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SIEVE ESTIMATION OF CONSTANT AND TIME-VARYING
COEFFICIENTS IN NONLINEAR ORDINARY DIFFERENTIAL
EQUATION MODELS BY CONSIDERING BOTH NUMERICAL

ERROR AND MEASUREMENT ERROR

BY HONGQI XUE, HONGYU MIAO AND HULIN WU1

University of Rochester

This article considers estimation of constant and time-varying coeffi-
cients in nonlinear ordinary differential equation (ODE) models where an-
alytic closed-form solutions are not available. The numerical solution-based
nonlinear least squares (NLS) estimator is investigated in this study. A nu-
merical algorithm such as the Runge–Kutta method is used to approximate
the ODE solution. The asymptotic properties are established for the proposed
estimators considering both numerical error and measurement error. The B-
spline is used to approximate the time-varying coefficients, and the corre-
sponding asymptotic theories in this case are investigated under the frame-
work of the sieve approach. Our results show that if the maximum step size of
the p-order numerical algorithm goes to zero at a rate faster than n−1/(p∧4),
the numerical error is negligible compared to the measurement error. This re-
sult provides a theoretical guidance in selection of the step size for numerical
evaluations of ODEs. Moreover, we have shown that the numerical solution-
based NLS estimator and the sieve NLS estimator are strongly consistent.
The sieve estimator of constant parameters is asymptotically normal with the
same asymptotic co-variance as that of the case where the true ODE solu-
tion is exactly known, while the estimator of the time-varying parameter has
the optimal convergence rate under some regularity conditions. The theoret-
ical results are also developed for the case when the step size of the ODE
numerical solver does not go to zero fast enough or the numerical error is
comparable to the measurement error. We illustrate our approach with both
simulation studies and clinical data on HIV viral dynamics.

1. Introduction. Ordinary differential equations (ODE) are widely used to
model dynamic processes in many scientific fields such as engineering, physics,
econometrics and biomedical sciences. In particular, new biotechnologies allow
scientists to use ODE models to more accurately describe biological processes
such as genetic regulatory networks, tumor cell kinetics, epidemics and viral dy-
namics of infectious diseases [Chen, He and Church (1999), Jansson and Revesz
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(1975), Michelson and Leith (1997), Daley and Gani (1999), Anderson and May
(1991), Brookmeyer and Gail (1994), Nowak and May (2000)]. The mathemati-
cal modeling approach has made a great impact on these scientific fields over the
past decades. For instance, ODE models have been used to quantify HIV viral dy-
namics which resulted in important scientific findings [Ho et al. (1995), Wei et al.
(1995), Perelson et al. (1996, 1997)]. Comprehensive reviews of the application
of ODE models in HIV dynamics can be found in Perelson and Nelson (1999),
Nowak and May (2000), Tan and Wu (2005) and Wu (2005).

Although differential equation models have been widely used in scientific re-
search, very little statistical research has been dedicated to parameter estimation
and inference for differential equation models. The existing statistical methods
for ODE models include the nonlinear least squares method [Bard (1974), van
Domselaar and Hemker (1975), Benson (1979), Li, Osborne and Pravan (2005)],
the smoothing-based techniques [Swartz and Bremermann (1975), Varah (1982),
Chen and Wu (2008), Liang and Wu (2008), Brunel (2008)], the principal dif-
ferential analysis (PDA) [Ramsay (1996), Heckman and Ramsay (2000), Poyton
et al. (2006), Ramsay et al. (2007), Varziri et al. (2008)] and the Bayesian ap-
proaches [Putter et al. (2002), Huang, Liu and Wu (2006), Donnet and Samson
(2007)]. However, very few of these publications rigorously address the theoretical
issues and study the asymptotic properties of the proposed estimators when both
measurement error and numerical error are significant. In this paper, we intend
to investigate statistical estimation methods for both constant and time-varying
parameters in ODE models and study the asymptotic properties of the proposed
estimators under the framework of the sieve approach.

Denote a general set of ODE models containing only constant parameters as⎧⎨
⎩

dX(t)

dt
= F{t,X(t),β}, ∀t ∈ [t0, T ],

X(t0) = X0,

(1.1)

and denote a general set of ODE models with both constant and time-varying pa-
rameters as ⎧⎨

⎩
dX(t)

dt
= F{t,X(t),β, η(t)}, ∀t ∈ [t0, T ],

X(t0) = X0,

(1.2)

where X(t) = {X1(t), . . . ,XK(t)}T is a K-dimensional state variable vector, β is
a d-dimensional vector of unknown constant parameters with true value β0, η(t)

is an unknown time-varying parameter with true value η0(t) (here we only con-
sider a single time-varying parameter, the proposed methodology can be extended
to include multiple time-varying parameters although it is tedious and cumber-
some in notation), F(·) = {F1(·), . . . ,FK(·)}T is a vector of differentiable func-
tions whose forms are known and X(t0) = X0 is the initial value. Equations (1.1)
and (1.2) are called state equations. Obviously, equation (1.1) is a special case of
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(1.2). The function F(t,X,β) in (1.1) or F(t,X,β, η) in (1.2) is assumed to fulfil
the Lipschitz assumption to X [with the Lipschitz constant independent of the un-
known parameters β and η(·)] ensuring existence and uniqueness of the solutions
to (1.1) and (1.2) [see Hairer, Nørsett and Wanner (1993) and Mattheij and Mole-
naar (2002)]. Let X(t,β) and X(t,β, η(t)) denote the true solutions to (1.1) and
(1.2) for given β and η(·), respectively. We usually use notation X(t) to denote
X(t,β0) or X(t,β0, η0(t)) in this article. Our objective is to estimate the unknown
parameters β and η(·) based on the measurements of the state variables, X(t) or
their functions.

If a closed-form solution to (1.1) or (1.2) is available, the standard statistical
approaches for nonlinear regression or time-varying coefficient regression models
can be used to estimate unknown parameters. In practice, (1.1) and (1.2) usually do
not have closed-form solutions for a nonlinear F. In this case, numerical methods
such as the Runge–Kutta algorithm [Runge (1895), Kutta (1901)] have to be used
to approximate the solution of the ODEs for a given set of parameter values and
initial conditions. Consequently, the nonlinear least squares (NLS) principle (min-
imizing the residual sum of squares of the differences between the experimental
observations and numerical solutions) can be used to obtain the estimates of the
unknown parameters. The NLS method for (1.1) was first described by mathemati-
cians in 1970s [Bard (1974), van Domselaar and Hemker (1975), Benson (1979)].
The NLS method was also widely used to estimate the unknown parameters in
ODE models in the fields of mathematics, computer science and control engineer-
ing. In the 1990s, the NLS method was extended to estimate time-varying para-
meters in (1.2). For example, the NLS method with spline approximation to time-
varying parameters has been successfully applied to pharmacokinetic [Li et al.
(2002)], physiologic [Thomaseth et al. (1996)] and HIV studies [Adams (2005)].

Though the NLS was the earliest and the most popular method developed for
estimating the parameters in ODE models, so far the proposed NLS estimators and
their asymptotic properties for ODE models have not been systematically studied,
in particular, for time-varying parameter estimates. The influence of the numerical
approximation error of ODEs on the asymptotic properties has not been analyzed.
All existing studies took the numerical solution as the true solution and did not
consider the difference between them. The difficulty is due to the co-existence of
both measurement error and numerical error, and the standard theories of the NLS
method [Jennerich (1969), Malinvaud (1970), Wu (1981), Delgado (1992)] cannot
be directly applied. In this article, we intend to fill this gap.

The rest of the article is organized as follows. In Section 2, we discuss the identi-
fiability problem of ODE models. Then we introduce the numerical solution-based
NLS estimators for (1.1) and (1.2), and study their asymptotic properties in Sec-
tions 3 and 4, respectively. The asymptotic properties of the proposed estimators,
including strong consistency, rate of convergence and asymptotic normalities, are
established using the tools of empirical processes [Pollard (1984, 1990), Pakes
and Pollard (1989), van der Vaart and Wellner (1996), Ma and Kosorok (2005),
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Wellner and Zhang (2007)] and the sieve methods [Grenander (1981), Shen and
Wong (1994), Huang (1996) and Shen (1997)]. We perform simulation studies to
investigate the finite-sample performance of the proposed estimation methods in
Section 5. In this section, we also apply the proposed approaches to a set of ODE
models for HIV dynamics. We provide a summary and discussion for the proposed
methods in Section 6. Finally, the proofs of all the theoretical results are given in
the Appendix.

2. Identifiability of ODE models. Identifiability of ODE models is a critical
question to answer before parameter estimation. To verify the uniqueness of para-
meter estimates for given system inputs and outputs, both analytical and numeri-
cal techniques have been developed for ODE models since 1950s. Before jumping
into technical details, two commonly used definitions of identifiability are given as
follows [Bellman and Åström (1970), Cobelli, Lepschy and Jacur (1979), Walter
(1987), Ljung and Glad (1994), Audoly et al. (2001), Jeffrey and Xia (2005)].

DEFINITION 1. Globally identifiable: a system structure is said to be globally
identifiable if for any two parameter vectors β1 and β2 in the parameter space B,
X(t,β1) = X(t,β2) can be satisfied for all t if and only if β1 = β2.

However, global identifiability is a strong condition to satisfy and usually diffi-
cult to verify in practice. Therefore, the definition of at-a-point identifiability was
introduced by Ljung and Glad (1994) and Quaiser and Mönnigmann (2009) as
follows.

DEFINITION 2. At-a-point identifiable: a system structure is said to be locally
(or globally) identifiable at a point β∗ if for any β within an open neighborhood of
β∗ (or within the entire parameter space), X(t,β) = X(t,β∗) can be satisfied for
all t if and only if β = β∗.

A number of methods have been proposed for identifiability analysis of ODE
models, including structural [Bellman and Åström (1970), Ljung and Glad (1994),
Xia and Moog (2003)], practical [e.g., Rodriguez-Fernandez, Egea and Banga
(2006), Miao et al. (2008)] and sensitivity-based [e.g., Jolliffe (1972), Quaiser and
Mönnigmann (2009)] approaches. Due to the limited space, we may not be able to
provide an exhaustive list of publications on identifiability of ODE models. In this
article, the structural identifiability analysis techniques are of particular interest
mainly due to the theoretical completeness.

Various structural identifiability approaches have been proposed, such as power
series expansion [Pohjanpalo (1978)], similarity transformation [Vajda et al.
(1989), Chappel and Godfrey (1992)] and implicit function theorem method [Xia
(2003), Xia and Moog (2003), Miao et al. (2008), Wu et al. (2008)]. Particularly,
Ollivier (1990) and Ljung and Glad (1994) introduced another approach in the
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framework of differential algebra [Ritt (1950), Kolchin (1973)]. The differential
algebra approach is suitable to general nonlinear dynamic systems, and it has been
successfully applied to nonlinear differential equation models, including models
with time-varying parameters [Audoly et al. (2001)]. In this article, the differen-
tial algebra approach is employed to verify the identifiability of ODE models with
both constant and time-varying parameters.

For most structural identifiability analysis techniques such as the implicit func-
tion theorem method and the differential algebra approach, a key step is the elim-
ination of latent variables via taking derivatives and algebraic operations, which
makes such techniques suitable for multivariate ODE models with partially ob-
served state variables. After all unobserved state variables are eliminated, equa-
tions involving only given inputs, measured outputs and unknown parameters can
be obtained. If we consider the parameters as unknowns, it is easy to verify that
the identifiability of unknown parameters is determined by the number of roots of
these equations.

For illustration purposes, we consider a classical HIV dynamic model with
both constant and time-varying parameters [Nowak and May (2000), Huang,
Rosenkranz and Wu (2003), Wu et al. (2005)] as an example:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d

dt
TU(t) = λ − ρTU(t) − η(t)TU(t)V (t),

d

dt
TI (t) = η(t)TU(t)V (t) − δTI (t),

d

dt
V (t) = NδTI (t) − cV (t),

(2.1)

where TU is the concentration of uninfected target CD4+ T cells, TI the con-
centration of infected CD4+ T cells, V (t) the viral load, λ the proliferation rate
of uninfected CD4+ T cells, ρ the death rate of uninfected CD4+ T cells, η(t)

the time-varying infection rate depending on antiviral drug efficacy, δ the death
rate of infected cells, c the clearance rate of free virions, N the number of viri-
ons produced by a single infected cell on average. This model will also be used
in our numerical studies in Section 5. For notational simplicity, let x1, x2 and x3
denote TU , TI and V , and let y1 = TU + TI = x1 + x2 and y2 = V = x3 denote the
measurable outputs, respectively. Then (2.1) can be re-written as⎧⎪⎨

⎪⎩
x′

1 = λ − ρx1 − η(t)x1x3,

x′
2 = η(t)x1x3 − δx2,

x′
3 = Nδx2 − cx3,

(2.2)

where x′
1, x

′
2 and x′

3 denote the derivatives of x1, x2 and x3, respectively. We adopt
the following ranking for variable elimination [Ljung and Glad (1994)],

η ≺ y2 ≺ y1 ≺ β ≺ x3 ≺ x2 ≺ x1,(2.3)
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where β = (λ,ρ,N, δ, c)T is the vector of constant unknown parameters. By tak-
ing the higher order derivatives on both sides of (2.2) and using some algebra
elimination techniques, we can eliminate x1, x2 and x3 from (2.2) using the rank-
ing (2.3) to obtain

y
(2)
1 + (ρ + δ)y′

1 + δρy1 − δλ + η(t)y2(y
′
1 + δy1 − λ) = 0,(2.4)

y
(2)
2 + (δ + c)y′

2 + δcy2 − η(t)y2(Nδy1 − y′
2 − cy2) = 0,(2.5)

where y
(2)
1 and y

(2)
2 denote the second-order derivative of y1(t) and y2(t), respec-

tively. Therefore, η(t) can be expressed in terms of measurable system outputs and
other constant unknown parameters either from (2.4) as

η(t) = y
(2)
1 + (ρ + δ)y′

1 + δρy1 − δλ

−y2(y
′
1 + δy1 − λ)

(2.6)

or from (2.5) as

η(t) = y
(2)
2 + (δ + c)y′

2 + δcy2

y2(Nδy1 − y′
2 − cy2)

.(2.7)

Thus, η(t) is identifiable if all the constant unknown parameters are identifiable.
To verify the identifiability of all unknown parameters θ = (βT , η)T , equations
(2.6) and (2.7) can be combined to obtain

y
(2)
1 y2y

′
2 − y′

1y2y
(2)
2 − δy1y2y

(2)
2 + λy2y

(2)
2 − (δ + c)y′

1y2y
′
2

+ (ρδ + ρ + δ − δ2 − δc)y1y2y
′
2 + cy2y

′
2

(2.8)
+ ρcy′

1y2
2 + (ρδc − δ2c)y1y2

2 − Nδy1y
(2)
1 y2

+ cy
(2)
1 y2

2 − Nδ(ρ + δ)y1y
′
1y2 − Nδ2ρy1

2y2 + Nδ2λy1y2 = 0.

The equation above only involves measurable system outputs [(TU + TI ), V and
their derivatives] and constant unknown parameters. We assume that the deriva-
tives of (TU + TI ) and V exist and are continuous up to order 2. Although the
derivatives of (TU + TI ) and V are usually not directly measured in experiments,
for theoretical identifiability analysis, they are known once (TU + TI ) and V are
measured (e.g., via numerical evaluation). Finally, it can be verified that (2.8) is of
order 0 and of degree > 1 in θ , so (2.8) satisfies the sufficient conditions given in
Ljung and Glad (1994) and β = (λ,ρ,N, δ, c)T is thus at-a-point identifiable at
the true parameter point. Therefore, η(t) is also at-a-point identifiable at the true
parameter point. For more detailed techniques for identifiability analysis of ODE
models, we refer readers to the references listed above.
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3. ODE models with constant parameters. Throughout this article, we let
‖a‖ be the Euclidean norm (or L2 norm) of a vector (or a matrix) a; ‖A‖∞ =
max1≤i≤m

∑n
j=1|aij | be the supremum norm of an m × n matrix A, where aij

is the (i, j)th element of A; A⊗2 = AAT for a matrix A; Cr [a, b] be the class
of functions with r-order continuous derivative on the interval [a, b]; ‖f ‖∞ =
supt |f (t)| be the supremum norm of a function f ; and x ∧ y denotes min(x, y).
Moreover, for a random vector Z ∼ P , where P is a probability measure, we let
‖f (Z)‖2 = ‖f ‖P,2 = (

∫
f 2 dP )1/2 be the L2(P )-norm of a function f .

3.1. Measurement model and estimator. In this section, we consider ODE
models with constant parameters, that is, equation (1.1), over the time range of
interest I = [t0, T ] (−∞ < t0 < T < +∞), where the initial value X0 = X(t0) is
assumed to be known in this article. In reality, X(t) cannot be measured exactly
and directly; instead, its surrogate Y(t) can be measured. For simplicity, here we
assume an additive measurement error model to describe the relationship between
X(ti) and the surrogate Y(ti),

Y(ti) = X(ti) + ε(ti),(3.1)

at random or fixed design time points t1, . . . , tn, where the measurement er-
rors (ε(t1), . . . ,ε(tn)) are independent with mean zero and a diagonal variance–
covariance matrix �. Moreover, in the case of random design, assume that the
measurement errors are independent of X(t). Equation (3.1) is called the observa-
tion or measurement equation.

If (1.1) does not have a closed-form solution, we need to resort to numeri-
cal techniques to obtain numerical solutions at discrete time points. In this arti-
cle, we consider a general one-step numerical method. Let t0 = s0 < s1 < · · · <

sm−1 = T be grid points on the interval I , hj = sj − sj−1 be the step size and
h = max1≤j≤m−1 hj be the maximum step size, and Xh

j and Xh
j+1 be the numer-

ical approximations to the true solutions X(sj ) and X(sj+1), respectively, which
can be typically written as

Xh
j+1 = Xh

j + h�(sj ,Xh
j ,Xh

j+1, h),(3.2)

where the specific form of � depends on the numerical method. The common
numerical methods include the Euler backward method, the trapezoidal rule, the
r-stage Runge–Kutta algorithm (r is usually between 2 and 5), and so on. Among
these algorithms, the 4-stage Runge–Kutta algorithm [Mattheij and Molenaar
(2002), page 53, Hairer, Nørsett and Wanner (1993), page 134] has been well de-
veloped and widely used in practice. Therefore, we employ the 4-stage Runge–
Kutta algorithm as an example in our numerical studies.

Define eh = max0≤j≤m−1‖X(sj ) − Xh
j‖, which is called the numerical error

or the global discretization error [Hairer, Nørsett and Wanner (1993), page 159,
Mattheij and Molenaar (2002), page 57]. If eh = O(hp), p is called the order
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of the numerical method. It is necessary to establish a relationship between the
number of grid points m (or the maximum step size h) and the sample size of
measurements n since the asymptotic properties of the proposed estimators are
related to both numerical error and measurement error. To our best knowledge,
this is the first attempt to establish such as a relationship.

Following Mattheij and Molenaar [(2002), page 58] the interpolation technique
is commonly used if the measurement points (ti , i = 1,2, . . . , n) are not coincident
with the grid points (sj , j = 1,2, . . . ,m − 1) of the numerical method, and the
cubic Hermite interpolation is often adopted. Let X̃(t,β) denote the interpolated
numerical solution of X(t,β) obtained from the numerical method for given β , and
then (3.1) can be approximately rewritten as Y(t) ≈ X̃(t,β0) + ε(t). The simple
numerical solution-based NLS estimator β̂n of β0 minimizes

�1(β) =
n∑

i=1

K∑
j=1

[Yj (ti) − X̃j (ti ,β)]2.(3.3)

Note that if the data are correlated or the measurement variances are heteroge-
neous, the weighted NLS can be used. The theoretical results can be extended
to the weighted NLS. Also note that we can easily obtain the estimator X̂(t) =
X̃(t, β̂n) for X(t).

To minimize the NLS objective function (3.3), the standard gradient optimiza-
tion methods may fail due to the complicated nonlinear ODE model and the
NLS objective function may have multiple local minima or may be ill-behaved
[Englezos and Kalogerakis (2001)]. Fortunately, various global optimization meth-
ods are available to more reliably solve the parameter estimation problem for ODE
models, although the global optimization methods are very computationally inten-
sive. Moles, Banga and Keller (2004) compared the performance and computa-
tional cost of seven global optimization methods, including the differential evo-
lution method [Storn and Price (1997)]. Their results suggest that the differential
evolution method outperforms the other six methods with a reasonable computa-
tional cost. Improved performance can be achieved using a hybrid method combin-
ing gradient methods and global optimization methods. A hybrid method based on
the scatter search and sequential quadratic programming (SQP) has been proposed
by Rodriguez-Fernandez, Egea and Banga (2006), who showed that the hybrid
scatter search method is much faster than the differential evolution method for a
simple HIV ODE model. In addition, Miao et al. (2008) also suggested that global
optimization methods should be used for general nonlinear ODE models. Here we
combine the differential evolution, the scatter search method and the SQP local
optimization technique to implement our NLS minimization.

3.2. Asymptotic properties. In this section, we study the asymptotic properties
of the proposed numerical solution-based NLS estimator when both measurement
error and numerical error are considered. First we make the following assumptions:
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A1. β ∈ B, where B is a compact subset of Rd with a finite diameter Rβ .
A2. � = {X(t,β) : t ∈ I,β ∈ B} is a closed and bounded convex subset of RK .
A3. There exist two constants −∞ < c1 < c2 < +∞ such that c1 ≤ Y(t) ≤ c2

for all t ∈ I .
A4. All partial derivatives of F(t,X,β) up to order p with respect to t and X

exist and are continuous.
A5. The numerical method for solving ODEs is of order p.
A6. For any β ∈ B, Et [X(t,β) − X(t,β0)]2 = 0 if and only if β = β0.

A7. The first and second partial derivatives, ∂X(t,β)
∂β and ∂2X(t,β)

∂β ∂βT , exist and are

continuous and uniformly bounded for all t ∈ I and β ∈ B.
A8. For the ODE numerical solution X̃(t,β), the first and second partial deriva-

tives, ∂X̃(t,β)
∂β and ∂2X̃(t,β)

∂β ∂βT , exist and are continuous and uniformly bounded

for all t ∈ I and β ∈ B.
A9. Let 0 < c3 < c4 < ∞ be two constants. For random design points, t1, . . . , tn

are i.i.d. The joint density function φ(t,y) of (t,Y) satisfies c3 ≤ φ(t,y) ≤
c4 for all (t,y) ∈ [t0, T ] × [c1, c2].

A10. The true parameter β0 is an interior point of B.
A11. β̃ is an interior point of B, where β̃ = arg minβ∈B E0[Y(t) − X̃(t,β)]T ×

[Y(t) − X̃(t,β)] and E0 is the expectation with respect to Pβ0
, the joint

probability distribution of (t,Y(t)) at true value β0.
A12. V1 = {Et(

∂X
∂β0

∂X
∂βT

0
)}−1Et(

∂X
∂β0

� ∂X
∂βT

0
){Et(

∂X
∂β0

∂X
∂βT

0
)}−1 is positive definite,

where Et [g(t)] is expectation of function g(t) with respect to t .

A13. Ṽ1 = {Et(
∂X̃
∂β̃

∂X̃

∂β̃
T )}−1E0(

∂X̃
∂β̃

[Y(t) − X̃(t, β̃)]⊗2 ∂X̃

∂β̃
T ){Et(

∂X̃
∂β̃

∂X̃

∂β̃
T )}−1 is pos-

itive definite.

Assumptions A1–A4 are general requirements for existence of numerical solu-
tions of ODE models. Assumption A5 from Mattheij and Molenaar (2002, pages
55 and 56) defines the precision of the numerical algorithm. For example, the Euler
backward method, the trapezoidal rule, the 4-stage and 5-stage Runge–Kutta are
of order 1, 2, 4 and 5, respectively. Theorem 2.13 in Hairer, Nørsett and Wanner
[(1993), page 153] provides sufficient and necessary conditions for the numerical
method to be of order p. Theorems 3.1 and 3.4 in Hairer, Nørsett and Wanner
[(1993), pages 157 and 160] give the magnitude of the numerical error of the nu-
merical algorithms. Assumption A6 is required for identifiability and imposed for
consistency. From Section 2, we know that the HIV model (2.1) is at-a-point iden-
tifiable at the true value β0. This result and assumption A9 are sufficient conditions
for assumption A6 to be satisfied. Assumptions A7–A9 are needed for consistency.
Assumptions A10–A13 are needed for the proof of asymptotic normality in Theo-
rem 3.2.

THEOREM 3.1. Assume that there exists a λ > 0 such that h = O(n−λ), then
under assumptions A1–A10, we have β̂n − β0 → 0, almost surely under Pβ0

.
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THEOREM 3.2. (i) For h = O(n−λ) with λ > 1/(p ∧ 4) where p is the order
of the numerical method (3.2), under assumptions A1–A10 and A12, we have that

n1/2(β̂n − β0)
d→ N(0,V1).

(ii) For h = O(n−λ) with 0 < λ ≤ 1/(p ∧ 4), under assumptions A1–A9, A11

and A13, we have that n1/2(β̂n − β̃)
d→ N(0, Ṽ1) with ‖β̃ −β0‖ = O(h(p∧4)/2) =

O(n−λ(p∧4)/2) and ‖Ṽ1 − V1‖ = O(h(p∧4)/2) = O(n−λ(p∧4)/2).

The detailed proofs of Theorems 3.1 and 3.2 are provided in the Appendix. The
basic idea for the proofs is motivated by Pakes and Pollard (1989) in which a gen-
eral central limit theorem is proved for a broad class of simulation estimators, that
is, the objective function of the estimator is too complicated to evaluate directly,
and instead the Monte Carlo simulation is used to approximate the objective func-
tion to obtain the estimator. The asymptotic properties of the simulation-based
estimator are established using a general central limit theorem under nonstan-
dard conditions given in Huber (1967) and Pollard (1985), which are often called
the Huber–Pollard Z-theorem [see Theorem 3.3.1 in van der Vaart and Wellner
(1996)]. In this article, we use the same theorem to prove the asymptotic nor-
mality of the numerical solution-based NLS estimator for ODEs. Similarly, our
objective function �1(β) in (3.3) cannot be directly evaluated; instead we have to
approximate it by solving (1.1) numerically. Thus, similar ideas in Pakes and Pol-
lard (1989) can be borrowed to establish the asymptotic results of our estimator in
Theorems 3.1 and 3.2.

REMARK 1. Theorems 3.1 and 3.2 can be extended to fixed design points
ti ∈ [t0, T ] (i = 1, . . . , n). Assume that there exists a distribution function Q(t)

with corresponding density ϕ(t) such that, with Qn(t), the empirical distribution
of (t1, . . . , tn), supt∈[t0,T ]|Qn(t) − Q(t)| = Op(n−1/2) and ϕ(t) is bounded away
from zero and has continuous second-order derivative on [t0, T ]. Define Et [g(t)]
be the integral

∫ T
t0

g(t) dQ(t) for function g(t). Similarly we can prove Theo-
rems 3.1 and 3.2 for the fixed design if we replace assumption A9 by above as-
sumption.

REMARK 2. From the proof of Theorem 3.2 in the Appendix, we still have
‖β̃ − β0‖ = O(h(p∧4)/2) and ‖Ṽ1 − V1‖ = O(h(p∧4)/2) for a fixed constant h,
which is independent of the sample size n. This suggests that, if the maximum
step size h of the numerical algorithm for solving ODEs is a fixed constant, the
numerical solution-based NLS estimator is not consistent. Instead the asymptotic
bias is in the order of h(p∧4)/2.

Notice that our asymptotic results provide a theoretical foundation for the re-
lationship between the numerical step size and sample size, that control numeri-
cal error and measurement error, respectively, for the widely-used NLS estimator
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based on the numerical solutions of the ODEs. Intuitively, the smaller the numer-
ical step size is, better the estimator is. However, a smaller step size will increase
the computational cost and this may become a serious problem when the ODE
system is large and the computational cost is high. It is important to study the
trade-off between the numerical error and measurement error when the computa-
tional cost needs to be taken into consideration. Our theoretical results show that,
only when the numerical step size, which controls the numerical error and com-
putational cost, goes to zero with a rate faster than a particular rate n−1/(p∧4), the
numerical solution-based NLS estimator converges to the true value of the para-
meters with the rate of root-n. In addition, the asymptotic variance of the NLS
estimator is the one as if the true solution X(t) is exactly known.

The asymptotic variance–covariance matrix needs to be estimated in order to
perform statistical inference for unknown parameters β . There are some stan-
dard methods that can be used. The first approach is to use the observed pseudo-
information matrix based on the NLS objective function (3.3). The observed

pseudo-information matrix is defined as I1(β) = − ∂2�1
∂β2 . The standard error of β̂n

can then be approximated by I −1/2
1 (β̂n)/

√
n. In practice, we have noted that the

inverse of the observed pseudo-information matrix provides a reasonable approx-
imation to the asymptotic variance–covariance matrix V1. Rodriguez-Fernandez,
Egea and Banga (2006) also proposed this approach for parameter inference in
ODE models.

The second approach is the weighted bootstrap method [Ma and Kosorok
(2005)]. Let Wi , i = 1, . . . , n, denote n i.i.d. positive random weights with mean
one [E(W) = 1] and variance one [Var(W) = 1]. The weights, Wi are independent
of {β, t,Y(t)}. For (1.1), the weighted M-estimator β̂0

n satisfies

β̂0
n = arg min

n∑
i=1

K∑
j=1

Wi[Yj (ti) − X̃j (ti ,β)]2.

From Corollary 2 and Theorem 2 in Ma and Kosorok (2005), given {ti ,Y(ti)},√
n(β̂0

n − β̂n) and
√

n(β̂n − β0) have the same limiting distribution, then the
weighted M-estimator β̂0

n can be used for inference on β̂n.
Note that the empirical bootstrap has been used for statistical inference for ODE

models [Joshi, Seidel-Morgenstern and Kremling (2006)]. However, the asymp-
totic properties of the empirical bootstrap estimators are quite difficult to derive.
This is why we propose to use the weighted bootstrap method instead of the em-
pirical bootstrap approach.

4. ODE models with both constant and time-varying parameters.

4.1. Measurement model and estimator. In this section, we consider (1.2) with
both constant and time-varying parameters, where the initial value X0 = X(t0) is
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assumed to be known. Again, X(t) is not observed directly in practice; instead, we
observe its surrogate Y(t) through (3.1).

Let A be the following class of functions,

A = {
η ∈ Cμ[t0, T ] :

∣∣η(μ)(z1) − η(μ)(z2)
∣∣≤ L|z1 − z2|γ },(4.1)

where μ is a nonnegative integer, γ ∈ (0,1], � = μ + γ > 0.5, and L an unknown
constant. The smoothness assumption is often used in nonparametric curve estima-
tion. Usually, either � = 1 (i.e., μ = 0 and γ = 1) or � = 2 (i.e., μ = 1 and γ = 1)
should be satisfied in various situations. Denote θ = (βT , η)T . Then the parameter
space is denoted by � = {θ :β ∈ B, η ∈ A} = B × A.

In this article, we use the method of sieves to approximate η0(t) on the support
interval [t0, T ] of t . The basic idea of the sieve approach is to approximate an
infinite-dimensional parameter space � by a series of finite-dimensional parameter
spaces �n, which depend on the sample size n, and then to estimate the parameter
on the finite-dimensional spaces �n instead of �. The concept of sieve was first
proposed by Grenander (1981). Since then, the sieve method has been a powerful
tool in the area of nonparametric and semiparametric statistics [Shen and Wong
(1994), Huang (1996), van der Vaart and Wellner (1996), Section 3.4, Shen (1997),
Huang and Rossini (1997), Huang (1999), He, Fung and Zhu (2002), Xue, Lam
and Li (2004) and Huang, Zhang and Zhou (2007)].

Here we apply the sieve estimation method to (1.2) with a time-varying parame-
ter. First, we approximate η(t) by B-spline functions on the support interval I of t .
Let t0 = u0 < u1 < · · · < uq = T be a partition of the interval I , where q = O(nv)

(0 < v < 0.5) is a positive integer such that max1≤j≤q |uj −uj−1| = O(n−v). Then
we have N = q + l normalized B-spline basis functions of order l + 1 ≥ � [see
Huang (2003), page 1618] that form a basis for the linear spline space. We denote
these basis functions in the forms of a vector π(t) = (B1(t), . . . ,BN(t))T with
which η(t) can be approximated by π(t)T α, where α = (α1, . . . , αN)T ∈ RN is
the spline coefficient vector with α0 corresponding to η0(t). Such approximation
is extensively used in nonparametric and semiparametric problems [Stone (1985),
Shen and Wong (1994), Shen (1997), Huang (1999) and Huang (2003)]. The read-
ers are referred to Schumaker [(1981), page 118] for more details about the con-
struction of the basis functions. Regression spline approximation to a nonparamet-
ric function can always be expressed as a linear function of basis functions so that
the problem of time-varying coefficients can be transformed into an estimation
problem for a number of constant parameters. Thus the estimation methods and
computational algorithms developed for (1.1) with constant coefficients in Sec-
tion 3 can be employed for (1.2) with both constant and time-varying parameters.

For any θ i ∈ B × A (i = 1,2), we define a distance

d(θ1, θ2) = ‖β1 − β2‖ + ‖η1 − η2‖2.(4.2)
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Denote set

An =
{
η(t) =

N∑
i=1

Bi(t)αi : max
1≤i≤N

|αi | ≤ �n

}
,

where �n ≤ n(2l−1)/[2l′(2l+1)] with a constant l′ arbitrarily close to l [see Shen
(1997), page 2560], then �n = {θ :β ∈ B, η ∈ An} = B × An can be used as a sieve
of �. In fact, for any θ = (βT , η)T ∈ �, by Corollary 6.21 in Schumaker (1981),
there exists ηn ∈ An such that ‖ηn − η‖∞ = Op(n−v�). Denote θn = (βT , ηn)

T ∈
�n, then d(θ , θn) = Op(n−v�). Equation (1.2) now becomes

dX(t)

dt
≈ F{t,X(t),β, π(t)T α}.

For this approximation model, let X̃(t,β, π(t)T α) be the numerical approxi-
mation of X(t,β, η(t)) that can be obtained from the same numerical algo-
rithm as described in Section 3. Equation (3.1) can be approximated by Y(t) ≈
X̃(t,β, π(t)T α0) + ε(t). The numerical solution-based sieve NLS estimator θ̂n =
(β̂T

n , η̂n)
T is defined as

θ̂n = arg inf
θ∈�n

�2(θ) = arg inf
θ∈�n

n∑
i=1

K∑
j=1

[Yj (ti) − X̃j (ti ,β, η(t))]2.(4.3)

When we substitute the sieve NLS estimators θ̂n into the numerical approximation,
we can obtain the estimator X̂(t) = X̃(t, β̂n, η̂n(t)).

4.2. Asymptotic properties. The empirical objective function for the sieve
NLS method proposed in Section 4.1 is a second-order loss function which is not
a likelihood function. We cannot use the standard information calculation of the
maximum likelihood estimator (MLE) based on orthogonal projections in semi-
parametric models [Bickel et al. (1993)], and the asymptotic normality theory for
semiparametric MLEs obtained by Huang (1996, Theorem 6.1) does not apply to
our case. Fortunately, Ma and Kosorok (2005) and Wellner and Zhang (2007) ex-
tended the Huang’s asymptotic normality results to more general semiparametric
M-estimators by using a so-called pseudo-information calculation. We are able
to employ these new asymptotic results to asymptotic properties of the proposed
sieve NLS estimator, and the following additional assumptions are needed:

B1. The true time-varying parameter η0(·) ∈ A, where A is denoted in (4.1).
B2. All partial derivatives of F up to order p with respect to t,X, and η, respec-

tively, exist and are continuous.
B3. For any β ∈ B and η ∈ A, Et [X(t,β, η(t))−X(t,β0, η0(t))]2 = 0 if and only

if β = β0 and P {t :η(t) = η0(t)} = 1.
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B4. The first and second partial Fréchet-derivatives [van der Vaart and Well-
ner (1996), page 373] in the norm d defined in (4.2), ∂X(t,β,η)

∂β , ∂X(t,β,η)
∂η

,
∂2X(t,β,η)

∂β ∂βT , ∂2X(t,β,η)
∂β ∂η

and ∂2X(t,β,η)

∂η2 exist and are continuous and uniformly

bounded for all t ∈ I , β ∈ B and η ∈ A.
B5. For the ODE numerical solution X̃(t,β, η), the first and second partial

Fréchet-derivatives in the norm d , ∂X̃(t,β,η)
∂β , ∂X̃(t,β,η)

∂η
, ∂2X̃(t,β,η)

∂β ∂βT , ∂2X̃(t,β,η)
∂β ∂η

and ∂2X̃(t,β,η)

∂η2 exist and are continuous and uniformly bounded for all t ∈ I ,
β ∈ B and η ∈ A.

B6. For K ≥ 2, V2 = S−1
1 S2(S

−1
1 )T is positive definite, where S1 and S2 are de-

fined in (A.5) and (A.6) in the Appendix, respectively.
B7. v satisfies the restrictions 0.25/� < v < 0.5 and v(2 + �) > 0.5, where � is

the measure of smoothness of η(t) defined in assumption (B1).

THEOREM 4.1. Assume that there exists a λ > 0 such that h = O(n−λ) and
under assumptions A1–A4, A9, A10 and B1–B5, we have d(θ̂n, θ0) → 0, almost
surely under Pθ0 .

THEOREM 4.2. Assume that there exists a λ > 1/[2(p ∧ 4)] such that h =
O(n−λ) where p is the order of the numerical algorithm (3.2), and under assump-
tions A1–A4, A9, A10 and B1–B5, we have d(θ̂n, θ0) = Op(n−v� + n−(1−v)/2).

From Theorem 4.2, we know that ‖β̂n − β0‖ = Op(n−v� + n−(1−v)/2) and
‖η̂n(t) − η0(t)‖2 = Op(n−v� + n−(1−v)/2). If v = 1/(1 + 2�), the rate of con-
vergence of η̂n is n−�/(1+2�), which is the same as the optimal rate of the standard
nonparametric function estimation [Stone (1982)]. Theorem 4.3 below states that
the rate of weak convergence of β̂n achieves n−1/2 under some additional assump-
tions.

THEOREM 4.3. For the maximum step size h = O(n−λ) with λ > 1/(p ∧ 4),
under assumptions A1–A4, A9, A10 and B1–B7, and K ≥ 2, we have n1/2(β̂n −
β0)

d→ N(0,V2).

REMARK 3. For the case h = O(n−λ) with 1/[2(p ∧ 4)] < λ ≤ 1/(p ∧ 4),
similar results to case (ii) in Theorem 3.2 can be obtained.

For K = 1, Theorem 4.3 does not hold, since in this case the special perturbation
direction a∗(t) given in (A.4) is ∂X

∂β0
/ ∂X

∂η0
, which leads to both S1 in (A.5) and S2

in (A.6) to be zero (see the proof of Theorem 4.3 in the Appendix). In this article,
we consider one special case that we assume there exists an additive relationship
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between β and η(·) as follows:

dX(t)

dt
= F {t,X(t), β + η(t)},(4.4)

which is a special case of (1.2), then the function X(t) has the form of X(t,β +
η(t)). In this case, we are able to establish similar asymptotic normality results
under the identifiability constraint Etη(t) = 0. Note that Schick (1986) studied
a similar problem under a semiparametric regression model and used the same
identifiability constraint for the unknown function η(t) to establish the asymptotic
normality for the constant parameters. We follow a similar idea and use B-spline
approximation for η(t). We center the B-spline estimator of η(t) as follows:

η̂n(ti) ≈
N∑

i=1

Bj(ti)α̂j − 1

n

n∑
i=1

N∑
j=1

Bj(ti)α̂j =
N∑

j=1

α̂j

[
Bj(ti) − 1

n

n∑
i=1

Bj(ti)

]
,

which is subject to the constraints
∑n

i=1 η̂n(ti) = 0. Under similar assumptions,
the strong consistency and the rate of weak convergence of the estimators, similar
to those of Theorems 4.1 and 4.2, can be obtained. In particular, the asymptotic
normality can be established as follows:

PROPOSITION 1. For (4.4) with K = 1, when the maximum step size h =
O(n−λ) with λ > 1/(p ∧ 4), under assumptions A1–A4, A9, A10, B1–B5, B7

and in addition Et [η(t)] = 0, we have n1/2(β̂n − β0)
d→ N(0,V3), where V3 =

σ 2
0 {Et(

∂X
∂ξ )2}−1 with ξ = β0 + η0(t).

The proof of this proposition is different from that of Theorem 4.3 and is given
in the Appendix.

REMARK 4. By combining Theorem 4.3 and Proposition 1, we can see that
the proposed sieve NLS estimator is asymptotically normal with a convergence
rate of

√
n for K ≥ 2 under assumption B6, but we are only able to prove the

result for a special ODE model (4.4) for K = 1. This is because the asymptotic
covariance V2 defined in B6 is always singular in the case of K = 1, and is only
possibly nonsingular in the case of K ≥ 2. Since V2 is always singular for K = 1,
we derive the asymptotic distribution for the special ODE model (4.4) using a
different approach which results in Proposition 1.

Similar approaches proposed in Section 3 can be used to estimate the asymptotic
variance–covariance matrix for (β̂n, η̂n(t)). For the first approach, the observed
pseudo-information matrix can be evaluated by replacing η(t) with the spline ap-
proximation πT (t)α, that is, to rewrite the objective function �2(θ) in the expres-
sion (4.3) as �2(β,α). Then the observed pseudo-information matrix I2(β,α)
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can be defined as

I2(β,α) =

⎛
⎜⎜⎜⎝

−∂2�2

∂β2 − ∂2�2

∂β ∂α

− ∂2�2

∂α ∂β
−∂2�2

∂α2

⎞
⎟⎟⎟⎠ .

The standard error of (β̂n, α̂n) is approximately I−1/2
2 (β̂n, α̂n)/

√
n from which

the standard error of β̂n can be obtained. We also find that the inverse of the ob-
served pseudo-information matrix provides a reasonable approximation to V2 via
our simulation studies in the next section.

Similarly the weighted bootstrap method can also be used. For (1.2), the
weighted M-estimators (β̂0

n, α̂
0
n) satisfy

(β̂0
n, α̂

0
n) = arg min

n∑
i=1

K∑
j=1

Wi[Yj (ti) − X̃j (ti ,β,π(t)T α)]2.

Based on Corollary 2 and Theorem 2 in Ma and Kosorok (2005), given {ti ,Y(ti)},√
n(β̂0

n − β̂n) and
√

n(β̂n − β0) have the same limiting distribution which can be
used to justify the weighted bootstrap for inference on β̂n and η̂n(t).

5. Numerical studies. In this section, we consider the HIV dynamic model
described in Section 2. Recall that in this system, TU(t), TI (t) and V (t) are
state variables and (λ,ρ, δ,N, c, η(t))T are kinetic parameters. By introducing
the time-varying infection rate η(t) in this HIV dynamic model, the model can
flexibly describe the long-term viral dynamics. In clinical studies, only viral load,
V (t) and total CD4+ T cell count, T (t) = TU(t) + TI (t), are closely monitored
and measured over time. For easy illustration and computational simplicity, we fix
the parameters ρ and δ in our numerical studies, and our objective is to estimate
three constant parameters and one time-varying parameter, (λ,N, c, η(t))T based
on measurements of viral load and total CD4+ T cell count.

5.1. Monte Carlo simulation study. The following parameter values and ini-
tial conditions were used to simulate observation data for (2.1): TU(0) = 600,
TI (0) = 30, V (0) = 105, λ = 36, ρ = 0.108, N = 1000, δ = 0.5, c = 3. For
comparison purpose, we generated the measurement data of V (t) and T (t)

for four scenarios in our simulation studies: (i) η(t) = η is a small constant,
η = 9.5 × 10−6; (ii) η(t) is time-varying but with a smaller (10%) variation,
η(t) = 9 × 10−5 × {1 − 0.9 cos(πt/400)}; (iii) η(t) = η is a larger constant,
η = 3.84 × 10−5; and (iv) η(t) is time-varying but with a large (10-fold) varia-
tion, η(t) = 9 × 10−5 × {1 − 0.9 cos(πt/40)}. Note that for cases (i) and (iii), the
values of constant η were chosen to be approximately the average of η(t) over the
period of time interval for cases (ii) and (iv), respectively.



SIEVE ESTIMATION IN ORDINARY DIFFERENTIAL EQUATION MODELS 2367

Let y1 = T = TU +TI denote the total number of infected and uninfected CD4+
T cells and y2 = V denote the viral load, the measurement models are given as
follows:

y1i = T (ti) + ε1i ,

y2i = V (ti) + ε2i ,

where ε1i and ε2i are independent and follow normal distributions with mean zero
and variances σ 2

1i and σ 2
2i , respectively. The HIV dynamic model was numerically

solved within the time range [0,20] to generate the simulated data at each time
interval of 0.5 using the 4-stage Runge–Kutta algorithm. Consequently, the cor-
responding sample size is 40. The 20% measurement errors were added to the
numerical results of the ODE model according to the observation equations above.
We applied the proposed estimation methods in Sections 3 and 4 to the simulated
data for the 4 cases to evaluate the performance of the proposed estimators and the
effect of the model misspecification. To stabilize the computational algorithm, we
log-transformed the data. We also fixed parameters ρ and δ as their true values.

For evaluating the performance of the estimation methods, we define the average
relative estimation error (ARE) as

ARE = 1

M

M∑
j=1

|θ̂j − θ |
|θ | × 100%,

where θ̂j is the estimate of the parameter vector θ from the j th simulation data set,
and M = 500 is the total number of simulation runs.

In Table 1, the AREs of the constant parameters (λ,N, c) are listed. In addi-
tion, we also report σ 2

ODE as the average of the estimated variance by the observed
pseudo-information matrix and σ 2

emp as the empirical variance based on simula-
tion runs. Based on these results, we can see that, when the change of η(t) is small
as a function of time t or η is a small constant, the estimation of parameters is
always good by fitting a constant η model as observed by the low ARE values.
However, when the change of η(t) is large or η is a large constant, misspecifica-
tion of η(t) may produce large AREs for all parameter estimates. In particular,
when η(t) is time-varying with a large variation, using a constant η model may
result in very poor estimates for all constant parameters. The variance estimates
based on the pseudo-information agree well with the empirical estimates based on
simulations, which shows that the pseudo-information-based variance estimate is
reasonably good. The evaluation of the bootstrap variance estimation is prohibited
in our simulation study due to high computational cost.

In Figure 1, the average trajectories of estimated η(t) are compared to the true
trajectories of η(t) for four different scenarios. From this figure, we observed a
similar trend as the constant parameter estimates. The misspecification of η(t)

produces estimation error, in particular for the cases with a large variation of η(t)
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TABLE 1
Simulation results for constant η and the time-varying η(t) models. The ARE is calculated based on 500 simulation runs for the HIV dynamic model. In
addition, σ 2

ODE is the average of the estimated variance by the observed pseudo-information, and σ 2
emp is the empirical variance based on simulations.

The sample size is n = 40 and the noise level is about 20%

Change
of η(t)

True η(t)

model
Fitted η(t)

model

λ N c

ARE(%) σ 2
ODE σ 2

emp ARE(%) σ 2
ODE σ 2

emp ARE(%) σ 2
ODE σ 2

emp

Small Constant Constant 3.19 2.49 1.91 17.7 3.23e+04 4.94e+04 17.4 0.313 0.425
Time-varying 6.45 9.82 8.77 22.9 7.14e+04 8.63e+04 20.5 0.593 0.635

Time-varying Constant 3.77 2.38 2.08 17.9 3.36e+04 4.71e+04 19.8 0.331 0.432
Time-varying 6.40 9.16 8.55 22.6 6.53e+04 7.93e+04 20.9 0.543 0.637

Large Constant Constant 6.29 8.19 12.1 72.5 1.13e+06 8.53e+05 67.3 9.22 6.75
Time-varying 7.34 9.19 15.6 88.8 3.25e+06 1.13e+06 82.5 26.2 8.96

Time-varying Constant 94.2 13.7 7.02 994 5.86e+07 1.25e+08 1899 1660 3780
Time-varying 15.6 31.5 48.2 29.5 1.67e+05 1.67e+05 25.1 1.81 1.37
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FIG. 1. Simulation results for constant η and the time-varying η(t) models. In each figure, the true
model of η (solid), the constant η model (dotted) and the time-varying η(t) model (dash-dotted) are
plotted and compared.

or a large constant η. When the model of η(t) is correctly specified, the estimates
based on the proposed methods are reasonably good. In order to evaluate the ro-
bustness of the proposed approach, we also performed further simulation studies
for a complex function η(t) = 9.0×10−6 +9.0×10−7 × t ×{1−0.5 sin(πt/5.8)}
under the same simulation settings (i.e., 40 time points, 20% error, 500 simulation
runs). The results suggest that the sieve estimator can still capture the essential
pattern of the complex η(t) reasonably well (plots not shown).

5.2. Application to AIDS clinical data. To illustrate applicability and feasibil-
ity of our proposed methods and theories, we also applied the proposed estimation
methods to fit the HIV dynamic model to a clinical data set obtained from an HIV-1
infected patient who was treated with an antiretroviral therapy. Very frequent viral
load measurements were collected from this patient after initiating the antiretro-
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viral regimen: 13 measurements during the first day, 14 measurements from day
2 to week 2, and then one measurement at weeks 4, 8, 12, 14, 20, 24, 28, 32, 36,
40, 44, 48, 52, 56, 64, 74 and 76, respectively. In addition, the measurements of
total CD4+ T cell counts were also taken at Day 1, weeks 2 and 4, and monthly
thereafter. Equation (2.1) was used to estimate HIV kinetic parameters using the
viral load and total CD4+ T cell data.

For simplicity of illustration and computation, we fixed the initial conditions of
the state variables in (2.1) as TU(0) = 1, TI (0) = 551, V (0) = 6.38 × 104, which
were derived from the baseline measurements. We also fixed two parameters, as
in the simulation study, ρ = 0.10 and δ = 0.434, which were taken from the es-
timates in literature. Our objective is to estimate the three constant parameters
(λ,N, c) and the time-varying parameter η(t) as in the simulation study. As we
proposed in Section 4, we employed B-splines to approximate η(t). We positioned
the spline knots at equally-spaced time points (the log-time scale was used since
the distribution of observation time points is highly-skewed). We selected the or-
der of splines and the number of spline knots using the model selection criterion
AICc given by

AICc = n ln
(

RSS

n

)
+ 2nk

n − k − 1
,

where RSS is the residual of the sum of squares obtained from the NLS model
fitting, n is the total number of observations and k is the number of unknown
parameters [including the coefficients in the spline representation of η(t)]. Note
that as a practical guideline, if the number of unknown parameters exceeds n/40
(where n is the sample size), the AICc instead of AIC should be used. For our
clinical data, the sample size n is equal to 65, and the number of unknown para-
meters varies between 6 and 13 for different scenarios, which is much larger than
n/40 = 65/40 = 1.6. Thus the AICc is more appropriate for our applications. In
general, the AICc converges to the AIC as the sample size gets larger, thus the
AICc is often suggested to be employed regardless of the sample size [Burnham
and Anderson (2004)]. For our application, we used AICc and compared the mod-
els with the splines of order 3 and 4, and the number of knots from 3 to 10. In
Table 2, the AICc values for these different models are reported, from which the
best model was selected as the spline with order 3 and 5 knots for η(t) approxima-
tion.

We used the weighted bootstrap method to calculate both the confidence in-
tervals for the constant parameters and the confidence bands for the time-varying
parameter. The basic idea of the weighted bootstrap method is provided in Sec-
tions 3.2 and 4.2. For the computational implementation, we first generated a pos-
itive random weight for each data point in the raw data set from the exponential
distribution with mean one and variance one. By repeating this step, a large number
of (say, 1000) sets of weights can be generated. Second, for each set of weights,
the ODE model is fitted to the data to obtain parameter estimates by minimizing
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TABLE 2
Model selection results for B-spline approximation of the

time-varying parameter η(t)

Model Spline Number of AICc
order knots

1 3 −222.3
2 4 −242.8
3 5 −252.8
4 6 −243.8
5 3 7 −250.6
6 8 −246.0
7 9 −246.8
8 10 −244.4

9 3 –
10 4 −233.2
11 5 −230.3
12 6 −242.6
13 4 7 −249.1
14 8 −245.5
15 9 −244.9
16 10 −240.5

the weighted residual sum of squares (see Sections 3 and 4). Recall that the time-
varying parameter in the model has been approximated by B-splines, then both
the constant parameters and the constant B-spline coefficients are actually esti-
mated. Once the estimates of the B-spline coefficients are obtained, we construct
the B-splines which approximate the time-varying parameter. Thus, we eventually
obtain 1000 estimates for each constant parameter and 1000 B-splines for each
time-varying parameter. Third, for each constant parameter, we select the 2.5%
and 97.5% quantiles of the 1000 estimates to form the 95% confidence intervals
for this parameter. For the time-varying parameter, at a single time point, the 1000
B-splines have 1000 values. We also select the 2.5% and 97.5% quantiles of the
1000 values at this time point to eventually form the 95% pointwise confidence
bands for the time-varying parameter.

Model fitting results are given in Figure 2 and Table 3. From Figures 2(a)
and (b), we can see that the fitting is reasonably good for both CD4+ T cell counts
and viral load data. The estimates of constant parameters (λ,N, c) are listed in
Table 3, and the 95% bootstrap confidence intervals of the estimates are also pro-
vided. The uninfected cell proliferation rate (λ) was estimated as 46.52 cells per
day, the average number of virions produced by one infected cell (N ) was esti-
mated as 1300 per day and the clearance rate of free virions was 4.35 per day
which corresponds to a half-life of 3.8 hours. All these estimates are in the ball-
park of similar estimates from other methods [Perelson et al. (1996, 1997)]. In
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FIG. 2. Model fitting results with η(t) approximated by B-splines of order 3 and 5 knots.

Figure 2(c), the estimated trajectory of the time-varying parameter η(t) (the viral
infection rate), is plotted with 95% bootstrap quantile confidence intervals, which
shows an initial fluctuation but converges to a constant after 2 to 3 months.

6. Discussion. In this paper, we have systematically studied numerical
solution-based NLS estimators for general nonlinear ODE models which the

TABLE 3
The constant parameter estimation results

Parameter Estimate 95% confidence interval

λ 46.52 [43.20, 51.04]
N 1300.39 [251.93, 4628.26]
c 4.35 [0.98, 14.83]
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closed-form solutions are not available. Both constant and time-varying parameters
are considered. For the model involved time-varying parameters, we formulated
the estimator under the framework of sieve approach. Our main contribution is the
establishment of the asymptotic properties for the proposed numerical solution-
based NLS estimators (including the sieve NLS estimator for the time-varying
parameter) with consideration of both numerical error and measurement error. Our
results show that if the maximum step size of the p-order numerical algorithm
goes to zero at a rate faster than n−1/(p∧4), the numerical error is negligible com-
pared with the measurement error. This provides guidance in selecting the step size
for numerical evaluations of ODEs. Moreover, we have shown that the numerical
solution-based NLS estimator and the sieve NLS estimator for the model with a
time-varying parameter are strongly consistent. The sieve estimator of constant
parameters is asymptotically normal with the same asymptotic co-variance as that
of the case where the true solution is exactly known, while the estimator of the
time-varying parameter has an optimal convergence rate under some regularity
conditions. We also obtained the theoretical results for the case when the step size
of the ODE numerical solver does not go to zero fast enough or the numerical
error is comparable to the measurement error [see case (ii) of Theorem 3.2 and
Remark 3]. To our best knowledge, this is the first time that the sieve method has
been extended to the case of ODE models which have no closed-form solutions,
and the sieve-based theories were used to establish the asymptotic results and con-
struct confidence intervals (bands) for both constant and time-varying parameters.
Note that we only considered a single time-varying parameter in the model, but
the methodologies can be extended to multiple time-varying parameters although
it is more tedious to implement.

Note that the NLS estimators have good properties under some assumptions and
are more accurate compared to other estimates such as those proposed in Ramsay
et al. (2007), Chen and Wu (2008) and Liang and Wu (2008). But the price that we
have to pay is the high computational cost to obtain the NLS estimates. To reduce
the computational burden, we may use the rough estimates from other methods
[Ramsay et al. (2007), Chen and Wu (2008), Liang and Wu (2008)] to narrow down
the search range for the NLS optimization algorithm. More efficient optimization
algorithms may also be employed to speed up the computation. We are also con-
sidering to parallel our global optimization algorithms on high-performance com-
puters. Hopefully these efforts can help us to handle a reasonable size of ODE
models.

This article only considered the initial value problem (IVP), that is, the initial
conditions are assumed to be given. In practice, the initial conditions can be esti-
mated from the data. However, the generalizations of the theoretical results to the
cases of estimated initial conditions and other boundary value problems as well as
constraints on parameters are not trivial. Also note that, if there is more than one
time-varying parameter in the model, similar identifiability techniques in Section 2
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may be applied to these parameters one by one, sequentially. Spline approxima-
tion to these multiple time-varying parameters can be used for estimation. But the
computation and theoretical results are more complicated in this case. However,
these generalizations are worth further investigations in future.

APPENDIX: PROOFS

LEMMA 1. Under conditions A1–A5, supt∈I ‖X̃(t,β) − X(t, β)‖∞ =
O(hp∧4) for any given β ∈ B in (1.1).

PROOF. By Theorem 3.4 in Hairer, Nørsett and Wanner [(1993), page 160]
under conditions A1–A5, for the pth order numerical algorithm (3.2) for (1.1), its
global discretization error satisfies

max
0≤i≤m−1

‖X̃(si,β) − X(si,β)‖∞ = O(hp) for given β ∈ B.

When t is not coincident with the grid points of the numerical algorithm, the cubic
Hermite interpolation [de Boor (1978), page 51] will be used to obtain the solution
at time t . In this case,

sup
t∈I\{si : 0≤i≤m−1}

‖X̃(t,β) − X(t,β)‖∞ = O(h4).

Then it follows that

sup
t∈I

‖X̃(t,β) − X(t,β)‖∞

≤ sup
t∈I\{si : 0≤i≤m−1}

‖X̃(t,β) − X(t,β)‖∞

+ max
t∈{si : 0≤i≤m−1}‖X̃(t,β) − X(t,β)‖∞

= O(h4) + O(hp).

In general, h is less than 1, O(h4) + O(hp) = O(hp∧4), which completes the
proof. �

Moreover, Lemma 1 can be extended to the ODE model (1.2) with both constant
and time-varying parameters, since for this model, it can be verified that the result
of Theorem 3.1 in Hairer, Nørsett and Wanner [(1993), page 157] is still valid for
any given β ∈ B and η ∈ A under condition B2 (it can be derived using the Taylor
expansion and the Chain rule), which leads to the same conclusion as Theorem 3.4
in Hairer, Nørsett and Wanner [(1993), page 160]. For Theorems 3.1 and 3.2, the
proofs for the univariate and multivariate cases are the same. For presentation and
notation simplicity, we only outline the proof for the univariate case below.
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PROOF OF THEOREM 3.1. Denote M̃n(β) = 1
n

∑n
i=1[Y(ti) − X̃(ti ,β)]2,

Mn(β) = 1
n

∑n
i=1[Y(ti) − X(ti,β)]2 and M(β) = [Y(t) − X(t,β)]2.

First, we claim that E0[M(β)] reaches its unique minimum at β = β0. In fact,

E0[M(β)] = E0[Y(t) − X(t,β)]2

= E0[Y(t) − X(t,β0) + X(t,β0) − X(t,β)]2

= E0[Y(t) − X(t,β0)]2 + Et [X(t,β0) − X(t,β)]2

= E0[ε(t)]2 + Et [X(t,β0) − X(t,β)]2

≥ E0[ε(t)]2 = E0[M(β0)],
where the third equality holds because the intersection term equals zero according
to the following calculation:

E0[ε(t)][X(t,β0) − X(t,β)]
= EtE0{[ε(t)][X(t,β0) − X(t,β)]|t}
= Et {[X(t,β0) − X(t,β)]E0[ε(t)]}
= 0,

because of E0[ε(t)] = 0. Moreover, Et [X(t,β) − X(t,β0)]2 = 0 if and only if
β = β0 from assumption A6. Thus the above claim holds. Under assumption A10,
it follows that the first-order derivative ∂E0[M(β)]

∂β of E0[M(β)] at β0 equals to zero

and the second-order derivative ∂2E0[M(β)]
∂β ∂βT of E0[M(β)] at β0 is positive definite.

By assumptions A7 and A9, the second-order derivative of E0[M(β)] in a small
neighborhood of β0 is bounded away from 0 and ∞. Then the second-order Taylor
expansion of E0[M(β)] gives that there exists a constant 0 < C < ∞ such that

E0[M(β̂n) − M(β0)] ≥ C‖β̂n − β0‖2.

Thus it is sufficient to prove E0[M(β0)] − E0[M(β̂n)] → 0, a.s.
Let N1(ε, Q, F ) be the covering number of the class F in the probability mea-

sure Q, as given in Pollard (1984, page 25). From Lemma 4.1 in Pollard (1990),
we have that N1(ε,L2, B) ≤ (

3Rβ

ε
)d . Let Fn be the set {Mn(β) :β ∈ B}. With the

Taylor expansion, for any β1, β2 ∈ B, we can easily obtain

|Mn(β1) − Mn(β2)| ≤ C‖β1 − β2‖,
where C is some constant. Then for any probability measure Q, we have

sup
Q

N1(ε,Q, Fn) ≤ N1(ε/C,L2, B) ≤ C

(
1

ε

)d

for 0 < ε < 1.

Then by Theorem II.37 in Pollard (1984), supβ |Mn(β) − E0M(β)| → 0, a.s., un-

der Pβ0
. Then we have Mn(β̂n)−E0[M(β̂n)] → 0 and Mn(β0)−E0[M(β0)] → 0,

a.s.
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Next, by Lemma 1,

M̃n(β) = 1

n

n∑
i=1

[Y(ti) − X̃(ti ,β)]2

= 1

n

n∑
i=1

[
Y(ti) − X(ti,β) + O

(
n−λ(p∧4))]2

(A.1)

= 1

n

n∑
i=1

[Y(ti) − X(ti,β)]2 + O
(
n−λ(p∧4))

= Mn(β) + O
(
n−λ(p∧4)).

Then

M̃n(β̂n) − E0[M(β0)]
≥ M̃n(β̂n) − E0[M(β̂n)]
= Mn(β̂n) + O

(
n−λ(p∧4))− E0[M(β̂n)]

and

M̃n(β̂n) − E0[M(β0)]
≤ M̃n(β0) − E0[M(β0)]
= Mn(β0) + O

(
n−λ(p∧4))− E0M(β0).

Hence M̃n(β̂n) − E0[M(β0)] → 0, a.s. Thus

|E0[M(β̂n)] − E0[M(β0)]|
≤ |M̃n(β̂n) − E0[M(β̂n)]| + |M̃n(β̂n) − E0[M(β0)]| → 0 a.s.

Since β0 is the unique minimum point for E0[M(β)], β̂n is almost surely consis-
tent with respect to Pβ0

. �

PROOF OF THEOREM 3.2. For the proof of part (i), it suffices to verify
conditions of Theorem 2 in Pollard (1985). Denote G̃n(β) = 1

n

∑n
i=1[Y(ti) −

X̃(ti,β)] ∂X̃(ti ,β)
∂β , Gn(β) = 1

n

∑n
i=1[Y(ti) − X(ti,β)] ∂X(ti ,β)

∂β and G(β) =
E0[Y(t) − X(t,β)] ∂X(t,β)

∂β . Obviously, G̃n(β̂n) = 0 and G(β0) = EtE0({[Y(t) −
X(t,β0)] ∂X(t,β0)

∂β0
}|t) = 0 from E0[Y(t)|t] = X(t,β0).

First, we verify the following result:
√

n[G̃n(β0) − G(β0)] d→ N(0,H1). For
fixed t , according to the multivariate inequality of Kolmogorov type for L2-
norms of derivatives [Babenko, Kofanov and Pichugov (1996), page 9], we
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have ‖ ∂X̃(t,β)
∂β − ∂X(t,β)

∂β ‖ ≤ C‖ ∂2X̃(t,β)

∂β ∂βT − ∂2X(t,β)

∂β ∂βT ‖1/2∞ ‖X̃(t,β) − X(t,β)‖1/2∞ ≤
C′‖X̃(t,β)− X(t,β)‖1/2∞ for two constants C and C′, where the second inequality

holds because of the uniform boundedness of both ∂2X(t,β)

∂β ∂βT and ∂2X̃(t,β)

∂β ∂βT under con-

ditions A7 and A8. Based on supt∈I ‖X̃(t,β) − X(t, β)‖∞ = O(n−λ(p∧4)) from

Lemma 1, it follows that ‖ ∂X̃(t,β)
∂β − ∂X(t,β)

∂β ‖ = O(n−λ(p∧4)/2). Considering that

Y(ti) − X(ti,β0) and ∂X̃(ti ,β0)

∂β0
are bounded, we have

√
n[G̃n(β0) − G(β0)]

= 1√
n

n∑
i=1

[Y(ti) − X̃(ti ,β0)]
∂X̃(ti,β0)

∂β0

= 1√
n

n∑
i=1

[
Y(ti) − X(ti,β0) + O

(
n−λ(p∧4))][∂X(ti,β0)

∂β0
+ O

(
n−λ(p∧4)/2)]

= 1√
n

n∑
i=1

[Y(ti) − X(ti,β0)]
∂X(ti,β0)

∂β0
+ O

(
n−λ(p∧4)/2+1/2).

When λ > 1/(p ∧ 4), O(n−λ(p∧4)/2+1/2) = o(1). So for the above expression, we
have

√
n[G̃n(β0) − G(β0)]

= 1√
n

n∑
i=1

[Y(ti) − X(ti,β0)]
∂X(ti,β0)

∂β0
+ o(1)

= √
n[Gn(β0) − G(β0)] + o(1).

Based on the general central limit theorem,
√

n[Gn(β0) − G(β0)] → N(0,H1)

with

H1 = E0[Y(t) − X(t,β0)]2
[
∂X(t,β0)

∂β0

]⊗2

= σ 2
0 Et

[
∂X(t,β0)

∂β0

]⊗2

.

Second, let δn ↓ 0. For ‖β − β0‖ ≤ δn, we want to show that
√

n[G̃n(β) − G(β)] − √
n[G̃n(β0) − G(β0)] = op(1).

In fact, from the first step above, for any β ∈ B, we have that
√

n[G̃n(β) −
Gn(β)] = op(1). Then

√
n[G̃n(β) − G(β)] − √

n[G̃n(β0) − G(β0)]
= √

n[Gn(β) − G(β)] − √
n[Gn(β0) − G(β0)] + op(1).
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From Lemma 4.1 in Pollard (1990), we have that N1(ε,L2, B) ≤ (3R
ε

)d . Let �n

be the set {Gn(β) :β ∈ B} for any X ∈ X . Using a Taylor series expansion, for any
β1, β2 ∈ B, we can easily obtain

|Gn(β1) − Gn(β2)| ≤ C‖β1 − β2‖,
where C is some constant. Then for any probability measure Q, we have

N1(ε,L2(Q),�n) ≤ N1(ε/C,L2, B) ≤ C

(
1

ε

)d

,

and thus

logN1(ε,L2(Q),�n) ≤ d log
1

ε
.

Since
∫ 1

0 log(1/ε) dε < ∞, �n is a P-Donsker class by Theorem 2.5.2 in van der
Vaart and Wellner (1996). Hence

√
n[Gn(β) − G(β)] − √

n[Gn(β0) − G(β0)] =
op(1).

Third, with some simple calculations, we have G(β) = Et [X(t,β0) − X(t ,
β)] ∂X(t,β)

∂β , then

∂G(β)

∂β
= −

∫ {
∂X(t,β)

∂β

}⊗2

d�(t) +
∫

[X(t,β0) − X(t,β)] ∂2X(t,β)

∂β ∂βT
d�(t)

and ∂G(β)
∂β |β=β0

= −Et { ∂X(t,β0)

∂β0
}⊗2. Denote H2 = Et { ∂X(t,β0)

∂β0
}⊗2. Then by using

the Taylor series expansion again, the function G(β) is Fréchet-differentiable at
β0 with nonsingular derivative H2.

Thus all conditions of Theorem 2 in Pollard (1985) are satisfied, then Theo-
rem 3.2(i) holds with V1 = H−1

2 H1(H
−1
2 )T = σ 2

0 {Et [ ∂X(t,β0)

∂β0
]⊗2}−1.

For the proof of case (ii) of Theorem 3.2, it is easy to verify the conditions of
Theorem 2 in Pollard (1985) for the asymptotic normality. Now we just need to
show β̃ = β0 +O(h(p∧4)/2) and Ṽ1 = V1 +O(h(p∧4)/2). Denote M̃(β) = [Y(t)−
X̃(t,β)]2 and G̃(β) = E0[Y(t) − X̃(t, β)] ∂X̃(t,β)

∂β . Since E0[M̃(β)] reaches its

minimum at β = β̃ , then the first-order derivative of E0[M̃(β)] at β̃ equals 0, that
is, G̃(β̃) = 0. Then similar to the proof of case (i) above, we have

G̃(β) = E0[Y(t) − X̃(t,β)] ∂X̃(t,β)

∂β

= E0[Y(t) − X(t,β) + O(hp∧4)]
[
∂X(t,β)

∂β
+ O

(
h(p∧4)/2)]

= G(β) + O
(
h(p∧4)/2).
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It follows that G̃(β̃) = G(β̃) + O(h(p∧4)/2), then G(β̃) = O(h(p∧4)/2) from
G̃(β̃) = 0. The Taylor series expansion yields that there exist constants 0 <

c1, c2 < ∞ such that

c1‖β̃ − β0‖ ≤ |G(β̃) − G(β0)| ≤ c2‖β̃ − β0‖.
Thus ‖β̃ −β0‖ = O(h(p∧4)/2) from G(β0) = 0. Similarly we can show that ‖Ṽ1 −
V1‖ = O(h(p∧4)/2). �

Some definitions and notation are necessary in order to prove Theorems
4.1–4.3. Denote M̃n(θ) = 1

n

∑n
i=1

∑K
j=1[Yj (ti) − X̃j (ti ,β, η(ti))]2, Mn(θ) =

1
n

∑n
i=1

∑K
j=1[Yj (ti)−Xj (ti ,β, η(ti))]2 and M(θ) =∑K

j=1[Yj −Xj (t,β, η(t))]2.
We define a semidistance ρ on � as

ρ2(θ , θ0) = E0{(β − β0)
T Ṁ1(θ) + Ṁ2(θ)[η − η0]}2,

where Ṁ1 is the score function of M for β , and Ṁ2 is the score operator of M for η,
both evaluated at the true parameter value θ0. Similarly to the proof in Huang and
Rossini [(1997), page 966] when V2(θ0), defined in assumption B6, is positive
definite, and Ṁ1 and Ṁ2 are bounded away from +∞ and −∞, if ρ(θ̂n, θ0) =
Op(rn), then d(θ̂n, θ0) = Op(rn); and if ρ(θ̂n, θ0) → 0 almost surely under Pθ0 ,
then d(θ̂n, θ0) → 0 almost surely under Pθ0 .

PROOF OF THEOREM 4.1. Similarly to the proof of Theorem 3.1, we have
that E0[M(θ0)] reaches its unique minimum at θ = θ0. It follows that

E0[M(θ0) − M(θ̂n)] ≥ Cρ2(θ̂n, θ0),

where C is some constant. Thus if E0[M(θ0)] − E0[M(θ̂n)] → 0, almost surely
under Pθ0 , then d(θ̂n, θ0) → 0, almost surely under Pθ0 .

Let Aδ
n be the set {η ∈ An,‖η − ηn0‖2 ≤ δ} and N2(ε,L∞, Aδ

n) be its bracket-
ing number with respect to L∞ [see Definition 2.1.6, van der Vaart and Wellner
(1996)], where ηn0 is the map point of η0 in the sieve An. By the calculation of
Shen and Wong [(1994), page 597] for any ε ≤ δ, we have

N2(ε,L∞, Aδ
n) ≤ C(δ/ε)N,

where N = q + l is the number of B-splines basis functions. Let Fn be the set
{Mn(θ) :‖β − β0‖ ≤ δ, η ∈ An,‖η − ηn0‖2 ≤ δ}. For any θ1, θ2 ∈ �n, we can
easily obtain

|Mn(θ1) − Mn(θ2)| ≤ C(‖β1 − β2‖ + ‖η1 − η2‖∞)

using Taylor’s expansion. Hence

N2(ε,L∞, Fn) ≤ N1(ε/2,L2, B) × N2(ε/2,L∞, Aδ
n)

≤ C(3Rd/ε)d(δ/ε)N

≤ C′(1/ε)N+d .
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Note that, since N2(ε,L∞, Fn) depends on n in the above expression, we can-
not directly use Theorem II.37 in Pollard (1984) to obtain supFn

|Mn(θ) −
E0[M(θ)]| → 0, a.s., under Pθ0 . Fortunately, we can still get this result based
on (A.2) in Xue, Lam and Li (2004). Thus we have Mn(θ̂n) − E0[M(θ̂n)] → 0
and Mn(θn0) − E0[M(θn0)] → 0, a.s., where θn0 is the map point of θ0 in the
sieve �n.

From the extension of Lemma 1 for any given β ∈ B and η(t) ∈ A in (1.2),
similarly to (A.1), we have

M̃n(θ) = Mn(θ) + O
(
n−λ(p∧4)).(A.2)

Then the remaining steps are similar to those in the proof of Theorem 3.1. �

PROOF OF THEOREM 4.2. We apply Theorem 3.4.1 in van der Vaart and Well-
ner (1996) to obtain the rate of convergence.

For θn0 in the proof of Theorem 4.1, define θn0 �→ ρ1(θ, θn0) be a map from �n

to [0,∞) as ρ2
1(θ, θn0) = E0[M(θ)] − E0[M(θn0)]. Choose δn = ρ(θ0, θn0). For

δn < δ < ∞, denote � = {θ : θ ∈ �n, δ/2 < ρ(θ , θn0) ≤ δ}. From the definition
of ρ1, we have sup� E0[M(θn0)] − E0[M(θ)] ≤ − δ2

4 .
Let �n be the set {Mn(θ) − M(θn0) : θ ∈ �n} and J̃ (δ,L2(P ),�n) be the

L2(P )-norm bracketing integral of the sieve �n. From the proof of Theorem 4.1,
we have

J̃ (δ,L2(P ),�n) =
∫ δ

0

√
1 + logN2(ε,L2(P ),�n)dε

≤
∫ δ

0

√
1 + logN2(ε,L∞,�n) dε

≤ CN1/2δ.

Let

φn(δ) = J̃ (δ,L2(P ),�n)

(
1 + J̃ (δ,L2(P ),�n)

δ2
√

n

)
= N1/2δ + N√

n
.

Obviously, φn(δ)/δ
1+τ is a decreasing function in δ for 0 < τ < 1. Then by

Lemma 3.4.2 in van der Vaart and Wellner (1996), we have

E0

[
sup
�

√
n(Mn − M)(θ − θn0)

]
� φn(δ).

For λ > 1/[2(p ∧ 4)], from (A.2), it follows that
√

n[M̃n(θ) − Mn(θ)] = O
(
n1/2−λ(p∧4))= o(1).

Then we have that

E0

[
sup
�

√
n(M̃n − M)(θ − θn0)

]
� φn(δ).
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Then the conditions of Theorem 3.4.1 in van der Vaart and Wellner (1996) are sat-
isfied for the δn, ρ1 and φn(δ) above. Therefore we have −r2

nρ1(θ̂n, θn0) = Op(1),
where rn satisfies r2

nφn(
1
rn

) ≤ √
n. It follows that rn = N−1/2n1/2 = n(1−v)/2. Thus

ρ1(θ̂n, θn0) = Op(n−(1−v)/2).
Now, we define a distance ρ2 as

ρ2(θ1, θ2) = ‖β1 − β2‖ + ‖η1 − η2‖∞.

Let ς be a positive constant. Similarly to the proof of Theorem 3.2 in Huang
(1999), it is easy to follow that for any θ with ρ2(θ, θn0) ≤ ς , there exist constants
0 < c1, c2 < ∞ such that

−c1d
2(θ, θn0) + Op(n−2v�) ≤ −ρ2

1(θ, θn0) ≤ −c2d
2(θ, θn0) + Op(n−2v�).

Therefore, for a constant c2 > 0,

c2d
2(θ̂n, θn0) ≤ Op

(
n−2v� + n−(1−v)).

Because d(θn0, θ0) ≤ ρ2(θ0, θ0) = Op(n−v�), we have d(θ̂n, θ0) = Op(n−v� +
n−(1−v)/2). �

PROOF OF THEOREM 4.3. We prove this theorem using Theorem 6.1 in
Wellner and Zhang (2007). It suffices to validate conditions A1–A6 of Theorem 6.1
in Wellner and Zhang (2007). From the proof of Theorems 4.1 and 4.2 above, it is
easy to see that condition A1 regarding consistency and rate of convergence and
condition A2 for Theorem 6.1 in Wellner and Zhang (2007) hold.

For condition A3, we need to calculate the pseudo-information matrix. For any
fixed η ∈ A, let A0 = {ηω(·) :ω in a neighborhood of 0 ∈ R} be a smooth curve in
A running through η0 at ω = 0, that is, ηω=0(t) = η0(t). Denote ∂

∂ω
ηω(t)|ω=0 =

a(t) and the space generated by such a(t) as ϒ . The score functions of β and η

are

Ṁ1 = ∂M

∂β
= −2

K∑
j=1

(Yj − Xj )
∂Xj

∂β0
,

Ṁ2[a] = ∂M

∂η0
= −2

K∑
j=1

(Yj − Xj )
∂Xj

∂η0
a(t).

We also set

Ṁ11 = ∂2M

∂β0 ∂βT
0

= 2
K∑

j=1

[
∂Xj

∂β0

∂Xj

∂βT
0

− (Yj − Xj )
∂2Xj

∂β0 ∂βT
0

]
,

Ṁ12[a] = ṀT
21[a] = ∂2M

∂β0 ∂η0
= 2

K∑
j=1

[
∂Xj

∂β0

∂Xj

∂η0
− (Yj − Xj )

∂2Xj

∂β0 ∂η0

]
a(t)
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and

Ṁ22[a1, a2] = ∂2M

∂η2
0

= 2
K∑

j=1

[(
∂Xj

∂η0

)2

− (Yj − Xj )
∂2Xj

∂η2
0

]
a1(t)a2(t),

where a1(t), a2(t) ∈ ϒ . Following the idea from the proofs of the asymp-
totic results for semiparametric M-estimator in Ma and Kosorok (2005) and
Wellner and Zhang (2007), we assume that the special perturbation direction
a∗(t) = (a∗

1(t), . . . , a∗
d(t))T with a∗

i (t) ∈ ϒ for 1 ≤ i ≤ d , satisfies E0{Ṁ12[a] −
Ṁ22[a∗, a]} = 0 for any a ∈ ϒ . Some calculations yield

E0{Ṁ12[a] − Ṁ22[a∗, a]}

= 2
K∑

j=1

E0

[{
∂Xj

∂β0

∂Xj

∂η0
− (Yj − Xj )

∂2Xj

∂β∗ ∂η0

}
a(t)

−
{(

∂Xj

∂η0

)2

− (Yj − Xj )
∂2Xj

∂η2
0

}
a(t)a∗(t)

]

= 2
K∑

j=1

EtE0

([{
∂Xj

∂β0

∂Xj

∂η0
− (Yj − Xj )

∂2Xj

∂β∗ ∂η0

}
a(t)

−
{(

∂Xj

∂η0

)2

− (Yj − Xj )
∂2Xj

∂η2
0

}
a(t)a∗(t)

]∣∣∣t).

It follows that

a∗(t) =
∑K

j=1 E∗[{∂Xj /∂β0 ∂Xj /∂η0 − (Yj − Xj )∂
2Xj /∂β0 ∂η0}|t]∑K

j=1 E0[{(∂Xj /∂η0)2 − (Yj − Xj )∂2Xj /∂η2
0}|t]

.(A.3)

Since E0[Y(t)|t] = X(t), a∗(t) in (A.3) can be simplified as

a∗(t) =
∑K

j=1 ∂Xj /∂β0 ∂Xj /∂η0∑K
j=1(∂Xj /∂η0)2

.(A.4)

For K ≥ 2, both

S1 = E0(Ṁ11 − Ṁ12[a∗]) = 2
K∑

j=1

Et

[
∂Xj

∂β0

∂Xj

∂βT
0

− ∂Xj

∂β0

∂Xj

∂η0
a∗(t)

]
(A.5)

and

S2 = E0(Ṁ1 − Ṁ2[a∗])⊗2 = 4
K∑

j=1

σ 2
j Et

{
∂Xj

∂β0
− ∂Xj

∂η0
a∗(t)

}⊗2

(A.6)

are nonsingular. Let V2 = S−1
1 S2(S

−1
1 )T . Thus condition A3 of finite variance for

Theorem 6.1 in Wellner and Zhang (2007) is satisfied.
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Conditions A4 and A5 for Theorem 6.1 in Wellner and Zhang (2007) can be
verified by similar arguments as condition (i) and C3 in the proof of Theorem 4 in
Xue, Lam and Li (2004), respectively. Condition A6 of smoothness of the model
can be easily verified using a straightforward Taylor expansion where n−c1 is just
the rate of convergence in Theorem 4.2 and faster than n−1/4, and c2 = 2, which
completes the proof. �

PROOF OF PROPOSITION 1. Let G be the set of a real valued functions
g on [a, b] which are absolutely continuous and satisfy

∫ b
a g2(t) dt < ∞ and

Etg(t) = 0. Similarly to the proof of Theorem 4.3, for any fixed η ∈ A, let
A0 = {ηω(·) :ω in a neighborhood of 0 ∈ R} be a smooth curve in A running
through η0 at ω = 0, that is, ηω=0(t) = η0(t). Denote ∂

∂ω
ηω(t)|ω=0 = a(t) and re-

strict a(t) ∈ G . Denote the space generated by such a(t) as ϒ . The score functions
of β and η are

Ṁ1 = ∂M

∂β
= −2(Y − X)

∂X

∂ξ
,

Ṁ2[a] = ∂M

∂η
= −2(Y − X)

∂X

∂ξ
a(t)

with ξ = β0 + η0(t). Let Ṗ be the linear span of Ṁ2[a]. Since E0{Ṁ1Ṁ2[a]} = 0
for any a(t) ∈ ϒ , it follows that Ṁ1 is orthogonal to Ṗ . Thus the efficient score
function of β is just Ṁ1. Then the pseudo-information is E0[Ṁ2

1 ]. The rest of
the proof is similar to that of Theorem 4.3, where the efficient score function and
the pseudo-information are updated as discussed before, and the least favorable
direction can be selected by any a ∈ ϒ . �
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