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STOCHASTIC CALCULUS OVER SYMMETRIC MARKOV
PROCESSES WITHOUT TIME REVERSAL

BY KAZUHIRO KUWAE1

Kumamoto University

We refine stochastic calculus for symmetric Markov processes without
using time reverse operators. Under some conditions on the jump functions of
locally square integrable martingale additive functionals, we extend Nakao’s
divergence-like continuous additive functional of zero energy and the sto-
chastic integral with respect to it under the law for quasi-everywhere starting
points, which are refinements of the previous results under the law for almost
everywhere starting points. This refinement of stochastic calculus enables us
to establish a generalized Fukushima decomposition for a certain class of
functions locally in the domain of Dirichlet form and a generalized Itô for-
mula.

1. Introduction. In this paper, under the framework of general symmetric
Markov processes without using time reverse operators, we give a refinement of
stochastic calculus developed in the previous joint paper [3]. More precisely, we
establish stochastic integrals both of Itô-type and of Fisk–Stratonovich-type by
Dirichlet processes by extending the Nakao’s divergence-like continuous additive
functional of zero energy to a continuous additive functional locally of zero energy
for a class of locally square integrable martingale additive functionals. Through-
out this paper, we use the terminology Dirichlet process specifically for an additive
functional decomposed into the sum of a locally square integrable martingale addi-
tive functional and a continuous additive functional (locally) of zero energy, which
is not necessarily a semi-martingale in general; indeed, the notion of Dirichlet
process in a more general context was introduced by Föllmer [9]. As in [11], sto-
chastic integrals are defined to be additive functionals admitting exceptional sets.
So all formulas in this paper can be regarded as a decomposition of additive func-
tional, which holds for all time (or up to the life time) with probability 1 starting
from quasi-everywhere point.

Hereafter, we use the abbreviation CAF (resp., MAF) for continuous additive
functional (resp., martingale additive functional). For a Dirichlet process given by
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Fukushima’s decomposition, Nakao [22] defined stochastic integrals integrated by
his divergence-like CAF of zero energy, which enables us to construct an Itô-type
stochastic integral by the Dirichlet process. He also defined a Fisk–Stratonovich-
type integral for symmetric diffusion processes with no inside killing in order to es-
tablish the stochastic line integral along 1-forms for symmetric diffusion processes
over smooth manifolds and gave an application of stochastic line integral to a ho-
mogenization problem.

On the other hand, Lyons and Zheng [19] and Lyons and Zheng [18] introduced
the notion of Fisk–Stratonovich-type integrals in terms of the sum of forward and
backward martingales, which is described by time reverse operators in the frame-
work of symmetric conservative diffusion processes. They proved that their Fisk–
Stratonovich-type integrals are consistent with Nakao’s one under the law Pm.

In the joint paper [3], we extend Nakao’s divergence-like CAF of zero energy
in terms of time reverse operators and define a stochastic integral integrated by
this extended CAF under some mild conditions, which plays an important role
in deducing the perturbation of general symmetric Markov processes, that is, the
combination of the Feynman–Kac formula and the Girsanov formula (see [4, 5]);
however, still described under the law Pm except a special case.

We extend Nakao’s CAFs of zero energy and stochastic integrals with respect
to it for more general integrand and integrator in terms of the the space locally
in the Dirichlet space and a subclass of locally square integrable MAF on [[0, ζ [[
(Definition 3.1). We will define both the Itô-type and the Fisk–Stratonovich-type
stochastic integrals integrated by (not necessarily continuous) Dirichlet processes
under the law Px for quasi-everywhere starting point x ∈ E, which are described
in terms of a subclass of locally square integrable MAF on [[0, ζ [[ over general
symmetric Markov processes (Definitions 4.2 and 4.3). Our definitions of Fisk–
Stratonovich-type integrals are somewhat different from what is defined by Meyer
[21] and Protter [23] in the framework of semi-martingales (Remark 4.1).

We further show that our stochastic integrals integrated by the purely discontin-
uous part of Dirichlet processes have a representation of sum of jumps on Dirich-
let processes if the jump function of integrator is anti-symmetric, which enables
us to see the pathwise behavior of pure jump processes under the law for quasi-
everywhere starting points (Theorem 4.1, Corollary 4.3).

As a corollary, we establish a generalized Fukushima decomposition for a class
of functions locally in the domain of forms (Theorem 4.2). We also present a
generalized Itô formula in terms of our extended stochastic integrals by Dirich-
let processes (Theorem 4.3). Our Itô formula for Fisk–Stratonovich-type integrals
has an expression different from what is exposed in Protter [23] (Remark 4.3).

Let us briefly outline the organization of this paper. In Section 2, we describe
the setting of the paper and give some basic lemmas. In Section 3, we formulate
the extension of Nakao’s CAF of zero energy and stochastic integral with respect
to it under the law for quasi everywhere starting points. In Section 4, we define our
stochastic integrals by Dirichlet processes and expose the result as noted above.
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2. Preliminary facts. Let M = {�,F∞,Ft ,Xt , θt , ζ,Px, x ∈ E} be an m-
symmetric right Markov process on a Lusin space E, where m is a σ -finite measure
with full support on E. Its associated Dirichlet space (E , F ) on L2(E;m) is known
to be quasi-regular (see [20]). By [8], (E , F ) is quasi-homeomorphic to a regular
Dirichlet space on a locally compact separable metric space. Thus using this quasi-
homeomorphism, without loss of generality, we may and do assume that M is an
m-symmetric Hunt process on a locally compact metric space E such that its asso-
ciated Dirichlet space (E , F ) is regular on L2(E;m) and that m is a positive Radon
measure with full topological support on E. But we implicitly use the quasi-left
continuity up to ∞, which is not the usual property of right Markov processes.
So the strict quasi-regularity of (E , F ) is essentially assumed. However, if we re-
strict ourselves to state the result that holds up to the life time with probability 1
for quasi-everywhere starting point, then the framework of quasi-regular Dirichlet
forms is enough.

Without loss of generality, we can take � to be the canonical path space
D([0,∞[ → E∂) of right-continuous, left-limited (rcll, for short) functions from
[0,∞[ to E∂ . For any ω ∈ �, we set Xt(ω) := ω(t). Let ζ(ω) := inf{t ≥ 0 |
Xt(ω) = ∂} be the life time of M. As usual, F∞ and Ft are the minimal completed
σ -algebras obtained from F0∞ := σ {Xs | 0 ≤ s < ∞} and F0

t := σ {Xs | 0 ≤ s ≤ t},
respectively, under Px . We set Xt(ω) := ∂ for t ≥ ζ(ω) and use θt to denote the
shift operator defined by θt (ω)(s) := ω(t +s), t, s ≥ 0. For each s ≥ 0, the shift op-
erator θs is defined by θsω(t) := ω(t +s) for t ∈ [0,∞[. For a Borel subset B of E,
σB := inf{t > 0 | Xt ∈ B} (the first hitting time to B) and τB := inf{t > 0 | Xt /∈ B}
(the first exit time of B) are (Ft )-stopping times. If B is closed, then τB is an (F0

t+)-
stopping time. Also, ζ is an (F0

t )-stopping time because {ζ ≤ t} = {Xt = ∂} ∈ F0
t ,

t ≥ 0.
The transition semigroup of M, {Pt , t ≥ 0}, is defined by

Ptf (x) := Ex[f (Xt)] = Ex[f (Xt) : t < ζ ], t ≥ 0.

Each Pt may be viewed as an operator on L2(E;m); collectively these operators
form a strongly continuous semigroup of self-adjoint contractions. The Dirichlet
form associated with M is the bilinear form

E (u, v) := lim
t↓0

1

t
(u − Ptu, v)m

defined on the space

F :=
{
u ∈ L2(E;m)

∣∣ sup
t>0

t−1(u − Ptu,u)m < ∞
}
.

Here we use the notation (f, g)m := ∫
E f (x)g(x)m(dx) for f,g ∈ L2(E;m).

An increasing sequence {Fn} of closed sets is called an E -nest if
⋃∞

n=1 FFn is

E 1/2
1 -dense in F , where FFn := {u ∈ F | u = 0 m-a.e. on E \Fn} and a family {Fn}

of closed sets is an E -nest if and only if it is a nest, that is, Px(limn→∞ τFn = ζ ) = 1
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q.e. x ∈ E. A function u on E is said to be E -quasi-continuous if there exists an
E -nest {Fn} of closed sets such that u is continuous on each Fn. A subset N of
E is called E -polar or (E -)exceptional if there exists an E -nest {Fn} such that
N ⊂ ⋂∞

n=1(E \ Fn); equivalently there is a Borel set Ñ containing N such that
Pm(σ

Ñ
< ∞) = 0. A statement S(x) is said to hold for quasi-everywhere x ∈ E

(q.e. x ∈ E in short) if there exists an exceptional set N such that {x ∈ E | S(x)

does not hold} ⊂ N .
An increasing sequence {Fn} of closed sets is called a strict E -nest if

lim
n→∞ Cap1,G1ϕ

(E \ Fn) = 0,

where Cap1,G1ϕ
is the weighted capacity defined in Chapter V, Definition 2.1 of

[20] and a family {Fn} of closed sets is a strict E -nest if and only if it is a strict
nest, that is, Px(limn→∞ σE\Fn = ∞) = 1 m-a.e. x ∈ E in view of Chapter V,
(2.5) in [20], equivalently it holds q.e. x ∈ E by Chapter V, Proposition 2.28(i) and
Remark 2.8 in [20]. A function u on E∂ is said to be strictly E -quasi-continuous
if there exists a strict E -nest {Fn} of closed sets such that u is continuous on each
Fn ∪ {∂}.

An increasing sequence {Gn} of (q.e.) finely open Borel sets is called a
nest (resp., strict nest) if Px(limn→∞ τGn = ζ ) = 1 for q.e. x ∈ E [resp.,
Px(limn→∞ σE\Gn = ∞) = 1 for q.e. x ∈ E]. (The definition of q.e. finely open
sets can be found in [11].) In [3], we show that under the quasi-left-continuity up
to infinity of M, for an increasing sequence {Gn} of (q.e.) finely open Borel sets,
{Gn} is a nest if and only if it is a strict nest. Denote by 
 the family of (strict)
nests {Gn} of (q.e.) finely open Borel sets. Note that for an E -nest {Fn} of closed
sets, {Gk} ∈ 
 by setting Gk := F

f -int
k , k ∈ N, where F

f -int
k means the fine interior

of Fk .
Let Fe be the family of m-measurable functions u on E such that |u| < ∞ m-

a.e. and there exists an E -Cauchy sequence {un} of F such that limn→∞ un = um-
a.e. We call {un} as above an approximating sequence for u ∈ Fe. For any
u, v ∈ Fe and their approximating sequences {un}, {vn} the limit E (u, v) =
limn→∞ E (un, vn) exists and does not depend on the choices of the approxi-
mating sequences for u, v. It is known that E 1/2 on Fe is a semi-norm and
F = Fe ∩ L2(E;m). We call (E , Fe) the extended Dirichlet space of (E , F ). Let
L0(E;m) be the family of m-measurable functions on E. We further let

Ḟloc := {
u ∈ L0(E;m) | there exist {Gn} ∈ 
 and

un ∈ F such that u = un m-a.e. on Gn for each n ∈ N
}
.

Ḟloc is called the space of functions locally in F in the broad sense. It is shown
in [16] that F ⊂ Fe ⊂ Ḟloc and every u ∈ Ḟloc admits an E -quasi-continuous m-
version ũ. More strongly every u ∈ F admits a strictly E -quasi-continuous m-
version ũ on E∂ with ũ(∂) = 0. For u ∈ Ḟloc, we always assume that ũ is extended
to be a real-valued function ũ on E∂ if not otherwise specified, where we do not
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necessarily assume ũ(∂) = 0. However, we can reduce to this case by setting ũ −
ũ(∂) on E∂ , which is in Ḟloc as a function defined on E.

We need the following lemma:

LEMMA 2.1. Every u ∈ Fe admits a strictly E -quasi-continuous m-version ũ

on E∂ with ũ(∂) = 0.

PROOF. Take u ∈ Fe. Then there exists an m-a.e. strictly positive bounded
function g ∈ L1(E;m) such that u ∈ (F g)e, where (E g, F g) is the Dirichlet form
on L2(E;m) defined by F g := F ∩ L2(E;gm), E g(v,w) := E (v,w) + (v,w)gm,
v,w ∈ F g , and (F g)e is its extended Dirichlet space. Then there exist an increas-
ing sequence {Fn} of closed sets and a function ũ on E∂ such that

lim
n→∞ Capg

(0)(E \ Fn) = 0,

ũ = u m-a.e. on E and ũ is continuous on each Fn ∪ {∂} with ũ(∂) = 0, where
Capg

(0) is the 0-order capacity with respect to (E g, (F g)e). It suffices to prove that
{Fn} is a strict E -nest with respect to (E , F ). For this, we need that for any open
set U ,

H
g
U 1(x) := Ex

[
e− ∫ σU

0 g(Xs) ds]
satisfies H

g
U 1 ∈ (F g)e and

Capg
(0)(U) = E g(H

g
U 1,H

g
U 1).(2.1)

This can be similarly proved along the same way as in Section 4.4 in [11]. We will
omit the details.

From (2.1), we have

Px

(
lim

n→∞

∫ σE\Fn

0
g(Xs) ds = ∞

)
= 1, m-a.e. x ∈ E,

and hence {Fn} is a strict nest, because of the boundedness of g. �

As a rule we take u to be represented by its (strictly) E -quasi-continuous m-
version (when such exists), and drop the tilde from the notation.

Let
◦

M and Nc denote, respectively, the space of martingale additive functionals
of finite energy and the space of continuous additive functionals of zero energy.
More precisely, we set

M := {M | M is a finite rcll AF,Ex[M2
t ] < ∞,Ex[Mt ] = 0

for q.e. x ∈ E and all t ≥ 0}.
For an AF M , if the limit

e(M) := lim
t↓0

1

2t
Em[M2

t ](2.2)



STOCHASTIC CALCULUS WITHOUT TIME REVERSAL 1537

exists, we call it energy of M . When M ∈ M, t �→ 1
2t

Em[M2
t ] is increasing and

the limit may diverge in general. Then we define
◦

M := {M ∈ M | e(M) < ∞},
Nc := {N | N is a finite CAF,Ex[|Nt |] < ∞ q.e. x ∈ E

for each t > 0, and e(N) = 0}.
For M,N ∈ ◦

M, we set

e(M,N) := lim
t↓0

1

2t
Em[MtNt ]

and call it mutual energy of M,N . It is well known that (
◦

M, e) is a real Hilbert
space with inner product e.

For u ∈ Fe, the following Fukushima decomposition holds:

u(Xt) − u(X0) = Mu
t + Nu

t(2.3)

for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E, where Mu ∈ ◦
M and Nu ∈ Nc.

A positive continuous additive functional (PCAF) of M (call it A) determines a
measure ν = νA on the Borel subsets of E via the formula

ν(f ) =↑ lim
t→0

1

t
Em

[∫ t

0
f (Xs) dAs

]
,(2.4)

in which f :E → [0,∞] is Borel measurable. The measure ν is necessarily smooth
(denote by ν ∈ S), in the sense that ν charges no exceptional set of E, and there
is an E -nest {Fn} of closed subsets of E such that ν(Fn) < ∞ for each n ∈ N.
Conversely, given a smooth measure ν, there is a unique PCAF Aν such that (2.4)
holds with A = Aν . In the sequel we refer to this bijection between smooth mea-
sures and PCAFs as the Revuz correspondence, and to ν as the Revuz measure
of Aν .

LEMMA 2.2. μ ∈ S if and only if μ charges no exceptional set and there exists
{Gn} ∈ 
 such that μ(Gn) < ∞ for each n ∈ N.

PROOF. The “only if” part is trivial by setting Gn := F
f -int
n . We only

prove the “if” part. Take an f ∈ L2(E;m) with 0 < f ≤ 1 on E and set
R

Gn

1 f (x) := Ex[∫ τGn

0 e−sf (Xs) ds]. Then R
Gn

1 f (x) > 0 on Gn and R
Gn

1 f is E -

quasi-continuous for each n ∈ N. Take a common E -nest {Ak} such that all R
Gn

1 f ,

n ≥ 1 are continuous on each Ak . We set Fn := {x ∈ An | R
Gn

1 f (x) ≥ 1/n}. Then

{Fn} is an E -nest by use of Lemma 3.3 in [16], where we observe Bn := {RGn

1 f >

1/n} is increasing and E \ ⋃∞
n=1 Bn is exceptional. For each n ∈ N, we have

(E \ Gn)
r ⊂ E \ Fn, where (E \ Gn)

r = {x ∈ E | R
Gn

1 f (x) = 0} is the set of
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regular points for E \ Gn. Since (E \ Gn) \ (E \ Gn)
r is exceptional, we obtain

μ(Fn) ≤ μ(Gn) < ∞ for each n ∈ N. �

A (positive) Radon measure μ on E is said to be a measure of finite energy
integral if there exists C > 0 depending on μ such that∫

E
|u(x)|μ(dx) ≤ C

√
E1(u,u) for all u ∈ F ∩ C0(E).

Let S0 be the family of measures of finite energy integrals. For μ ∈ S0 and α > 0,
there exists a unique element Uαμ ∈ F such that

Eα(Uαμ,v) =
∫
E

v(x)μ(dx) for v ∈ F ∩ C0(E).

It is known that every μ ∈ S0 is a smooth measure. If we set S00 := {μ ∈ S0 |
μ(E) < ∞,U1μ ∈ L∞(E;m)}, then N is exceptional if and only if ν(N) = 0 for
all ν ∈ S00.

For any μ ∈ S, ν ∈ S00, a (q.e.) finely open Borel set G and t > 0, we have the
following formula:

Eν[Aμ
t∧σE\G] ≤ (1 + t)‖U1ν‖∞μ(G),(2.5)

which can be similarly proved as in the proof of Lemma 5.1.9 in [11] with the help
of Lemma 5.1.10(ii) in [11].

Take M,N ∈ ◦
M and denote by 〈M,N〉 its quadratic covariational process,

which is a CAF of bounded variation, and let μ〈M,N〉 be its Revuz measure. In view

of Theorem 2.2 in [22], for M,N ∈ ◦
M, e(M,N) = 0 implies that 〈M,N〉 ≡ 0 on

[0,∞[ Px -a.s. for q.e. x ∈ E. For M ∈ ◦
M and f ∈ L2(E;μ〈M〉), there exists a

unique f ∗ M ∈ ◦
M such that

e(f ∗ M,N) = 1

2

∫
E

f (x)μ〈M,N〉(dx) for N ∈ ◦
M.

Moreover, we have the following.

LEMMA 2.3. Let M ∈ ◦
M and f ∈ L2(E;μ〈M〉). If f is a strictly E -quasi-

continuous function, then f ∗ M admits a Riemann sum approximation: for each
t > 0

(f ∗ M)t = lim
n→∞

n−1∑

=0

f (X
t/n)
(
M(
+1)t/n − M
t/n

)
holds Px -a.s. for q.e. x ∈ E, where the convergence of the right-hand side is in
Px-probability for q.e. x ∈ E.
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PROOF. This is well known for experts and shown for the case f ∈ C0(E) in
Lemma 5.6.2 of [11]. We shall show it for the reader’s convenience. By assump-
tion, we have for ν ∈ S00

Eν

[∫ t

0
f 2(Xs) d〈M〉s

]
≤ (1 + t)‖U1ν‖∞

∫
E

f 2(x)μ〈M〉(dx) < ∞.

In particular,

Ex

[∫ t

0
f 2(Xs) d〈M〉s

]
< ∞ for q.e. x ∈ E.

Then by Theorem A.3.19 in [11], for x ∈ E \ N with an adequate properly ex-
ceptional set N , we can define the stochastic integral f • M := ∫ t

0 f (Xs−) dMs

under Px , which is characterized by

Ex[(f • M)2
t ] = Ex

[∫ t

0
f 2(Xs−) d〈M〉s

]
= Ex

[∫ t

0
f 2(Xs) d〈M〉s

]
.

From this, we can get f • M ∈ ◦
M and μ〈f •M,N〉 = f μ〈M,N〉 for N ∈ ◦

M, hence
we have f ∗ M = f • M . On the other hand, since t �→ f (Xt−) is left-continuous
Px-a.s. for q.e. x ∈ E, f • M admits the Riemann-sum approximation in view of
Chapter I, Proposition 4.44 in [13]. Therefore, we obtain the result. �

REMARK 2.1. From Lemma 2.3, we may write (f ∗ M)t = ∫ t
0 f (Xs−) dMs

if f is strict E -quasi-continuous on E∂ .

Let (N(x, dy),Ht) be a Lévy system for M; that is, N(x, dy) is a kernel on
(E∂,B(E∂)) and Ht is a PCAF with bounded 1-potential such that for any non-
negative Borel function φ on E∂ × E∂ vanishing on the diagonal and any x ∈ E∂ ,

Ex

[∑
s≤t

φ(Xs−,Xs)

]
= Ex

[∫ t

0

∫
E∂

φ(Xs, y)N(Xs, dy) dHs

]
.

To simplify notation, we will write

Nφ(x) :=
∫
E∂

φ(x, y)N(x, dy).

Let μH be the Revuz measure of the PCAF H . Then the jump measure J and the
killing measure κ of M are given by

J (dx dy) = 1
2N(x, dy)μH (dx) and κ(dx) = N(x, {∂})μH (dx).

These measures feature in the Beurling–Deny decomposition of E : for f,g ∈ Fe,

E (f, g) = E c(f, g) +
∫
E×E

(
f (x) − f (y)

)(
g(x) − g(y)

)
J (dx dy)

+
∫
E

f (x)g(x)κ(dx),
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where E c is the strongly local part of E .
For u ∈ Fe, the martingale part Mu

t in (2.3) can be decomposed as

Mu
t = M

u,c
t + M

u,j
t + M

u,κ
t for every t ∈ [0,∞[,

Px -a.s. for q.e. x ∈ E, where M
u,c
t is the continuous part of martingale Mu, and

M
u,j
t = lim

ε↓0

{ ∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}1{s<ζ }

−
∫ t

0

(∫
{y∈E||u(y)−u(Xs)|>ε}

(
u(y) − u(Xs)

)
N(Xs, dy)

)
dHs

}
,

M
u,κ
t =

∫ t

0
u(Xs)N(Xs, {∂}) dHs − u(Xζ−)1{t≥ζ }

are the jump and killing parts of Mu in
◦

M, respectively. The limit in the expression
for Mu,j is in the sense of convergence in

◦
M and of convergence in probability

under Px for q.e. x ∈ E for each fixed t > 0. (See Theorem A.3.9 and page 341 in
[11].)

If we let
◦

Mc := {M ∈ ◦
M | M is a continuous MAF},

◦
Md := (

◦
Mc)⊥ = {M ∈ ◦

M | e(M,N) = 0 for N ∈ ◦
Mc},

then every M has an orthogonal decomposition

M = Mc + Md

in the Hilbert space (
◦

M, e). Mc ∈ ◦
Mc (resp., Md ∈ ◦

Md ) is nothing but the con-
tinuous part (resp., purely discontinuous part) of M discussed in [11]. Moreover,
set

◦
Mj := {M ∈ ◦

Md | e(M,Mu,κ) = 0 for u ∈ Fe},
◦

Mκ := ◦
Md ∩ (

◦
Mj )⊥.

Then
◦

Mj is a closed subspace of
◦

M, hence Md has a unique orthogonal decom-
position in (

◦
M, e) as

Md = Mj + Mκ,

where Mj ∈ ◦
Mj and Mκ ∈ ◦

Mκ . For simplicity of notation, we will use the con-
vention �Fs := Fs − Fs− for any rcll (Ft )-adapted process F . The square bracket
[M,N ] for M,N ∈ ◦

M is defined by

[M,N ]t := 〈Mc,Nc〉t + ∑
0<s≤t

�Ms�Ns.
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Then 〈M,N〉 is the dual predictable projection of [M,N ] (see (A.3.7) in [11]). We
further set for each i = ∅, c, d, j, κ

◦
Mi

f -loc := {
M | there exist {Gn} ∈ 
 and

{
M(n)}⊂ ◦

Mi such that

Mt = M
(n)
t for all t < σE\Gn and n ∈ N,Px-a.s. for q.e. x ∈ E

}
,

Nc,f -loc := {
N | there exist {Gn} ∈ 
 and

{
N(n)}⊂ Nc such that

Nt = N
(n)
t for all t < σE\Gn and n ∈ N,Px-a.s. for q.e. x ∈ E

}
.

Similarly, we can define
◦

Mi
loc and Nc,loc as subclasses of local AFs (or AFs on

[[0, ζ [[) in terms of first exit times τGn (see [3, 11] for the notion of local AF).

Here i = ∅ means
◦

M∅ := ◦
M and write

◦
Mf -loc (resp.,

◦
Mloc) instead of

◦
M∅

f -loc

(resp.,
◦

M∅

loc). Every PCAF is an element of Nc,loc. Our
◦

Mf -loc (resp., Nc,f -loc)

is slightly narrower than
◦

Mloc (resp., Nc,loc) treated in [11] (in [3] we use the

same symbol
◦

Mf -loc (resp., Nc,f -loc) to denote
◦

Mloc (resp., Nc,loc)). However,
Fukushima’s decomposition (2.3) for u ∈ Ḟloc with J = κ = 0 can be characterized
by

◦
Mf -loc and Nc,f -loc. Before seeing this, we need the following lemma:

LEMMA 2.4. Let G be a (q.e.) finely open Borel set.

(1) If u ∈ F satisfies u = 0 q.e. on G, then μ〈Mu,c〉(G) = 0 and

M
u,c
t = 0 for any t ≤ σE\G Px-a.s. for q.e. x ∈ E.

(2) For M ∈ ◦
M, μ〈M〉(G) = 0 implies Mt = 0 for any t < σE\G Px-a.s. for q.e.

x ∈ E.

PROOF. The proof of (1) is quite similar to the proof of Lemma 5.3.1 in [11].
Note that t < σE\G ≤ σ̂E\G implies Xs,Xs− ∈ G ∪ {∂} for all s ∈ ]0, t], which
means u(Xs) − u(Xs−) = 0 for all s ∈ ]0, t], because of u(∂) = 0. Here σ̂E\G :=
inf{t > 0 | Xt− ∈ E \ G} (see (A.2.6) and Theorem A.2.3 in [11]). Next we
prove (2). Suppose μ〈M〉(G) = 0 for M ∈ ◦

M. Note that
∫ t

0 1{∂}(Xs) d〈M〉s = 0
Px-a.s. for q.e. x ∈ E. Combining this and Theorem 5.1.3(i) in [11], we have
Em[∫ t

0 1G∪{∂}(Xs) d〈M〉s] = 0 for each t > 0, hence 〈M〉t = 0 for all t < σE\G
Pm-a.e. Then by Lemma 5.1.10(iii) in [11], we obtain the result. �

REMARK 2.2. Our method of the proof of Lemma 2.4(1) does not work to
show the same assertion in the case that u is only constant q.e. on G.

From this lemma, we can construct Mu,c ∈ ◦
Mc

f -loc for u ∈ Ḟloc. Under J =
κ = 0, for u ∈ Ḟloc, (2.3) holds for all t ∈ [0, ζ [ Px -a.s. for q.e. x ∈ E, where
Mu ∈ ◦

Mc
f -loc and Nu ∈ Nc,f -loc. If, further, u can be extended to be a real-valued
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function on E∂ [without assuming u(∂) = 0], then the decomposition (2.3) holds
for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.

In order to define the stochastic integrals by Dirichlet processes, we have to
investigate the structure of

◦
Md . For this we introduce the spaces

◦
J , J , Ĵ of jump

functions

Ĵ := {φ :E∂ × E∂ → R | φ is a Borel measurable function such that

φ(x, x) = 0 for x ∈ E∂ and N(1E×Eφ2)μH ∈ S},
J := {φ :E∂ × E∂ → R | φ is a Borel measurable function such that

φ(x, x) = 0 for x ∈ E∂ and N(φ2)μH ∈ S}
and

◦
J := {φ ∈ J | ∫E N(φ2) dμH < ∞}. Clearly

◦
J ⊂ J ⊂ Ĵ , and for φ ∈ Ĵ ,

we see 1E×Eφ ∈ J . Further we set Jas := {φ ∈ J | φ̃ = 0 J -a.e. on E × E} and
J∗ := {φ ∈ J | N(1E×E|φ|2)μH ∈ S}, ◦

Jas = ◦
J ∩ Jas and

◦
J∗ = ◦

J ∩ J∗. Here
φ(x, y) := φ(y, x) for x, y ∈ E∂ , φ̃ := (φ + φ)/2 on E∂ × E∂ . Clearly, Jas ⊂ J∗
and

◦
Jas ⊂ ◦

J∗. Similarly, we can define Ĵas and Ĵ∗ by replacing J with Ĵ in its
definitions. Moreover, for φ ∈ J∗ (resp., φ ∈ Ĵ∗), we see 1E×Eφ ∈ J∗ (resp., φ ∈
Ĵ∗). For φ ∈ Ĵ and 
 ∈ N, we write φ
 := φ1{|φ|>1/
}. For φ,ψ ∈ J (resp., φ,ψ ∈
Ĵ ), we write φ ∼ ψ if φ = ψ J ∗-a.e. on E × E∂ (resp., φ = ψ J -a.e. on E × E),
where J ∗ is the measure on E × E∂ defined by J ∗(dx dy) := 1

2N(x, dy)μH (dx).

Then ∼ is an equivalence relation and denote by
◦

J / ∼, J / ∼, Ĵ / ∼ the families
of equivalence classes.

LEMMA 2.5. There exists a one-to-one correspondence between
◦

J / ∼ and◦
Md which is characterized by the relation that for φ ∈ ◦

J (resp., M ∈ ◦
Md ), there

exists M ∈ ◦
Md (resp., φ ∈ ◦

J ) such that e(M) = 1
2

∫
E N(φ2)(x)μH (dx) and Mt −

Mt− = φ(Xt−,Xt) for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Moreover, 〈M〉t =∫ t
0 N(φ2)(Xs) dHs for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.

PROOF. Take φ ∈ ◦
J and set

M

t := ∑

0<s≤t

φ
(Xs−,Xs) −
∫ t

0

∫
E∂

φ
(Xs, y)N(Xs, dy) dHs.

Then we can obtain M
 ∈ ◦
Md and

〈M
〉t =
∫ t

0

∫
E∂

φ2

 (Xs, y)N(Xs, dy) dHs,(2.6)

e(M
) = 1

2

∫
E

∫
E∂

φ2

 (x, y)N(x, dy)μH (dx).(2.7)
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Indeed, we easily see that M
 is an MAF. If we let T 

n := inf{t > 0 | |M


t | ≥ n},
then {T 


n } is an increasing sequence of (Ft )-stopping times such that limn→∞ T 

n =

∞. Then we have |M

t∧T 


n
| ≤ |M


t∧T 

n −| + |φ(Xt∧T 


n −,Xt∧T 

n
)| ≤ n + |φ(Xt∧T 


n −,

Xt∧T 

n
)|, which implies that for ν ∈ S00

Eν[(M

t∧T 


n
)2] ≤ 2n2ν(E) + 2Eν

[∑
s≤t

φ2(Xs−,Xs)

]

= 2n2ν(E) + 2Eν

[∫ t

0

∫
E∂

φ2(Xs, y)N(Xs, dy) dHs

]
≤ 2n2ν(E) + 2(1 + t)‖U1ν‖∞

∫
E

N(φ2)(x)μH (dx) < ∞.

That is, t �→ M

t∧T 


n
is a square integrable purely discontinuous Pν-martingale for

each n. By Corollary A.3.1 in [11],

(M

t∧T 


n
)2 −∑

s≤t

(�M

s∧T 


n
)2 = (M


t∧T 

n
)2 − ∑

s≤t∧T 

n

φ2

 (Xs−,Xs)

is a Pν -martingale (also a Px -martingale for q.e. x ∈ E), which yields that

Eν[(M

t )2] ≤ lim

n→∞
Eν[(M


t∧T 

n
)2] = lim

n→∞
Eν

[ ∑
s≤t∧T 


n

φ2

 (Xs−,Xs)

]

= Eν

[∑
s≤t

φ2

 (Xs−,Xs)

]
≤ Eν

[∫ t

0

∫
E∂

φ2(Xs, y)N(Xs, dy) dHs

]

≤ (1 + t)‖U1ν‖∞
∫
E

∫
E∂

φ2(x, y)N(x, dy)μH (dx) < ∞.

Thus, M

t is a square integrable MAF. Since {M


t∧T 

n
}∞n=1 is L2(Pν)-bounded, by

use of the Banach–Saks theorem, we have the equality

Eν[(M

t )2] = Eν

[∫ t

0

∫
E∂

φ2

 (Xs, y)N(Xs, dy) dHs

]
for all ν ∈ S00. We then have the same equation for q.e. x ∈ E by replacing ν

with x. Hence M
 ∈ ◦
M, (2.6) and (2.7). Note that there exists a sequence {Tn}

of totally inaccessible times such that {(t,ω) | M

t − M


t− �= 0} =⋃∞
n=1[[Tn]]. This

yields that M
 = M
,d ∈ ◦
Md in view of Theorem A.3.9 in [11]. Moreover, we

see that {M
}∞
=1 is an e-Cauchy sequence in
◦

Md . Denote by M ∈ ◦
Md its limit.

Then there exists a subsequence {
k} such that M
k converges to M uniformly
on each compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈ E. We see for each 
,
M


t − M

t− = φ
(Xt−,Xt) for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Therefore we

have the desired result. Conversely take an M ∈ ◦
Md . Then, by Lemma 3.2 in [6],
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there exists a Borel function φ defined on E∂ × E∂ with φ(x, x) = 0 for x ∈ E∂

such that Mt −Mt− = φ(Xt−,Xt), t ∈ [0, ζp[ Pm-a.e., where ζp is the predictable
part of ζ defined by ζp := ζ if ζ < ∞ and Xζ− = ∂ , and ζp := ∞ otherwise. For
L = f ∗ Mu with f ∈ C0(E), u ∈ F ∩ C0(E), we have �Lζp = f (Xζp−)�Mu

ζp
=

0 for ζp < ∞. In view of Lemma 5.6.3 and Theorem 5.2.1 in [11], we see �Mζp =
0 for ζp < ∞, which implies Mt − Mt− = φ(Xt−,Xt), t ∈ [0,∞[ Pm-a.e. From
this, we have∫

E

∫
E∂

φ2(x, y)N(x, dy)μH (dx) = lim
t→0

1

t
Em

[∫ t

0

∫
E∂

φ2(Xs, y)N(Xs, dy) dHs

]

= lim
t→0

1

t
Em

[∑
s≤t

φ2(Xs−,Xs)

]

= lim
t→0

1

t
Em

[∑
s≤t

(Ms − Ms−)2
]

= lim
t→0

1

t
Em[M2

t ] = 2e(M) < ∞,

where we use Corollary A.3.1 in [11]. Going back to the first argument, we can
construct M̃ ∈ ◦

Md such that M̃t − M̃t− = φ(Xt−,Xt), t ∈ [0,∞[ Px-a.s. for q.e.
x ∈ E. Applying Corollary A.3.1 in [11] to M − M̃ ∈ ◦

Md , we obtain

e(M − M̃) = lim
t→0

1

t
Em[(Mt − M̃t )

2] = lim
t→0

1

t
Em

[∑
s≤t

(
�(M − M̃)s

)2]= 0,

which implies the converse assertion. �

COROLLARY 2.1. Take φ ∈ ◦
J and set φ(x, y) := φ(y, x) for x, y ∈ E∂ . Then

1E×Eφ ∈ ◦
J , in particular, there exists K ∈ ◦

Mj such that Kt −Kt− = −1E×E(φ+
φ)(Xt−,Xt) t ∈ ]0,∞[ Px -a.s. for q.e. x ∈ E.

PROOF. The assertion is clear from∫
E

∫
E

φ2(x, y)N(x, dy)μH (dx) =
∫
E

∫
E

φ2(x, y)N(x, dy)μH (dx)

≤
∫
E

N(φ2)(x)μH (dx) < ∞. �

From this corollary, we have
◦

J ⊂ J∗.

LEMMA 2.6. Take a Borel function φ :E∂ × E∂ → R with φ(x, x) = 0 for
x ∈ E∂ . The following are equivalent under φ ∈ J :

(1) φ(Xt−,Xt) = 0 for all t ≤ σE\G Px-a.s. for q.e. x ∈ E.
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(2) φ(Xt−,Xt) = 0 for all t ≤ σE\G Pm-a.e.
(3)

∫ t
0 N(φ2)(Xs) dHs = 0 for all t < σE\G Px -a.s. for q.e. x ∈ E.

(4)
∫ t

0 N(φ2)(Xs) dHs = 0 for all t < σE\G Pm-a.e.
(5) φ = 0 J ∗-a.e. on G × E∂ .

Replacing σE\G [resp., φ in (3), (4)] with τG (resp., 1E×Eφ), we have a similar
equivalence under 1E×Eφ ∈ J , where the last condition is that φ = 0 J ∗-a.e. on
G × E.

PROOF. The implication (1) �⇒ (2) is trivial and (3) ⇐⇒ (4) follows from
Lemma 5.1.10(iii) in [11]. We first show (2) �⇒ (3). Suppose φ(Xt−,Xt) = 0 for
all t ∈ ]0, σE\G] Pm-a.e. Then we see φ(XσE\G−,XσE\G) = 0 Pm-a.e. on {σX\G <

∞}. So φ(Xt∧σE\G−,Xt∧σE\G) = 0 for all t ∈ ]0,∞[ Pm-a.e. From the property of
Lévy system (see Appendix (A) in [7] or the formula with Yt = 1]0,T ](t) at line -9
on page 346 in [25]), we have for each t > 0

Em

[∫ t∧σE\G

0
N(φ2)(Xs) dHs

]
= Em

[ ∑
s≤t∧σE\G

φ2(Xs−,Xs)

]
= 0,

which implies (4), hence (3). (3) also yields
∫
G N(φ2) dμH = 0 by Lem-

ma 5.1.10(iii) in [11], and in particular, we obtain (5). Conversely suppose (5),
that is,

∫
G N(φ2) dμH = 0. Then, we can obtain (1) by way of the inequality (2.5)

and the property of Lévy system used above. �

COROLLARY 2.2. Take an MAF M ∈ ◦
Md and the associated φ ∈ ◦

J . Set
φ∂(x, y) := φ(x, y)1{∂}(y). Then the following are equivalent:

(1) M ∈ ◦
Mj .

(2) φ(x, ∂) = 0 κ-a.e. x ∈ E.
(3)

∫ ·
0 N(φ2

∂ )(Xs) dHs ≡ 0 Px-a.s. for q.e. x ∈ E.
(4)

∫ ·
0 N(φ2

∂ )(Xs) dHs ≡ 0 Pm-a.e.

Set φE(x, y) := φ(x, y)1E(y). Then the following are equivalent:

(1∗) M ∈ ◦
Mκ .

(2∗) φ(x, y) = 0 J -a.e. (x, y) ∈ E × E.
(3∗)

∫ ·
0 N(φ2

E)(Xs) dHs ≡ 0 Px-a.s. for q.e. x ∈ E.
(4∗)

∫ ·
0 N(φ2

E)(Xs) dHs ≡ 0 Pm-a.e.

PROOF. (1) ⇐⇒ (2) is clear from e(M,Mu,κ) = −1
2

∫
E φ(x, ∂)u(x)κ(dx) for

u ∈ Fe. Here we use the fact that F is dense in L2(E;κ). (1∗) ⇐⇒ (2∗) is clear
from (1) ⇐⇒ (2) and e(M,N) = 1

2

∫
E

∫
E∂

φ(x, y)ψ(x, y)N(x, dy)μH(dx). The
rest implications hold true for general φ ∈ J and are clear in view of the unique-
ness of the Revuz correspondence and Lemma 5.1.10(iii) in [11]. �
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Let Mloc be the space of locally square integrable MAFs and M[[0,ζ [[
loc the

space of locally square integrable MAFs on [[0, ζ [[. That is, M ∈ Mloc (resp.,
M ∈ M[[0,ζ [[

loc ) if and only if there exists an increasing sequence {Tn} (resp.,
{Sn}) of (Ft )-stopping times and {M(n)} ⊂ M such that limn→∞ Tn = ∞ (resp.,
limn→∞ Sn = ζ ) and for each n ∈ N, Mt∧Tn = M

(n)
t∧Tn

(resp., Mt∧Sn1{t∧Sn<ζ } =
M

(n)
t∧Sn

1{t∧Sn<ζ }) for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Let Mc
loc (resp., Md

loc)
be the space of locally square integrable continuous (resp., purely discontinuous)
MAFs. That is, for M ∈ Mc

loc (resp., M ∈ Md
loc), we can take {M(n)} from Mc

(resp., Md ) in the above definition. Similarly, we can define the space Mc,[[0,ζ [[
loc

(resp., Md,[[0,ζ [[
loc ) of locally square integrable continuous (resp., purely discontin-

uous) MAFs on [[0, ζ [[. For every M ∈ M[[0,ζ [[
loc , its quadratic variational process

〈M〉 can be defined to be a PCAF (Proposition 2.8 in [3]), and M is decomposed
to M = Mc + Md (Theorem 8.23 in [12]), where Mc ∈ Mc,[[0,ζ [[

loc , Md ∈ Md,[[0,ζ [[
loc

have the property 〈Mc,Md〉 ≡ 0. The next theorem is a natural extension of
Lemma 2.5.

THEOREM 2.1. There exists a one-to-one correspondence between J / ∼
(resp., Ĵ / ∼) and Md

loc (resp., Md,[[0,ζ [[
loc ) which is characterized by the rela-

tion that for φ ∈ J (resp., Ĵ ) there exists M ∈ Md
loc (resp., Md,[[0,ζ [[

loc ) such
that Mt − Mt− = φ(Xt−,Xt) for all t ∈ [0,∞[ (resp., t ∈ [0, ζ [) Px-a.s. for
q.e. x ∈ E. Conversely for each M ∈ Md

loc (resp., Md,[[0,ζ [[
loc ), there exists a

φ ∈ J (resp., Ĵ ) such that the same equation holds. Moreover, we have 〈M〉t =∫ t
0
∫
E∂

φ2(Xs, y)N(Xs, dy) dHs for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.

PROOF. We only prove the correspondence between J / ∼ and Md
loc. The

proof of the correspondence between Ĵ / ∼ and Md,[[0,ζ [[
loc is similar by replac-

ing σE\Fk
with τFk

. Suppose φ ∈ J . Take an E -nest {Fk} of closed sets such

that 1Fk
N(|φ|2)μH ∈ S00. Then 1Fk

φ ∈ ◦
J for each k ∈ N, where (1Fk

φ)(x, y) :=
1Fk

(x)φ(x, y), x, y ∈ E∂ , and there exists an M(k) ∈ ◦
Md such that M

(k)
t −M

(k)
t− =

1Fk
(Xt−)φ(Xt−,Xt) for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Such M(k) is an

e-convergent limit of {M(k),
}∞
=1, where

M
(k),

t := ∑

0<s≤t

1Fk
(Xs−)φ
(Xs−,Xs) −

∫ t

0
1Fk

(Xs)N(φ
)(Xs) dHs.

This yields that for j > k, M
(j)
t = M

(k)
t for t < σE\Fk

, more strongly M
(j)
t∧σE\Fk

=
M

(k)
t∧σE\Fk

because of XσE\Fk
− ∈ Fk ∪ {∂}. Hence M defined by Mt := M

(k)
t for

t < σE\Fk
satisfies Mt∧σE\Fk

= M
(k)
t∧σE\Fk

, which implies M ∈ Md
loc, because {Fk}

is also a strict E -nest.
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Conversely suppose M ∈ Md
loc. Then there exists a sequence {M(n)} of square

integrable purely discontinuous MAFs and an increasing sequence {Tn} of stop-
ping times such that limn→∞ Tn = ∞ and Mt∧Tn = M

(n)
t∧Tn

for all t ∈ [0,∞[ Px -
a.s. for q.e. x ∈ E. By an argument in the proof of Proposition 2.8 in [3], we can
construct a quadratic variational process 〈M〉, which is a PCAF, and a nest {Fk}
of closed sets such that 1Fk∪{∂} ∗ M ∈ ◦

M and e(1Fk∪{∂} ∗ M) = 1
2μ〈M〉(Fk). Note

that 1{∂} ∗ M = 0 because
∫ t

0 1{∂}(Xs) d〈M〉s = 0. We remark that 〈M,N〉 ≡ 0

for all N ∈ Mc
loc, which implies 1Fk∪{∂} ∗ M ∈ ◦

Md , hence M ∈ ◦
Md

f -loc. As
in the proof of Proposition 2.8 in [3], we see Mt = (1Fk∪{∂} ∗ M)t for t ≤
σE\Fk

. Indeed, we have this from the assertion for t < σE\Fk
and �MσE\Fk

=
1Fk∪{∂}(XσE\Fn−)�MσE\Fk

= �(1Fk∪{∂} ∗ M)σE\Fk
. By Lemma 2.5, there exists

a Borel function φk ∈ ◦
J such that 1Fk∪{∂}(Xt−)(Mt − Mt−) = φk(Xt−,Xt) for

t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. From this, for j > k, we see that φk(Xt−,Xt) =
φj (Xt−,Xt) for t ≤ σE\Fk

Px-a.s. for q.e. x ∈ E. Let Gk be the fine interior
of Fk . By Lemma 2.6, for j > k we have φk = φj J ∗-a.e. on Gk × E∂ . So
we can define φ on E∂ × E∂ such that φ = φk J ∗-a.e. on Gk × E∂ . From
Lemma 2.2, we see N(φ2)μH ∈ S. Applying Lemma 2.6 again, φ(Xt−,Xt) =
φk(Xt−,Xt) = Mt − Mt− for all t ≤ σE\Gk

. Moreover, we see 〈1Fk∪{∂} ∗ M〉t =∫ t
0
∫
E∂

φ2
k (Xs, y)N(Xs, dy) dHs . Therefore we obtain the desired assertion. �

COROLLARY 2.3. For φ ∈ Ĵ∗, there exists a K ∈ Md
loc such that Kt −Kt− =

−1E×E(φ + φ)(Xt−,Xt) for all t ∈ ]0,∞[ Px-a.s. for q.e. x ∈ E.

PROOF. This is clear from that φ ∈ Ĵ∗ implies 1E×Eφ,1E×Eφ ∈ J∗. �

REMARK 2.3. A similar argument of the proof of Theorem 2.1 yields

Md
loc = {

M | there exists {Gn} ∈ 
 and M(n) ∈ ◦
Md such that

Mt = M
(n)
t for all t ≤ σE\Gn and n ∈ N,Px-a.s. for q.e. x ∈ E

}
,

Md,[[0,ζ [[
loc = {

M | there exists {Gn} ∈ 
 and M(n) ∈ ◦
Md such that

Mt = M
(n)
t for all t ≤ τGn and n ∈ N,Px-a.s. for q.e. x ∈ E

}
.

These show Md
loc ⊂ ◦

Md
f -loc and Md,[[0,ζ [[

loc ⊂ ◦
Md

loc. We also have the coincidences

Mc
loc = ◦

Mc
f -loc and Mc,[[0,ζ [[

loc = ◦
Mc

loc. Indeed, the inclusion Mc
loc ⊂ ◦

Mc
f -loc can

be obtained in the same way of the proof of Theorem 2.1. The converse inclusion
is easily confirmed from the continuity of M ∈ ◦

Mc
f -loc and Px(limn→∞ σE\Gn =

∞) = 1 for q.e. x ∈ E.

The next corollary is needed to assure the uniqueness of the generalized Fuku-
shima decomposition later.
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COROLLARY 2.4. We have Mloc ∩ Nc,f -loc = {0} and M[[0,ζ [[
loc ∩ Nc,loc = {0}.

PROOF. We only prove Mloc ∩ Nc,f -loc = {0}. The proof of M[[0,ζ [[
loc ∩

Nc,loc = {0} is similar to this by replacing σE\Fk
with τFk

. Take M ∈ Mloc,
N ∈ Nc,f -loc and suppose Mt + Nt = 0 for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.
In particular, M is continuous. Let φ ∈ J be the jump function associated to Md .
As in the proof of Theorem 2.1, we can construct a common {Gk} ∈ 
, M(k) ∈ ◦

M
with its jump function φk ∈ ◦

J and N(k) ∈ Nc such that Mt = M
(k)
t , Nt = N

(k)
t

for all t < σE\Gk
Px -a.s. for q.e. x ∈ E, and φ = φk J ∗-a.e. on Gk × E∂ . The

continuity of M yields φ(Xt−,Xt) = 0 for all t ∈ ]0,∞[ Px -a.s. for q.e. x ∈ E.
Then we can conclude that φk(Xt−,Xt) = 0 for all t ∈ ]0, σE\Gk

] Px-a.s. for q.e.

x ∈ E by way of Lemma 2.6. This implies that M
(k)
t∧σE\Gk

= M
(k)
t∧σE\Gk

− Px-a.s. for

q.e. x ∈ E. On the other hand, we see that M
(k)
t∧σE\Gk

− + N
(k)
t∧σE\Gk

= 0 Px-a.s. for

q.e. x ∈ E because M
(k)
t + N

(k)
t = 0 for all t ∈ [0, σE\Gk

[ Px-a.s. for q.e. x ∈ E.
Therefore we obtain

M
(k)
t∧σE\Gk

+ N
(k)
t∧σE\Gk

= 0 for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.

Then we can conclude that Mt = Nt = 0 for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E in
view of the argument of the proof of the uniqueness of Fukushima decomposition
as in Theorem 5.5.1 of [11]. �

We define subclasses of Md
loc as follows:

Mj
loc := {M ∈ Md

loc | φ(·, ∂) = 0 κ-a.e. on E},
Mκ

loc := {M ∈ Md
loc | φ = 0 J -a.e. on E × E}.

Then we have a similar statement as in Corollary 2.2. From this, we see that M ∈
Mj

loc, N ∈ Mκ
loc implies 〈M,N〉 ≡ 0 Px-a.s. for q.e. x ∈ E. Every M ∈ Mloc is

decomposed to M = Mc +Mj +Mκ , where Mc ∈ Mc
loc, Mj ∈ M

j
loc, Mκ ∈ Mκ

loc

have the properties 〈Mc,Mj 〉 ≡ 〈Mj,Mκ〉 ≡ 〈Mκ,Mc〉 ≡ 0. For M ∈ M[[0,ζ [[
loc

with its jump function φ ∈ Ĵ , we can consider Mj ∈ Mj
loc (resp., K ∈ Mj

loc)
associated to 1E×Eφ ∈ J [resp., −1E×E(φ + φ) ∈ J ], where K is constructed in
Corollary 2.3.

We introduce the subclasses Ḟ †
loc, Ḟ ‡

loc of Ḟloc as follows:

Ḟ †
loc := {

u ∈ Ḟloc | N(1E×E

(
u(·) − u

)2)
μH ∈ S

}
,

Ḟ ‡
loc := {

u ∈ Ḟ †
loc | u(∂) ∈ R and

(
u(·) − u(∂)

)2
κ ∈ S

}
.

Clearly, Ḟ †
loc and Ḟ ‡

loc are linear subspaces of Ḟloc, and 1E∂
,1E ∈ Ḟ ‡

loc. By Re-

mark 3.9 of [3] and κ ∈ S, we see Fe ∪ (Ḟloc)b ⊂ Ḟ ‡
loc by regarding u(∂) ∈ R for
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u ∈ Ḟloc. For u, v ∈ Ḟ ‡
loc (resp., u, v ∈ Ḟ †

loc), we see uv ∈ Ḟ ‡
loc (resp., uv ∈ Ḟ †

loc)

provided u or v is bounded. From Theorem 2.1, for u ∈ Ḟ ‡
loc (resp., u ∈ Ḟ †

loc), there

exists a Mu,d ∈ Md
loc(⊂

◦
Md

f -loc) (resp., Mu,d ∈ Md,[[0,ζ [[
loc ) such that �M

u,d
t =

�u(Xt) for all t ∈ [0,∞[ (resp., [0, ζ [) Px-a.s. for q.e. x ∈ E.
Moreover, we define

F †
loc :=

{
u ∈ Floc

∣∣∣ ∀K ∈ K,

∫
K×E

(
u(y) − u(x)

)2
J (dx dy) < ∞

}
,

F ‡
loc :=

{
u ∈ F †

loc

∣∣∣ u(∂) ∈ R and ∀K ∈ K,

∫
K

(
u(x) − u(∂)

)2
κ(dx) < ∞

}
.

Here K denotes the family of all compact sets and Floc is the space of functions
locally in F in the ordinary sense (see [11]). Clearly, F †

loc ⊂ Ḟ †
loc and F ‡

loc ⊂ Ḟ ‡
loc.

For u ∈ Floc, u ∈ F †
loc if and only if that for any compact set K with its relatively

compact open neighborhood G∫
K×Gc

(
u(y) − u(x)

)2
J (dx dy) < ∞.

We see Fe ∪ (Floc)b ⊂ F ‡
loc, because of J (K × Gc) < ∞ and κ(K) < ∞ (see

Corollary 5.1 in [16]), where K and G are noted as above.

EXAMPLE 2.1. Let (E , F ) be a regular Dirichlet form on L2(RN) whose
jumping measure J has an expression J (dx dy) = f (|x − y|) dx dy such that f is
a locally bounded Borel function on [0,∞[ satisfying∫ ∞

c
f (r)rN+1 dr < ∞ for some c > 0.(2.8)

For instance, relativistic symmetric α-stable processes satisfy (2.8) (see [7]). Then
each coordinate function 
k(x) := xk satisfies 
k ∈ F †

loc (k = 1,2, . . . ,N ) un-
der (2.8). Indeed, for any compact set K and its relatively compact open neigh-
borhood G with d(K,Gc) := infx∈K,y∈Gc |x − y| > 0,∫

K×Gc
|
k(x) − 
k(y)|2J (dx dy) ≤

∫
K

∫
Gc

|x − y|2f (|x − y|) dy dx

≤ |K|σ(SN−1)

∫ ∞
d(K,Gc)

rN+1f (r) dr < ∞,

where |K| is the volume of K and σ(SN−1) is the area of unit sphere.

3. Nakao integrals. Now we are in a position to define an extension of
Nakao’s divergence-like CAF of zero energy and stochastic integrals with respect
to it in our setting.

Let N ∗
c ⊂ Nc denote the class of continuous additive functionals of the form

Nu + ∫ ·
0 g(Xs) ds for some u ∈ F and g ∈ L2(E;m). Nakao [22] constructed a
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linear operator � from
◦

M into N ∗
c in the following way: for every Z ∈ ◦

M, there
is a unique w ∈ F such that

E1(w,f ) = 1
2μ〈Mf +Mf,κ ,Z〉(E) for every f ∈ F .(3.1)

This unique w is denoted by γ (Z). The operator � is defined by

�(Z)t := N
γ(Z)
t −

∫ t

0
γ (Z)(Xs) ds for Z ∈ ◦

M.(3.2)

It is shown in Nakao [22] that �(Z) can be characterized by the following equa-
tion:

lim
t↓0

1

t
Eg·m[�(Z)t ] = −1

2
μ〈Mg+Mg,κ ,Z〉(E) for every g ∈ Fb.(3.3)

Here Fb := F ∩ L∞(E;m). So, in particular, we have �(Mu) = Nu for u ∈ F .
Moreover, we have the following:

LEMMA 3.1. It holds that �(Mu) = Nu for u ∈ Fe.

PROOF. Fix u ∈ Fe and let {un} be an approximating E -Cauchy sequence such
that un → u m-a.e. In view of the proof of Theorem 5.2.2 in [11], by taking a
subsequence {nk}, {unk

(Xt)}, M
unk
t and N

unk
t uniformly converges to u(Xt), Mu

t

and Nu
t , respectively, on any compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈ E.

From Theorem 3.2 in [22], by taking another subsequence, �(Munk ) converges to
�(Mu) uniformly on any finite interval Px-a.s. for q.e. x ∈ E. Since �(Munk ) =
Nunk , we have �(Mu) = Nu. �

In the same way of Nakao [22] (cf. (3.13) in [3]), we can define a stochastic
integral used by the operator �: for M ∈ ◦

M with its jump function ϕ ∈ ◦
J and

f ∈ Fe ∩ L2(E;μ〈M〉), we set∫ t

0
f (Xs) d�(M)s

(3.4)

:= �(f ∗ M)t − 1

2
〈Mf,c + Mf,j ,Mc + Mj + K〉t , t ∈ [0,∞[,

where (f ∗ M)t = ∫ t
0 f (Xs−) dMs and K ∈ ◦

Md with Kt − Kt− = −1E×E(ϕ +
ϕ)(Xt−,Xt) t ∈ ]0,∞[ Px-a.s. for q.e. x ∈ E. Equation (3.4) is well defined under
Px for q.e. x ∈ E. In this paper, we call the operator � Nakao operator and the
integral (3.4) Nakao integral.

REMARK 3.1. Equation (3.4) is consistent with the extension of Nakao inte-
gral developed in [3] up to ζ under Pm (see Theorem 6.3 in [17]).
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For any M ∈ ◦
Mc

loc = Mc,[[0,ζ [[
loc (in particular for M ∈ ◦

Mc
f -loc = Mc

loc), �(M)

can be defined as an element in Nc,f -loc. To see this, we need the following lemma
extending Lemma 3.4 in [22]:

LEMMA 3.2 (Local property of � on
◦

Mc). Let M ∈ ◦
Mc and G be a (q.e.)

finely open Borel set. Suppose that Mt = 0 Pm-a.e. on {t < τG} for each t > 0.
Then �(M)t = 0 for all t ∈ [0, σE\G] Px-a.s. for q.e. x ∈ E.

PROOF. By assumption, Em[〈M〉t∧σE\G] = Em[〈M〉t∧τG
] = Em[M2

t∧τG
] = 0

for each fixed t > 0. Then μ〈M〉(G) = 0 by Lemma 5.1.10(iii) in [11]. Let h ∈ FF

for a closed set F with F ⊂ G. Then μ〈Mh,c〉(E \ G) = 0 by Lemma 2.4(1). From
this, we have

μ〈Mh,c,M〉(E)2 ≤ 2μ〈Mh,c〉(E)μ〈M〉(G) + 2μ〈M〉(E)μ〈Mh,c〉(E \ G) = 0.

Hence E1(γ (M),h) = 0 for any h ∈ FF with F ⊂ G. Since (EG, FG) is a
quasi-regular Dirichlet form on L2(G;m), there exists an EG-nest {Fn} of com-
pact sets of G (see Lemma 3.4 in [16]). From this, for any h ∈ FG, there
exists hk ∈ ⋃∞

n=1 FFn such that {hk} E 1/2
1 -converges to h as k → ∞. There-

fore, E1(γ (M),h) = 0 for any h ∈ FG, which implies �(M)t = N
γ(M)
t −∫ t

0 γ (M)(Xs) ds = 0 for t < σE\G by way of Lemma 5.4.2(ii) in [11]. �

Let (Md
loc)∗ [resp., (Md

loc)as] be the subclass of Md
loc associated to J∗/ ∼

(resp., Jas/ ∼) and (Md,[[0,ζ [[
loc )∗ [resp., (Md,[[0,ζ [[

loc )as] the subclass of Md,[[0,ζ [[
loc

associated to Ĵ∗/ ∼ (resp., Ĵas/ ∼).
We say that M ∈ (Mloc)∗ [resp., M ∈ (Mloc)as] if and only if its purely dis-

continuous part Md is in (Md
loc)∗ [resp., (Md

loc)as], and the classes (M[[0,ζ [[
loc )∗

and (M[[0,ζ [[
loc )as are similarly defined. For M ∈ (M[[0,ζ [[

loc )∗ with its jump function

ϕ ∈ Ĵ∗, let Mc ∈ Mc,[[0,ζ [[
loc be its continuous part and take Mj ∈ Mj

loc associ-

ated with 1E×Eϕ ∈ J∗ and K ∈ Mj
loc constructed in Corollary 2.3 associated with

−1E×E(ϕ + ϕ) ∈ J∗.
We shall extend � over (M[[0,ζ [[

loc )∗ and establish (3.4) for more general inte-
grands and integrators under Px for q.e. x ∈ E. To do this we need the following
lemma:

LEMMA 3.3. Take M ∈ (M[[0,ζ [[
loc )∗ with its jump function ϕ ∈ Ĵ∗. Let G

be a (q.e.) finely open Borel set satisfying 1G×Eϕ,1G×Eϕ ∈ ◦
J . Take f ∈ Fe ∩

L2(E;μ〈M〉) and suppose that f = 0 m-a.e. on G. Then we have �(f ∗ M)t =
1
2〈Mf,c + Mf,j ,Mc + Mj + K〉t for t ∈ [0, σE\G[ Px -a.s. for q.e. x ∈ E.

PROOF. We show that for any g ∈ (FG)b

lim
t→0

1

t
Egm

[
�(f ∗ M)t − 1

2
〈Mf,c + Mf,j ,Mc + Mj + K〉t

]
= 0.(3.5)
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Then we can obtain the assertion from (3.5) in view of the proof of Theorem 2.2
in [22] and Lemma 5.4.4 in [11]. We know

lim
t→0

1

t
Egm[�(f ∗ M)t ] = −1

2

∫
E

f (x)μ〈Mg+Mg,κ ,M〉(dx).

So for (3.5) it suffices to show∫
E

f (x)μ〈Mg+Mg,κ ,M〉(dx) = −
∫
E

g(x)μ〈Mf,c+Mf,j ,Mc+Mj+K〉(dx).(3.6)

Noting fg = 0 q.e. on E and the derivation properties of continuous
part and jumping part of energy measures (see the proof of Lemma 3.1
in [22]), we see

∫
E f dμ〈Mg,c,Mc〉 + ∫

E g dμ〈Mf,c,Mc〉 = 0,
∫
E f dμ〈Mg,j ,Mj 〉 +∫

E g dμ〈Mf,j ,Mj+K〉 = 0 and
∫
E f dμ〈Mg,κ ,Mκ 〉 = 0, which imply (3.6). �

DEFINITION 3.1 (Extensions of Nakao operators and Nakao integrals). Fix
M ∈ (M[[0,ζ [[

loc )∗ with its jump function ϕ ∈ Ĵ∗ and f ∈ Ḟloc. Let {Gk} ∈ 
 be a
common nest such that μ〈M〉(Gk) < ∞, f = fk m-a.e. on Gk for some fk ∈ Fb,

1Gk×Eϕ,1Gk×Eϕ ∈ ◦
J for each k ∈ N. Set Ek := {x ∈ E | Ex[∫ τGk

0 e−t g(Xt) dt] >

1/k} for g ∈ L2(E;m) with 0 < g ≤ 1 m-a.e. Then ek := kEx[∫ τGk

0 e−t g(Xt) dt]∧
1 ∈ FGk

satisfies 1Ek
≤ ek ≤ 1Gk

q.e. on E. In view of Lemma 3.3 in [16], we have
{Ek} ∈ 
.

We now define

�(M)t := �(ek ∗ M)t − 1
2〈Mek,c + Mek,j ,Mc + Mj + K〉t for t ∈ [0, σE\Ek

[
for each k ∈ N Px-a.s. for q.e. x ∈ E. For M ∈ (M[[0,ζ [[

loc )∗ and f ∈ Fe ∩ L2(E;
μ〈M〉), we set∫ t

0
f (Xs) d�(M)s := �(f ∗ M)t − 1

2
〈Mf,c + Mf,j ,Mc + Mj + K〉t

for t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. For general f ∈ Ḟloc and M ∈ (M[[0,ζ [[
loc )∗ as

above, we set∫ t

0
f (Xs) d�(M)s :=

∫ t

0
(f ek)(Xs) d�(M)s for t ∈ [0, σE\Ek

[
for each k ∈ N Px-a.s. for q.e. x ∈ E. Note that f ek ∈ Fb ∩ L2(E;μ〈M〉) for each
k ∈ N. These are well defined for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E in view of
Lemma 3.3 and are elements in Nc,f -loc.

For f ∈ Ḟloc and M ∈ (M[[0,ζ [[
loc )∗, we see∫ t

0
f (Xs) d�(Mc)s = �(f ∗ Mc)t − 1

2
〈Mf,c,Mc〉t(3.7)

for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E, where �(f ∗ Mc)t can be defined by way
of Lemma 3.2.
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REMARK 3.2. (1) In [3], we define extensions of Nakao operators and Nakao
integrals in terms of time reverse operators, which are defined up to ζ un-
der Pm, and the Nakao integral is also refined for integrator �(M), M ∈ ◦

M
and integrand f (X) for f ∈ Ḟloc under Px for q.e. x ∈ E. So the Nakao inte-
gral in Definition 3.1 is a pure extension of this refinement. Though the con-
dition on the integrator of our Nakao integrals is rather restrictive than theirs
described to be up to ζ under Pm, it is defined for all time under the law for
quasi-everywhere starting points.

(2) The extensions of Nakao operators and Nakao integrals in [3] are consistent
with our corresponding notions up to ζ under Pm (see Theorem 6.3 in [17]).

The following lemma is needed to establish the generalized Itô formula.

LEMMA 3.4 (Local property of extended Nakao integral). Take

M ∈ (M[[0,ζ [[
loc

)
∗

with its jump function ϕ ∈ Ĵ∗ and f ∈ Ḟloc. Let G be a (q.e.) finely open Borel set.
Suppose that f = 0 m-a.e. on G. Then∫ t

0
f (Xs) d�(M)s = 0

holds for all t ∈ [0, σE\G[ Px -a.s. for q.e. x ∈ E.

PROOF. Let {Ek} ∈ 
 and ek ∈ F be constructed as in Definition 3.1. Since
f ek ∈ Fb ∩ L2(E;μ〈M〉) and 1(G∩Ek)×Eϕ,1(G∩Ek)×Eϕ ∈ ◦

J , we can apply Lem-
ma 3.3 so that∫ t

0
(f ek)(Xs) d�(M)s = 0 holds for t ∈ [0, σE\G ∧ σE\Ek

[,

Px-a.s. for q.e. x ∈ E. Therefore we obtain the desired assertion. �

The following propositions are an addendum (cf. Theorems 4.1 and 4.2 in [3]).
We omit its proofs.

PROPOSITION 3.1. Take M ∈ (M[[0,ζ [[
loc )∗ and f ∈ Ḟloc. Suppose that �(M)

is a CAF A of finite variation on [[0, ζ [[. Then∫ t

0
f (Xs) d�(M)s =

∫ t

0
f (Xs) dAs

holds for all t ∈ [0, ζ [ (for all t ∈ [0,∞[ provided M ∈ (Mloc)∗) Px-a.s. for q.e.
x ∈ E.
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PROPOSITION 3.2. Take M ∈ (M[[0,ζ [[
loc )∗ and f,g ∈ Ḟloc. Then∫ t

0
g(Xs) d

(∫ ·
0

f (Xu)d�(M)u

)
s

=
∫ t

0
(fg)(Xs) d�(M)s

holds for all t ∈ [0, ζ [ (for all t ∈ [0,∞[ provided M ∈ (Mloc)∗) Px -a.s. for q.e.
x ∈ E.

4. Stochastic integrals by Dirichlet processes.

DEFINITION 4.1 (Dirichlet processes). For M ∈ (M[[0,ζ [[
loc )∗, we set A := M +

�(M), which can be defined by way of Definition 3.1. Note that A is defined on
[0,∞[ Px -a.s. for q.e. x ∈ E if M ∈ (Mloc)∗; otherwise, it is only defined on
[0, ζ [ Px -a.s. for q.e. x ∈ E. For M = Mu with u ∈ Fe, we see A = Au, where
Au

t := u(Xt) − u(X0). For M ∈ ◦
M and each i = c, d, j, κ , we further set Ai

t :=
Mi

t + �(Mi)t and write Au,i := Ai if M = Mu, u ∈ Fe.

We see A = Ac + Ad = Ac + Aj + Aκ for A = M + �(M), M ∈ ◦
M. By (2.3)

and Lemma 3.1, we have Au = Au,c + Au,d = Au,c + Au,j + Au,κ for u ∈ Fe.

DEFINITION 4.2 (Stochastic integrals by Dirichlet processes). Take and fix
M ∈ ◦

M. For f ∈ L2(E;μ〈Mc〉), we set∫ t

0
f (Xs) ◦ dAc

s := (f ∗ Mc)t + �(f ∗ Mc)t

for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. For f ∈ Fe ∩ L2(E;μ〈M〉), we set∫ t

0
f (Xs) ◦ dMs := (f ∗ M)t + 1

2
[Mf ,M]t ,∫ t

0
f (Xs−) dAs := (f ∗ M)t +

∫ t

0
f (Xs) d�(M)s,∫ t

0
f (Xs) ◦ dAs :=

∫ t

0
f (Xs) ◦ dMs +

∫ t

0
f (Xs) d�(M)s

for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Recall (f ∗ M)t = ∫ t
0 f (Xs−) dMs

for f ∈ Fe ∩ L2(E;μ〈M〉) (see the proof of Lemma 2.3). We call (f ∗ M)t
[resp.,

∫ t
0 f (Xs−) dAs ] the Itô integral of f (X) with integrator M (resp., A) and∫ t

0 f (Xs) ◦ dMs [resp.,
∫ t

0 f (Xs) ◦ dAs ] the Fisk–Stratonovich integral of f (X)

with integrator M (resp., A).

REMARK 4.1. (1) For the definition of
∫ t

0 f (Xs) ◦ dMc
s for f ∈ Fe ∩ L2(E;

μ〈Mc〉), we need f ∈ Fe, which is unnecessary to define
∫ t

0 f (Xs) ◦ dAc
s .
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(2) Our definitions of Fisk–Stratonovich-type integrals are somewhat different
from what is found in Protter [23] or in Chapter VI of Meyer [21] except for
the case of diffusions. The definition of

∫ t
0 f (Xs)◦dMs in [23] or [21] is given

by (f ∗M)t + 1
2〈Mf,c,Mc〉t , which has an advantage to give a version of Itô’s

formula in terms of their Fisk–Stratonovich integrals (see II. Theorem 34, V.
Theorems 20 and 21 in [23]), but it only has a Riemann-sum approximation
under that f (Xs) and u(Xs) have no jumps in common (see V. Theorem 26
in [23]). Our definition of

∫ t
0 f (Xs)◦dMs admits such an approximation in the

framework of semi-martingales at least (cf. Definition 3.9.21 in [2] or Prob-
lems 9.12 and 9.13 in [12]). On the other hand, Kurtz, Pardoux and Protter
[15] give a different definition for Fisk–Stratonovich-type integrals provided
the underlying process is a solution of an SDE driven by semimartingales. Our
definitions are also different from theirs.

Now take a jump function ϕ ∈ J associated to a given M ∈ Mloc. We set for
each 
 ∈ N

M
d,

t := ∑

0<s≤t

ϕ
(Xs−,Xs) −
∫ t

0
N(ϕ
)(Xs) dHs.

In the same way of the proof of Lemma 2.5, if M ∈ ◦
M, then

e(Md − Md,
) = 1

2

∫
E

∫
E∂

ϕ2(x, y)1{|ϕ(x,y)|≤1/
}N(x, dy)μH (dx).

The stochastic integrals f ∗ Md and f ∗ Md,
 for M ∈ Mloc with f ∈ Ḟloc ∩
L2(E;μ〈Md 〉) and f (∂) = 0 belong to

◦
M, and satisfy that

(f ∗ Md,
)t = ∑
0<s≤t

f (Xs−)ϕ
(Xs−,Xs) −
∫ t

0
f (Xs)N(ϕ
)(Xs) dHs

holds for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E and

e(f ∗ Md − f ∗ Md,
)

= 1

2

∫
E

f 2(x)

∫
E∂

ϕ2(x, y)1{|ϕ(x,y)|≤1/
}N(x, dy)μH (dx).

LEMMA 4.1. (1) Take M ∈ Mloc with its jump function ϕ ∈ J . Then for

g ∈ Ḟloc ∩ L2(E;μ〈Md 〉) with g(∂) = 0,

�(g ∗ Md,
)t = 1

2

∫ t

0
N
(
1E×E(gϕ
 − gϕ
)

)
(Xs) dHs

(4.1)

+
∫ t

0
g(Xs)ϕ
(Xs, ∂)N(Xs, {∂}) dHs
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holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Moreover, for f ∈ Fe ∩ L2(E;
μ〈g∗Md,
〉), ∫ t

0
f (Xs) d�(g ∗ Md,
)t

= 1

2

∫ t

0
f (Xs)N

(
1E×E(gϕ
 − gϕ
)

)
(Xs) dHs(4.2)

+
∫ t

0
f (Xs)g(Xs)ϕ
(Xs, ∂)N(Xs, {∂}) dHs

holds for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. More generally if M ∈ M[[0,ζ [[
loc

with its jump function ϕ ∈ Ĵ , then for Mj,
 ∈ Mj
loc with its jump function

1E×Eϕ
 ∈ J and g ∈ Ḟloc ∩ L2(E;μ〈Mj,
〉) with g(∂) = 0,

�(g ∗ Mj,
)t = 1

2

∫ t

0
N
(
1E×E(gϕ
 − gϕ
)

)
(Xs) dHs(4.3)

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E, and for f ∈ Fe ∩ L2(E;
μ〈g∗Mj,
〉),∫ t

0
f (Xs) d�(g ∗ Mj,
)t = 1

2

∫ t

0
f (Xs)N

(
1E×E(gϕ
 − gϕ
)

)
(Xs) dHs(4.4)

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E.
(2) Take M ∈ (M[[0,ζ [[

loc )∗ and K
 ∈ Mj
loc associated with −1E×E(ϕ
 + ϕ
) ∈ J∗.

Then for g ∈ Ḟloc ∩ L2(E;μ〈K
〉) with g(∂) = 0, we have

�(g ∗ K
)t = 1

2

∫ t

0
N
(
1E×E(ḡ − g)(ϕ
 + ϕ
)

)
(Xs) dHs(4.5)

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Moreover, for f ∈ Fe ∩
L2(E;μ〈g∗K
〉),∫ t

0
f (Xs) d�(g ∗ K
)t

(4.6)

= 1

2

∫ t

0
f (Xs)N

(
1E×E(ḡ − g)(ϕ
 + ϕ
)

)
(Xs) dHs

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E.

COROLLARY 4.1. Take M ∈ (M[[0,ζ [[
loc )∗ and f ∈ Ḟloc. Let K be an element

in (Md
loc)∗ associated with −1E×E(ϕ + ϕ) constructed in Corollary 2.3. Then we

have that ∫ t

0
f (Xs) d�(K)s = 0

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. In particular, �(K)t = 0 for all
t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E.
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COROLLARY 4.2. Take M ∈ ◦
M with its jump function ϕ ∈ ◦

J . Let K
 be an
element in

◦
Mj associated with −1E×E(ϕ
 + ϕ
). Set Ad,
 := Ad,
 + 1

2K
. Then
we have

A
d,

t = 1

2

∑
0<s≤t

(ϕ
 − ϕ
)(Xs−,Xs)1{s<ζ } + ϕ
(Xζ−, ∂)1{t≥ζ }

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Moreover, for f ∈ Fe ∩ L2(E;
μ〈Md 〉), ∫ t

0
f (Xs−) dAd,


s = ∑
0<s≤t

f (Xs−)
ϕ
 − ϕ


2
(Xs−,Xs)1{s<ζ }

+ f (Xζ−)ϕ
(Xζ−, ∂)1{t≥ζ }

and ∫ t

0
f (Xs−) ◦ dAd,


s = ∑
0<s≤t

f (Xs) + f (Xs−)

2

ϕ
 − ϕ


2
(Xs−,Xs)1{s<ζ }

+ f (Xζ−)ϕ
(Xζ−, ∂)1{t≥ζ }

hold for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E.

PROOF OF LEMMA 4.1. We only prove (4.1). The proofs of (4.2), (4.5) and
(4.6) are similar. Equation (4.3) [resp., (4.4)] is clear from (4.1) [resp., (4.2)].
By (3.3), for h ∈ Fb

lim
t↓0

1

t
Eh·m[�(g ∗ Md,
)t ]

= −1

2

∫
E

g dμ〈Mh+Mh,κ ,Md,
〉

= −1

2

∫
E

g dμ〈Mh,j ,Mj,
〉 −
∫
E

g dμ〈Mh,κ ,Mκ,
〉

=
∫
E×E

h(x)(gϕ
 − gϕ
)(x, y)J (dx dy) +
∫
E

h(x)g(x)ϕ
(x, ∂)κ(dx)

= 1

2

∫
E

hN
(
1E×E(gϕ
 − gϕ
)

)
dμH +

∫
E

hgN
(
1E×{∂}ϕ


)
dμH .

Therefore, by Theorem 2.2 in [22], we have the desired assertion. �

PROOF OF COROLLARY 4.1. Let {Gk} ∈ 
 be a common nest such that
f |Gk

∈ Fb|Gk
and 1Gk×Eϕ, 1Gk×Eϕ ∈ ◦

J for each k ∈ N. Let {Ek} ∈ 
 be the
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nest and let ek be the function constructed through {Gk} as in Definition 3.1. Re-
placing f with f ek , it suffices to prove the assertion for the case f ∈ (FGk

)b in
view of Definition 3.1. For f ∈ (FGk

)b, we have that∫ t

0
f (Xs) d�(K)s = �(f ∗ K)t + 1

2
〈Mf,j ,K〉t

holds for t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. From Lemma 4.1, we have �(f ∗
K
)t + 1

2〈Mf,j ,K
〉t = 0 holds for t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E in view of
Theorem 2.2 in [22]. On the other hand, we see f ∗K,f ∗K
,1Gj

∗K,1Gj
∗K
 ∈

◦
M for j > k with

e
(
f ∗ (K − K
)

)≤ ‖f ‖2∞e
(
1Gj

∗ (K − K
)
)→ 0, 
 → ∞.

Hence we obtain the assertion in view of Theorem 5.2.1 in [11] and Theorem 3.2
in [22]. �

PROOF OF COROLLARY 4.2. Since K
 ∈ ◦
M, we have from Corollary 4.1 that

�(K
)t = 0 holds for t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Note that Md,
 + 1
2K
 is

given by∑
0<s≤t

ϕ
 − ϕ


2
(Xs−,Xs)1{s<ζ } + ϕ
(Xζ−, ∂)1{t≥ζ }

−
∫ t

0
N

(
1E×E

ϕ
 − ϕ


2

)
(Xs) dHs −

∫ t

0
ϕ
(Xs, ∂)N(Xs, {∂}) dHs.

Then we obtain the assertion in view of Lemma 4.1. �

DEFINITION 4.3 (Extensions of stochastic integrals by Dirichlet processes).
For M ∈ (Mloc)∗ with its jump function ϕ ∈ J∗ and f ∈ L2(Gn; μ〈Mc〉) for each
n ∈ N and some {Gn} ∈ 
, we define∫ t

0
f (Xs) ◦ dAc

s := (f ∗ Mc)t + �(f ∗ Mc)t

for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Moreover, if f ∈ Ḟloc with f (∂) = 0, we
define ∫ t

0
f (Xs−) ◦ dMs :=

∫ t

0
f (Xs−) dMs + 1

2
[f (X),M]t ,∫ t

0
f (Xs−) dAs :=

∫ t

0
f (Xs−) dMs +

∫ t

0
f (Xs) d�(M)s,∫ t

0
f (Xs) ◦ dAs :=

∫ t

0
f (Xs−) ◦ dMs +

∫ t

0
f (Xs) d�(M)s

for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E, where [f (X),M]t := 〈Mf,c,Mc〉t +∑
0<s≤t (f (Xs)−f (Xs−))(Ms −Ms−). For M ∈ (M[[0,ζ [[

loc )∗ with its jump function
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ϕ ∈ Ĵ∗ and f as above, these are defined for all t ∈ [0, ζ [ Px-a.s. for q.e. x ∈ E.
We can define

∫ t
0 f (Xs−) dAs ,

∫ t
0 f (Xs) ◦ dAs for A := A + 1

2K by replacing M

with M + 1
2K . Note that �(K) ≡ 0.

Hereafter we use the following convention: let f ∈ Ḟloc with f (∂) = 0 and
take φ,ψ :E∂ × E∂ → R vanishing on the diagonal such that |φ| ≤ M|ψ | on
E × E∂ for some M > 0 and

∑
0<s≤t ψ

2(Xs−,Xs) < ∞ for all t ∈ [0,∞[ Px -
a.s. for q.e. x ∈ E. If there exists a nest {Gn} ∈ 
 such that f |Gn ∈ Fb|Gn for
each n ∈ N and a subsequence {
k} depending only on {Gn}, f , φ and ψ such that
t �→ ∑

0<s≤t f (Xs−)φ(Xs−,Xs)1{|ψ(Xs−,Xs)|>1/
k} converges uniformly on each
compact subinterval of [0, σE\Gn[ for each n ∈ N as k → ∞ Px-a.s. for q.e. x ∈ E,
then we shall denote its limit by∑

0<s≤t

∗
f (Xs−)φ(Xs−,Xs).

Note that if t �→∑
s≤t f (Xs−)φ(Xs−,Xs) absolutely converges uniformly on each

compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈ E, then we can eliminate the
symbol ∗ from the above sum. We shall use

∑∗
s≤t (f (Xs) + f (Xs−))φ(Xs−,Xs)

and
∑∗

s≤t φ(Xs−,Xs) in a similar fashion.
We then have the following:

THEOREM 4.1. Let f ∈ Ḟloc and suppose that f is extended to be a real-
valued function on E∂ with f (∂) = 0. Take M ∈ (Mloc)∗ with its jump function
ϕ ∈ J∗ and set A := A+ 1

2K = M +�(M)+ 1
2K , where K ∈ (Mloc)∗ associated

with −1E×E(ϕ + ϕ) ∈ J∗. Then

At = Ac
t + ∑

0<s≤t

∗
1E×E

ϕ − ϕ

2
(Xs−,Xs) + ϕ(Xζ−, ∂)1{t≥ζ },

∫ t

0
f (Xs−) dAs =

∫ t

0
f (Xs−) dAc

s

+ ∑
0<s≤t

∗
f (Xs−)1E×E

ϕ − ϕ

2
(Xs−,Xs)

+ f (Xζ−)ϕ(Xζ−, ∂)1{t≥ζ }
and ∫ t

0
f (Xs) ◦ dAs =

∫ t

0
f (Xs) ◦ dAc

s

+ ∑
0<s≤t

∗ f (Xs) + f (Xs−)

2
1E×E

ϕ − ϕ

2
(Xs−,Xs)

+ f (Xζ−)ϕ(Xζ−, ∂)1{t≥ζ }
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hold for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. More generally, for M ∈ (M[[0,ζ [[
loc )∗

with its jump function ϕ ∈ Ĵ∗, these expressions hold for t ∈ [0, ζ [ Px-a.s. for q.e.
x ∈ E.

PROOF. First we assume M ∈ ◦
M and f ∈ Fe ∩ L2(E;μ〈M〉). Since f ∗ Md,


converges f ∗ Md in (
◦

M, e) as 
 → ∞, there exists a common subsequence {
k}
such that f ∗ Md,
k [resp., �(f ∗ Md,
k )] uniformly converges to f ∗ Md [resp.,
�(f ∗ Md)] on each compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈ E by The-
orem 5.2.1 in [11] and Theorem 3.2 in [22]. On the other hand, Md,
 also con-
verges Md in (

◦
M, e), which yields that there exists a subsequence {
k} such that

[Mf,d,Md,
k ] (resp., 〈Mf,d,Md,
k 〉) uniformly converges to [Mf,d,Md] (resp.,
〈Mf.d,Md〉) on each compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈ E. There-
fore, for such subsequence,

∫ t
0 f (Xs−) dA

d,
k
s [resp.,

∫ t
0 f (Xs−) dA

d,
k
s ] uniformly

converges to
∫ t

0 f (Xs) ◦ dAd
s [resp.,

∫ t
0 f (Xs) ◦ dAd

s ] on each compact subinter-
val of [0,∞[ Px-a.s. for q.e. x ∈ E. So the conclusion holds by Corollary 4.2.
For general M ∈ (Mloc)∗ [resp., M ∈ (M[[0,ζ [[

loc )∗] with its jump function ϕ ∈ J∗
(resp., ϕ ∈ Ĵ∗), the assertion is clear from Lemma 3.4. �

Recalling Theorem 2.1 and the last description of Section 2, for u ∈ Ḟ ‡
loc (resp.,

u ∈ Ḟ †
loc), there exists an Mu,d ∈ Md

loc(⊂
◦

Md
f -loc) [resp., Mu,d ∈ Md,[[0,ζ [[

loc (⊂
◦

Md
loc)] such that M

u,d
t − M

u,d
t− = u(Xt) − u(Xt−) for all t ∈ [0,∞[ (resp., [0, ζ [)

Px-a.s. for q.e. x ∈ E. By Lemma 2.4(1), we can define Mu,c ∈ Mc
loc = ◦

Mc
f -loc

for u ∈ Ḟloc; M
u,c
t := M

un,c
t for t < σE\Gn for some {Gn} ∈ 
 and un ∈ F

such that u = un m-a.e. on Gn for each n ∈ N (see Remark 2.3). Put Au,c :=
Mu,c + �(Mu,c) for Mu,c, which can be defined by way of Lemma 3.2, and
Au,d := Mu,d + �(Mu,d) for Mu,d , which is defined by Definition 3.1.

COROLLARY 4.3. Take f ∈ Ḟloc and u ∈ Ḟ ‡
loc. Suppose that f is extended to

be a real-valued function on E∂ with f (∂) := 0. Then∫ t

0
f (Xs−) dAu,d

s = ∑
0<s≤t

∗
f (Xs−)

(
u(Xs) − u(Xs−)

)
,(4.7)

∫ t

0
f (Xs) ◦ dAu,d

s = ∑
0<s≤t

∗ f (Xs) + f (Xs−)

2

(
u(Xs) − u(Xs−)

)
(4.8)

hold for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. Similarly

A
u,d
t = ∑

0<s≤t

∗(
u(Xs) − u(Xs−)

)
(4.9)
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hold for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E. More generally, if u ∈ Ḟ †
loc and

f ∈ Ḟloc is only defined on E, then all assertions above hold for all t ∈ [0, ζ [
Px-a.s. for q.e. x ∈ E.

Owing to (4.9), we can obtain a generalized Fukushima decomposition for u ∈
Ḟ †

loc:

THEOREM 4.2 (Generalized Fukushima decomposition). For u ∈ Ḟ ‡
loc, the

additive functional Au defined by Au
t := u(Xt) − u(X0) can be decomposed as

Au = Mu + Nu, Mu ∈ Mloc, Nu ∈ Nc,f -loc

in the sense that Au
t = Mu

t +Nu
t , t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. More generally,

if u ∈ Ḟ †
loc, then Au is decomposed as

Au = Mu + Nu, Mu ∈ M[[0,ζ [[
loc , Nu ∈ Nc,loc

in the sense that Au
t = Mu

t + Nu
t , t ∈ [0, ζ [ Px-a.s. for q.e. x ∈ E. Such decompo-

sitions are unique up to the equivalence of (local) additive functionals.

PROOF. The uniqueness is proved in Corollary 2.4. We shall only prove the
existence in the first assertion. We set Mu := Mu,c + Mu,d ∈ (Mloc)as and Nu :=
�(Mu) ∈ Nc,f -loc, where Mu,c and Mu,d are defined above. Take {Gn} ∈ 
 and
{un} ⊂ Fb such that u − u(∂) = un m-a.e. on Gn. Then (4.9) implies that for
t ∈ [0, σE\Gn[

u(Xt) − u(X0) = un(Xt) − un(X0) = A
un,c
t + A

un,d
t

= A
un,c
t + ∑

0<s≤t

∗(
un(Xs) − un(Xs−)

)
= A

u,c
t + ∑

0<s≤t

∗(
u(Xs) − u(Xs−)

) (4.9)= A
u,c
t + A

u,d
t

= Mu
t + �(Mu)t

Px-a.s. for q.e. x ∈ E. �

REMARK 4.2. (1) We emphasize that 1E∂
does not satisfy 1E∂

(∂) = 0. So we
cannot deduce (4.9) from (4.7), (4.8).

(2) For f ∈ Ḟloc with f (∂) = 0 and u /∈ Ḟ †
loc, we have no way to define Mu,d ,

�(Mu,d) and stochastic integrals with respect to them. However, we can define
the left-hand sides of (4.7) and (4.8) keeping the same expressions as they
have.

(3) In Theorem 4.2, Mu for u ∈ Ḟ ‡
loc (resp., u ∈ Ḟ †

loc) can be decomposed to Mu
t =

M
u,c
t + M

u,j
t + M

u,κ
t t ∈ [0,∞[ (resp., Mu

t = M
u,c
t + M

u,d
t t ∈ [0, ζ [) Px -
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a.s. for q.e. x ∈ E, where Mu,i ∈ Mi
loc, i = c, j, κ (resp., Mu,c ∈ Mc,[[0,ζ [[

loc ,

Mu,d ∈ Md,[[0,ζ [[
loc ).

Now we expose a generalized Itô formula in terms of our stochastic integrals.

THEOREM 4.3 (Generalized Itô formula). Suppose that � ∈ C1(RN) and take
u = (u1, . . . , uN) ∈ (Ḟloc)

N having an R
N -valued extension on E∂ . Then:

(1) �(u) ∈ Ḟloc and for each k = 1,2, . . . ,N , �k(u) ∈ L2
loc({Gn};μ〈Muk,c〉) for

some {Gn} ∈ 
, where �k := ∂�
∂xk

and

A
�(u),c
t =

N∑
k=1

∫ t

0
�k(u(Xs)) ◦ dAuk,c

s(4.10)

holds for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. If we further assume
� ∈ C2(RN), then for each k, 
 = 1,2, . . . ,N , �k(u) ∈ Ḟloc, �k
(u) ∈
L2

loc({Gn};μ〈Muk,c〉) for some {Gn} ∈ 
, where �k
 := ∂2�
∂xk∂x


, and

A
�(u),c
t =

N∑
k=1

∫ t

0
�k(u(Xs−)) dAuk,c

s

(4.11)

+ 1

2

N∑
k,
=1

∫ t

0
�k
(u(Xs)) d〈Muk,c,Mu
,c〉s

holds for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E.
(2) Suppose u ∈ (Ḟ ‡

loc)
N and � ∈ C2(RN). Then �k(u) ∈ Ḟloc for each k =

1,2, . . . ,N . Moreover, if we assume �(u) ∈ Ḟ ‡
loc, then

A
�(u),d
t =

N∑
k=1

∫ t

0
�k(u(Xs−)) dAuk,d

s

(4.12)

+∑
s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)
and

A
�(u),d
t =

N∑
k=1

∫ t

0
�k(u(Xs)) ◦ dAuk,d

s

(4.13)

+∑
s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs)) + �k(u(Xs−))

2
�uk(Xs)

)
hold for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E, where the last terms in the right-
hand sides are absolutely convergent uniformly on each compact interval of
[0,∞[ Px-a.s. for q.e. x ∈ E. If we replace Ḟ ‡

loc with Ḟ †
loc in the above condi-
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tions, then formulas (4.12) and (4.13) hold only on [0, ζ [ Px -a.s. for q.e. x ∈ E

without assuming the R
N -valued extension of u on E∂ .

(3) Under the same conditions in (2), we have �k(u) ∈ Ḟloc for each k =
1,2, . . . ,N ,

A
�(u)
t =

N∑
k=1

∫ t

0
�k(u(Xs−)) dAuk

s

+ 1

2

N∑
k,
=1

∫ t

0
�k
(u(Xs)) d〈Muk,c,Mu
,c〉s(4.14)

+∑
s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)

and

A
�(u)
t =

N∑
k=1

∫ t

0
�k(u(Xs)) ◦ dAuk

s

(4.15)

+∑
s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs)) + �k(u(Xs−))

2
�uk(Xs)

)

hold for all t ∈ [0,∞[ Px -a.s. for q.e. x ∈ E, where the last terms in the right-
hand sides are absolutely convergent uniformly on each compact interval of
[0,∞[ Px-a.s. for q.e. x ∈ E. If we replace Ḟ ‡

loc with Ḟ †
loc in the above condi-

tions, then formulas (4.14) and (4.15) hold only on [0, ζ [ Px -a.s. for q.e. x ∈ E

without assuming the R
N -valued extension of u on E∂ .

We call (4.14) the Itô formula for Itô-type integrals and (4.15) the Itô formula
for Fisk–Stratonovich-type integrals.

COROLLARY 4.4 (Chain and Leibniz rules for purely discontinuous part). Un-
der the same conditions as in Theorem 4.3(2), we have that

M
�(u),d
t =

N∑
k=1

∫ t

0
�k(u(Xs−)) dMuk,d

s

+∑
s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)
(4.16)

−
{∑

s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)}p

,
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M
�(u),d
t =

N∑
k=1

∫ t

0
�k(u(Xs)) ◦ dMuk,d

s

+∑
s≤t

(
��(u(Xs))

(4.17)

−
N∑

k=1

�k(u(Xs)) + �k(u(Xs−))

2
�uk(Xs)

)

−
{∑

s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)}p

and

�
(
M�(u),d)

t =
N∑

k=1

∫ t

0
�k(u(Xs)) d�(Muk,d)s

(4.18)

+
{∑

s≤t

(
��(u(Xs)) −

N∑
k=1

�k(u(Xs−))�uk(Xs)

)}p

hold for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E, where B
p
t denotes the dual pre-

dictable projection of Bt for an AF B . If we replace Ḟ ‡
loc with Ḟ †

loc in the con-
ditions, (4.16) and (4.17) hold only on [0, ζ [ Px-a.s. for q.e. x ∈ E without as-
suming the R

N -valued extension of u on E∂ . In particular, for u, v ∈ Ḟ †
loc (resp.,

u, v ∈ Ḟ ‡
loc) with uv ∈ Ḟ †

loc [resp., uv ∈ Ḟ ‡
loc with u(∂) = v(∂) = 0],

M
uv,d
t =

∫ t

0
u(Xs−) dMv,d

s +
∫ t

0
v(Xs−) dMu,d

s(4.19)

+ [Mu,d,Mv,d]t − 〈Mu,d,Mv,d〉t
=
∫ t

0
u(Xs−) ◦ dMv,d

s +
∫ t

0
v(Xs−) ◦ dMu,d

s

(4.20)
− 〈Mu,d,Mv,d〉t ,

�(Muv,d)t =
∫ t

0
u(Xs) d�(Mv,d)s +

∫ t

0
v(Xs) d�(Mu,d)s(4.21)

+ 〈Mu,d,Mv,d〉t
hold for all t ∈ [0, ζ [ (resp., t ∈ [0,∞[) Px -a.s. for q.e. x ∈ E.

COROLLARY 4.5 (Fisk–Stratonovich integration by parts formula). For u, v ∈
Ḟ †

loc (resp., u, v ∈ Ḟ ‡
loc) with uv ∈ Ḟ †

loc [resp., uv ∈ Ḟ ‡
loc with u(∂) = v(∂) = 0],

u(Xt)v(Xt ) − u(X0)v(X0) =
∫ t

0
u(Xs) ◦ dAv

s +
∫ t

0
v(Xs) ◦ dAu

s(4.22)
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holds for all t ∈ [0, ζ [ (resp., t ∈ [0,∞[) Px -a.s. for q.e. x ∈ E.

REMARK 4.3. (1) In [3], we prove a generalized Itô formula for u ∈ (F )N

under the law for quasi everywhere starting points, extending the early result
by Nakao [22]. Our Itô formula can be applied to a wider class of integrators
than that in [3].

(2) In Theorem 4.3(2), if u ∈ ((Ḟloc)b)
N with u(∂) ∈ R

N , � ∈ C2(RN), then
�(u) ∈ Ḟ ‡

loc.
(3) �k(u) ∈ Ḟloc does not necessarily satisfy �k(u)(∂) = 0. So the integrals ap-

peared in the first terms of the right-hand sides of (4.11)–(4.14) should be
understood to be modified, for example,

∫ t
0 �k(u(Xs)) dA

uk
s should be under-

stood as
∫ t

0 (�k(u(Xs)) − �k(u(∂))) dA
uk
s + �k(u(∂))A

uk
t .

(4) Comparing with (4.10), the case for diffusion part, our Itô formulas, (4.13) and
(4.15), for Fisk–Stratonovich integrals are not so simple. This phenomenon
can be found in the Itô formula for Fisk–Stratonovich integral exposed in II.
Theorem 34 and V. Theorem 21 of [23] in the framework of semi-martingales.
We emphasize that the expression of the second term (denoted by Ct ) of the
right-hand side in (4.15) is different from theirs [i.e., the third term of the
right-hand side in (4.14), which is the usual expression of the Itô formula for
purely discontinuous part]. Note that Ct is an odd additive functional, that is,
for each t > 0, Ct ◦ rt +Ct = 0 Pm-a.e. on {t < ζ }, where rt is the time reverse
operator. Hence, both sides in our formula (4.15) possess this property, which
is not yielded by the Itô formula in [23].

(5) In Theorems 4.1, 4.3 and Corollaries 4.3–4.5, we do not require the strict E -
quasi-continuities of f , u and v. If we do not impose the condition that such
functions are extended on E∂ and vanish on {∂}, or if we only assume that
(E , F ) is not necessarily regular (i.e., quasi-regularity only holds), then all
assertions are restricted to “for all t ∈ [0, ζ [ Px-a.s. for q.e. x ∈ E” and each
convergence of the right-hand side is uniform on compact subinterval of [0, ζ [
Px -a.s. for q.e. x ∈ E.

(6) In [10], an Itô formula for a general multi-dimensional process with finite
quadratic variation is presented, but the formula like (4.15) is not exposed
in [10].

(7) As noted in Remark 4.2, even for u /∈ (Ḟ †
loc)

N , we can define the first terms
in the right-hand sides of (4.12), (4.13), (4.14) and (4.15). So the formulas
hold in this setting without using stochastic integrals with respect to Mu,d ,
�(Mu,d). So the conclusion of Corollary 4.5 also holds for u, v ∈ Ḟloc with
u(∂) = v(∂) = 0 in this context.

PROOF OF THEOREM 4.3. (2) is a consequence of (1) and (3). We first
prove (1). The former assertion of (1) follows from Theorems 6.1 and 7.2 in [16].
Note that M�(u),c,Muk,c ∈ Mc

loc = ◦
Mc

f -loc and �(M�(u),c),�(Muk,c) ∈ N c
f -loc,
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which are defined on [0,∞[ under Px for q.e. x ∈ E. Formula (4.10) can be ob-
tained from the chain rule for continuous part of MAF

M
�(u),c
t =

N∑
k=1

∫ t

0
�k(u(Xs−)) dMuk,c

s(4.23)

for all t ∈ [0,∞[Px-a.s. for q.e. x ∈ E (see Theorem 7.2 in [16]). The latter asser-
tion of (1) also follows from Theorem 7.2 in [16] and (3.7).

Next we prove (3). Applying Theorem 6.1 in [16] to �k ∈ C1(RN) again, we
have �k(u) ∈ Ḟloc for u ∈ (Ḟ †

loc)
N . Equation (4.14) is proved by Nakao [22] for

the case u ∈ (Fb)
N . (4.15) for u ∈ (Fb)

N also follows from (4.14) for u ∈ (Fb)
N

and that for each k = 1,2, . . . ,N∫ t

0
�k(u(Xs)) ◦ dMuk,d

s =
∫ t

0
�k(u(Xs−)) dMuk,d

s + 1

2

[
M�k(u),d ,Muk,d

]
t

for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Equations (4.14) and (4.15) for general
u ∈ Ḟ ‡

loc (or u ∈ Ḟ †
loc) hold for all t ∈ [0,∞[ (resp., t ∈ [0, ζ [) Px-a.s. for q.e.

x ∈ E in view of the both of local properties of stochastic integrals by Muk,d and
�(Muk,d) (see Lemma 3.4). �

EXAMPLE 4.1 (Symmetric Lévy process on R
N ). Let M = (�,Xt , ζ,Px)x∈RN

be the symmetric Lévy process. That is, M is a time homogeneous additive process
determined by a family {νt } of probability measures on R

N satisfying (4.17), (4.18)
and (4.19) in [11]. Let (E , F ) be the corresponding Dirichlet form on L2(RN).
Then (E , F ) is given by⎧⎪⎪⎨⎪⎪⎩

F =
{
u ∈ L2(RN)

∣∣∣ ∫
RN

|û(ξ)|2ψ(ξ)dξ < ∞
}
,

E (u, v) =
∫

RN
û(ξ)v̂(ξ)ψ(ξ) dξ, u, v ∈ F ,

where û(ξ) := 1
(2π)d/2

∫
RN ei〈ξ,x〉u(x) dx and ψ(x) is the function determined by

E0[ei〈ξ,Xt 〉] = e−tψ(ξ). We assume that M is purely discontinuous; namely ψ has
the following expression:

ψ(ξ) =
∫

RN
(1 − cos〈ξ, η〉)ν(dη),

where ν is a symmetric measure on R
N \{0} such that

∫
RN\{0}(|ξ |2 ∧1)ν(dξ) < ∞,

which is called the Lévy measure of M. We see C
Lip
0 (RN) ⊂ F , hence C

Lip
loc (RN) ⊂

Floc, because, in view of Corollary 7.16 in [1],

1 + ψ(ξ) ≤ c(1 + |ξ |2) ∀ξ ∈ R
N

for some constant c > 0. Here C
Lip
0 (RN) [resp., C

Lip
loc (RN)] is the family of Lip-

schitz continuous functions with compact support (resp., locally Lipschitz contin-
uous functions) and Floc is the space of functions locally in F in the ordinary sense
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(see [11]). Further (E , F ) is a regular Dirichlet form having C∞
0 (RN) as its core

(see [26]). Define N(x,A) := ν(A − x), N(x, {∂}) = 0 for A ∈ B(RN), x ∈ R
N

and Ht = t . By Theorem 19.2(i) in [24], we have

N(x,A) = Ex

[ ∑
0<s≤1

1A(Xs − Xs−)

]
, A ∈ B(RN),

and hence (N,H) becomes a Lévy system of M (see also Section 7 in [14]). By
Corollary 4.3, we have that for any u ∈ C

Lip
loc (RN)

u(Xt) − u(X0) = ∑
0<s≤t

∗(
u(Xs) − u(Xs−)

)
holds for all t ∈ [0, ζ [ Px -a.s. for q.e. x ∈ R

N . Further we assume ν(dy) =
f (|y|) dy, where f is a Borel function satisfying (2.8). Let u ∈ CLip(RN). Then

sup
x∈K

∫
RN

(
u(x + y) − u(x)

)2
ν(dy) < ∞ for any compact set K ,

hence u ∈ F †
loc. Therefore u admits the generalized Fukushima decomposition.

EXAMPLE 4.2 (Symmetric stable process on R
N ). We fix α ∈ ]0,2[. Let M =

(�,Xt ,Px)x∈RN be a Lévy process on R
N with

E0
[
e
√−1〈ξ,Xt 〉]= e−t |ξ |α .

M is called the symmetric α-stable process. It is known that M is conservative. Let
(E , F ) be the associated Dirichlet form on L2(RN) with M, which is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F =
{
u ∈ L2(RN)

∣∣∣ ∫ ∫
RN×RN

(u(x) − u(y))2

|x − y|N+α
dx dy < ∞

}
,

E (u, v) = A(N,−α)

2

∫ ∫
RN×RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+α
dx dy,

u, v ∈ F ,

(4.24)

where A(N,γ ) := |γ |�((N−γ )/2)

21+γ πN/2�(1+γ /2)
, γ < N. The Lévy system (N,H) of M is

given by N(x, dy) := A(N,−α)|x − y|−(N+α) dy and Ht = t . So μH(dx) = dx.
Hence J (dx dy) = f (|x − y|) dx dy for f (r) := A(N,−α)r−N−α , r > 0. Note
that f does not satisfy (2.8). Take β ∈ [0, α[. Assume that N ≥ α, hence {0}
is polar, and take u ∈ C1(RN \ {0}) ∩ C0,β/2(RN). Here C0,β/2(RN) is the
family of β/2-Hölder continuous functions on R

N . For example, for a func-
tion F ∈ C1([0,∞[) with bounded derivative F ′, u(x) := F(|x|β/2) is a func-
tion in C1(RN \ {0}) ∩ C0,β/2(RN). Then u ∈ Ḟ †

loc = Ḟ ‡
loc. Indeed, the polar-

ity of {0} implies C1(RN \ {0}) ⊂ Ḟloc and we have that for any compact set
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K(⊂ R
N \{0}) with its relatively compact neighborhood G(⊂ R

N \{0}) satisfying
d(K,Gc) := infx∈K,y∈Gc |x − y| > 0∫ ∫

K×Gc

(u(x) − u(y))2

|x − y|N+α
dx dy ≤ |K|‖u‖2

C0,β/2σ(SN−1)

(α − β)d(K,Gc)α−β
< ∞,

equivalently, ∫ ∫
K×RN

(u(x) − u(y))2

|x − y|N+α
dx dy < ∞,

where |K| is the volume of K and ‖u‖C0,β/2 := supx �=y
|u(x)−u(y)|
|x−y|β/2 . Therefore u

admits the generalized Fukushima decomposition.
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