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STOCHASTIC CALCULUS OVER SYMMETRIC MARKOV
PROCESSES WITHOUT TIME REVERSAL

BY KAZUHIRO KUWAE!
Kumamoto University

We refine stochastic calculus for symmetric Markov processes without
using time reverse operators. Under some conditions on the jump functions of
locally square integrable martingale additive functionals, we extend Nakao’s
divergence-like continuous additive functional of zero energy and the sto-
chastic integral with respect to it under the law for quasi-everywhere starting
points, which are refinements of the previous results under the law for almost
everywhere starting points. This refinement of stochastic calculus enables us
to establish a generalized Fukushima decomposition for a certain class of
functions locally in the domain of Dirichlet form and a generalized It6 for-
mula.

1. Introduction. In this paper, under the framework of general symmetric
Markov processes without using time reverse operators, we give a refinement of
stochastic calculus developed in the previous joint paper [3]. More precisely, we
establish stochastic integrals both of Itd-type and of Fisk—Stratonovich-type by
Dirichlet processes by extending the Nakao’s divergence-like continuous additive
functional of zero energy to a continuous additive functional locally of zero energy
for a class of locally square integrable martingale additive functionals. Through-
out this paper, we use the terminology Dirichlet process specifically for an additive
functional decomposed into the sum of a locally square integrable martingale addi-
tive functional and a continuous additive functional (locally) of zero energy, which
is not necessarily a semi-martingale in general; indeed, the notion of Dirichlet
process in a more general context was introduced by Follmer [9]. As in [11], sto-
chastic integrals are defined to be additive functionals admitting exceptional sets.
So all formulas in this paper can be regarded as a decomposition of additive func-
tional, which holds for all time (or up to the life time) with probability 1 starting
from quasi-everywhere point.

Hereafter, we use the abbreviation CAF (resp., MAF) for continuous additive
functional (resp., martingale additive functional). For a Dirichlet process given by
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Fukushima’s decomposition, Nakao [22] defined stochastic integrals integrated by
his divergence-like CAF of zero energy, which enables us to construct an It6-type
stochastic integral by the Dirichlet process. He also defined a Fisk—Stratonovich-
type integral for symmetric diffusion processes with no inside killing in order to es-
tablish the stochastic line integral along 1-forms for symmetric diffusion processes
over smooth manifolds and gave an application of stochastic line integral to a ho-
mogenization problem.

On the other hand, Lyons and Zheng [19] and Lyons and Zheng [18] introduced
the notion of Fisk—Stratonovich-type integrals in terms of the sum of forward and
backward martingales, which is described by time reverse operators in the frame-
work of symmetric conservative diffusion processes. They proved that their Fisk—
Stratonovich-type integrals are consistent with Nakao’s one under the law P,,.

In the joint paper [3], we extend Nakao’s divergence-like CAF of zero energy
in terms of time reverse operators and define a stochastic integral integrated by
this extended CAF under some mild conditions, which plays an important role
in deducing the perturbation of general symmetric Markov processes, that is, the
combination of the Feynman—Kac formula and the Girsanov formula (see [4, 5]);
however, still described under the law P, except a special case.

We extend Nakao’s CAFs of zero energy and stochastic integrals with respect
to it for more general integrand and integrator in terms of the the space locally
in the Dirichlet space and a subclass of locally square integrable MAF on [[0, ¢[[
(Definition 3.1). We will define both the It6-type and the Fisk—Stratonovich-type
stochastic integrals integrated by (not necessarily continuous) Dirichlet processes
under the law P, for quasi-everywhere starting point x € E, which are described
in terms of a subclass of locally square integrable MAF on [[0, ¢[[ over general
symmetric Markov processes (Definitions 4.2 and 4.3). Our definitions of Fisk—
Stratonovich-type integrals are somewhat different from what is defined by Meyer
[21] and Protter [23] in the framework of semi-martingales (Remark 4.1).

We further show that our stochastic integrals integrated by the purely discontin-
uous part of Dirichlet processes have a representation of sum of jumps on Dirich-
let processes if the jump function of integrator is anti-symmetric, which enables
us to see the pathwise behavior of pure jump processes under the law for quasi-
everywhere starting points (Theorem 4.1, Corollary 4.3).

As a corollary, we establish a generalized Fukushima decomposition for a class
of functions locally in the domain of forms (Theorem 4.2). We also present a
generalized It6 formula in terms of our extended stochastic integrals by Dirich-
let processes (Theorem 4.3). Our 1t6 formula for Fisk—Stratonovich-type integrals
has an expression different from what is exposed in Protter [23] (Remark 4.3).

Let us briefly outline the organization of this paper. In Section 2, we describe
the setting of the paper and give some basic lemmas. In Section 3, we formulate
the extension of Nakao’s CAF of zero energy and stochastic integral with respect
to it under the law for quasi everywhere starting points. In Section 4, we define our
stochastic integrals by Dirichlet processes and expose the result as noted above.
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2. Preliminary facts. Let M = {Q, Fo, F;, X;,6;, ¢, Py, x € E} be an m-
symmetric right Markov process on a Lusin space E, where m is a o -finite measure
with full support on E. Its associated Dirichlet space (£, F) on L?(E; m) is known
to be quasi-regular (see [20]). By [8], (£, F) is quasi-homeomorphic to a regular
Dirichlet space on a locally compact separable metric space. Thus using this quasi-
homeomorphism, without loss of generality, we may and do assume that M is an
m-symmetric Hunt process on a locally compact metric space E such that its asso-
ciated Dirichlet space (£, ) is regular on L?(E; m) and that m is a positive Radon
measure with full topological support on E. But we implicitly use the quasi-left
continuity up to oo, which is not the usual property of right Markov processes.
So the strict quasi-regularity of (£, F) is essentially assumed. However, if we re-
strict ourselves to state the result that holds up to the life time with probability 1
for quasi-everywhere starting point, then the framework of quasi-regular Dirichlet
forms is enough.

Without loss of generality, we can take €2 to be the canonical path space
D([0, oo[ — Ej) of right-continuous, left-limited (rcll, for short) functions from
[0, 00[ to Ey. For any w € 2, we set X;(w) := w(t). Let {(w) := inf{r > 0 |
X (w) = 0} be the life time of M. As usual, F, and F; are the minimal completed
o -algebras obtained from ?go =0{X;|0=<s < o0} and 3? =o{X;|0<s <t}
respectively, under P,.. We set X;(w) := 9 for t > ¢(w) and use 6; to denote the
shift operator defined by 6;(w)(s) := w (¢ +s), t, s > 0. For each s > 0, the shift op-
erator 6 is defined by 6w (¢) := w(t +s) for t € [0, oo[. For a Borel subset B of E,
op :=inf{t > 0| X; € B} (the first hitting time to B) and t3 :=inf{r > 0| X; ¢ B}
(the first exit time of B) are (F;)-stopping times. If B is closed, then 7p is an (3? L )-
stopping time. Also, ¢ is an (??)-stopping time because {¢ <t} ={X; =0} ¢ 5’?,
t>0.

The transition semigroup of M, { P, t > 0}, is defined by

Prf(x) =B [f (XD =Ex[f(Xy):1 <], 1=0.

Each P; may be viewed as an operator on L?(E; m); collectively these operators
form a strongly continuous semigroup of self-adjoint contractions. The Dirichlet
form associated with M is the bilinear form

1
Ew,v) :=lim—(u — Pu,
(u,v) tlﬁ)lt(u U, V)

defined on the space

F = {u € L>(E;m) | supt ™' (u — Piu, u)y < oo].
t>0
Here we use the notation (f, ), := [ f(x)g(x)m(dx) for f, g € L*(E; m).
An increasing sequence {F,} of closed sets is called an E-nest if |2 | FF, is
511/2—dense in 7, where Fr, :=={u € F |u =0m-a.e.on E\ F,} and a family {F,;}
of closed sets is an £-nest if and only if it is a nest, that is, P, (lim, oo T, =¢) =1
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g.e. x € E. A function u on E is said to be £-quasi-continuous if there exists an
E-nest {F,} of closed sets such that u is continuous on each F,. A subset N of
E is called E-polar or (E-)exceptional if there exists an E-nest {F,} such that
N C N,2,(E \ F,); equivalently there is a Borel set N containing N such that
P (o5 < 00) = 0. A statement S(x) is said to hold for quasi-everywhere x € E
(g.e. x € E in short) if there exists an exceptional set N such that {x € E | S(x)
does not hold} C N.
An increasing sequence {F,} of closed sets is called a strict £-nest if

Jim Cap, g, (E\ F) =0,

where Cap, ¢, is the weighted capacity defined in Chapter V, Definition 2.1 of
[20] and a family {F,} of closed sets is a strict £-nest if and only if it is a strict
nest, that is, Py (lim, o 0p\F, = 00) =1 m-a.e. x € E in view of Chapter V,
(2.5) in [20], equivalently it holds gq.e. x € E by Chapter V, Proposition 2.28(i) and
Remark 2.8 in [20]. A function u on Ej is said to be strictly £-quasi-continuous
if there exists a strict £-nest {F;,} of closed sets such that u is continuous on each
F, U {d}.

An increasing sequence {G,} of (g.e.) finely open Borel sets is called a
nest (resp., strict nest) if Py(lim, 76, = ¢) =1 for qe. x € E [resp.,
Py (lim, o0 0g\G, = 00) = 1 for g.e. x € E]. (The definition of g.e. finely open
sets can be found in [11].) In [3], we show that under the quasi-left-continuity up
to infinity of M, for an increasing sequence {G,} of (g.e.) finely open Borel sets,
{G,} is a nest if and only if it is a strict nest. Denote by ® the family of (strict)
nests {G,} of (g.e.) finely open Borel sets. Note that for an £-nest {F},} of closed
sets, {G¢} € O by setting Gy := ka ™ k e N, where ka "™ means the fine interior
of Fy.

Let F, be the family of m-measurable functions # on E such that |u| < oo m-
a.e. and there exists an £-Cauchy sequence {u,} of F such that lim,_, oo tt;, = um-
a.e. We call {u,} as above an approximating sequence for u € F,. For any
u,v € F, and their approximating sequences {u,}, {v,} the limit E(u,v) =
limy,—, 00 € (uy, v,) exists and does not depend on the choices of the approxi-
mating sequences for u, v. It is known that £'/2 on F, is a semi-norm and
F=F,NL*E;m). We call (£, F,) the extended Dirichlet space of (£, F). Let
LO(E; m) be the family of m-measurable functions on E. We further let

Floc i= {ue L°(E; m) | there exist {G,} € © and
u, € F such that u = u, m-a.e. on G, foreachn € N}.

Floc is called the space of functions locally in F in the broad sense. It is shown
in [16] that 7 C F, C ﬁloo and every u € ‘7.:10(: admits an £-quasi-continuous m-
version u. More strongly every u € F admits a strictly £-quasi-continuous m-
version i on Ey with #1(9) =0. For u € 7:—10c, we always assume that # is extended
to be a real-valued function & on Ej if not otherwise specified, where we do not
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necessarily assume i (0) = 0. However, we can reduce to this case by setting &z —

i(d) on Ey, which is in Fj. as a function defined on E.
We need the following lemma:

LEMMA 2.1.  Every u € F, admits a strictly €-quasi-continuous m-version i
on Ey with u(9) =0.

PROOF. Take u € F,. Then there exists an m-a.e. strictly positive bounded
function g € L' (E; m) such that u € (F%),, where (£2, F8) is the Dirichlet form
on L?(E; m) defined by F& := F N L2(E; gm), E8(v, w) := E(v, w) + (v, W) gm>
v, w € F&, and (F¥), is its extended Dirichlet space. Then there exist an increas-
ing sequence {F},} of closed sets and a function & on Ej such that

lim_Capiy) (E\ Fu) =0,

i =u m-a.e. on E and & is continuous on each F, U {9} with &(9) = 0, where
Capfo) is the 0-order capacity with respect to (€8, (F%),). It suffices to prove that
{F,} is a strict £-nest with respect to (£, F). For this, we need that for any open
set U,

H(‘g}l(x) =E, [e_ng g(XS)dS]
satisfies Hgl € (F8), and
2.1 Capfo)(U) =E8(Hy1, Hi ).

This can be similarly proved along the same way as in Section 4.4 in [11]. We will
omit the details.
From (2.1), we have

. OE\Fn
IP’x<hm / g(Xs)ds=oo)=l, m-a.e.x € E,
n—oo 0
and hence {F,} is a strict nest, because of the boundedness of g. [

As a rule we take u to be represented by its (strictly) £-quasi-continuous m-
version (when such exists), and drop the tilde from the notation.

Let M and N, denote, respectively, the space of martingale additive functionals
of finite energy and the space of continuous additive functionals of zero energy.
More precisely, we set

M :={M | M is a finite rcll AF, E,[M?] < 00, E[M,]=0
for q.e. x € E and all r > 0}.
For an AF M, if the limit
1

2.2 M) :=1i
(2.2) e(M) t1£2t

En[M?]
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exists, we call it energy of M. When M € M, t — %Em[Mtz] is increasing and
the limit may diverge in general. Then we define

M:={MeM|e(M) < oo},
N.:={N | N is a finite CAF, E,[|N,|]] <oco q.e. x € E
foreach t > 0, and e(N) = 0}.
ForM,Ne./\jl,we set

1
M,N) :=lim—E,,[M;N,
e( ) tlﬁ)th m[M;N;]

and call it mutual energy of M, N. It is well known that (/\;l, e) is a real Hilbert
space with inner product e.
For u € F,, the following Fukushima decomposition holds:

2.3) u(Xy) —u(Xo) = M;' + N/

for all # € [0, oo[ Py-a.s. for g.e. x € E, where M* € /\jl and N* e \/..
A positive continuous additive functional (PCAF) of M (call it A) determines a
measure v = v4 on the Borel subsets of E via the formula

1 t
4 v(f) =t lim B, | [ X da.];

in which f: E — [0, oo] is Borel measurable. The measure v is necessarily smooth
(denote by v € S), in the sense that v charges no exceptional set of E, and there
is an £-nest {F,} of closed subsets of E such that v(F,) < oo for each n € N.
Conversely, given a smooth measure v, there is a unique PCAF A" such that (2.4)
holds with A = A". In the sequel we refer to this bijection between smooth mea-
sures and PCAFs as the Revuz correspondence, and to v as the Revuz measure
of A".

LEMMA 2.2. € Sifand only if u charges no exceptional set and there exists
{G,} € O such that u(G,) < oo for each n € N.

PROOF. The “only if” part is trivial by setting G, := FI™ we only
prove the “if” part. Take an f € L*(E;m) with 0 < f <1 on E and set
RE" f(x) := B[y e f(X,) ds]. Then R f(x) > 0 on G, and RY" f is &-
quasi-continuous for each n € N. Take a common £-nest {A;} such that all R f,
n > 1 are continuous on each A;. We set F,, :={x € A, | R?"f(x) > 1/n}. Then

{F,} is an E-nest by use of Lemma 3.3 in [16], where we observe B, := {Rf”f >
1/n} is increasing and E \ |J;2, B, is exceptional. For each n € N, we have

(E\Gp)" CE\F,, where (E\ G,) ={x € E | RlG"f(x) = 0} is the set of
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regular points for £ \ G,. Since (E \ G,) \ (E \ G,)" is exceptional, we obtain
w(Fy) < u(Gp) <ooforeachneN. [

A (positive) Radon measure © on E is said to be a measure of finite energy
integral if there exists C > 0 depending on p such that

/ lu(x)|u(dx) < Cv/E1(u,u) forallu € F N Cy(E).
E

Let Sp be the family of measures of finite energy integrals. For u € Sp and o > 0,
there exists a unique element U, € F such that

EqUgu,v) = /E v(x)u(dx) forve FNCy(E).

It is known that every u € Sp is a smooth measure. If we set Spg := {u € So |
W(E) <o00,Uipn € L®(E;m)}, then N is exceptional if and only if v(N) = 0 for
all v € Spo.

For any u € S, v € Soo, a (g.e.) finely open Borel set G and ¢ > 0, we have the
following formula:

(2.5 Ev[Afnop o] < A+ DU ]Ioopt(G),
which can be similarly proved as in the proof of Lemma 5.1.9 in [11] with the help
of Lemma 5.1.10(ii) in [11].

Take M, N € M and denote by (M, N) its quadratic covariational process,
which is a CAF of bounded variation, and let 1y, vy be its Revuz measure. In view

of Theorem 2.2 in [22], for M, N € M e(M N) =0 implies that (M, N) =0 on
[0, oo[ Py-a.s. for g.e. x € E. ForMeM and f e L*(E; (pm)), there exists a
unique f * M € M such that

1 o
e(fxM,N)= E/Ef(X)M(M’N)(dx) for N e M.

Moreover, we have the following.

LEMMA 2.3. Let M € M and f e L*(E; wony). If f is a strictly E-quasi-
continuous function, then f x M admits a Riemann sum approximation: for each
t>0

n—1

(f*M); = nlggo;) FXetyn) (Mg1yi/n — Mein)

holds Py-a.s. for q.e. x € E, where the convergence of the right-hand side is in
P, -probability for g.e. x € E.
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PROOF. This is well known for experts and shown for the case f € Co(FE) in
Lemma 5.6.2 of [11]. We shall show it for the reader’s convenience. By assump-
tion, we have for v € Sy

t
E[ /0 f2<Xs>d<M>s]s<1+z)||U1v||oo /E £ (dx) < oo,

In particular,

E, Uot fz(Xs)d(M)s} <oo  forqe.x€E.

Then by Theorem A.3.19 in [11], for x € E \ N with an adequate properly ex-
ceptional set N, we can define the stochastic integral f ¢ M := fé f(Xs—_)dM;
under P, which is characterized by

B.l(f o 1 =E, | [ ’ Pxoamn,| = [ ’ P i)

From this, we can get f e M € M and wifem,Ny = fm,ny for N € /\;l, hence
we have f « M = f e M. On the other hand, since ¢t — f(X;_) is left-continuous
P.-as. for q.e. x € E, f e M admits the Riemann-sum approximation in view of
Chapter I, Proposition 4.44 in [13]. Therefore, we obtain the result. [J

REMARK 2.1. From Lemma 2.3, we may write (f x M); = fot f(Xs-)dM;
if f is strict £-quasi-continuous on Ej.

Let (N(x,dy), H;) be a Lévy system for M; that is, N (x,dy) is a kernel on
(Ey, B(Ey)) and H; is a PCAF with bounded 1-potential such that for any non-
negative Borel function ¢ on Ej x Ej vanishing on the diagonal and any x € Ej,

B[ Y o0t x| =k [ [, o PN (K. dy)dH |

s<t

To simplify notation, we will write
No@)i= [ 0N dy).
9

Let gy be the Revuz measure of the PCAF H. Then the jump measure J and the
killing measure « of M are given by

J(dxdy) = lN(x, dy)ug(dx) and «k(dx)=N(x,{0}D)ug(dx).

These measures feature in the Beurling—Deny decomposition of &: for f, g € F,

ECf.g) = E(f.g) + /E @ = FOI) (30 — g(0)J @ dy)

+ [ g,
E
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where £¢ is the strongly local part of £.
For u € F,, the martingale part M/ in (2.3) can be decomposed as

M!'=M" "+ Mt”’j + M for every t € [0, oo,
P.-a.s. for g.e. x € E, where M,"“ is the continuous part of martingale M“, and

Mtu’] = 181}/18{ Z (M(Xs) - u(Xs—))l{lu(Xs)—u(Xs_)|>s}1{s<§}

O<s<t

t
_/ (/ (u(y)—u(Xs))N(Xs,dy)>de},
0 \NyeE|lu(y)—u(Xy)|>¢}

t
M = /O w(X))N (X, (8)) dHy — u(X;)1ysg)

are the jump and killing parts of M" in /\jl, respectively. The limit in the expression

for M*J is in the sense of convergence in M and of convergence in probability
under P, for q.e. x € E for each fixed ¢ > 0. (See Theorem A.3.9 and page 341 in

[11].)
If we let

ME = (M e M | M is a continuous MAF},
M= (M)t ={M e M|e(M,N)=0for N e M},
then every M has an orthogonal decomposition
M =M+ M

in the Hilbert space (/\jl, e). M€ e /\jlc (resp., M d g /\;ld) is nothing but the con-
tinuous part (resp., purely discontinuous part) of M discussed in [11]. Moreover,
set

M= {MeM! |e(M,M"*)=0forueF,}, M =MInM)
Then M is a closed subspace of ./\jl hence M? has a unique orthogonal decom-
position in (M, e) as

M =M + M*,

where M/ € M/ and M* € M¥. For simplicity of notation, we will use the con-
vention A Fy := Fy — Fy_ for any rcll (J;)-adapted process F'. The square bracket

[M, N]for M, N € M is defined by

[M, Nl := (M, N + Y AMAN;.

O<s<t
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Then (M, N) is the dual predictable projection of [M, N] (see (A.3.7)in [11]). We
further set foreach i = &, ¢, d, j, k

Y ;_loc := | M | there exist {G,} € ® and {M™} M such that
M, = M,(") forall 1 < op\g, and n € N, P,-as. for q.e. x € E},
Ne. f-toc := | N | there exist {G,,} € © and {N™} c N, such that
N, = N,(n) forall t < op\g, andn € N, Py-a.s. forq.e. x € E}.

Similarly, we can define /\jlfoc and MV joc as subclasses of local AFs (or AFs on
[0, ¢[[) in terms of first exit times 7, (see [3, 11] for the notion of local AF).

Here i = @ means M9 := M and write M fojoc (resp., M) instead of M?_IOC

(resp., /\;ll%c). Every PCAF is an element of N, joc. Our /\jlf-loc (resp., Nc,f_loc)
is slightly narrower than /\;lloc (resp., Neloc) treated in [11] (in [3] we use the
same symbol M f-loc (resp., Ne, f-1oc) to denote Mioe (resp., Neloc))- However,
Fukushima’s decomposition (2.3) for u € Foc with J = k = 0 can be characterized
by /\jl f-loc and N, f-loc- Before seeing this, we need the following lemma:

LEMMA 2.4. Let G be a (g.e.) finely open Borel set.
(1) Ifu € F satisfies u =0 q.e. on G, then ju(pu.cy(G) =0 and

M =0 foranyt <op\g Px-a.s. forg.e.x € E.

(2) For M € ./\;l, wimy(G) =0 implies M; =0 for any t < op\g Py-a.s. for q.e.
xeE.

PROOF. The proof of (1) is quite similar to the proof of Lemma 5.3.1 in [11].
Note that t < op\g < Gg\g implies X, X;_ € G U {9} for all s € ]0,¢], which
means u(X;) — u(X,—) =0 for all s € 10, ¢], because of u(9) = 0. Here 6\ :=
inf{t > 0| X;— € E\ G} (see (A.2.6) and Theorem A.2.3 in [11]). Next we
prove (2). Suppose umy(G) =0 for M € /\jl Note that fot 15,(Xs)d(M)s; =0
P.-a.s. for g.e. x € E. Combining this and Theorem 5.1.3(i) in [11], we have
Em[fot 16u9y(Xs)d(M)s] = 0 for each t > 0, hence (M); =0 for all 1 < op\G
P,,-a.e. Then by Lemma 5.1.10(iii) in [11], we obtain the result. [J

REMARK 2.2. Our method of the proof of Lemma 2.4(1) does not work to
show the same assertion in the case that u is only constant q.e. on G.

From this lemma, we can construct M*¢ € ./\;l}_]oc for u € .7'-"100. Under J =
k=0, foru e .7'-"100, (2.3) holds for all ¢ € [0, ¢[ Py-a.s. for q.e. x € E, where
M" e /\/lcf_10C and N" € N f-loc- If, further, u can be extended to be a real-valued
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function on Ej [without assuming u#(d) = 0], then the decomposition (2.3) holds
for all t € [0, oo[ P,-a.s. for g.e. x € E.
In order to define the stochastic integrals by Dirichlet processes, we have to

investigate the structure of M. For this we introduce the spaces 7, .7, T of jump
functions

={¢:Ey x Ey — R | ¢ is a Borel measurable function such that
d(x,x)=0forx € Ey and N(1gx >y € S},
={¢:Ey x E3 —> R | ¢ is a Borel measurable function such that

¢(x,x)=0forx € Ey and N(¢p>)ug € S}

and J :={¢p € J | [ N(¢*)dup < oo). Clearly J € 7 C 7, and for ¢ € 7,
we see 1pxp¢ € J. Further we set Jas := {¢ € j |é=0J- -a.e. on E x E} and
T :={peT| N(lExE|¢| JLH € S}, jas = j N Jas and \7* = j N Jx. Here
o(x, y):=¢(y,x) forx,y € Ey, ¢ = ¢+ </’>)/2 on Ey x Ejy. Clearly, Jas C T
and jas - J* Similarly, we can define Jas and 7, by replacing J with J in its
definitions. Moreover, for ¢ € J, (resp., ¢ € j*), we see IEXE¢ € Jx (resp., qb €
jk). For ¢ € 7 and £ € N, we write ¢ :=Plyp|>1/¢)- For ¢, ¢ € J (resp., ¢, ¢ €
f), we write ¢ ~ ¢ if ¢ = J*-a.e.on E x Ej (resp., ¢ = J-a.e.on E X E),
where J* is the measure on E x Ej defined by J*(dx dy) := %N(x, dy)ug(dx).
Then ~ is an equivalence relation and denote by j [~ T/~ j / ~ the families
of equivalence classes.

LEMMA 2.5. There exists a one-to-one correspondence between jo / ~ and
/\jld which is characterized by the relation that for ¢ € j (resp., M € /\jld), there
exists M € /\;ld (resp., ¢ € jo) such that e(M) = %fE N(¢2)(x);LH(dx) and M, —
M;,_ =¢(X;—, X;) for all t € [0, 00 Py-a.s. for g.e. x € E. Moreover, (M); =
[ N@*)(Xs)dHy for all t € [0, 0o[ Py-a.s. for g.e. x € E.

PROOF. Take ¢ € jo and set

= Y puX,- ,X>—f/ $e(X. YN (X, dy) dHj.

O<s<t

Then we can obtain Mt € /\jld and

t
2.6) (M), = /0 /E ORIV (X dy)dH,

1
@) e =3 [ [ 7N dynax),
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Indeed, we easily see that MY* is an MAF. If we let T,f = inf{t > 0| |Mf| > n},

then {TZ} is an increasing sequence of (&})-stopping times such that lim,,_, T,f =

0o. Then we have |M T4| <|M MT@ |+ 1o (Xinrt—s Xiar)l =0+ 1@ (X a7,
[ ATng)l, which implies that forv e Soo

Eo[(M/, ;)°] < 2n*v(E) +2E, [Z ¢* (X, Xs>]

s<t

t
:2n2v(E)+2E,,[/ / ¢2(Xs,y)N(Xs,dy)de}
0 JEy

<2n°v(E) +2(1 + DUV ]l oo /E N(¢*)(x) s (dx) < 0.

That is, t — M fATﬁ is a square integrable purely discontinuous PP,-martingale for

each n. By Corollary A3.1in[11],
M/, p0® =D (AM, 107 = My, 1)* = Y #7(Xe— Xo)

s=<t S<tAT!

is a IP,-martingale (also a [P, -martingale for g.e. x € E), which yields that

E(M)] < lim E, (M, ;)%= lim Ev[ 3 ¢%<xs_,xs>}

n—o0 n—oo
S<tAT!

t
_E, [Zd)%(xs, Xs)} <E, [ [ [ & y)N(Xs,dy)de}
d

s<t
s<1+z)||U1v||oo// 82 (e YIN (x. dy) s (dx) < 00,

Thus, M, ¢ is a square integrable MAF. Since {M, ¢ Tg} |18 L%(P,)-bounded, by
use of the Banach—Saks theorem, we have the equahty

E,[(M{)*] [// P2 (Xy, )N(Xs,dy)dH}

for all v € Spg. We then have the same equation for g.e. x € E by replacing v
with x. Hence M¢ e ./\;l, (2.6) and (2.7). Note that there exists a sequence {7,}
of totally inaccessible times such that {(7, w) | M; L ;é 0} = U2 [T, 1. This
yields that M t= pmtd ¢ /\/ld in view of Theorem A. 3 9 in [11]. Moreover, we
see that {M*}° 7= 1s an e-Cauchy sequence in M. Denote by M € M its limit.
Then there exists a subsequence {£;} such that M% converges to M uniformly

on each compact subinterval of [0, co[ P,-a.s. for q.e. x € E. We see for each Z,
M — M! = ¢o(X,—, X;) for all t € [0, oo Py-a.s. for q.e. x € E. Therefore we

have the desired result. Conversely take an M € M. Then, by Lemma 3.2 in [6],
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there exists a Borel function ¢ defined on Ey x Ey with ¢(x,x) =0 for x € Ej
such that M; — M; = ¢(X;—, X;), 1 €0, {p[ Pyy-a.e., where ¢, is the predictable
part of ¢ defined by ¢, :=¢ if { <00 and X, =9, and ¢, := oo otherwise. For
L= fxM"with f € Co(E),u € FNCo(E), we have ALy, = f(X;p_)AMg’!p =
0 for £, < 0o. In view of Lemma 5.6.3 and Theorem 5.2.1 in [11], we see AM;, =
0 for ¢, < oo, which implies M; — M; = ¢ (X,—_, X;), t € [0, oo[ P,-a.e. From
this, we have

/ / 620, )N (x, )i (dx) = lim ~Ep| / ’ / $2(X,. VN (X, dy)de}
EJE, ’ ’ t—0t LJo JE, v ” '

— lim 1E,, _Z ¢* (X, Xs)]

t—0t L=t

— lim ~Eyn _Z(Ms - Ms_)z]

t—0t L=t
.1 2

= lim -E,,[M;] =2e(M) < o0,
t—0t

where we use Corollary A.3.1 in [11]. Going back to the first argument, we can
construct M € M such that ]\7, — 1\7,_ =¢(X;—, X;), t €]0, o0[ Py-a.s. for g.e.
x € E. Applying Corollary A.3.1in [11]to M — M € M, we obtain

g ] VACIRERTING ~ 2
e(M — 1) = lim ~ B, [(M, — #,)?] = lim [;(A(M — ) ] ~0,

which implies the converse assertion. [J

COROLLARY 2.1. Take ¢ € j and set ¢(x y):=¢(y,x) forx,y € Ey. Then
lppd € j in particular, there exists K € ./\/lf suchthat K, — K, = —1g«g(¢p+
D) (X;—, X;) t €10, 00[ Py-a.s. for g.e. x € E.

PROOF. The assertion is clear from
[ [Faoneanunan= [ [ @ oNedyunan
EJE EJE
< /E N (@A) () (dx) < oo. -
From this corollary, we have j C J«.

LEMMA 2.6. Take a Borel function ¢: Ey x Ey — R with ¢(x,x) =0 for
x € Ey. The following are equivalent under ¢ € [J:

(D) ¢(X;—, X;) =0forallt <op\g Py-a.s. forg.e.x € E.
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(2) ¢(X;—, X;)=0forallt <op\G Pp-a.e.

3) f(; N(@*)(Xs)dHs; =0 forall t < 0\G Py-a.s. forq.e. x € E.
4) fot N(@*)(Xs)dHs =0 forall t < 0E\G Pm-a.e.

5) ¢=0J*"ae onG x Ej.

Replacing op\g [resp., ¢ in (3), (4)] with 1 (resp., 1gxg®), we have a similar
equivalence under 1g g € J, where the last condition is that ¢ =0 J*-a.e. on
G x E.

PROOF. The implication (1) = (2) is trivial and (3) <= (4) follows from
Lemma 5.1.10(ii) in [11]. We first show (2) = (3). Suppose ¢ (X;—, X;) =0 for
all € 10, og\G] Pp-a.e. Then we see ¢(XUE\G_, XUE\G) =0Py-ae. on{ox\¢ <
o0}. So ¢(XM<,E\G_, X,,\UE\G) =0forall ¢ € ]0, oo[ P,,;-a.e. From the property of
Lévy system (see Appendix (A) in [7] or the formula with ¥; = 1y, 71(¢) at line -9
on page 346 in [25]), we have for each ¢ > 0

INOE\G 2 >
E, U N )(X»st] =Em[ S X, Xs)] —0,
0 S<INOE\G
which implies (4), hence (3). (3) also yields [; N (¢2) dug = 0 by Lem-
ma 5.1.10(iii) in [11], and in particular, we obtain (5). Conversely suppose (5),
that is, [ N(¢?)dpuy = 0. Then, we can obtain (1) by way of the inequality (2.5)
and the property of Lévy system used above. [J

COROLLARY 2.2. Take an MAF M € /\;ld and the associated ¢ € jo Set
Dy (x,y) == (x, y)15)(y). Then the following are equivalent:

(1) MeM.

(2) ¢(x,0)=0k-a.e.x € E.

3) [oN@)(Xy)dHy =0Py-a.s. forq.e.x €E.
@ [oN@)(X)dHy =0Py-ace.

Set g (x,y) :=¢(x, ¥)1g(y). Then the following are equivalent:

(1) M e M~,

2*) ¢(x,y)=0J-ae. (x,y) € E X E.

3" fo N(qb%)(Xs)st =0P,-as. forg.e.x € E.
4*) [oN(@2)(Xs)dH; =0 Py-ace.

PROOF. (1) <= (2)isclear from e(M, M*:¥) = —% Jg & (x, du(x)k (dx) for
u € F,. Here we use the fact that F is dense in L2(E; k). (1*) <= (2*) is clear
from (1) <= (2) and e(M, N) = %fE fEa ¢(x, YU (x, V)N (x,dy)pg(dx). The
rest implications hold true for general ¢ € J and are clear in view of the unique-
ness of the Revuz correspondence and Lemma 5.1.10(ii) in [11]. O
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Let Mjoc be the space of locally square integrable MAFs and M{[(?C’C[[ the

space of locally square integrable MAFs on [[0, ¢[[. That is, M € M. (resp.,

M e Ml[[o%d[) if and only if there exists an increasing sequence {7,} (resp.,

{S,}) of (&F;)-stopping times and {M™} c M such that lim,_, o T, = 00 (resp.,
lim, 00 Sy = ¢) and for each n € N, M 1, = MZ(Z)T,, (resp., Mins, 1zns,<c) =
M,(K)Sn 1 rs,<¢)) forall t € [0, oo Py-a.s. for g.e. x € E. Let Mj__ (resp., Mfloc)
be the space of locally square integrable continuous (resp., purely discontinuous)

MAFs. That is, for M € MY . (resp., M € Mﬁ,c), we can take {M®} from M¢

[&
loc
(resp., M) in the above definition. Similarly, we can define the space M]C(;go’d[

d
(resp., M,

uous) MAFs on [[0, ¢[[. For every M € Mﬂo’g[[, its quadratic variational process

loc

(M) can be defined to be a PCAF (Proposition 2.8 in [3]), and M is decomposed
to M = M + M (Theorem 8.23 in [12]), where M€ € M0, pd ¢ M I04T

o loc
have the property (M€, M¢) = 0. The next theorem is a natural extension of
Lemma 2.5.

10,10 . . . .
oc ) of locally square integrable continuous (resp., purely discontin-

THEOREM 2.1. There exists a one-to-one correspondence between [J ] ~
(resp., T/ ~) and ML (resp., Md,[[O,g[[) which is characterized by the rela-

loc loc

tion that for ¢ € J (resp., j) there exists M € Mfloc (resp., Mflo’cﬁo’{[[) such
that My — M;_ = ¢ (X;—, X¢) for all t € [0, oo (resp., t € [0, ¢[) Py-a.s. for
g.e. x € E. Conversely for each M € Mﬁ)c (resp., /\/lﬁ)’c[[o’([[), there exists a
¢ e J (resp., j ) such that the same equation holds. Moreover, we have (M); =

fé JE, ¢*(Xs, y)N (X, dy)dHg for all t € [0, oo[ Py-a.s. for g.e. x € E.

PROOF. We only prove the correspondence between [/ ~ and Mﬁ)c. The
proof of the correspondence between T / ~ and Mﬁ)’go’;[[ is similar by replac-
ing og\f, With 7. Suppose ¢ € J. Take an £-nest {Fy} of closed sets such
that 1FkN(|¢|2)/,LH € Soo. Then 1, ¢ € j for each k € N, where (15,¢)(x, y) :=
17 (x)¢(x,y), x,y € Ej, and there exists an M® e M9 such that M,(k) — M,(f) =
15 (X )¢ (X;—, X;) for all t € [0, 00[ Py-a.s. for q.e. x € E. Such M® is an
e-convergent limit of {M (k)’g};?‘;l, where

(k). !
M; = Z le(Xs—)¢£(Xs—aXs)_/() le(Xs)N(¢€)(Xs)st-

O<s<t

This yields that for j > k, M,(j ) = Mt(k) for t < o\ F,, more strongly M,%E\Fk -
M,(f\)(,E\Fk because of Xop\p— € Fr U {0}. Hence M defined by M, := M,(k) for

which implies M € M | because {F}

. k
t < og\F, satisfies MMUE\Fk =M% loc?

t/\O'E\Fk ’
is also a strict £-nest.
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Conversely suppose M € /\/llo‘3 Then there exists a sequence {M ™} of square
integrable purely discontinuous MAFs and an increasing sequence {7} of stop-
ping times such that lim,,_, o T, = 00 and M;a1, = Mt(/\)T for all ¢ € [0, oo Py~
a.s. for g.e. x € E. By an argument in the proof of Proposmon 2.8 in [3], we can
construct a quadratic variational process (M), which is a PCAF, and a nest { Fy}
of closed sets such that 15,u(s) * M € /\/l and e(1pug) * M) = Z[L wmy(Fy). Note
that 1(5y * M = 0 because fo 15, (X5)d(M)s; = 0. We remark that (M, N) =0
for all N € My ., which implies 1rus) * M € ./\jld hence M € J\jljlc_loc As
in the proof of Proposition 2.8 in [3], we see M; = (1fup) * M), for t <
oE\F,- Indeed, we have this from the assertion for ¢ < op\F, and AMUE\F =
1ru0) Xog g, ) AMop, . = A Fuga)y * Mo, - By Lemma 2.5, there exists
a Borel function ¢y € jo such that 17,y (X—)(M; — M) = ¢r(X,—, X;) for
t € [0, oo[ Py-a.s. for g.e. x € E. From this, for j > k, we see that ¢y (X;—, X;) =
¢j(X;—, X;) for t < op\p, Py-as. for gq.e. x € E. Let G, be the fine interior
of Fi. By Lemma 2.6, for j > k we have ¢y = ¢; J*-a.e. on Gx x Ej. So
we can define ¢ on Ey x Ej such that ¢ = ¢ J*-a.e. on Gy x Ey. From
Lemma 2.2, we see N(¢>2),LLH € S. Applying Lemma 2.6 again, ¢(X;_, X;) =
dr(X;—, X;) = M; — M,_ for all t < og\g,. Moreover, we see (15,u(5) * M), =
fé / E d),% (X5, y)N (X, dy) d H. Therefore we obtain the desired assertion. [

COROLLARY 2.3. For¢ € j*, there existsa K € Mﬁ)c such that K, — K;_ =
—1exe(@d+d)(Xi—, X;) forall t € 10, oo Py-a.s. for ge. xckE.

PROOF. This is clear from that ¢ € jk implies 1gx g, 1E><E$ eJ.. O

REMARK 2.3. A similar argument of the proof of Theorem 2.1 yields
M ={M | there exists {G,} € ® and M™ M such that
M, = M(") forall 7 <op\g, and n € N, Py-a.s. for g.e. x € E},

./\/ld Jq0,¢ _ {M | there exists {G,} € ® and M® e ./\/ld such that

loc

M; = M(") forallr < tg, and n € N, Py-ass. for q.e. x € E}.

These show /\/lloC C M F-loc and Md’[m’“[ C Mloc We also have the coincidences

loc
loc = ME f-loc and Mlcogo - loc- Indeed, the inclusion My . C Me F-loc CaN
be obtalned in the same way of the proof of Theorem 2.1. The converse 1nclus1on
is easily confirmed from the continuity of M € Mj}_loc and P, (lim,— o0 0F\G, =

oo)=1forqg.e.x € E.

The next corollary is needed to assure the uniqueness of the generalized Fuku-
shima decomposition later.
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021\ A 1oe = {0}

loc

COROLLARY 2.4.  We have Mioc NN, f-1oc = {0} and M
PROOF. We only prove Mjoc N N, f-10c = {0}. The proof of MI[[OOC’{[[ N
Ncioc = {0} is similar to this by replacing op\F, With 75 Take M € Mjqc,
N € /\/'C,f_loC and suppose M; + N; =0 for all r € [0, oo[ Py-a.s. for g.e. x € E.
In particular, M is continuous. Let ¢ € 7 be the jump function associated to M.
As in the proof of Theorem 2.1, we can construct a common {G} € @, M ®) ¢ /\;l
with its jump function ¢y € j and N® e A, such that M, = M,(k), N; = N,(k)
for all t < op\G, Px-as. for q.e. x € E, and ¢ = ¢ J*-a.e. on Gy x Ej,. The
continuity of M yields ¢ (X;_, X;) =0 for all ¢ € ]0, oo[ P,-a.s. for q.e. x € E.
Then we can conclude that ¢ (X;—, X;) =0 forall r € 10, og\g, | Py-a.s. for q.e.

x € E by way of Lemma 2.6. This implies that M,(Q,E\ 6 = M&,E\ G- Py-a.s. for
g-e. x € E. On the other hand, we see that M,(Q,E\Gk, + Nt(/]isz\Gk =0 P,-a.s. for

g.e. x € E because Mt(k) + N,(k) =0forall r € [0,0p\G,[ Py-as. for ge. x € E.
Therefore we obtain
y®

[/\UE\Gk

+N(k) =0 for all ¢ € [0, oo[ Py-a.s. for q.e. x € E.

Z‘AO‘E\Gk

Then we can conclude that M; = N; =0 for all t € [0, oo[ P,-a.s. for q.e. x € E in
view of the argument of the proof of the uniqueness of Fukushima decomposition
as in Theorem 5.5.1 of [11]. [

We define subclasses of ./\/lﬁ')C as follows:

M ={MeM |p(-,d)=0k-ae. onE},

loc loc

M i={MeMl |¢p=0J-ae onE x E}.

loc

Then we have a similar statement as in Corollary 2.2. From this, we see that M €
M! . N e MK _ implies (M, N) =0 P,-as. for q.e. x € E. Every M € Mg is

loc? loc .
decomposed to M = M€+ M/ + M*, where M€ € MS_, M/ € M]_, M¥ e/\/lfoc

loc? loc?

have the properties (M, M7y = (M7, M*) = (M*, M) =0. For M € MHO’C[[

loc

with its jump function ¢ € J, we can consider M/ € M. (resp., K € Mj. )

associated to 1g«g¢ € J [resp., —1pxg(¢ + @) € J1, where K is constructed in
Corollary 2.3.

We introduce the subclasses ]3110, ]—'lic of Fioc as follows:
.t . 2
o= {u € Fioe | N (L () — ) € 5).

Fiei={ue Al 1u@) e Rand (u() — u(®)’x € 5}.

loc

Clearly, ]—"f;c and ]—"ff)c are linear subspaces of ]:'100, and 1g,,1¢ € ﬂie By Re-

mark 3.9 of [3] and « € §, we see F, U (}.—loc)b C ]:lic by regarding u(0) € R for
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ue ]Eloc For u,v € ]:loc (resp., u,v € J”:"loc) we see uv € .7-"10C (resp., uv € .7:"11C)
provided u or v is bounded. From Theorem 2.1, for u € ]-"ff)c (resp.,u € .ﬂzc) there

exists a M*? e MIOC(C M”}_loc) (resp., M4 e MIOHO “I) such that AM," 4 _
Au(X;) for all ¢ € [0, ool (resp., [0, ¢[) Py-a.s. forg.e. x € E.
Moreover, we define

Floi=1u e Foe VKK, | () —u 2J(dxdy) < oot
loc

Fhoi=|ue Al

u(@) e Rand VK € K, / u(x) — u(a)) k(dx) < oo}

Here IC denotes the family of all compact sets and Fj, is the space of functions
locally in F in the ordinary sense (see [11]). Clearly, ]:;f)c C ‘7:-1:)0 and ]:lic C ]'Llic.
For u € Fioc, u € .ﬁlc if and only if that for any compact set K with its relatively
compact open neighborhood G

[ ) —ue)dxay) <os.
K xG°¢

We see F, U (Floe)b C ﬂic, because of J(K x G¢) < oo and «(K) < o0 (see
Corollary 5.1 in [16]), where K and G are noted as above.

EXAMPLE 2.1. Let (£,F) be a regular Dirichlet form on L?(R") whose
jumping measure J has an expression J (dx dy) = f(|x — y|) dx dy such that f is
a locally bounded Borel function on [0, oo satisfying

o
(2.8) / f(r)rN+1 dr < o0 for some ¢ > 0.
c

For instance, relativistic symmetric «-stable processes sa'tisfy (2.8) (see [7]). Then
each coordinate function £j(x) := x; satisfies £; € .7:1T0C (k=1,2,...,N) un-
der (2.8). Indeed, for any compact set K and its relatively compact open neigh-
borhood G with d(K, G°) :=infyck yegelx —y| >0,

/ .wk(x)—ek(y)ﬁf(dxdy)s//_|x—y|2f(|x—y|)dydx
K xG¢ ¢

<|K|o(SN- ‘)/ PN F () dr < oo,
d(K,G°)

where |K | is the volume of K and o (S¥~!) is the area of unit sphere.

3. Nakao integrals. Now we are in a position to define an extension of
Nakao’s divergence-like CAF of zero energy and stochastic integrals with respect
to it in our setting.

Let N} C N, denote the class of continuous additive functionals of the form
N" + [,8(Xs)ds for some u € F and g € L?(E; m). Nakao [22] constructed a



1550 K. KUWAE

linear operator I" from M into \. .~ in the following way: for every Z € /\jl there
is a unique w € F such that

(3.1) Et(w, f) =S s ymiczy(E)  forevery f € F.

This unique w is denoted by y (Z). The operator I" is defined by
t o
(3.2) r'(Z),:= N/'% —/ v(Z)(X,)ds  for Z e M.
0

It is shown in Nakao [22] that I'(Z) can be characterized by the following equa-
tion:

.1 1
(3.3) 111&} ;Eg.m[F(Z),] = —EM(MHMN,Z)(E) for every g € Fp.

Here Fp := F N L°°(E; m). So, in particular, we have I'(M") = N* for u € F.
Moreover, we have the following:

LEMMA 3.1. It holds that T' (M%) = N* foru € F,.

PROOF. Fix u € F, and let {u,,} be an approximating £-Cauchy sequence such
that u, — u m-a.e. In view of the proof of Theorem 5.2.2 in [11], by taking a
subsequence {ny}, {un, (X;)}, MIM"" and N,u"" uniformly converges to u(X,), M"
and N/, respectively, on any compact subinterval of [0, oo[ P-a.s. for q.e. x € E.
From Theorem 3.2 in [22], by taking another subsequence, I'(M"“") converges to
['(M") uniformly on any finite interval P,-a.s. for q.e. x € E. Since I'(M""x) =
N"% we have T(M") = N*. O

In the same way of Nakao [22] (cf. (3. 13) in [3]), we can define a stochastlc

integral used by the operator I': for M € M with its jump function ¢ € J and
feF.NL*E; (M), We set

t
[ rexoaran,
(3.4
L e £ g .
::F(f*M),—E(M” +MP M+ M)+ K, t €0, ool,
where (f « M), = fé f(Xs—)dM; and K € /\jld with K, — K, = —1g«p(p +

0)(X;—, Xy) t €]0, oo[ Py-a.s. for g.e. x € E. Equation (3.4) is well defined under
P, for g.e. x € E. In this paper, we call the operator I' Nakao operator and the
integral (3.4) Nakao integral.

REMARK 3.1. Equation (3.4) is consistent with the extension of Nakao inte-
gral developed in [3] up to ¢ under P, (see Theorem 6.3 in [17]).
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For any M € ./\/llOC MILO[[O 3! (in particular for M € /\/l; = M¢ ), I'(M)

loc loc
can be defined as an element in AV, f-loc- To see this, we need the following lemma

extending Lemma 3.4 in [22]:

LEMMA 3.2 (Local property of I" on ./\;lc). Let M € MC and G be a (g.e.)
finely open Borel set. Suppose that M; = 0 P,-a.e. on {t < tg} for each t > 0.
Then I'(M); =0 for all t € [0, 0p\G] Py-a.s. forg.e. x € E.

PROOF. By assumption, E,[(M >t/\0E\c] = Enl[(M)ineg] = Enl MrG] =0
for each fixed ¢ > 0. Then p(py(G) =0 by Lemma 5.1.10(ii) in [11]. Let h € Fr
for a closed set F with F C G. Then Wphey(E\ G) =0 by Lemma 2.4(1). From
this, we have

M(Mh,C,M)(E)Z = 2M<Mh»6)(E),U«(M)(G) + 2M<M)(E)M(Mh~6)(E \G)=0.
Hence & (y(M),h) =0 for any h € Fr with F C G. Since (g, Fg) is a
quasi-regular Dirichlet form on L2(G; m), there exists an Eg-nest {F,} of com-
pact sets of G (see Lemma 3.4 in [16]). From this, for any h € Fg, there

exists hy € ;2 FF, such that {hy} 511 / 2—converges to h as k — oo. There-

fore, & (y(M),h) = 0 for any h € Fg, which implies ['(M), = N/™ —
[é y(M)(X5)ds =0 fort < op\g by way of Lemma 5.4.2(i1) in [11]. [

Let (Mloc)* [resp., (Mloc)as] be the subclass of Mloc associated to Ji/ ~

(resp., Jas/ ~) and (Mlo[[o {H)* [resp., (J\/llo[[0 g[[)ag] the subclass of Mﬁ)c[[o’d[
associated to j* / ~ (resp., jas/ ~).
We say that M € (Mjoc)« [resp., M € (Mioc)as] if and only if its purely dis-

continuous part M¢ is in (MIOC)* [resp., (Mloc)as] and the classes (MIOC“I)*
and (./\/I{[OC{[[)as are similarly defined. For M € (M{IOC”[)* with its Jump function
@ E j*, let M€ € /\/llco[[O I be its continuous part and take M Je Mloc associ-
ated with 1 pp € Jy and K € ./\/110C constructed in Corollary 2.3 associated with
—1exe(@+9) € Js.

We shall extend I over (ME?C’ 4[[)* and establish (3.4) for more general inte-

grands and integrators under P, for q.e. x € E. To do this we need the following
lemma:

LEMMA 3.3. Take M € (M[[O’d[)* with its jump function ¢ € Jv. Let G

loc
be a (q.e.) finely open Borel set satisfying 1gxe@, lgxgp € J. Take f € F. N
L2(E; wmy) and suppose that f =0 m-a.e. on G. Then we have I'(f * M); =

2(MJ£C+M’CJ,MC+MJ—|-K) fort €[0,0p\Gg[ Px-a.s. forg.e. x € E.
PROOF. We show that for any g € (Fg)p

.1 1 . .
3.5 llr% ;Egm[f‘(f * M); — E(Mf,c + vaj, MS+ M/ + K)t] =0.
r—
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Then we can obtain the assertion from (3.5) in view of the proof of Theorem 2.2
in [22] and Lemma 5.4.4 in [11]. We know

1 1
lim ~B (D M) == [ Fqeares i (d).

So for (3.5) it suffices to show

GO [ S @0 == [ gmurcsmis mermrr @0,

Noting fg = 0 qe. on E and the derivation properties of continuous
part and jumping part of energy measures (see the proof of Lemma 3.1
in [22]), we see [p fdumsemey + [pgdippre ey =0, [ fditpgei iy +
ngd/,L(Mf,j’Mj_l_K) =0and [ f dumser m<y =0, which imply (3.6). O

DEFINITION 3.1 (Extensions of Nakao operators and Nakao integrals). Fix
M e (Mlocgn)* with its jump function ¢ € j* and f € floc Let {Gr} € ® be a
common nest such that wy)(Gr) < 00, f = fi m-a.e. on Gy for some f € Fyp,

16, xe9, 16, xEQ € j foreachk e N.Set E;, :={x € E | Ex[foG" e 'g(X;)dt] >
1/k} for g € L2(E; m) with 0 < g < 1 m-a.e. Then ey := kB, [ [y % e~ g(X;) d1] A
1 € Fg, satisfies 15, < ey <1g, q.e. on E. In view of Lemma 3.3 in [16], we have
{Er} € ©.

We now define
T (M), =T (ex * M); — 3(M%C + M%I M + M/ +K),  forte[0,0p gl

for each k € N Py-as. for q.e. x € E. For M € (M{IOOC’{H)* and f € F, N L*(E;
M)), we set

! 1 _ . .
/ F(X)dTU (M) :=T(f %« M), — §<Mf~‘ + M5 M+ M+ K),

for t € [0, oo[ Py-a.s. for g.e. x € E. For general f € Fioc and M € (MIOCC[[)*

above, we set
t t
f f(X5)dTl' (M) :=] (fer)(X5)dI'(M)s forz € [0, op\E, [

for each k € N IP,-as. for q.e. x € E. Note that fey e F, N L2(E; W (p)) for each
k € N. These are well defined for all # € [0, co[ P,-a.s. for gq.e. x € E in view of
Lemma 3.3 and are elements in N, f-joc.

For f € .7-'10C and M € (/\/lloc;[[)*, we see
1
(3.7 fo fX)dT (M )y =T (f * M), — E(Mf’c, M),

for all # € [0, oo[ P,-a.s. for q.e. x € E, where ['(f * M), can be defined by way
of Lemma 3.2.
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REMARK 3.2. (1) In [3], we define extensions of Nakao operators and Nakao
integrals in terms of time reverse operators, which are defined up to ¢ un-

der P,,, and the Nakao integral is also refined for integrator I'(M), M € M
and integrand f(X) for f € ]L"loc under P, for g.e. x € E. So the Nakao inte-
gral in Definition 3.1 is a pure extension of this refinement. Though the con-
dition on the integrator of our Nakao integrals is rather restrictive than theirs
described to be up to ¢ under P,,, it is defined for all time under the law for
quasi-everywhere starting points.

(2) The extensions of Nakao operators and Nakao integrals in [3] are consistent
with our corresponding notions up to ¢ under P, (see Theorem 6.3 in [17]).

The following lemma is needed to establish the generalized Itd formula.

LEMMA 3.4 (Local property of extended Nakao integral). 7Take
M e (M),

loc

with its jump function ¢ € J and fe Floc. Let G be a (g.e.) finely open Borel set.
Suppose that f =0 m-a.e. on G. Then

/0 " F(X,)dT (M), =0

holds for all t € [0, op\G[ Px-a.s. for g.e. x € E.

PROOF. Let {E}} € ® and ¢, € F be constructed as in Definition 3.1. Since

fex € Fp N LA(E; imy) and LGreox£9, L(GnE)xE® € J, we can apply Lem-
ma 3.3 so that

t
f (fer)(Xs)dI'(M)s =0 holds for ¢ € [0, op\G A 0E\E. [,
0

P.-a.s. for q.e. x € E. Therefore we obtain the desired assertion. [

The following propositions are an addendum (cf. Theorems 4.1 and 4.2 in [3]).
We omiit its proofs.

PROPOSITION 3.1. Take M € (M[[O’g[[)* and f € Flioc. Suppose that T'(M)

loc

is a CAF A of finite variation on [[0, ¢[[. Then

t t
f F(Xy)dT (M), = / FOX) dA,
0 0

holds for all t € [0, ¢[ (for all t € [0, oo[ provided M € (Mioc)+) Py-a.s. for g.e.
xeE.
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PROPOSITION 3.2.  Take M € (M), and f, g € Fioe. Then

/ot §(Xs)d (/0 f (Xu>dF<M>u>s = /0 t(fg)(Xs)de)s

holds for all t € [0, ¢[ (for all t € [0, oo[ provided M € (Migc)«) Px-a.s. for q.e.
xeE.

4. Stochastic integrals by Dirichlet processes.

DEFINITION 4.1 (Dirichlet processes). For M € (MIOCC[[)*, weset A := M+
['(M), which can be defined by way of Definition 3.1. Note that A is defined on
[0, o[ Py-a.s. for q.e. x € E if M € (Mjoc)«; otherwise, it is only defined on
[0, ¢[ Py-a.s. for q.e. x € E. For M = M" with u € F,, we see A = A", where

A,”. = u(X,A) —u(Xg). For M e /\jl and each i = ¢, d, j, k, we further set A; =
M; +T(M"); and write A“' :=A"if M =M", uecF,.

We see A = A + A? = A° + A + A* for A= M + T (M), M € M. By (2.3)
and Lemma 3.1, we have A% = A€ + A%d = AUC  Al] 4+ AWK for u € F,.

DEFINITION 4.2 (Stochastic integrals by Dirichlet processes). Take and fix
M € M. For f € L*(E; W (mey), We set

/tf(Xs) odAS = (f % M) + T (f % M),
for all 7 € [0, oo[ Py-a.s. for q.e. x € E. For f € F, N L*(E; j(my), We set
/ F(Xy) odM = (f « M), + [Mf M1,
[ rxran = em+ [ xoarom,,

t t t
/ F(Xs) odA, == / F(Xy) 0 dM, + / F(Xs)dT (M),
0 0 0

for all ¢ € [0, oo[ Py-as. for qe. x € E. Recall (f x M), = [y f(Xs—)dM;
for feF, N L?*(E; wmy) (see the proof of Lemma 2.3). We call (f x M),
[resp., fo f(Xs-)dAs) the It6 integral of f(X) with integrator M (resp., A) and
fot f(Xs) odMj [resp., f(f f(Xs) o dAg] the Fisk—Stratonovich integral of f(X)
with integrator M (resp., A).

REMARK 4.1. (1) For the definition of [ f(Xs) o dM¢ for f € F, N L*(E;
wimey), we need f € F,, which is unnecessary to define fé f(Xs) odAS.
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(2) Our definitions of Fisk—Stratonovich-type integrals are somewhat different
from what is found in Protter [23] or in Chapter VI of Meyer [21] except for
the case of diffusions. The definition of ]6 f(Xs)odM; in [23] or [21] is given
by (f*M);+ %(Mf’c, M¢);, which has an advantage to give a version of Itd’s
formula in terms of their Fisk—Stratonovich integrals (see II. Theorem 34, V.
Theorems 20 and 21 in [23]), but it only has a Riemann-sum approximation
under that f(Xy) and u#(Xs) have no jumps in common (see V. Theorem 26
in [23]). Our definition of fé f(Xs)odM; admits such an approximation in the
framework of semi-martingales at least (cf. Definition 3.9.21 in [2] or Prob-
lems 9.12 and 9.13 in [12]). On the other hand, Kurtz, Pardoux and Protter
[15] give a different definition for Fisk—Stratonovich-type integrals provided
the underlying process is a solution of an SDE driven by semimartingales. Our
definitions are also different from theirs.

Now take a jump function ¢ € J associated to a given M € Mj,.. We set for
eachf e N

t
M= Y X X0 = [ NG (X dH,

O<s<t

In the same way of the proof of Lemma 2.5, if M € ./\;l, then
d d.t 1 2
e(M* — M) = E/E/E 0~ (¢, M, i<1/0N (x, dy) g (dx).
a

The stochastic integrals f M9 and f % M4E for M € Miec with f € .7:"10c N
L*(E; K pmay) and f(9) = 0 belong to M, and satisfy that

t
(f xMP0) = Y (X )pe(Xs—, Xy) — /0 S (XN (@0)(Xs)dHy
O<s<t

holds for all ¢ € [0, co[ P,-a.s. for gq.e. x € E and
e(fx M — fx MY

1
= Ef fz(x)/ <ﬂ2(x,y)1{|<p(x,y)|51/e}N(x,dy)MH(dx)-
E Ey

LEMMA 4.1. (1) Take M € Mo with its jump function ¢ € J. Then for
g € Fioe N L (E; ptpya)) with §(3) =0,

1 t
F(gs M"Y, = f Ny (g0 — 590)(X,) dHy
(4.1) 0

t
+ /O ¢(X0)pe(Xy. DN (X, {)) dH,



1556 K. KUWAE

holds for all t € [0, oo[ Px-a.s. for q.e. x € E. Moreover, for f € F, N LZ(E;
M(g*Mdl)),

/0 " F(Xy)dD(g * MO,
4.2 —1 l XH)N(1 o0))(X)dH
4.2) —5/0 FOXON (g (g0e — 590) (Xy) d Hy

t
+f0 f(X5)g(Xs)pe(Xs, 0N (X, {9}) d Hy

holds for all t € [0, oo Py-a.s. for q.e. x € E. More generally if M € MU0l

loc
with its jump function ¢ € T, then for M7t ¢ M'{OC with its jump function
1exe@e € J and g € Fioe N L*(E; i) with g(9) =0,

. 1 rt
(4.3) Mg s M/ = [ N(Lexe(epe = 290) (X0 dH,
holds for all t € [0, 00[ Py-a.s. for q.e. x € E, and for f € F, N L*(E;
/-'L(g*Mjl)),

t ) 1 rt
4.4) /Of(Xs)dF(g*MJ’E)z=5/O F(X)HN(1exe(gpe — g90))(Xs) d Hg

holds for all t € [0, oo[ Py-a.s. for g.e.x € E.
(2) Take M € (./\/ll[[oo"h[[)ﬁk and K¢ € M _associated with —1g « g (¢ + @7) € Tx.

C loc

Then for g € ]:'k)c N LZ(E; ,bL(KZ>) with g(9) =0, we have

1 rt
(4.5) F(g*KK),=§fO N(1exEe(§ — 8)(pe +@0))(Xs) d Hy

holds for all t € [0, 00[ Py-a.s. for q.e. x € E. Moreover, for f € F, N

Lz(Ev M(g*Kl))’

t
/0 f(X5)dT (g K"),
(4.6) o
=3 [ FHON (Lee@ = )0 +7D) (X dH,

holds for all t € [0, oo[ Py-a.s. for g.e. x € E.

COROLLARY 4.1. Take M € (Ml[[(?c’g[[)* and f € .7:"10C. Let K be an element

in (Mﬁjc)* associated with —1 g g (@ + @) constructed in Corollary 2.3. Then we
have that

/O " F(Xy)dT(K), =0

holds for all t € [0, oo[ Px-a.s. for gq.e. x € E. In particular, I'(K); = 0 for all
t €10, 00[ Py-a.s. forg.e. x € E.
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COROLLARY 4.2. Take M € M with its jump function ¢ € j Let K¢ be an
element in M/ associated with —1g g (¢ + 7). Set At := A4L 4 %Ke. Then
we have

_ 1 L
A =2 3 =P X)lsaq) + @0(Xe o, )=

O<s<t

holds for all t € [0, 0o Py-a.s. for q.e. x € E. Moreover, for f € F, N L*(E;
M(Md)),

Ve — Q¢
2

t —
/O FX ) dAM = Y F(X,) (Xys X)L ps<)

O<s<t
+ (X D)ee(Xe—, ) 1>y

and

t - X))+ F(X,2) o0 — 7
'/O f(Xs—) odA?’(' — Z f( ) 2f( )(PE > (2 (XS_, Xs)l{s<§}

O<s<t
+ (X pe(Xe—, )¢y

hold for all t € [0, oo[ Py-a.s. for g.e. x € E.

PROOF OF LEMMA 4.1. We only prove (4.1). The proofs of (4.2), (4.5) and
(4.6) are similar. Equation (4.3) [resp., (4.4)] is clear from (4.1) [resp., (4.2)].
By (3.3), for h € F},

limlEh.m[F(g x M%),
t40 t

1
= —5 /l; ng(Mh—}—Mh’K,Md*l)

1
:—E/EngMh.j,Mj,z)—ngd,uWh,K’MM)
:/E Eh(x)(gw —W)(X,y)J(dxdy)—I—/Eh(x)g(x)w(x,a)K(dx)
X
1
:E/EhN(lEXE(gW_W))d‘”’+/Eth(1Ex{8}W)dMH-

Therefore, by Theorem 2.2 in [22], we have the desired assertion. [

PROOF OF COROLLARY 4.1. Let {Gy} € ® be a common nest such that
fle, € Folg, and 1, <9, 16, xe® € J for each k € N. Let {E;} € © be the
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nest and let e; be the function constructed through {G} as in Definition 3.1. Re-
placing f with fey, it suffices to prove the assertion for the case f € (Fg,)p in
view of Definition 3.1. For f € (Fg,)», we have that

t 1 )
[ Foarao =r s k), + 5005 k),
holds for ¢ € [Q, oo[ Py-ass. for g.e. x € E. From Lemma 4.1, we have I'(f *
K9, + 2(MFI K*), = 0 holds for € [0, 0o[ Py-a.s. for q.e. x € E in view of
Theorem 2.2 in [22]. On the other hand, we see f % K, f * K¢, 1(;]. * K, 1(;]. xKte
M for j > k with
e(f x (K — KY) <[ fll5e(lg, * (K — K*)) = 0, ?— o00.

Hence we obtain the assertion in view of Theorem 5.2.1 in [11] and Theorem 3.2
in [22]. O

PROOF OF COROLLARY 4.2. Since K¢ € /\jl, we have from Corollary 4.1 that
I'(K%),; =0 holds for ¢ € [0, co[ Py-a.s. for g.e. x € E. Note that Mt 4 %KZ is
given by

Ve — Pt
> 5 Xoms X s <) + 90X, Diiz)

O<s<t

! Yo —Pr !
- 0 N 1E><E ) (Xs)st_ 0 q)@(Xs’ a)N(XSa{a})st
Then we obtain the assertion in view of Lemma 4.1. [
DEFINITION 4.3 (Extensions of stochastic integrals by Dirichlet processes).

For M € (M)« with its jump function ¢ € J, and f € Lz(Gn; M mcy) for each
n € N and some {G,} € ©®, we define

t
/0 F(Xg) 0 dAS = (f % M), + T(f % M©),

for all ¢ € [0, oo[ P,-a.s. for gq.e. x € E. Moreover, if f € .7:"10C with f(0) =0, we
define

t t 1
/ F(Xo_)odM, = / F(Xs)dM; + ~[f(X), M1,
0 0 2
t t t
/ F(Xs_)dA, = / F(Xo)dM, + f F(Xs)dT (M),
0 0 0

t t t
/ F(Xy) 0dAy = / F(Xy_) 0dM, + / F(X,)dT (M),
0 0 0

for all ¢ € [0, 00 Py-a.s. for q.e. x € E, where [f(X), M]; := (MFe, M), +
2 0<s<t (f(Xs)— f(Xs-))(My—M;_).For M € (ME?C’{H)* with its jump function
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NS T and f as above, these are defined for all 7 € [0, {[ Py-a.s. for q.e. x € E.
We can define fé f(Xs )dA;, fé f(Xg)odAg for A:=A+ %K by replacing M
with M + 1K . Note that I'(K) = 0.

Hereafter we use the following convention: let f € Fioe with f(@) =0 and
take ¢,V : Ey x Ey — R vanishing on the diagonal such that |¢| < M|y{| on
E x Ey for some M > 0 and ) _,, wz(XS_, X;) < oo for all ¢t € [0, oo Py-
a.s. for g.e. x € E. If there exists a nest {G,} € ©® such that flg, € Fvlg, for
each n € N and a subsequence {¢;} depending only on {G,}, f, ¢ and v such that
t> Y 0es<t [ (Xs)d(Xs—, Xo)ljy(x,_.x,)|>1/¢) converges uniformly on each
compact subinterval of [0, o\, [ foreachn € Nas k — oo Py-a.s. forq.e. x € E,
then we shall denote its limit by

S (XD (X, Xy).

O<s<t

Note thatif # = >, f(Xs-)9(Xs—, Xy) absolutely converges uniformly on each
compact subinterval of [0, oo[ P,-a.s. for g.e. x € E, then we can eliminate the
symbol * from the above sum. We shall use > 5, (f (Xs) + f(X5-))¢ (Xs—, X5)
and Y7, ¢(Xs—, X;) in a similar fashion. N

We then have the following:

THEOREM 4.1. Let f € Fioc and suppose that f is extended to be a real-
valued function on Ey with f(9) =0. Take M € (Mioc)« With its jump function
o e Jeandset A=A+ %K =M+T'(M)+ %K, where K € (Mioc)« associated
with —1gxg (@ + @) € Jy. Then
o —

[
2 (XS—’XS)+()0(X§—’8)1{TZ{},

Zt = A,C + Z*IEXE

O<s<t

| ' FX)dA, = | FXe)dAS

90_

[
2 (XS—’XS)

+ 3 F (X 1ExE

O<s<t

+ f(Xe)o(Xe—, Dysgy

and
t o t i
[ rxpoda = [ oo dn:
0 0
+ Z*f(Xs) + f(Xs-) (Y

> 1exE

—¢
2 (XS—’XS)

O<s<t

+ F(Xe)o(Xe—, D ysgy
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hold for all t € [0, oo Py-a.s. for g.e. x € E. More generally, for M € (./\/llocd[)*
with its jump function ¢ € T these expressions hold for t € [0, ¢[ Py-a.s. for q.e.
xeE.

PROOF. First we assume M € M and f € F, N L*(E; H(my). Since f * Mt
converges f « M? in (/\/l, e) as £ — 00, there exists a common subsequence {{;}
such that f s M4 [resp., T'(f * M%%)] uniformly converges to f % M? [resp.,
C(f % Md)] on each compact subinterval of [0, co[ P,-a.s. for g.e. x € E by The-
orem 5.2.1 in [11] and Theorem 3.2 in [22]. On the other hand, M 4.t 4130 con-
verges M d'in (/\jl, e), which yields that there exists a subsequence {£;} such that
(M4, M-t (resp., (M4 pd-Ley)y uniformly converges to (M54 M9 (resp.,
(M74_ M9Y) on each compact subinterval of [0, co[ Py -a.s. for q.e. x € E. There-
fore, for such subsequence, fot f(Xs-) dZi”k [resp., fol f(X5-) de’E"] uniformly
converges to f(; f(X;)o de [resp., fé f(Xy) o ngl] on each compact subinter-
val of [0, oo P,-a.s. for g.e. x € E. So the conclusion holds by Corollary 4.2.
For general M € (Mioe)« [resp., M € (Mloc{[[) ] with its jump function ¢ € J,
(resp., ¢ € 7). the assertion is clear from Lemma 3.4. [

Recalling Theorem 2.1 and the last description of Section 2, for u € jﬂoc (resp.,
u e .7-"10C) there exists an M*4 e MIOC(C M‘}_loc) [resp., M4 /\/llo[[o “I(C
M]OC)] such that M;" a_ M,”_d =u(X;) —u(X,_) forall ¢ € [0, oo (resp., [0, ¢[)
Py-a.s. for g.e. x € E. By Lemma 2.4(1), we can define M*““ € Mj = y ?-loc

for u € Fioe; M/ := M€ for t < oe\G, for some {G,} € © and u, € F
such that u = u, m-a.e. on G, for each n € N (see Remark 2.3). Put A%¢ :=
M"C + T'(M*°) for M*¢, which can be defined by way of Lemma 3.2, and
Atd .= pped 4 T (M) for M*9, which is defined by Definition 3.1.

COROLLARY 4.3. Take f € Fioc and u € .7:11;0 Suppose that f is extended to
be a real-valued function on Ey with f(9) :=0. Then

@.7) /f(X dA = 3 FX ) ((X) — u(X,),
O<s<t
F XD+ f(Xyo)
2

t
4.8) fo F(Xp)odAnd = 3 ((Xy) — u(X))

O<s<t

hold for all t € [0, oo[ Py-a.s. for g.e. x € E. Similarly

4.9) APt = Y (w(Xy) — u(X, )

O<s<t
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hold for all t € [0, co[ Py-a.s. for q.e. x € E. More generally, if u € .7:11C and

f e j-]oc is only defined on E, then all assertions above hold for all t € [0, [
Py-a.s. forq.e. x € E.

Owing to (4.9), we can obtain a generalized Fukushima decomposition for u €
Fioe

THEOREM 4.2 (Generalized Fukushima decomposition). For u € ]L"ffjc, the
additive functional A" defined by A} :=u(X;) — u(X¢) can be decomposed as

A" =M"+ N", MueMloc, NMGM,f—loc
in the sense that AY = M+ N/, t € [0, oo[ Px-a.s. for q.e. x € E. More generally,
ifue .7'-"120, then A" is decomposed as

AY = M" + N*, MMEM[[()’C[[, NMENC,IOC

loc

in the sense that A} = M} + N/',t € [0, ¢[ Px-a.s. for q.e. x € E. Such decompo-
sitions are unique up to the equivalence of (local) additive functionals.

PROOF. The uniqueness is proved in Corollary 2.4. We shall only prove the
existence in the first assertion. We set M* := M*€ + M"“? € (Mjoc)as and N¥ :=
rm4*) e Nc,f-loc, where M"¢ and M“4 are defined above. Take {G,} € ® and
{un} C Fp such that u — u(d) = u, m-a.e. on G,. Then (4.9) implies that for
t €0, GE\Gn[

u(X;) — u(X0) = tn(X;) — un(Xo) = A€ 4 A

= A Y (X)) — un (X))

O<s<t

49
— AR Y Xy — u(X,)) ) A 4 A

O<s<t
= M/ +T(M"),
Py-as.forqe.x e E. U

REMARK 4.2. (1) We emphasize that 1z, does not satisfy 1£,(d) =0. So we
cannot deduce (4.9) from (4.7), (4.8).

(2) For f € Fioe with f(@)=0and u ¢ .’FIEC we have no way to define M*¢,
' (M*%) and stochastic integrals with respect to them. However, we can define
the left-hand sides of (4.7) and (4.8) keeping the same expressions as they
have.

(3) InTheorem 4.2, M* foru € ]ﬂic (resp., u € ]:"lzc) can be decomposed to M} =

M+ M+ M" 1 €0, 00] (resp., M = M + M™% t €0, ¢[) P,-
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¢, 10.¢10

loc ’

a.s. for q.e. x € E, where M*' € M{oc’
d d,10,¢1
M"4 e My, oM.

C

i =c,j, Kk (resp., M e M

Now we expose a generalized It formula in terms of our stochastic integrals.

THEOREM 4.3 (Generalized Ito formula).  Suppose that ® € C'(RN) and take

u=(Wuy,...,uN) € (.7:'10C)N having an RN -valued extension on Ejy. Then:
(1) ®(u) e .7'-"10c and for each k = 1,2,...,N, ®;(u) € leoc({Gn}; W (pmexcy) for
some {G,} € O, where &y .= g—j{ and
- N l
(4.10) AP - Z/ Dy (u(Xy)) o d A S
0
k=1

holds for all t € [0,00[ Py-a.s. for qe. x € E. If we further assume
® e C*(RVN), then for each k., =1,2,...,N, ®r(u) € Fioe, Pre(u) €

LIZOC({G,,}; W (pmu-cy) for some {G,} € ©, where Oy := and

)
dx0xp’

N o
AP =3 [ o daze
k=1

4.11)
| A
3 2 [ @t de, mee),
22000
holds for all t € [0, oo[ Py-a.s. for g.e. x € E.
(2) Suppose u € (fff)c)N and ® € C*(RN). Then ®y(u) € Fioe for each k =
1,2,..., N. Moreover, if we assume ®(u) € .7:1%)0 then

N o

d(u),d

AP :Z/O Or(u(X;_))dA%4
k=1

(4.12) .
+ Z(A@(u(xs)) -3 <I>k(u<Xs_>>Auk<Xs>>
s<t k=1
and
N o
AT = 3 [ o) o dam
k=1"0
(4.13) .
; Z(A@(u(xs» -3, HEED 2D Auk<xs>)
s<t k=1

hold for all t € [0, co[ Py-a.s. for q.e. x € E, where the last terms in the right-
hand sides are absolutely convergent uniformly on each compact interval of

[0, co[ Py-a.s. for g.e. x € E. If we replace ff;c with flzc in the above condi-
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tions, then formulas (4.12) and (4.13) hold only on [0, {[ Py-a.s. for g.e. x € E
without assuming the RY -valued extension of u on Ej. )

(3) Under the same conditions in (2), we have ®(u) € Fioc for each k =
1,2,...,N,

N
4SO — 3 /O Oy (u(X;_)) d A
k=1

1 X
(4.14) £33 [ Pty dmeee, M),
252100

N
+ Z(M(n(xs)) - d>k(u<xs_))Auk<Xs)>

s<t k=1

and

@ Nt
A2 Zfo O (u(X,)) 0 dA™
4.15) =

ADu(Xs) — Y 5

k=1

N
X Z( Pr (W (Xy)) + Pr(u(Xs-)) Auk(xs))

s<t
hold for all t € [0, co[ Py-a.s. for q.e. x € E, where the last terms in the right-
hand sides are absolutely convergent uniformly on each compact interval of
[0, oo[ Py-a.s. for q.e. x € E. If we replace fii)c with JTlToc in the above condi-
tions, then formulas (4.14) and (4.15) hold only on [0, {[ Py-a.s. for g.e. x € E
without assuming the RY -valued extension of u on Ej.

We call (4.14) the It0 formula for Ito-type integrals and (4.15) the It0 formula
for Fisk—Stratonovich-type integrals.

COROLLARY 4.4 (Chain and Leibniz rules for purely discontinuous part). Un-
der the same conditions as in Theorem 4.3(2), we have that

N
MPO =3 / Dy (u( X)) d M
k=170
N
(4.16) + Z(A@(u(xs» -> d>k<u(xs_))Auk(Xs))
st k=1

N p
— {Z(Acb(u(Xs)) - <I>k<u(Xs_>>Auk<Xs>>} :

s<t k=1
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N ¢
M:D(u)’d = Z/O Dp(u(Xy)) o dMsuk’d

+ Z(AW(XS»
4.17) = N
_ 3 ReluXy) +2 Pu(u(Xs)) <xs>)
k=1
N p
— {Z(Acb(u(Xs)) -3 d>k<u<xs_))Auk(Xs))}
s<t k=1
and
N
P, =3 [ ) drar,
(4.18) =

N p
+ {Z(Awm)) - d>k<u(Xs_))Auk(Xs))}
s<t k=1

hold for all t € [0, oo Py-a.s. for gq.e. x € E, where B,p denotes the dual pre-

dictable projection of B; for an AF B. If we replace ‘7:1 with ‘7:1 in the con-
ditions, (4.16) and (4.17) hold only on [0, ¢[ Py-a.s. for g.e. x € E wzthout as-

suming the RN -valued extension of u on Ea In particular, for u, v € ‘7:100 (resp.,
U,V e .7-'106) with uv € .7-"10C [resp., uv € ]-'IOC withu(9) =v(9) =0],

t t

(4.19) M,'“”d=/0 u(XS_)de’d+A v(Xs_)dM"?
+ M M) — (M e,
t t
:/O u(Xs_)odM;”d—i—/O v(Xy_) odM™“?

(4.20) d

(M 1M )l"

t t
@21)  T(Mwdy, = /O u(X)dr e+ [ oo arar,

+ (M M,
hold for all t € [0, ¢[ (resp., t € [0, 0o]) Py-a.s. for g.e. x € E.

COROLLARY 4.5 (Flsk—Stratonovwh integration by parts formula). Foru,v e
.7-"10c (resp.,u,v € .7-"10 ) with uv € .7-"1 [resp., uv € .7-'10C with u(d) =v(d) =0],

(4.22) u(X,)v(X;)—u(Xo)v(Xo):/O u(XS)odA;’—i—/O v(X) o d A"
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holds for all t € [0, ¢[ (resp., t € [0, oo[) Py-a.s. for g.e. x € E.

REMARK 4.3. (1) In [3], we prove a generalized Itd formula for u € (F)V
under the law for quasi everywhere starting points, extending the early result
by Nakao [22]. Our Itd formula can be applied to a wider class of integrators
than that in [3].

) In Theorem 4.3(2), if u € (Fioe)p)™ with u(d) € RV, ® € C*(RV), then
Pu) € floo

3) Dr(u) € .7-"10C does not necessarily satisfy @4 (u)(3d) = 0. So the integrals ap-
peared in the first terms of the right-hand sides of (4.11)-(4.14) should be
understood to be modified, for example, fé & (u(X,)) dAS* should be under-
stood as fé(cbk(u(Xs)) — D (u(9))) dAs* + Dp(u(d))A*.

(4) Comparing with (4.10), the case for diffusion part, our Itd formulas, (4.13) and
(4.15), for Fisk—Stratonovich integrals are not so simple. This phenomenon
can be found in the Itd formula for Fisk—Stratonovich integral exposed in II.
Theorem 34 and V. Theorem 21 of [23] in the framework of semi-martingales.
We emphasize that the expression of the second term (denoted by C;) of the
right-hand side in (4.15) is different from theirs [i.e., the third term of the
right-hand side in (4.14), which is the usual expression of the Itd formula for
purely discontinuous part]. Note that C; is an odd additive functional, that is,
foreacht > 0, C;or; +C; =0 P,,-a.e. on {t < ¢}, where r; is the time reverse
operator. Hence, both sides in our formula (4.15) possess this property, which
is not yielded by the It6 formula in [23].

(5) In Theorems 4.1, 4.3 and Corollaries 4.3—4.5, we do not require the strict &-
quasi-continuities of f, u# and v. If we do not impose the condition that such
functions are extended on Ej and vanish on {0}, or if we only assume that
(€, F) is not necessarily regular (i.e., quasi-regularity only holds), then all
assertions are restricted to “for all ¢ € [0, ¢[ Py-a.s. for g.e. x € E” and each
convergence of the right-hand side is uniform on compact subinterval of [0, ¢ [
P.-as.forqe.x € E.

(6) In [10], an It6 formula for a general multi-dimensional process with finite
quadratic variation is presented, but the formula like (4.15) is not exposed
in [10].

(7) As noted in Remark 4.2, even for u ¢ (]:"lzc)N , we can define the first terms
in the right-hand sides of (4.12), (4.13), (4.14) and (4.15). So the formulas
hold in this setting without using stochastic integrals with respect to M*<,
'(M*?). So the conclusion of Corollary 4.5 also holds for u, v € Fioe With
u(0) = v(0) = 0 in this context.

PROOF OF THEOREM 4.3. (2) is a consequence of (1) and (3). We first
prove (1). The former assertion of (1) follows from Theorems 6.1 and 7.2 in [16].

Note that MPW-¢, ke € ME = M Gtoc and T(MPW-) T (M) € NG

loc?
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which are defined on [0, oo[ under P, for q.e. x € E. Formula (4.10) can be ob-
tained from the chain rule for continuous part of MAF

N
(4.23) MPOC =3 fo O (u(Xy_)) dM <
k=1

for all ¢ € [0, co[P,-a.s. for g.e. x € E (see Theorem 7.2 in [16]). The latter asser-
tion of (1) also follows from Theorem 7.2 in [16] and (3.7).

Next we prove (3). Applying Theorem 6.1 in [16] to ®; € C!(R") again, we
have ®;(u) € .7310C for u e (ﬁEC)N . Equation (4.14) is proved by Nakao [22] for
the case u € (Fp)"N. (4.15) for u € (Fp)" also follows from (4.14) for u € (Fp)"
and that foreachk=1,2,..., N

t t 1
/ O (u(X,)) 0 dM = f (X)) dM 4 [ MO ],
0 0

for all ¢ € [0, oo Py-a.s. for g.e. x € E. Equations (4.14) and (4.15) for general
ue ﬁlic (or u € ]:'IZC) hold for all # € [0, co[ (resp., t € [0, ¢[) Py-a.s. for g.e.

x € E in view of the both of local properties of stochastic integrals by M"+¢ and
T (M"4) (see Lemma 3.4). [

EXAMPLE 4.1 (Symmetric Lévy processon RY). LetM = (2, X;, ¢, P, xRN
be the symmetric Lévy process. That is, M is a time homogeneous additive process
determined by a family {v;} of probability measures on R satisfying (4.17), (4.18)
and (4.19) in [11]. Let (£, F) be the corresponding Dirichlet form on L2(RN).
Then (€, F) is given by

F=fue?®")| [ 16 Py @ads < ool.
Euv = [ A@I©OVEE  uwver

where u(§) := W Jrr e €X)y(x)dx and ¥ (x) is the function determined by

Eole! &X0] = e~V We assume that M is purely discontinuous; namely v has
the following expression:

v© = [ (1= coste mvan).

where v is a symmetric measure on RY \ {0} such that fRN\{O} (€2 AD)v(dE) < o0,

which is called the Lévy measure of M. We see C(% ip (RN) C F, hence Clzicp RN c

Floc, because, in view of Corollary 7.16 in [1],
1+y @) <c(1+E»H  VeEeRY

for some constant ¢ > 0. Here C(])“ ip(RN ) [resp., Cll(‘)icp(RN )] is the family of Lip-
schitz continuous functions with compact support (resp., locally Lipschitz contin-
uous functions) and Fi, is the space of functions locally in F in the ordinary sense
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(see [11]). Further (£, F) is a regular Dirichlet form having Cg° (RN) as its core
(see [26]). Define N (x, A) := v(A — x), N(x, {3}) =0 for A € B(RV), x e RN
and H; =¢. By Theorem 19.2(i) in [24], we have

Ne =B ¥ L-x0|  AeB®Y).
O0<s<l

and hence (N, H) becomes a Lévy system of M (see also Section 7 in [14]). By
Corollary 4.3, we have that for any u € Cloc PRY)

w(Xp) —u(X) = > (u(Xy) — u(X;))

O<s<t

holds for all ¢ € [0, ¢[ P,-a.s. for g.e. x € RN Further we assume v(dy) =
f(yDdy, where f is a Borel function satisfying (2.8). Let u € CUYP(RN). Then

su u(x+y)—ux) 2v(d ) < o0 for any compact set K,
p | (ulr+y y y comp

xek /R

hence u € }-IZC' Therefore u admits the generalized Fukushima decomposition.

EXAMPLE 4.2 (Symmetric stable process on RM). Wefixa €]0,2[. LetM =
(2, X;,Py), cgrn~ be a Lévy process on RN with

Eo[eV=TEX00] = oI,

M is called the symmetric a-stable process. It is known that M is conservative. Let
(€, F) be the associated Dirichlet form on L2(RY) with M, which is given by

_ 2
F= {ueL2 RN)’//RNxRN () = u(3)) dxdy <oo},

x—y |N+oz
@29 ey = AW =) / / @) —u@)EE) = vG)
’ 2 RNXRN |x_ |N+Cl y’
u,velkF,
where A(N,y) = LW =0/D o, N The Lévy system (N, H) of M is

214y g N2D (14y /2)°

given by N(x,dy) := AN, —a)|x — y|"¥*t¥ dy and H, =1. So uy(dx) =

Hence J(dxdy) = f(Jx — y|)dxdy for f(r):= A(N, —a)r N~ r > 0. Note
that f does not satisfy (2.8). Take B € [0, «[. Assume that N > «, hence {0}
is polar, and take u € C'(RN \ {0}) N C*A/2(RN). Here COP/2(RN) is the
family of B/2-Holder continuous functions on RY. For example, for a func-
tion F € C'([0, oo[) with bounded derivative F’, u(x) := F(|x|?#/?) is a func-
tion in C'(RVN \ {0}) N COP/2(RN). Then u € F| = F . Indeed, the polar-
ity of {0} implies C'(RN \ {0}) C Fioc and we have that for any compact set
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K (c RV \ {0}) with its relatively compact neighborhood G (C RN\ {0}) satisfying
d(K,G°) :=infck yegelx —y| >0

(u(x) — u(y))? |KWN@Mﬂ®N1)
//KXGC e P S T K GoF

equivalently,

(u(x) — u(y))?
[ oy dedy <

where |K| is the volume of K and |u| o2 := supx#% Therefore u

admits the generalized Fukushima decomposition.
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