1.
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Now define the stopping times τ0 = 0 and

τk = min{n > τk−1 :πmin
n−Nk

∈ Sk,π
max
n−Nk

∈ Sk, (Yn−Nk+1, . . . , Yn) ∈ Ok}
for any k ≥ 1. It follows directly that

P(τk < ∞ for all k) ≥ P

( ∞⋂
k=1

lim sup
n→∞

An,k

)
= 1.

Moreover, by Condition (C) and Lemma 2.3, we have

‖πmax
τk

− πmin
τk

‖ =
∥∥∥∥ πmax

τk−Nk
M(Yτk−Nk+1) · · ·M(Yτk

)

πmax
τk−Nk

M(Yτk−Nk+1) · · ·M(Yτk
)1

− πmin
τk−Nk

M(Yτk−Nk+1) · · ·M(Yτk
)

πmin
τk−Nk

M(Yτk−Nk+1) · · ·M(Yτk
)1

∥∥∥∥ ≤ εk

for all k ≥ 1 P-a.s. Therefore, Lemma 3.4 shows that ‖πmax
n − πmin

n ‖ → 0 as
n → ∞ P-a.s. But using the stationarity of (πmin

n ,πmax
n )n∈Z (Lemma A.1) and

the dominated convergence theorem, we find that

E(‖πmax
0 − πmin

0 ‖) = E(‖πmax
n − πmin

n ‖) n→∞−→ 0,

so that evidently πmax
0 = πmin

0 P-a.s. The sufficiency part of Theorem 2.6 now
follows immediately from Theorem 3.1.

4.2. Necessity of Condition (C). Throughout this subsection, we assume that
the observation state space F is finite or countable, and that the filter possesses a
unique invariant measure. We aim to show that Condition (C) must hold.

Denote by M the law of πmin
0 . Thus M is invariant, hence the unique invariant

measure of the filter. Fix an arbitrary state i ∈ E, and note that

E((πmin
0 )i) = λi > 0 implies P

(
(πmin

0 )i ≥ λi/2
)
> 0.

Therefore, writing R = {μ ∈ P(E) :μi ≥ λi/2}, we have M(R) > 0. We can thus
define the probability measure MR(·) := M(· ∩ R)/M(R).

Now note that, by Theorem 3.1, we have ‖πi
n − π

μ
n ‖ → 0 Pi -a.s. for all μ ∈ R.

In particular, the set of points ((yk)k∈N,μ) ∈ FN × P(E) such that∥∥∥∥ δiM(y1) · · ·M(yn)

δiM(y1) · · ·M(yn)1
− μM(y1) · · ·M(yn)

μM(y1) · · ·M(yn)1

∥∥∥∥ n→∞−→ 0

has Pi ⊗ MR-full measure. It follows that for Pi-a.e. path (yk)k∈N, the above con-
vergence holds for MR-a.e. μ. Therefore, as F is at most countable [so the law
of (Y1, . . . , Yn) is atomic for all n < ∞], we can certainly find a single sequence
(ỹk)k∈N with Pi(Y1 = ỹ1, . . . , Yn = ỹn) > 0 for all n < ∞ such that∥∥∥∥ δiM(ỹ1) · · ·M(ỹn)

δiM(ỹ1) · · ·M(ỹn)1
− μM(ỹ1) · · ·M(ỹn)

μM(ỹ1) · · ·M(ỹn)1

∥∥∥∥ n→∞−→ 0 for MR-a.e. μ.
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By Egorov’s theorem, there is a subset S ⊂ R with M R(S) > 0 such that

sup
μ∈S

∥∥∥∥ δiM(ỹ1) · · ·M(ỹn)

δiM(ỹ1) · · ·M(ỹn)1
− μM(ỹ1) · · ·M(ỹn)

μM(ỹ1) · · ·M(ỹn)1

∥∥∥∥ n→∞−→ 0.

We are now in the position to show that Condition (C) holds true. Given ε > 0, we
first choose the integer N ∈ N large enough so that

sup
μ∈S

∥∥∥∥ δiM(ỹ1) · · ·M(ỹN)

δiM(ỹ1) · · ·M(ỹN)1
− μM(ỹ1) · · ·M(ỹN)

μM(ỹ1) · · ·M(ỹN)1

∥∥∥∥ ≤ ε

2
.

We let S be as above and define the singleton O = {(ỹ1, . . . , ỹN )}. By Theo-
rem 3.1, we have πmax

0 = πmin
0 and therefore

P(πmax
0 ∈ S and πmin

0 ∈ S) = P(πmin
0 ∈ S) = M(S) ≥ M(R)MR(S) > 0.

Next, we note that as Pi (Y1 = ỹ1, . . . , YN = ỹN ) > 0,

Pi((Y1, . . . , YN) ∈ O
) = δiM(ỹ1) · · ·M(ỹN)1ϕ({ỹ1}) · · ·ϕ({ỹN }) > 0,

so ϕ⊗N(O) > 0 and μM(ỹ1) · · ·M(ỹN)1 > 0 for all μ ∈ S (this holds by the defi-
nition of R and as S ⊂ R). Finally, by the triangle inequality,

sup
μ,ν∈S

∥∥∥∥ μM(ỹ1) · · ·M(ỹN)

μM(ỹ1) · · ·M(ỹN)1
− νM(ỹ1) · · ·M(ỹN)

νM(ỹ1) · · ·M(ỹN)1

∥∥∥∥ ≤ ε.

Thus Condition (C) is satisfied, and the proof is complete.

5. Proof of Theorem 2.7. The implication 3 ⇒ 1 is already established by
Theorem 2.6. It therefore suffices to prove the implications 1 ⇒ 2 and 2 ⇒ 3.

5.1. Proof of 1 ⇒ 2. We will need the following lemma.

LEMMA 5.1. Let (�, X , (Xn)n∈N,�) be a filtered probability space, and let
Q,Q′ be mutually singular probability measures on �. Suppose that Q,Q′ are
locally absolutely continuous with respect to �, that is, Q|Xn � �|Xn and Q′|Xn �
�|Xn with densities qn and q ′

n, respectively. Then qn/q
′
n → 0 as n → ∞ Q′-a.s.

PROOF. Let �̃ = (� + Q + Q′)/3, and let rn be the density of �|Xn with
respect to �̃|Xn . Then we have qnrn → dQ/d�̃ and q ′

nrn → dQ′/d�̃ �̃-a.s., hence
Q′-a.s. as Q′ � �̃. But dQ/d�̃ = 0 Q′-a.s. and dQ′/d�̃ > 0 Q′-a.s. by the mutual
singularity of Q and Q′. The claim follows directly. �

We consider the finite state space E = {1, . . . , p}. Let us write

�1, . . . ,�p ⊆ FN, �i = supp Pi |F Y
1,∞

.
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There exists a finite partition {A1, . . . ,AK} of F N such that σ {A1, . . . ,AK} =
σ {�1, . . . ,�p}. We may assume without loss of generality that

Pi((Yk)k∈N ∈ A1
)
> 0 for i = 1, . . . , q,

Pi((Yk)k∈N ∈ A1
) = 0 for i = q + 1, . . . , p

for some q ∈ E (this can always be accomplished by relabeling the points of the
state space). Define P̃(·) = P1(·|(Yk)k∈N ∈ A1). Then, by construction, P̃|F Y

1,∞
�

Pi |F Y
1,∞

for i = 1, . . . , q and P̃|F Y
1,∞

⊥ Pi |F Y
1,∞

for i = q + 1, . . . , p.

We assume that the filter is uniquely ergodic, so that ‖πx
n − πn‖ → 0 Px-a.s.

for every x ∈ E by Theorem 3.1 (this follows as λ charges all points in E, so we
certainly have δx � λ for all x ∈ E). Therefore, we find that

lim
n→∞‖πx

n − πn‖ = 0 for x = 1, . . . , q, P̃-a.s.

Denote by qi
n the density of Pi ((Y1, . . . , Yn) ∈ ·) with respect to ϕ⊗n, and similarly

denote by q̃n the density of P̃((Y1, . . . , Yn) ∈ ·) with respect to ϕ⊗n. Then

q̃n, q
x
n > 0 for all n ∈ N, x = 1, . . . , q and lim

n→∞
q̃n

q1
n

< ∞ P̃-a.s.

(the latter follows as q̃n/q
1
n is a uniformly integrable martingale under P1), while

lim
n→∞

qi
n

q̃n

= 0 for i = q + 1, . . . , p, P̃-a.s.

by Lemma 5.1. (The fact that ϕ may be any σ -finite measure does not preclude
the application of Lemma 5.1, as ϕ can always be transformed into a probability
measure by means of an equivalent change of measure.)

As all of the above statements hold P̃-a.s., we can certainly find one sample path
(ỹk)k∈N on which all these statements hold simultaneously. In particular, we have∥∥∥∥ δxM(ỹ1) · · ·M(ỹn)

δxM(ỹ1) · · ·M(ỹn)1
− λM(ỹ1) · · ·M(ỹn)

λM(ỹ1) · · ·M(ỹn)1

∥∥∥∥ n→∞−→ 0 for x = 1, . . . , q,

as well as

δiM(ỹ1) · · ·M(ỹn)1

δ1M(ỹ1) · · ·M(ỹn)1
= qi

n(ỹ1, . . . , ỹn)

q1
n(ỹ1, . . . , ỹn)

n→∞−→ 0 for i = q + 1, . . . , p.

Now define the matrix norm ‖M‖ := sup‖f ‖∞≤1 sup‖μ‖1≤1 μMf . As the set of
matrices of unit norm is compact (as we are in the finite-dimensional setting),
there must be a subsequence nk ↗ ∞ and a matrix M∞ such that

M(ỹ1) · · ·M(ỹnk
)

‖M(ỹ1) · · ·M(ỹnk
)‖

k→∞−→ M∞, ‖M∞‖ = 1.
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We claim that M∞ is a rank 1 matrix. Indeed, for i = q + 1, . . . , p we have

‖δiM∞‖ = lim
k→∞

‖δiM(ỹ1) · · ·M(ỹnk
)‖

‖M(ỹ1) · · ·M(ỹnk
)‖ ≤ lim

k→∞
δiM(ỹ1) · · ·M(ỹnk

)1

δ1M(ỹ1) · · ·M(ỹnk
)1

= 0.

On the other hand, consider a state x ∈ {1, . . . , q} such that ‖δxM∞‖ > 0. Then
δxM∞1 = ‖δxM∞‖ > 0, and thus also λM∞1 > 0. But then∥∥∥∥ δxM∞

δxM∞1
− λM∞

λM∞1

∥∥∥∥
= lim

k→∞

∥∥∥∥ δxM(ỹ1) · · ·M(ỹnk
)

δxM(ỹ1) · · ·M(ỹnk
)1

− λM(ỹ1) · · ·M(ỹnk
)

λM(ỹ1) · · ·M(ỹnk
)1

∥∥∥∥ = 0.

Therefore, we have shown that for every j = 1, . . . , p, the j th row of M∞ is either
zero, or a multiple of the row vector λM∞. Moreover, M∞ is not identically zero
as ‖M∞‖ = 1. Thus M∞ is a rank 1 matrix, and Condition (KR) follows.

5.2. Proof of 2 ⇒ 3. We assume that Condition (KR) holds. Therefore, there
exists a nonnegative column vector u (which is not identically zero), and a proba-
bility measure �, such that the rank 1 matrix u� is in the closure of the cone C . In
particular, for any δ > 0, we can choose N ∈ N, y1, . . . , yN ∈ F , c > 0 such that

‖cM(y1) · · ·M(yN) − u�‖ < δ.

Let α > 0 (to be chosen below), and define the set

S = {μ ∈ P(E) :μu > α}.
Then we can estimate

sup
μ∈S

∥∥∥∥ μM(y1) · · ·M(yN)

μM(y1) · · ·M(yN)1
− �

∥∥∥∥ ≤ 2δ

α
.

In particular, by the triangle inequality,

sup
μ,ν∈S

∥∥∥∥ μM(y1) · · ·M(yN)

μM(y1) · · ·M(yN)1
− νM(y1) · · ·M(yN)

νM(y1) · · ·M(yN)1

∥∥∥∥ ≤ 4δ

α
.

Moreover, note that

cμM(y1) · · ·M(yN)1 ≥ μu − ‖cM(y1) · · ·M(yN) − u�‖ > α − δ

for all μ ∈ S .
We aim to show that Condition (C) is satisfied. To this end, let ε > 0 be given

(and ε < 1 without loss of generality). As λu > 0, we may choose α = λu/2 and
δ = αε/4. Now choose N ∈ N, y1, . . . , yN ∈ F , c > 0 as above. When F is at
most countable, the above choices of N and S , together with the singleton O =
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{(y1, . . . , yN)}, satisfy properties 1–3 of Condition (C). Indeed, properties 2 and 3
are immediate from the above computations. To prove property 1, note that

P(πmin
0 ∈ S and πmax

0 ∈ S)

≥ P(πmax
0 u ≥ πmin

0 u > λu/2)

= E
(
P(πmax

0 u ≥ πmin
0 u|F Y−∞,0)I]λu/2,∞[(πmin

0 u)
)
.

As trivially P(X ≥ E(X)) > 0 for any random variable X, we have P-a.s.

P(πmax
0 u ≥ πmin

0 u|F Y−∞,0) = P
(
πmax

0 u ≥ E(πmax
0 u|F Y−∞,0)|F Y−∞,0

)
> 0,

while P(πmin
0 u > λu/2) > 0 by virtue of the fact that E(πmin

0 u) = λu. Therefore
P(πmin

0 ∈ S and πmax
0 ∈ S) > 0, and the claim is established.

In the case where F = R
d , we cannot choose O to be a singleton as this set

has Lebesgue measure zero. However, note that by the assumed continuity, all
the above computations extend to a sufficiently small neighborhood of the path
(y1, . . . , yN). Choosing O to be such a neighborhood, we have ϕ⊗N(O) > 0 by
construction, and the remainder of the proof proceeds as in the countable case.

6. Sufficient conditions. Our main results, Theorems 2.6 and 2.7, establish
necessary and sufficient conditions for unique ergodicity of the filter. The purpose
of this section is to discuss various sufficient conditions that have appeared in the
literature, and their relations to our main results. First, we discuss the sufficient
conditions introduced by Kaijser [8, 9] and show how these can be obtained di-
rectly from our Theorem 2.6. Then, we discuss various conditions that have been
introduced in the context of the filter stability problem [5, 14, 15].

6.1. Kaijser’s sufficient conditions. In Kaijser’s 1975 paper [8], the following
condition is shown to be sufficient for unique ergodicity of the filter.

CONDITION (K). Let E and F be finite sets, let ϕ be the counting measure on
F and let the signal transition matrix P be aperiodic. There exist y1, . . . , yn ∈ F

such that the matrix M = M(y1) · · ·M(yn) is nonzero and subrectangular, that is,
Mij > 0 and Mkl > 0 imply Mil > 0 and Mkj > 0.

Kaijser’s proof of sufficiency is based on the Furstenberg–Kesten theory of
products of random matrices. A much simpler proof was given by Kochman and
Reeds in [10], Section 5, where Condition (K) is shown to imply Condition (KR)
through an explicit computation. Kochman and Reeds prove the sufficiency of
Condition (KR) by invoking a general result in the ergodic theory of Markov
chains in topological state spaces. We would argue that the proof of sufficiency
given here is even simpler, at least if one takes for granted the (essentially known)
characterization of unique ergodicity of the filter provided by Theorem 3.1.
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Kaijser showed already in [8] by means of a counterexample that the subrectan-
gularity condition cannot be dropped, that is, that irreducibility and aperiodicity
of the signal need not imply unique ergodicity of the filter. Kochman and Reeds
provide two further counterexamples [10]. They demonstrate that the assumption
of aperiodicity cannot be dropped in Condition (K), that is, that subrectangularity
and irreducibility need not imply unique ergodicity of the filter. Moreover, they
provide a counterexample where Condition (KR) is satisfied and the signal is irre-
ducible and aperiodic, but Condition (K) is not satisfied. Theorem 2.7 in this paper
completes these results by establishing the necessity of Condition (KR).

In a recent paper, Kaijser [9] introduces two sufficient conditions for unique
ergodicity of the filter in the case where E and F are countable.

CONDITION (B1). Let E and F be countable, and let ϕ be the counting mea-
sure. There exists a nonnegative function u :E → R+ with ‖u‖∞ = 1, a probabil-
ity measure � on E, a sequence of integers (nk)k∈N and a sequence of observation
paths (yk

1 , . . . , yk
nk

)k∈N with ‖M(yk
1) · · ·M(yk

nk
)‖ > 0, such that

∥∥∥∥ δxM(yk
1) · · ·M(yk

nk
)

‖M(yk
1) · · ·M(yk

nk
)‖ − u(x)�

∥∥∥∥ k→∞−→ 0 for all x ∈ E.

(Here we have defined the norm ‖M‖ := sup‖f ‖∞≤1 sup‖μ‖1≤1 μMf .)

CONDITION (B). Let E and F be countable, and let ϕ be the counting mea-
sure. For every β > 0, there exists an x0 ∈ E such that the following holds: given
any tight set T ⊂ P(E) such that, for any M0 ∈ P(P(E)) with

∫
νM0(dν) = λ,

M0
(

T ∩ {ν ∈ P(E) :νx0 > λx0/2}) ≥ λx0/3,

there exist N ∈ N and y1, . . . , yN ∈ F such that δx0M(y1) · · ·M(yN)1 > 0 and∥∥∥∥ μM(y1) · · ·M(yN)

μM(y1) · · ·M(yN)1
− δx0M(y1) · · ·M(yN)

δx0M(y1) · · ·M(yN)1

∥∥∥∥ < β

for all μ ∈ T ∩ {ν ∈ P(E) :νx0 > λx0/2}.

Kaijser shows that either of these conditions implies unique ergodicity of the
filter, provided the signal transition matrix P is aperiodic. Kaijser’s proof is very
long and requires the development of some dedicated ergodicity results for Markov
chains in nonlocally compact spaces. We will presently show that Condition (B1)
and Condition (B) imply our Condition (C), so that Kaijser’s results follow easily
from Theorem 2.6 (even in the case where P is not aperiodic).

LEMMA 6.1. Condition (B1) implies Condition (C).
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PROOF. Suppose that Condition (B1) holds. We can estimate∥∥∥∥ μM(yk
1) · · ·M(yk

nk
)

‖M(yk
1) · · ·M(yk

nk
)‖ − μu�

∥∥∥∥
≤

∫ ∥∥∥∥ δxM(yk
1) · · ·M(yk

nk
)

‖M(yk
1) · · ·M(yk

nk
)‖ − u(x)�

∥∥∥∥μ(dx)

≤
J∑

x=1

μx

∥∥∥∥ δxM(yk
1) · · ·M(yk

nk
)

‖M(yk
1) · · ·M(yk

nk
)‖ − u(x)�

∥∥∥∥ + 2
∞∑

x=J+1

μx.

Let T ⊂ P(E) be a tight set. Then the first term converges to zero uniformly
in μ ∈ T by assumption, while the second term can be made arbitrarily small
uniformly in μ ∈ T by choosing J sufficiently large. Therefore,

sup
μ∈T

∥∥∥∥ μM(yk
1) · · ·M(yk

nk
)

‖M(yk
1) · · ·M(yk

nk
)‖ − μu�

∥∥∥∥ < δ

for any tight set T ⊂ P(E), δ > 0, and k sufficiently large. Let α > 0 and define

S = T ∩ {μ ∈ P(E) :μu > α}.
Then we obtain

sup
μ,ν∈S

∥∥∥∥ μM(yk
1) · · ·M(yk

nk
)

μM(yk
1) · · ·M(yk

nk
)1

− νM(yk
1) · · ·M(yk

nk
)

νM(yk
1) · · ·M(yk

nk
)1

∥∥∥∥ ≤ 4δ

α
.

We now show that Condition (C) is satisfied. Let ε > 0 be given, and choose α =
λu/2 and δ = αε/4. As in the proof of Theorem 2.7, we can show that

P(πmin
0 u > α and πmax

0 u > α) > 0.

Moreover, we can find an increasing sequence of tight sets Tn ⊂ P(E) such that

P(πmin
0 ∈ Tn and πmax

0 ∈ Tn)
n→∞−→ 1,

as P(P(E)) is Polish. Therefore, we can choose T sufficiently large such that

P(πmin
0 ∈ S and πmax

0 ∈ S) > 0.

The remainder of the proof is identical to that of Theorem 2.7. �

LEMMA 6.2. Condition (B) implies Condition (C).

PROOF. Suppose that Condition (B) holds. We claim that Condition (C) holds
with ε = 2β , S = T ∩{ν ∈ P(E) :νx0 > λx0/2}, and O = {(y1, . . . , yN)}, provided
that T ⊂ P(E) is chosen sufficiently large. Indeed, as the family M = {M0 ∈
P(P(E)) :

∫
νM0(dν) = λ} is tight (e.g., [7]) it is easily seen that

M0
(

T ∩ {ν ∈ P(E) :νx0 > λx0/2}) ≥ λx0/3 for all M0 ∈ M
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is satisfied for every sufficiently large tight set T ⊂ P(E). Moreover,

P(πmin
0 ∈ S and πmax

0 ∈ S) > 0

when T is chosen sufficiently large, as is shown in the proof of Lemma 6.1. It
remains to note that as δx0M(y1) · · ·M(yN)1 > 0, we have μM(y1) · · ·M(yN)1 >

0 for all μ ∈ S . The remainder of Condition (C) now follows immediately. �

Though Condition (B1) is strongly reminiscent of Condition (KR), we did not
succeed in extending the proof of the necessity of Condition (KR) to the countable
case. Whether Conditions (B1), (B) or some variant of thereof are necessary and
sufficient for unique ergodicity in the countable case remains an open problem.

6.2. Nondegeneracy and observability. Conditions of a rather different kind
than are considered by Kaijser, Kochman and Reeds relate to the filter stabil-
ity problem (see the survey [5]). By Theorem 3.1, however, filter stability and
unique ergodicity are essentially equivalent, so that also these conditions can be
brought to bear on the problem considered in this paper. In this section, we con-
sider the following conditions that are borrowed from [14, 15]: nondegeneracy
[Condition (N)], uniform observability [Condition (UO)] and observability [Con-
dition (O)].

CONDITION (N). If i, j ∈ E and Pij > 0, then Mij (y) > 0 for all y ∈ F .

CONDITION (UO). For every ε > 0, there is a δ > 0 such that

‖Pμ|F Y
1,∞

− Pν |F Y
1,∞

‖ < δ implies ‖μ − ν‖ < ε [for any μ,ν ∈ P(E)].

CONDITION (O). If μ,ν ∈ P(E) and Pμ|F Y
1,∞

= Pν |F Y
1,∞

, then μ = ν.

THEOREM 6.3. Suppose that one of the following holds:

• Condition (N) holds, and the signal transition matrix P is aperiodic; or
• Condition (UO) holds; or
• Condition (O) holds, and E is a finite set.

Then the filter admits a unique invariant measure M, and n−1 ∑n
k=1 M0�

k ⇒ M as
n → ∞ for any M0 ∈ P(P(E)). If, in addition, the signal transition matrix P is
aperiodic, then we have M0�

n ⇒ M as n → ∞ for any M0 ∈ P(P(E)).

SKETCH OF PROOF. First, suppose that Condition (N) holds and that P is
aperiodic. Consider the stochastic process (Xn,Yn)n∈Z defined as

Xn = (Xn,Xn+1) ∈ E, Yn = Yn+1 ∈ F,
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where E = {x ∈ E2 : P(X0 = x) > 0}. Then (Xn,Yn)n∈Z is a stationary Markov
chain, (Xn)n∈Z is an irreducible and aperiodic Markov chain, and (Yn)n∈Z are
conditionally independent given (Xn)n∈Z. Moreover,

P
(
Yn ∈ A|(Xk)k∈Z

) =
∫
A

MXnXn+1(y)ϕ(dy) :=
∫
A

ϒ(Xn, y)ϕ(dy),

where ϒ(x, y) > 0 for all x ∈ E and y ∈ F by Condition (N). Therefore,

‖Pμ(Xn ∈ ·|Y0, . . . ,Yn) − Pν(Xn ∈ ·|Y0, . . . ,Yn)‖ n→∞−→ 0 Pμ-a.s.

for all μ,ν ∈ P(E) by [14], Corollary 5.5. It follows immediately that ‖πμ
n −

πν
n‖ → 0 as n → ∞ Pμ-a.s. The proof is completed by invoking Theorem 3.1.
Next, suppose Condition (UO) holds. By a result of Blackwell and Dubins [3],∥∥Pμ(

(Yk)k>n ∈ ·|F Y
1,n

) − Pν(
(Yk)k>n ∈ ·|F Y

1,n

)∥∥ n→∞−→ 0 Pμ-a.s.

whenever μ � ν. But one can show (e.g., [15]) that

Pρ(
(Yk)k>n ∈ ·|F Y

1,n

) = Pπ
ρ
n
(
(Yk)k>0 ∈ ·) = Pπ

ρ
n |F Y

1,∞
for all ρ ∈ P(E).

Using Condition (UO), it therefore follows that ‖πμ
n −πν

n‖ → 0 as n → ∞ Pμ-a.s.
whenever μ � ν. The proof is completed by invoking Theorem 3.1.

Finally, suppose that E is finite, and that Condition (O) holds. Then it is not
difficult to establish, along the lines of [15], Proposition 3.5, that Condition (UO)
is satisfied. The result therefore follows as above. �

REMARK 6.4. When the signal transition kernel P is periodic, Condition (N)
by itself does not ensure unique ergodicity of the filter (this can be seen, e.g., by
considering the example of a periodic signal in E = {1,2} with the trivial obser-
vation state space F = {1}). However, if Condition (N) holds and E is a finite set,
a detectability condition [which is weaker than Condition (O)] is necessary and
sufficient for stability of the filter, and hence for unique ergodicity. The neces-
sary arguments can be adapted from [13], Section 6.2, with some care. As this is
somewhat outside the scope of this paper, we omit the details.

It should be noted that none of the conditions of Theorem 6.3 are necessary.
Indeed, Condition (N) is not satisfied by the examples given by Kochman and
Reeds [10]. That Condition (UO) [hence Condition (O)] is not necessary can be
seen from the trivial counterexample, where P is aperiodic and F = {1}. In this
case the observations are completely noninformative, so that the point mass at
λ ∈ P(E) is the unique invariant measure for the filter, but Condition (UO) is not
satisfied.

Nonetheless, the sufficient conditions of Theorem 6.3 can be useful in practice,
as they may be substantially easier to check than Condition (C) or (KR). For exam-
ple, in the case where E is a finite set, verifying Condition (O) is simply a matter
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of linear algebra (see [5] for an example), while verifying Condition (KR) involves
taking limits. Moreover, despite that Conditions (C) and (KR) are both necessary
and sufficient in many cases, we did not succeed in our attempt to prove Theo-
rem 6.3 by directly verifying that Condition (C) or (KR) hold. Therefore, such
sufficient but not necessary conditions remain of independent interest.

APPENDIX: SUPPLEMENTARY PROOFS

A.1. Proof of Lemmas 2.3 and 2.4. We will need the following.

LEMMA A.1. πmin
n = πmin

m ◦ �n−m and πmax
n = πmax

m ◦ �n−m for m,n ∈ Z.

PROOF. By stationarity of P, it is easily seen that

E(f (Xn)|F Y
n−�,n) = E(f (Xm)|F Y

m−�,m) ◦ �n−m,

E
(
f (Xn)|F Y

n−�,n ∨ F X
n−�,n−k

) = E
(
f (Xm)|F Y

m−�,m ∨ F X
m−�,m−k

) ◦ �n−m.

The result follows by letting � → ∞, then k → ∞. �

We begin by proving Lemma 2.3 for the case π
μ
n . It clearly suffices to prove

πμ
n = μM(Y1) · · ·M(Yn)

μM(Y1) · · ·M(Yn)1
, Pμ-a.s. for all n ≥ 1.

Let f ∈ Cb(E) and A ∈ B(F n). Then

Eμ

(
μM(Y1) · · ·M(Yn)f

μM(Y1) · · ·M(Yn)1
IA(Y1, . . . , Yn)

)

=
∫
A

μM(y1) · · ·M(yn)f

μM(y1) · · ·M(yn)1
μM(y1) · · ·M(yn)1ϕ(dy1) · · ·ϕ(dyn)

=
∫
A

μM(y1) · · ·M(yn)f ϕ(dy1) · · ·ϕ(dyn)

= Eμ(IA(Y1, . . . , Yn)f (Xn)).

As this holds for any f ∈ Cb(E) and A ∈ B(F n), the above expression for π
μ
n

follows from the definition of the conditional expectation.
To prove Lemma 2.3 for πmin

n , let k,n ≥ 1. Note that

E(f (Xn)|F Y−k+1,n) = πn+kf ◦ �−k

= λM(Y−k+1) · · ·M(Yn)f

λM(Y−k+1) · · ·M(Yn)1

= (πk ◦ �−k)M(Y1) · · ·M(Yn)f

(πk ◦ �−k)M(Y1) · · ·M(Yn)1
.
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But E(f (Xn)|F Y−k+1,n) → πmin
n f and πkf ◦�−k = E(f (X0)|F Y−k+1,0) → πmin

0 f

as k → ∞ P-a.s. by the martingale convergence theorem. Therefore

πmin
n = πmin

0 M(Y1) · · ·M(Yn)

πmin
0 M(Y1) · · ·M(Yn)1

, P-a.s. for all n ≥ 1,

and the result follows for arbitrary m,n ∈ Z, n ≥ m by Lemma A.1.
To prove Lemma 2.3 for πmax

n , let n ≥ 1 and k ≥ � ≥ 0. Note that

E
(
f (Xn)|F Y−k,n ∨ F X−k,−�

) = E
(
f (Xn+�)|F Y−k+�,n+� ∨ F X−k+�,0

) ◦ �−�

= E
(
f (Xn+�)|F Y

1,n+� ∨ σ {X0}) ◦ �−�,

where we have used the Markov property. Moreover, it is easily seen that

E
(
f (Xn+�)|F Y

1,n+� ∨ σ {X0}) = π
X0
n+�f = δX0M(Y1) · · ·M(Yn+�)f

δX0M(Y1) · · ·M(Yn+�)1
.

Therefore, we can write

E
(
f (Xn)|F Y−k,n ∨ F X−k,−�

) = δX−�
M(Y−�+1) · · ·M(Yn)f

δX−�
M(Y−�+1) · · ·M(Yn)1

= (π
X0
� ◦ �−�)M(Y1) · · ·M(Yn)f

(π
X0
� ◦ �−�)M(Y1) · · ·M(Yn)1

.

Letting k → ∞, then � → ∞ and applying the martingale convergence theorem,
we obtain the desired recursion for πmax

n .
We now turn to the proof of Lemma 2.4. The stationarity of (πmax

n )n∈Z and
(πmin

n )n∈Z follows directly from Lemma A.1 and the stationarity of (Xn,Yn)n∈Z.
It only remains to prove the Markov property. For f ∈ Cb(P(E)), we can compute

E(f (πmax
n+1)|G−∞,n) = E

(
f

(
πmax

n M(Yn+1)

πmax
n M(Yn+1)1

)∣∣∣∣G−∞,n

)

= E
(
f

(
μM(Yn+1)

μM(Yn+1)1

)∣∣∣∣G−∞,n

)∣∣∣∣
μ=πmax

n

,

where we have used Lemma 2.3 and the fact that πmax
n is G−∞,n-measurable. But

for any bounded measurable function g :F → R, we have

E(g(Yn+1)|G−∞,n) =
∫

g(y)πmax
n M(y)1ϕ(dy).

The Markov property and the expression for the transition kernel � follows im-
mediately. The Markov property of πmin

n and π
μ
n follows along similar lines.
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A.2. Proof of Theorem 3.1 and Lemma 3.4. The proof of Theorem 3.1 fol-
lows closely along the lines of [6, 11, 12]. We will sketch the necessary arguments,
concentrating on the special features of the countable setting.

We begin by establishing the Feller property.

LEMMA A.2. Let (μn)n∈N ⊂ P(E) and μ ∈ P(E) be such that μn ⇒ μ. Then∫
f (ν)�(μn, dν) → ∫

f (ν)�(μ,dν) for every f ∈ Cb(P(E)).

PROOF. Let N ⊂ F be a ϕ-null set such that supi

∑
j Mij (y) < ∞ for all

y /∈ N . Then μnM(y)1 → μM(y)1 for all y /∈ N , and μnM(y)/μnM(y)1 ⇒
μM(y)/μM(y)1 whenever y /∈ N and μM(y)1 > 0. It follows that

f

(
μnM(y)

μnM(y)1

)
μnM(y)1

n→∞−→ f

(
μM(y)

μM(y)1

)
μM(y)1 for all y /∈ N.

But the family {f (μnM(y)/μnM(y)1)μnM(y)1 :n ∈ N} is uniformly inte-
grable (under ϕ), as |f (μnM(y)/μnM(y)1)μnM(y)1| ≤ ‖f ‖∞μnM(y)1 and by
Scheffé’s lemma

∫ |μnM(y)1 −μM(y)1|ϕ(dy) → 0. The result therefore follows
from the expression for � in Lemma 2.4. �

We will need some basic elements from Choquet theory.

DEFINITION A.3. Let S be Polish. For M,M′ ∈ P(P(S)) we write M ≺ M′ if∫
f (ν)M(dν) ≤

∫
f (ν)M′(dν) for every convex f ∈ Cb(P(S)).

For any M ∈ P(P(S)), the barycenter b(M) ∈ P(S) is defined as

b(M)u =
∫

νuM(dν) for all u ∈ Cb(S).

For any μ ∈ P(S), define mμ, m̃μ ∈ P(P(S)) as∫
f (ν)mμ(dν) = f (μ),

∫
f (ν)m̃μ(dν) =

∫
f (δx)μ(dx)

for every f ∈ Cb(P(S)).

LEMMA A.4. Let S be a Polish space. The following hold:

(1) Given M ∈ P(P(S)), we have f (b(M)) ≤ ∫
f (ν)M(dν) for every convex func-

tion f ∈ Cb(P(S)) (Jensen’s inequality).
(2) For any M ∈ P(P(S)), we have mb(M) ≺ M ≺ m̃b(M).
(3) If M,M′ ∈ P(P(S)), M ≺ M′ and M′ ≺ M, we have M = M′.

In particular, ≺ defines a partial order on P(P(S)).
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PROOF. Jensen’s inequality is proved as in [11], Lemma 3.1. The second prop-
erty follows easily from Jensen’s inequality. The third property follows from the
fact that the family of convex functions in Cb(P(S)) is a measure determining class
(see, e.g., Proposition A1 in [12]). �

We now need some basic convexity properties of the filter.

LEMMA A.5. The following hold for any M ∈ P(P(E)):

(1) If f ∈ Cb(P(E)) is convex, then �f ∈ Cb(P(E)) is also convex.
(2) b(M�) = b(M)P .
(3) If M� = M, then b(M) = λ.
(4) mb(M)P n�m ≺ M�m+n ≺ m̃b(M)P n�m for any m,n ≥ 0.

PROOF. The first claim follows as in [11], Lemma 3.2. The second claim fol-
lows directly from Lemma 2.4. The third claim follows from the second claim and
the fact that λ is the unique invariant measure for P . The fourth claim follows from
the first and second claims, together with the second claim of Lemma A.4. �

The following lemma connects πmin
0 , πmax

0 to the filter transition kernel �.

LEMMA A.6. Denote by Mmax,Mmin ∈ P(P(E)) the laws of πmax
0 and πmin

0 ,
respectively. Then mλ�

n ⇒ Mmin and m̃λ�
n ⇒ Mmax as n → ∞.

PROOF. Let f ∈ Cb(P(E)). Then

mλ�
nf = E[f (πn)] = E

[
f

(
P(X0 ∈ ·|F Y−n+1,0)

)] n→∞−→ E[f (πmin
0 )],

where we have used stationarity and martingale convergence. Similarly,

m̃λ�
nf = E[f (πX0

n )] = E
[
f

(
P(X0 ∈ ·|F Y−n+1,0 ∨ σ {X−n}))]

= E
[
f

(
P(X0 ∈ ·|F Y−∞,0 ∨ F X−∞,−n)

)] n→∞−→ E[f (πmax
0 )],

where we have additionally used the Markov property of (Xn,Yn)n∈Z. �

Finally, we will need the following convergence property:

LEMMA A.7. limn→∞ ‖πμ
n − πν

n‖ exists Pμ-a.s. whenever μ � ν.

PROOF. It is not difficult to show along the lines of [14], Corollary 5.7, that

‖πμ
n − πν

n‖

= Eν(|Eν((dμ/dν)(X0)|F X
n,∞ ∨ F Y

1,∞) − Eν((dμ/dν)(X0)|F Y
1,n)||F Y

1,n)

Eν((dμ/dν)(X0)|F Y
1,n)
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Pμ-a.s. whenever μ � ν. The denominator converges Pν -a.s., hence Pμ-a.s. (as
μ � ν), to a random variable which is strictly positive Pμ-a.s.

To prove convergence of the numerator, let ε > 0 and define

Mn = Eν

(
dμ

dν
(X0)Idμ/dν(X0)<ε

∣∣F Y
1,n

)
,

M ′
n = Eν

(
dμ

dν
(X0)Idμ/dν(X0)≥ε

∣∣F Y
1,n

)
,

Ln = Eν

(
dμ

dν
(X0)Idμ/dν(X0)<ε

∣∣F X
n,∞ ∨ F Y

1,∞
)
,

L′
n = Eν

(
dμ

dν
(X0)Idμ/dν(X0)≥ε

∣∣F X
n,∞ ∨ F Y

1,∞
)
.

Clearly Mn and M ′
n are uniformly integrable martingales, while Ln and L′

n are
reverse martingales. Moreover, the numerator can be written as Eν(Zn|F Y

1,n) where
Zn = |Ln + L′

n − Mn − M ′
n|. We proceed to estimate as follows:

|Eν(Zn − Z∞|F Y
1,n)| ≤ Eν(|Ln − L∞||F Y

1,n) + Eν(|Mn − M∞||F Y
1,n) + 4M ′

n.

The first two terms converge to zero Pν-a.s. as n → ∞ by Hunt’s lemma ([3],
Theorem 2), while limn→∞ M ′

n vanishes if we let ε → ∞. Therefore Eν(Zn −
Z∞|F Y

1,n) → 0 as n → ∞ Pν-a.s., and the proof is easily completed. �

We now proceed to the proof of Theorem 3.1 and Lemma 3.4.

A.2.1. Proof of Theorem 3.1 (1 ⇔ 2). First suppose P(πmax
0 = πmin

0 ) < 1.
Then E({(πmax

0 )i − (πmin
0 )i}2) > 0 for some i ∈ E. Now note that

E
({(πmax

0 )i − (πmin
0 )i}2) = E({(πmax

0 )i}2) − E({(πmin
0 )i}2)

=
∫

{νi}2Mmax(dν) −
∫

{νi}2Mmin(dν),

so that P(πmax
0 = πmin

0 ) < 1 implies Mmax �= Mmin. But Mmax and Mmin are invari-
ant measures for � by Lemma 2.4, so we have shown that the filter admits two
distinct invariant measures. Conversely, if the invariant measure is unique, then
P(πmax

0 = πmin
0 ) = 1. Thus we have proved the implication 1 ⇒ 2.

Now suppose that πmax
0 = πmin

0 , so that in particular Mmax = Mmin. Let M be
any invariant measure for �. We claim that Mmin ≺ M ≺ Mmax, so that necessarily
M = Mmax = Mmin by Lemma A.4. To prove the claim, note that mλ�

n ≺ M�n =
M ≺ m̃λ�

n for any n ≥ 0 by Lemmas A.4 and A.5. The claim therefore follows
directly from Lemma A.6. Thus we have proved the implication 2 ⇒ 1.
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A.2.2. Proof of Theorem 3.1 (2 ⇔ 3). Proceeding along the same lines as in
the proof of Lemma A.6 (and taking into account the fact that weak convergence
and total variation convergence of probability measures coincide when the state
space is countable), one can show that

E(‖πX0
n − πn‖) n→∞−→ E(‖πmax

0 − πmin
0 ‖).

Suppose first that property 3 holds. Then

E(‖πX0
n − πn‖) = ∑

i∈E

λiEi (‖πi
n − πn‖) n→∞−→ 0.

Therefore πmax
0 = πmin

0 , and we have proved the implication 3 ⇒ 2.
Conversely, suppose that πmax

0 = πmin
0 . Let μ,ν ∈ P(E) such that μ � ν. Note

that we can write π
μ
n = Eμ(π

X0
n |F Y

1,n). Therefore, we have

Eμ(‖πμ
n − πn‖) = Eμ(‖Eμ(πX0

n − πn|F Y
1,n)‖

) ≤ Eμ(‖πX0
n − πn‖).

But E(‖πX0
n − πn‖) → 0, so ‖πX0

n − πn‖ → 0 in probability. As μ � λ, we find
that ‖πX0

n − πn‖ → 0 in Pμ-probability also, and by dominated convergence

Eμ(‖πμ
n − πn‖) ≤ Eμ(‖πX0

n − πn‖) n→∞−→ 0.

By Lemma A.7, it follows that ‖πμ
n − πn‖ → 0 Pμ-a.s. Similarly, we find that

‖πν
n − πn‖ → 0 Pν-a.s., hence Pμ-a.s. as μ � ν. Therefore ‖πμ

n − πν
n‖ → 0 Pμ-

a.s., and we have evidently proved the implication 2 ⇒ 3.

A.2.3. Proof of Theorem 3.1 (1 ⇔ 4). The implication 4 ⇒ 1 follows imme-
diately by choosing M0 and M to be distinct invariant measures of the filter and
applying property 4, which leads to a contradiction.

To prove the converse implication, choose M0 arbitrarily and define the mea-
sures Mn = n−1 ∑n

k=1 M0�
n. Note that b(Mn) = n−1 ∑n

k=1 b(M0)P
n ⇒ λ as the

signal is irreducible and positive recurrent. It follows from [7] that the sequence
(Mn)n∈N is tight. It therefore suffices to prove that every convergent subsequence
has the same limit. But it is easily seen that any convergent subsequence converges
to an invariant measure of �, so that the result follows from the uniqueness of the
invariant measure. Thus we have proved the implication 1 ⇒ 4.

A.2.4. Proof of Theorem 3.1 (1 ⇔ 5). The implication 5 ⇒ 1 follows imme-
diately by choosing M0 and M to be distinct invariant measures of the filter and
applying property 5, which leads to a contradiction.

We prove the converse implication under the assumption that the signal tran-
sition matrix P is aperiodic. Choose M0 arbitrarily, and note that b(M0�

n) =
b(M0)P

n ⇒ λ. It follows from [7] that the sequence (M0�
n)n∈N is tight. It there-

fore suffices to prove that any convergent subsequence converges to the unique
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invariant measure of the filter M. Let n(k) ↗ ∞ be a subsequence such that
M0�

n(k) ⇒ M∞, and let f ∈ Cb(P(E)) be convex. By Lemma A.5, we have

mb(M0)P
n(k)−m�mf ≤ M0�

n(k)f ≤ m̃b(M0)P
n(k)−m�mf for all m ≤ n(k).

In particular, letting k → ∞ and using the Feller property, we have

mλ�
mf ≤ M∞f ≤ m̃λ�

mf for all m ≥ 0.

But letting m → ∞ and using Lemma A.6, we find that Mmin ≺ M∞ ≺ Mmax. As
the invariant measure M is presumed to be unique, we have Mmin = Mmax = M
by the implication 1 ⇒ 2. Therefore, we find that M∞ = M by Lemma A.4. This
completes the proof of the implication 1 ⇒ 5.

A.2.5. Proof of Lemma 3.4. First, we note that E((πmax
0 )i |F Y−∞,0) = (πmin

0 )i .
Therefore, P((πmin

0 )i = 0 and (πmax
0 )i > 0) = 0 for every i ∈ E. In particular, this

implies that we have πmax
0 � πmin

0 with unit probability under P. Now note that
πmax

k = π
μ
k |μ=πmax

0
and πmin

k = π
μ
k |μ=πmin

0
by Lemma 2.3. Therefore,

P
(

lim
k→∞‖πmax

k − πmin
k ‖ exists

∣∣G−∞,0

)

= P
(

lim
k→∞‖πμ

k − πν
k ‖ exists

∣∣G−∞,0

)∣∣∣
μ=πmax

0 ,ν=πmin
0

= Pμ
(

lim
k→∞‖πμ

k − πν
k ‖ exists

)∣∣∣
μ=πmax

0 ,ν=πmin
0

= 1 P-a.s.,

where we have used the fact that πmin
0 and πmax

0 are G−∞,0-measurable in the first
step, the Markov property in the second step, and Lemma A.7 in the third step.
The result now follows by taking the expectation with respect to P.
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