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BAYESIAN INFERENCE AND MODEL CHOICE IN A HIDDEN
STOCHASTIC TWO-COMPARTMENT MODEL OF

HEMATOPOIETIC STEM CELL FATE DECISIONS1

BY YOUYI FONG, PETER GUTTORP AND JANIS ABKOWITZ

University of Washington

Despite rapid advances in experimental cell biology, the in vivo behav-
ior of hematopoietic stem cells (HSC) cannot be directly observed and mea-
sured. Previously we modeled feline hematopoiesis using a two-compartment
hidden Markov process that had birth and emigration events in the first com-
partment. Here we perform Bayesian statistical inference on models which
contain two additional events in the first compartment in order to determine
if HSC fate decisions are linked to cell division or occur independently.
Pareto Optimal Model Assessment approach is used to cross check the es-
timates from Bayesian inference. Our results show that HSC must divide
symmetrically (i.e., produce two HSC daughter cells) in order to maintain
hematopoiesis. We then demonstrate that the augmented model that adds
asymmetric division events provides a better fit to the competitive transplan-
tation data, and we thus provide evidence that HSC fate determination in vivo
occurs both in association with cell division and at a separate point in time.
Last we show that assuming each cat has a unique set of parameters leads to
either a significant decrease or a nonsignificant increase in model fit, suggest-
ing that the kinetic parameters for HSC are not unique attributes of individual
animals, but shared within a species.

1. The biology of hematopoiesis. Hematopoiesis is the process of blood cell
production. More precisely, it is the process in which hematopoietic stem cells
(HSCs) make fate decisions and through sequential divisions, differentiate into
progenitor cells. These cells in turn differentiate into white blood cells, red blood
cells or platelets. While a lot is known about how progenitor cells differentiate,
since their behavior has been studied both in vivo and in vitro, relatively little is
known about HSC. This is due to the fact that HSCs are difficult to isolate, as they
do not have a completely unique physical or antigenic phenotype. In addition, in
vivo, HSC decisions depend on input from neighboring cells and cytokines and not
just their intrinsic cell programming. HSCs support the entire blood and immune
system, and can reconstitute hematopoiesis after transplantation. Understanding
their kinetics is of great importance. For example, this could lead to new treatments
for leukemia and more effective clinical HSC transplantation procedures.
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An HSC basically has to fulfill two directives, to self-renew and to differentiate.
In addition, like all cells, an HSC eventually will die through apoptosis. An HSC
self-renews by dividing symmetrically into two identical daughter cells, each of
which becomes a new HSC. Since the normal function of an HSC requires input
from cells and cytokines in its bone marrow microenvironment, termed niche, a
newly born HSC will die unless it finds a niche in time. Biological data argue that
there is a limited number of niches available in an organism and this helps main-
tain the number of HSC in a steady state in a normal adult [Abkowitz et al. (2002),
Czechowicz et al. (2007)]. The pool of progenitor cells is replenished by the dif-
ferentiation of HSC, which can happen in two ways conceptually. First, an HSC
can be cued to commit to a specific progenitor fate. Alternatively, an HSC can
divide into two cells, which are fated to become an HSC or a progenitor cell re-
spectively at or right after the time of division. We call this “asymmetric division,”
although from a mathematical perspective, one cannot distinguish a fate decision
programmed at mitosis from a fate decision resulting from microenvironmental
input at or immediately following cell division.

In Drosophila germ line cells, it is clear that the cell division event is indeed
asymmetric, that is, fate depends on the spindle orientation relative to the Hub cell
(niche) and results from the unequal distribution of intracellular regulators and ex-
tracellular (Hub-derived) signals between daughter cells during mitosis [reviewed
in Knoblich (2008) and Yamashita and Fuller (2008)]. In the mammalian system,
this is less certain, although studies of murine neuroprogenitors, muscle satellite
cells and T cells (following contact with an antigen presenting cell) suggest this
occurs [Knoblich (2008) and Chang et al. (2007)]. The elegant studies of Wu and
colleagues [Wu et al. (2007)] show that murine HSC/progenitor cells, defined as
immature by virtue of Notch transcription, divide asymmetrically in vitro. There is
no in vivo evidence to suggest that asymmetric divisions happen, however, and im-
portantly, observing asymmetric outcomes does not require that HSC division and
fate determination are mechanistically linked [see discussion in Schroeder (2007)].

In order to get an idea of the contributions of the feline hematopoietic stem
cells to the progenitor cells, a specific set of experiments was designed using
female Safari cats. Safari cats are the offspring of matings between a domestic
cat and the South American Geoffroy wild cat. Since these two breeds of cat
have had long separate developments, they express an electrophoretically distinct
phenotype of the X-chromosome-linked enzyme glucose-6-phosphate dehydro-
genase (G6PD). During embryogenesis, since either the paternal or the maternal
X-chromosome is inactivated, the female Safari cats have some somatic cells ex-
pressing the domestic-type G6PD (d G6PD) and other expressing the Geoffroy-
type G6PD (G G6PD). The G6PD phenotype is retained after replication and dif-
ferentiation, and it is functionally neutral. That is, the cells that express it do not
have significant self-renewal or differentiation advantages. Therefore, it provides
a binary marker or label of each cell and its offspring. For more details on the
experiment, see Abkowitz et al. (1988, 1990, 1993).
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Observing the percentage of progenitor cells expressing the d G6PD phenotype
over a period of almost 6 years in normal female Safari cats (with observations
taken approximately every 4 weeks) did not seem to provide much information
about the HSC behavior. In fact, this percentage remained relatively constant dur-
ing the six years of observation, suggesting that hematopoiesis is a polyclonal and
stable process.

Since there might be more information in observing the hematopoiesis process
when it is supported by a much smaller number of stem cells, a number of female
Safari cats were irradiated in order to kill their bone marrow (where HSCs reside in
adults) and a small number of bone marrow cells, collected prior to the radiation,
were transplanted back. Since large animals have relatively few HSCs compared
to other cells in the marrow, at the start of the experiment the transplanted cats
are likely to contain a very small number of HSCs. For this reason the process
modeling the HSC behavior should have a discrete state-space rather than a con-
tinuous one. The behavior of the binary label (d G6PD versus G G6PD) within
the progenitor cells was then monitored in samples taken every two to six weeks.
Under this setting, the percentage of labeled cells is more variable over time. For
example, some cats showed wide clonal fluctuations during the first year or so and
then stabilized, suggesting that initial hematopoiesis after the transplantation was
supported by only one or two clones.

2. A stochastic model of hematopoiesis. We model the hematopoiesis as a
two-compartment model. The first compartment contains the HSC, while the sec-
ond contains the clones (i.e., the entire production) of committed stem cells. In the
first compartment we allow stochastic decisions to divide, specialize or die, with
fates depending on the type of event. Thus, an HSC follows a birth (symmetric
division with rate λ; when the maximum number of niches is reached, one daugh-
ter cell dies immediately), death (apoptosis at rate α) and emigration (through
commitment with rate ν or through asymmetric division with rate η). The second
compartment gets input from committed stem cells, and the duration of produc-
tive life of a clone is modeled exponentially (clonal death with rate μ). Figure 1
is a schematic description of the stochastic model. Table 1 lists all the stochastic
events.

In this paper we will be studying several submodels of the one shown in Figure 1
and a convention is adopted to name each model by concatenating the short names

FIG. 1. A stochastic model of hematopoiesis.
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TABLE 1
A list of stochastic events. All events are modeled as Poisson events and the rate parameters are

listed in the last column

Name Short name Rate parameter

Symmetric division S λ

Commitment C ν

Clonal death D μ

Asymmetric division As η

Apoptosis Ap α

of the stochastic events it contains. For example, a model containing the symmetric
division event, the commitment event and the clonal death event is called a SCD
model; add the asymmetric event and the apoptosis event and we get the full model
SCDAsAp.

It follows from the description of the experiment above that the total number
of cells both in compartments one and two in Figure 1 can be seen as the sum of
two independent and identically distributed population processes that differ only
in a label: d G6PD or G G6PD. In short, the population process is two-dimensional
in both compartments. One dimension is the population of cells expressing the d
phenotype, the other is the population of cells expressing the G phenotype.

Denote the rate parameters collectively as ρ. Denote by ω the set of events be-
tween time 0 and time T or, equivalently, the number of cells over time in that time
span. We call ω the path or state. Suppose ω is composed of n events, which di-
vide the time span [0, T ] into n+1 intervals denoted by t0, . . . , tn. The probability
density of ω given the rate parameters ρ is

f (ω|ρ) =
n−1∏
k=0

mk exp[−(zkλ + zkν + zkα + zkη + xkμ)tk]

× exp[−(znλ + znν + znα + znη + xnμ)tn],
where zk and xk are the numbers of cells/clones (either domestic or Geoffroy) in
the first and second compartments, respectively, at the time of the kth event (z0
and x0 are the numbers at time 0), mk = zkλ, zkν, zkα, zkη or xkμ depending
on whether the kth event is a symmetric division, a commitment, an apoptosis, an
asymmetric division event in the first compartment or a death event in the second
compartment. Note that zk and xk are not observed. We choose z0 and x0 to be 10
and 5, respectively (either domestic or Geoffroy) via a combination of prior belief
and sensitivity study [Golinelli, Guttorp and Abkowitz (2006)].

In order to relate this model of the unobserved HSCs and their progenitors
to the actual observations, we assume that each clone contributes equally to
hematopoiesis, and sample certain types of cells (BFU-E plus CFU-GM). By the
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assumption made, the number of d-labeled cells in the samples should be bino-
mially distributed with success probability reflecting the proportion of d HSC in
the second compartment. Specifically, denoting ti the time of the ith observation,
N(ti) the number of progenitor cells in the sample at time ti , xd(ti) and xG(ti)

the numbers of d-type and G-type clones in the second compartment at time ti ,
the distribution of the number of d-type cells Y(ti) is

[Y(ti)|ω] ∼ Binomial
(
N(ti),

xd(ti)

xd(ti) + xG(ti)

)
.

3. Some history. From a statistical point of view, parameter estimation needs
to involve the likelihood function. In the first set of papers in the long-standing
collaboration between Guttorp and Abkowitz [Abkowitz et al. (1990), Guttorp,
Newton and Abkowitz (1990)] we were able to perform a complete likelihood
analysis, with a nonstandard shape of the likelihood due to the initial number of
transplanted HSC being a parameter. There were serious numerical difficulties in
evaluating the likelihood, and a Markov chain Monte Carlo approach to inference
with varying state space was developed to do a Bayesian analysis of the early cat
transplant data [Newton, Guttorp and Abkowitz (1992)].

When additional cat data proved this early model a poor fit, we developed the
first version of the current model, which initially was analyzed using simulation
tools. Using some features of the observed data, we developed objective criteria
to assess simulated paths. When a set of simulated paths failed one or more of the
criteria, those parameter values were deemed infeasible. In essence, we were using
the multiple decision tools of Pareto Optimization [Vincent and Grantham (1981)]
and the Pareto Optimal Model Assessment approach by Reynolds and Ford (1999)
to determine possible parameter values, with an ad hoc approach to find “optimal”
parameter values.

A statistical approach, using estimating equations, was developed by Catlin in
her dissertation [Catlin (1997)] and applied to the cat data [Catlin, Abkowitz and
Guttorp (2001)], yielding parameter estimates with a tighter range than those ob-
tained from the Pareto optimization. Golinelli (2000) studied a simplified version
of the model and developed tools for calculating the posterior distribution using
Markov chain Monte Carlo methods. It was computationally infeasible at the time
to run sufficient numbers of MCMC iterations for the convergence of the algo-
rithm. With improved computing facilities and a faster algorithm, Golinelli, Gut-
torp and Abkowitz (2006) then calculated the posterior distributions for one of the
first transplanted cats, as well as that using all the cats. These distributions agree
with and thus confirm our previous simulation-based work, and are more precise
than the alternative method developed by Catlin, Abkowitz and Guttorp (2001).

In this paper we extend the Bayesian inference machinery developed in
Golinelli, Guttorp and Abkowitz (2006) for the SCD model to work with other
models. Basically we draw from the posterior distribution ρ,ω|Y by using a Gibbs
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sampler that alternates between updates of ρ|ω,Y (parameter update) and ω|ρ,Y

(state update). The parameter update is rather easy with the choice of gamma or
uniform prior because we can write down the conditional distribution of ρ|ω,Y an-
alytically. The state update is achieved by a Reversible Jump Metropolis–Hastings
algorithm [Robert and Casella (2004)]. Details are given in the Appendix.

The increased complexity in both the parameter space and the state space re-
quires that we run more MCMC iterations than before and the time to run it is
getting close to being prohibitive. In order to improve the performance, we allow
the state update for each cat to run in its own thread, thus speeding up state up-
dates, the more time-consuming part of the algorithm. The program was run on a
custom-built high-performance workstation. This allows us to run more compli-
cated models, as well as simultaneously analyze all the data from the transplanted
cats. In particular, we are able to fit various refined models (Sections 4 and 5) and
assess the hypothesis that all cats have the same parameter values (Section 6). We
still use the Pareto Optimal Model Assessment approach to rule out certain models
(Section 4).

4. Essentialness of apoptosis, symmetric division and commitment events.
Based on scientific evidence we know that apoptosis does happen to all somatic
cells. Golinelli, Guttorp and Abkowitz (2006) chose to leave out this event be-
cause simulation studies done in Abkowitz, Catlin and Guttorp (1996) indicated
that apoptosis was not essential in reconstructing our experimental observations
and because of the computational challenge in implementing it. With the recent
progress in software and hardware, we attempt reversible jump MCMC for the
SCDAp model. The posterior means for λ, ν,μ,α are 0.084, 0.00019, 0.038,
0.0024, separately. To find out whether the SCDAp model provides a better fit
to the data than the SCD model, we estimate Bayes factors. To this end, we esti-
mate the integrated likelihood under each model with a stabilized harmonic mean
estimator [Raftery et al. (2007)]

p̂θ (y|M) =
(

1

B

B∑
i=1

1

π(y|θi,M)

)−1

,

where θ is any subset of parameters in model M , θi is one draw from the posterior
distribution of θ , π(y|θi,M) is the density of the data under model M with all
parameters other than θ integrated out, and B is the number of draws used to cal-
culate the harmonic mean. Depending on the choice of θ , the estimator can have
large or small variance. In our model, if we choose θ to be the path, then the esti-
mator has very large variance (data not shown). But if we let θ be either λ, ν or μ,
then p̂λ, p̂ν and p̂μ all have much smaller variance and are similar to each other
(Table 2). The Bayes factor for comparing the SCDAp model and the SCD model,
p̂θ (y|SCDAp)/p̂θ (y|SCD) = 0, indicates that the SCD model is strongly preferred
over the SCDAp model for describing this data set. Since SCD is a submodel of
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TABLE 2
Integrated likelihoods of cats for various models. 100 weeks data. Gamma priors are assumed

Models log p̂H (y) log p̂θ1(y) log p̂θ2(y) log p̂θ3(y) BF

SCD −682.15 −647.27 −649.24 −646.35 1.0
SCDAp −692.04 −659.28 −662.61 −660.09 0.00
CDAsAp −673.11 −645.84 −649.01 −647.41 1.2
SDAsAp −689.72 −668.17 −672.57 −676.71 0.00
SCDAs −670.34 −644.59 −644.30 −645.16 19

SCDAp, this result means that without the presence of the apoptosis event, the
SCD model does a good job of describing the data set. Adding the apoptosis event
results in a more complex model, which is penalized by the Bayes factor approach.
This result is consistent with Abkowitz, Catlin and Guttorp (1996) which shows
by the Pareto Optimal Model Assessment approach that the data contain little in-
formation about the apoptosis rate.

Since asymmetric division can be viewed as combining symmetric division and
commitment in one step, questions arise as to whether it is possible to leave out
either symmetric division or commitment in the presence of asymmetric division.
To check the essentialness of symmetric division, we performed a Bayesian analy-
sis of the CDAsAp model using a Gamma prior. The Bayes factor comparing the
CDAsAp model with the SCD model is 1.23 (Table 2). This Bayes factor is non-
conclusive. We simulate 50 virtual cats from the CDAsAp model using the means
of the posterior distributions of the rate parameters (ν = 0.00738, μ = 0.05969,
η = 0.03338, α = 0.00426). We then assess each virtual cat with the five assess-
ment criteria developed in Abkowitz, Catlin and Guttorp (1996). The distributions
of each of the first four criteria in the observed and in the virtual cats are compared
using Kolmogorov–Smirnov tests and P values are 0.00, 0.000, 0.000 and 0.000.
The die-out rate of the virtual cats is 100%. We also simulate virtual cats from six
randomly chosen sets of parameters from the posterior distributions. While the first
four tests produce variable P values, the die-out rates are all higher than 96%. This
strongly suggests that symmetric division is required to explain the data, that is,
the hematopoietic reserve (compartment 1) cannot regenerate and cannot maintain
continued hematopoiesis unless HSC symmetrically divide.

Similarly, we did a Bayesian analysis of the SDAsAp model using a Gamma
prior. The Bayes factor comparing the SDAsAp model with the SCD model is 0.00
(Table 2), suggesting that commitment is required to explain the data. We sim-
ulate 50 virtual cats from the SDAsAp model using the means of the poste-
rior distributions of the rate parameters (λ = 0.0659, μ = 0.04538, η = 0.00136,
α = 0.00142). Comparison of the first four criteria between the virtual cats and the
observed cats results in the P values of 0.073, 0.005, 0.000 and 0.75. The die-out
rate of the virtual cats is 0%. We also simulate virtual cats from six randomly cho-
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sen sets of parameters from the posterior distributions. The P values from testing
the third criterion, the relative amount of variation in the d-type progenitor percent-
age immediately following transplantation [Abkowitz, Catlin and Guttorp (1996)],
are all 0.000. This further supports the notion that commitment is essential to HSC
kinetics. The maintenance of hematopoiesis by a persisting cohort of progenitor
cells is not compatible with experimental observations.

5. Bayesian inference for SCDAs model. Table 3 reports the means and 95%
HPD credible intervals of the posterior distributions of the parameters for the SC-
DAs model. Those for the SCD model are reported as well for comparison purpose.
For the SCDAs model, the best estimates for λ, ν, μ and η are 1 per 11 weeks, 1 per
13 weeks, 1 per 5.2 weeks, and 1 per 13 weeks, respectively. The estimated sym-
metric division rates and commitment rates are largely similar between the two
models, while the clonal death rate in the SCDAs model is a bit larger than that
in the SCD model. This makes sense because in the SCDAs model, in addition to
commitment events, asymmetric division events also contribute to the increase in
the number of clones in the second compartment, thus requiring an increase in the
death rate to maintain a steady state.

The Pareto Optimal Model Assessment approach was previously used in
Abkowitz et al. (1988) to find the acceptable range of the parameters in the SCDAp
model. The same approach can also be used to validate the parameter estimates ob-
tained from Bayesian inference. Thus, we simulate 50 virtual cats using the means
of the posterior distributions of parameters for the SCDAs model. Figure 2 plots
20 paths. Comparison of the first four criteria between the virtual cats and the ob-
served cats results in the P values of 0.074, 0.59, 0.34 and 0.41. The last criterion,
the die-out rate, of the simulated cats is 14%. While no die-outs were observed
among the six observed cats, this percentage is still less than 1/6.

In this Bayesian analysis, we have to specify priors for the parameters. Al-
though there is some information guiding the choice of priors, we want to check
the sensitivity of the posterior distributions on prior choice. To that end, we run
MCMC with two priors. Both priors assume that all parameters are independently
and identically distributed. The “Gamma” priors let each parameter be distrib-
uted as a Gamma distribution with shape parameter 5 and rate parameter 50.

TABLE 3
The means and 95% HPD credible intervals of the posterior distributions of parameters for SCDAs

and SCD models. Gamma prior and 100 weeks data

Symm division (λ) Commitment (ν) Clonal death (μ) Asym. division (η)

SCDAs 0.093 (0.044, 0.141) 0.079 (0.036, 0.125) 0.193 (0.118, 0.271) 0.078 (0.009, 0.159)
SCD 0.094 (0.052, 0.148) 0.079 (0.038, 0.137) 0.139 (0.081, 0.209)
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FIG. 2. Cats simulated from the mean of the posterior distributions of the SCDAs model. Gamma
priors are assumed.

The “Uniform” prior lets each parameter be distributed as a uniform distribu-
tion between 0 and 0.5. While the SCD model is fairly insensitive to the choice
of priors [Golinelli, Guttorp and Abkowitz (2006)], the SCDAs model is quite
sensitive, particularly for clonal death rate and asymmetric division rate (Fig-
ure 3). For these two rates, uniform priors lead to larger posterior means. Fur-
thermore, there appears to be little detailed information about asymmetric division
rate.

Both SCDAs and SCD are biologically reasonable models of hematopoiesis. Do
the data at hand provide any evidence of favoring one versus the other? The Bayes
factor comparing the SDAsAp model with the SCD model is 19 (Table 2), provid-
ing moderate evidence that SCDAs describes the data better than SCD. Other than
the Bayes factor approach, we could potentially address this problem by a mixture
model approach, treating the model indicator I as a random variable and putting a
Bernoulli(0.5) prior on it. We try to construct a reversible jump MCMC to sample
the posterior joint distribution of I , parameters and path. Unfortunately, due to the
large dimensionality of the path space, it seems very difficult to come up with a
proposal distribution for an RJMCMC algorithm that works.
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FIG. 3. Posterior distributions of the parameters for both SCD and SCDAs models. Priors and pos-
teriors are drawn in dashed and solid lines, respectively. 100 weeks data. The prior is Gamma(5,50)

for the first row and Uniform(0,0.5) for the second row.

6. Homogeneity of the cats. As we mentioned before, Golinelli, Guttorp and
Abkowitz (2006) showed that the posterior distributions of the rate parameters
were fairly insensitive to the choice of priors when all six cats were analyzed to-
gether. Golinelli, Guttorp and Abkowitz (2006) also showed that when individual
cats were analyzed separately, the posterior distributions were quite sensitive to
the choice of priors. This prompts us to test the modeling assumption that the rate
parameters are the same for all cats. In order to test this assumption, we fit each
cat separately with the SCDAs model and the SCD model (Figure 4 left and right)
using the Gamma prior and compare the 95% posterior credible intervals of the
rate parameters. It appears that both λ and ν are quite similar across cats for both
the SCDAs model and the SCD model. In both models, μ shows a bigger varia-
tion, but still all the credible intervals for individual cats overlap with the credible
interval for all cats together. η of the SCDAs model are also quite similar across
cats.

Fitting each cat separately is equivalent to fitting a model in which each cat is
allowed to have its own set of parameters (the heterogeneous model). Viewed this
way, we can use the Bayes factor approach to compare pairs of models where each
pair differs in how each cat’s parameters are treated. The Bayes factor comparing
the SCD model in which each cat is allowed to have its own set of parameters
and the SCD model in which all cats have the same set of parameters is 19. For
the SCDAs model, this comparison yields a Bayes factor of 0.059. This tells us
that in the smaller SCD model, the heterogeneous model provides a better fit to
the data, while in the bigger model SCDAs, the heterogeneous model results in a
worse fit.
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FIG. 4. 95% posterior credible intervals of the rate parameters for the SCDAs (left) and SCD
(right) model for individual cats. The circles in the middle of the intervals mark the means of the
posterior distributions. Dotted lines show the 95% posterior credible intervals for when all six cats
are analyzed together. The labels on the right of each panel are the identifiers of the cats. Gamma
prior, 100 weeks data.

7. Discussion. In this paper we use a number of statistical inference methods
to answer some important questions related to hematopoiesis. It is necessary for
us to model hematopoiesis as a continuous time Markov process because samples
are collected from unevenly-spaced time intervals. As a result, the sample space
that our Gibbs sampler has to explore is very large. We check the convergence by
visual inspection of the trace plots and by cusum plots [Yu (1995)].

Previously Golinelli, Guttorp and Abkowitz (2006) have shown that in the SCD
model the amount of information the data contain are different from different rate
parameters. More information is available for the symmetric division rate and the
commitment rate than for the clonal death rate. We show here that in the SCDAs
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model, the same is true. Furthermore, the amount of information for the asymmet-
ric division rate is similar to that for the clonal death rate. In other words, these
two parameters are not estimated very precisely.

The data we analyze in this paper are observations made up to 100 weeks post-
transplantation. Data from 100 weeks to 300 weeks post-transplantation are also
available. We choose to limit the analysis to 100 weeks data out of consideration
of the underlying physiological process. In the initial period after transplantation,
the number of HSC cells grow exponentially until reaching the number of niches
available. After that, following a symmetric division event, one of the daughter
cells may not have a niche available to it and end up dying [Schofield (1978)]
or specializing (differentiating). We call this the steady state. In the steady state,
the number of HSC cells is bounded by the number of niches available and the
amount of information for the rate parameters is limited. Since this mechanism
operates even in the SCD model, there is in effect a modest amount of asymmetric
division even in this case.

The model has been applied to other animals [Abkowitz et al. (2000), Shepherd
et al. (2007)] with results that indicate that the kinetics of hematopoiesis varies sub-
stantially between animals. There are some surprising invariants between species,
such as an indication that the maximum number of stem cells is similar for all
animals, that the ratio of λ to ν remains constant [Abkowitz et al. (2002)], and
that there is no evidence that the clone exhaustion parameter μ differs between
species, although our results indicate substantial uncertainty about this latter pa-
rameter. These findings have been used to deduce parameter values for humans
[Shepherd et al. (2004), Catlin et al. (2009)].

There is independent evidence that the parameter values obtained in our analy-
ses are reasonable. Specifically, observations of telomere shortening in granulo-
cytes from cats with aging can be used to estimate the cumulative numbers of
HSC divisions at a point in time [Shepherd et al. (2007)]. While the estimates in
this paper are based on a stochastic model using only symmetric division, simi-
lar calculations indicate that even though the fitted values for the SCDAs model
will be about 185 divisions per lifetime, it is quite consistent with the other animal
models in the cited paper.

Recently there has been progress in studies of in vitro asymmetric fate de-
termination. Wu et al. (2007) for the first time demonstrated that hematopoi-
etic stem/progenitor cells undergo both symmetric and asymmetric divisions.
The study we have done in this paper is consistent with the occurrence of asym-
metric division in vivo and further provides an estimate of the rate at which it
happens.

APPENDIX

The state update is carried out using a Metropolis–Hastings–Green algorithm
which is a slight generalization and optimization of that reported in Golinelli, Gut-
torp and Abkowitz (2006). In this appendix we only lay out what is different and
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ask the readers to refer to Golinelli, Guttorp and Abkowitz (2006) for more details.
Denote by M the types of events in the model we are interested in, by N the num-
ber of events in the current path, and by [0, T ] the time span during which data
are collected. Let (p1,p2,p3) be a point from the probability simplex. The pro-
posal probabilities for the three moves defined in Golinelli, Guttorp and Abkowitz
(2006) are as follows:

1. Deletion move: p1/N ;
2. Insertion move: p2/(2MT );
3. Shuffle move: p3/(NT ).

In calculating the acceptance probability

R = p(ω′|θ)

p(ω|θ)

p(y|ω′)
p(y|ω)

q(ω|ω′)
q(ω′|ω)

|J |,
the Jacobian |J | is 1 for all models investigated in this paper since the diffeomor-
phisms are all identity relations. For speed and ease of computation, we factor the
log prior ratio log{p(ω′|θ)/p(ω|θ)} into three parts:

• The first part is log(
∏

k∈D̄ z′
k−1

∏
k∈D x′

k−1)− log(
∏

k∈D̄ zk−1
∏

k∈D xk−1), where
zk−1 denotes the number of cells in the first compartment right before the kth
event and xk−1 denotes the number of clones in the second compartment right
before the kth event. k ∈ D̄ if and only if the kth event is not a Death event.

• The second part is log(λS′−SνC′−CμD′−DηF ′−F αA′−A), where S, C, D, F

and A are the numbers of symmetric division, commitment, clonal death, asym-
metric division and apoptosis events, separately. When a model lacks a certain
event, simply drop the corresponding term. After simplification, this part is just
δ logρ, where δ = 1, −1 or 0 for insertion, deletion and shuffle moves, respec-
tively, and ρ is the rate parameter corresponding to the event being considered
in the proposal.

• The third part is −(λ + ν + η + α)(S ′z − Sz) − μ(S′x − Sx), where Sz and Sx

are the total time lived by the population in the first and second compartment,
respectively. Again, when a model lacks a certain event, simply drop the corre-
sponding term.

The likelihood ratio log{p(y|ω′)/p(y|ω)} is calculated similarly for all models.
The proposal ratio log{q(ω|ω′)/q(ω′|ω)} is log(

p1
p2

2MT
N+1 ) for the insertion move,

log(
p2
p1

N
2MT

) for the deletion move, and 0 for the shuffle move.
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