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Control Variates for Quasi-Monte Carlo

Fred J. Hickernell, Christiane Lemieux and Art B. Owen

Abstract. Quasi-Monte Carlo (QMC) methods have begun to displace ordi-
nary Monte Carlo (MC) methods in many practical problems. Itis natural and
obvious to combine QMC methods with traditional variance reduction tech-
niques used in MC sampling, such as control variates. There can, however,
be some surprises. The optimal control variate coefficient for QMC methods
is not in general the same as for MC. Using the MC formula for the control
variate coefficient can worsen the performance of QMC methods. A good
control variate in QMC is not necessarily one that correlates with the target
integrand. Instead, certain high frequency parts or derivatives of the control
variate should correlate with the corresponding quantities of the target. We
present strategies for applying control variate coefficients with QMC and il-
lustrate the method on a 16-dimensional integral from computational finance.
We also include a survey of QMC aimed at a statistical readership.

Key words and phrases:  Digital nets, lattice rules, low discrepancy meth-
ods, stratification, variance reduction.

1. INTRODUCTION It is elementary tha& (/) = I and if we suppose that

. . A ! "

We consider here the problem of computing the in- 1€ variance of the integramd = [ (f (x) —1)*dx sat
tegral I of a function f defined on the-dimensional  1fies 0< o < oo, then we can write the mean square
unit cube[0, 1)*: error as

1) 1= / f(x)dx. E((I — %) =Var(l) =o?/n.

Here and elsewhere, integrals without explicit ranges Many techniques have been developed to improve
are understood to be ovgd, 1)°. It is very common  the accuracy of MC methods. Two such techniques
in applications that the integrals arise in a form other are quasi-Monte Carlo (QMC) sampling, which can be
than (1), but are translated into that form. likened to a very intense multiple stratification, and the
The basic form of Monte Carlo (MC) sampling simu-  ¢j5ssical method of control variates. To employ both
lates independent random vectars ... ., X, thathave ¢ thege methods at once is an obvious idea and one
the [0, 1)* distribution. Then the MC estimate iis that is easy to implement. Less obvious is that the con-

A A 1 trol variate strategy for MC applied to QMC points can
@ I=1)= ;;f(X,-). reduce the accuracy of the QMC method. The opti-
B mal control variate coefficient depends on the sampling
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While our main contribution is on the interplay be- 2. QUASI-MONTE CARLO
tween QMC and control variates, we also present a
brief survey of QMC methods. This survey appears

as Section 2. It presents some historical motivations . :
of QMC, and the main techniques in use today, for Quasi-Monte Carlo sampling may be thought of as a
way to get a law of large numbers to hold without us-

readers with a statistical background. Section 3 records >
some basic results on control variates that we use. Secl"d randomness. The rate at whigh- /| converges to
tion 4 describes how estimating the control variate co- 2&r0 may be better for QMC than for MC, at least for
efficient becomes a challenge when we combine thefunctions with some spatial regularity.
two methods. Section 5 describes replication and re-5 1 yniformity and Discrepancy
lated ideas that estimate a control variate coefficient
for QMC, though possibly tuned to a smaller sample  Quasi-Monte Carlo grew out of the theory of uni-
size than the one in use. Section 6 considers the coefformly distributed sequences initiated by Weyl (1914,
ficient appropriate in the limit as the sample size tends 1916); see Kuipers and Niederreiter (1974, Chapter 1).
to infinity. Section 7 describes cases where the MC andLet a andb be two points of[0, 1)* for whicha < b
QMC coefficients coincide so that the MC coefficient holds coordinatewise, Idtz, b) be thes-dimensional
can be estimated from QMC data. Section 8 presentsbox of pointsX € [0, 1)* for whicha < X < b holds
a low dimensional example for which we can compute coordinatewise and let v@k, b)) be thes-dimensional
the variance formulas of this paper. Section 9 illustrates volume of that box. FoX; € [0, 1)* with 1 <i < oo,
these ideas on a 16-dimensional integral that arises ashe sequencéX;) is uniformly distributed in [0, 1)* if
the value of an Asian call option. Section 10 summa- lim,,_,»(1/n) >-"_; La<x, <» = Vol([a, b)) for all 0 <
rizes our conclusions. a<b<l.
If the sequence(X;) is uniformly distributed,
o . . thenlim— oo (1/n) Y04 f(X;i) = [ f(x)dx holds for
We comp_lete this mtrodl_J(_:tory section b_y c}escnbmg every f that is Riemann integrable oi®, 1)*. Thus
some notation. Some additional notation is introduced the Uniform distribution provides a deterministic ana-

at the point where it is used. ; ; logue of the law of large numbers. Although Riemann
The |r3tegrall of fis thevsame ovel0, 1° or (0, 1) integrability is a more stringent condition than the

or [0, 1)". We employ(0, 1)* only because it partitions | apesgue integrability required for Monte Carlo sam-

easily Into congruent subhy_percubgs. pling, Riemann integrability is a very mild condition
A generic point in the unit cube is denoted by= for applications

.(xl"“’x?T’ while:;lpoint used in an integration rule rpo” cojenrated Weyl criterion is tha;) is uni-

IS X; = (X;. ..., Xj)” . Forafunctiong(x) on[0. 1% oy gistributed if ‘and only if lim_e(1/n) -

the term Va(g) denotes/(g(x) — [ g(x) dx)“dx, the > exp2r/—1kT X;) = 0 for every nonzero vector

variance ofg(X) when X ~ U[0, 1)°. For a vector, k € Z*. The Weyl criterion provides a way to establish
the usual Euclidean norm is denotxf2, and|z|lx de- that a given sequence is uniformly distributed.

notes the sum of absolute values of components of Given two or more uniformly distributed sequences,

Letu < {1,...,s}. We uselu| for the cardinality of it is of interest to decide which is better. Discrepancy

u and—u for the complementary et .. ., s} — u. measures are used to quantify the uniformity of a se-
There is an analysis of variance (ANOVA) decompo- . q Y
guence of points.

sition for functions on the unit cube that is analogous The star di  a finit X
to the ANOVA decomposition used in factorial exper- e star discrepancy of a finite sequence...., X,

The Monte Carlo estimate from (2) converges td
with probability 1 by the strong law of large numbers.

1.1 Notation

iments. A square integrable functighcan be written is defined as

as asumf =3, fu(x) over 2 subsets of1,. c s}t D¥(X1,...,Xp)

where f, (x) depends o only throughx’ for j € u.

Then Vac f) = ¥ ,1-0 Var(f,). See Hoeffding (1948),  (3) 12

Sobol’ (1969) and Efron and Stein (1981). = aesfglf)s - ;:ﬂ‘ofxi <a —Vol([0,a))|.

When s = 1, the derivative ofg is denoted byg’.
For s > 1, the gradient ofg is Vg, taken as an The star discrepancy is andimensional generaliza-
s-dimensional row vector. For a column vectrof tion of the Kolmogorov—Smirnov distance between the
J functions on[0, 1), the gradien¥V# is aJ by s ma- discrete uniform distribution taking; with probabil-
trix of partial derivatives. ity 1/n for i = 1,...,n and the continuous uniform
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distribution on[0, 1)*. Replacing the supremum over and Caflisch, 1995; Sarkar and Prasad, 1987; Schlier,
anchored boxe$0, a) in (3) by the supremum over 2002) QMC is sometimes found to be much better than
general axis parallel boxds, b) yields the extreme, MC; other times the methods are comparable.

or unanchored, discrepan®, (X1, ..., X,). Because There are also triangular array constructidfig <

D} < D, < 2°D;;, asymptotic rates im, for fixed s, [0, forl<i <n <ooforwhichD} (X1, ..., Xun)

are identical for these discrepancies. Other discrepan-attains the slightly better ra@ (n~1(logn)*—1). A dis-

cies have been defined by replacing the supremum ovemdvantage of triangular array schemes is that the points
boxes by suprema over other collections of subsets ofof the n point quadrature rule are not necessarily

[0, 1)*. present in the: 4+ 1 point rule. Rules based on the first
A different type of generalization of star discrepancy » points of an infinite sequence, by constrast, are nec-
replaces the supremum with &% norm as essarily extensible. There are many links between ex-

DP*(Xq.. ... X,) f[ensible rgles in_; dimensions and nonextensible ones
" o in s + 1 dimensions. MatouSek (1999, Chapter 1) dis-
(4) 1 poo\Vr cussed this point.
= </‘— > To<x, <x — VoI([0, x)) dx) Two QMC methods have dominated recent research
iz and practice: digital nets and lattice rules. Digital nets
for p > 1, with p = 2 the most widely studied. Beck are constructed to integrate the indicator functions of
and Chen (1987) and Matousek (1999) provided book certain axis parallel boxes without error. Lattice rules
length treatments of discrepancy. In yet another gen-integrate a class of sinusoidal functions without error.
eralization, we may interpret the star discrepancy asEach method then integrates linear combinations of its
the worst case integration error ovgrin the class of ideal integrands without error. Functions that are well
indicator functions of anchored boxes. Discrepancies approximated by such linear combinations are then in-
defined with respect to classes of smooth functions tegrated with small errors.
appear in Paskov (1993), who considered integrated In both settings we will write the integrand as
indicators of anchored boxes, and in Hickernell (1996), f(x) = fac(x) + fa(x). Here fg is a function on
who considered functions in reproducing kernel Hilbert which the QMC method does a good job, integrat-
spaces. ing it without error. The error of QMC is then de-
Measures of discrepancy can be related to the qua-termined by the functioryg on which it does badly.
drature errot/ — I|. The best known connection is the The definitions offg and fg differ for nets and lat-
Koksma-Hlawka inequality tices and depend on the sample size As n in-

2
5) 1)< DF(Xa, . Xo) Ve (), creases/ (f(x) — fo(x))“dx — 0. For each method,

[ fo(x) fa(x)dx =0 whenf andg are inL?.

where Vuk (f) denotes total variation off in the -
sense of Hardy and Krause. See Niederreiter (1992,2'2 Digital Nets
Chapter 2) for a discussion of (5), Zaremba (1968) A thorough treatment of digital nets, also known as
for an analogous inequality based dp*, Sobol’ (t,m,s) nets, was given by Niederreiter (1992). This
(1969, Chapter 8) for an inequality involving?* and section presents brief formal definitions of m, s)
Hickernell (1996) for a treatment boundirh@— I| by nets,(z, s) sequences an@d, ¢, m, s) nets.
a generalization of discrepancy times a generalization The following geometric discussion may be helpful
of variation. for the reader who is encountering these definitions

Some infinite sequencegX;) with D} (Xq,..., for the first time. A(¢, m, s) net in baseb is a form
X,) = 0(n"L(logn)*) are known. It is suspected that of stratified sample wherein the number of simultane-
D} cannot beo(n~1(logn)*) along an infinite se- ously balanced strata can be much larger than the sam-

quence, but it has only been proved et 1 ands = 2. ple size. The strata are hyperrectangular cells called el-
It is known that D*(X4, ..., X,) > Csn~1(logn)*/? ementary intervals ob-ary boxes. The sides of these
for infinitely manyn for someC; > 0. b-ary boxes have endpoints that dredic fractions:

The fast convergence ob* combined with (5) integer multiples ob~* for some integek > 0 and in-
shows that QMC is asymptotically superior to MC for teger basé > 2. Givenn pointsXiy, ..., X, in aninte-
functions of bounded variation. Whenis large, the  gration rule, we would like every-ary box of volume
quantityn—(logn)* is not small at usual Monte Carlo  »~X to contain exactly:b~X of them. Nets manage to
sample sizes. In empirical investigations (Morokoff  do this, at least for small enoudg.
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DEFINITION 1. For integerb > 2, ab-ary box in
[0, 1) is a set of the form

N
RN IS
©) 5= El[bT )

for nonnegative integets; and¢; < b,

DEFINITION 2. A (t,m,s) net in baseb is a fi-
nite sequenc&y, ..., Xp» for which everyb-ary box
of volume »'~™ contains exactly’ points of the se-
guence.

Itis clear that smaller values oimply a better strat-
ification. For given values df, m ands, there may not
exist a net withr = 0, and so nets with > 0 are also
widely used.

Figure 1 shows the points of(@, 3, 5) net in base 5

has two points of the extended sequence. Furthermore,
some net constructions are extensible, not just twofold
but r-fold for any integer > 1. Finally, as some nets
are extendedy-ary boxes of ever smaller volume con-
tain the proportional number of points. Such extensible
digital nets are defined through s) sequences.

DEFINITION 3. A (z,s5) sequence in baseis an
infinite sequence&; for i > 1 such that for all integers
r > 0andm > ¢, the pointsX,,m 1, ..., X4 form
a(t,m,s) netin basé.

If one samples &r,s) sequence withn increas-
ing through values\d™ for 1 < A < b andm > ¢,
then every-ary box eventually contains a proportional
number of points from the sequence and retains this
balance thereafter. The firsb™ points of a(z, s) se-

projected onto two coordinates. The unit square can bequence in bask are a(i, ¢, m, s) netin base, for any
partitioned into 125 boxes of shapg5lx 1/25. Each m >rfand 1< A < b.

such box has exactly one point of the net. The same is ) )
true for partitions of shape/25 x 1/5. Although the DEFINITION 4. Letm,r and 2 be integers with
reference lines do not show it, the 5-ary boxes of shape/ = ¢ = 0 and 1< i < b. A sequence okb™ points
1 x 1/125 and ¥125x 1 also contain one point of the N [0, 1)* is called a(x, 7, m, s) net in base if every
net. Finally, in any three-dimensional projection there b-ary box of volumeb'™" containsib" points of the

are 125 boxes of shapgd.x 1/5 x 1/5 with one point
each.

The net shown is extensible. One can adjoin another

125 points to it, with the result that eaghary box

sequence and ripary box of volume»' "1 contains
more tharb’ points of the sequence.

The prototypical digital sequences are radical in-
verse sequences in basgoriginating in the base 2
sequences of van der Corput (1935a, b). For integer

B T e S IR M baseb > 2, let the nonnegative integerhave basé
K SN RS N e expansiony_;>; ngb* =1, wheren; € {0,1,...,b — 1}
R i SR e e B T S R S R and only finitely many:; are positive. The baderadi-
w | [N i i T T T e T T cal inverse functiong, (n) = Y52, nxb=* € [0, 1), re-
RO SRS R A A R A flects the base digits of n through the basé decimal
Lo} :lI]:f];[I:EI]I: I.[.] Lt point. In anyb™ consecutive nonnegative integers, all
© L .-:--:--:--:-:-.',--:-+-.:-:-f SRR PR EE b™ possible trailing digits appear exactly once. Then
S | o S e e _q._i_i__i_ the corresponding values @f, contain all™ possible
R e R R N R tE leading digits exactly once. It is customary to start the
R A RS SO R radical inverse sequence at 0. Thus= ¢ (i — 1) for
L i > lis adigital sequence with=0,s = 1 and basé.
BRI R AN IR e Higher-dimensional digital nets and sequences re-
-J-hLJ.--LJ-lf';-.-l- S S BN guire number theory to describe and construct, and
S N i i i s et S A BT are beyond the scope of an introductory survey. Faure
S R P I R ISR R D (1982) presented constructions @ p) sequences in
SRS SESE RS AN RN SRR prime basesp and Sobol’ (1967) constructed, 5)
L el el e sequences in base 2, where the quality parameter
e depends on. Niederreiter (1987) combined and ex-
' ! ! ! ! ' tended these constructions. Of all presently known
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The 125points of a digital net in base 5 as described in
the text.

(z, s)-sequence constructions, those of Niederreiter and
Xing (2001, Chapter 8) have the smallest valuesfof
given values ob ands.
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To see why nets are effective integration rules,
consider theb-ary indicator functionig(x) that is
1 if x e B and 0 otherwise, whereB is the b-ary
box defined in (6). The volume aB is b= X, where
K = ijlkj. If X1,...,X, are a(A,t,m,s) netin
baseb with m — ¢ > K, then(1/n) }-7_118(X;) =
[1g(x)dx. The points of ax,t,m,s) net integrate
without error any function that is a linear combina-
tion of the b-ary indicator functions of volumé’—".

A combinatorial argument shows that there are
("=t different b-ary indicator functions of
volume b’ correctly integrated by the points of a
(A, t,m,s) netin base. For example, the 625 points
ofa(0, 4, 5) netin base 5 correctly integrate the indica-
tors of 43570 different 5-ary boxes of volume/ 625.

Let fg be the linear combination of indicator func-
tions of b-ary boxes with volumeé’~" that minimizes
J(f(x)— fo(x))?dx. A formula for fg can be based
on tensor products of bage Haar wavelets (Owen,
1997a). The integration error in@, ¢, m, s) net is the
corresponding sample averagefgf= f — fG.

2.3 Integration Lattices

Lattice methods for integration were introduced by

5

rules of Korobov (1959) are rank 1 rules for which
=1, 1,12 ...,n°"1) for somey € Z.

The vectorsi — 1)t /n are equally spaced on a ray
from the origin to(n — 1)t/n. Taking them modulo 1
causes them to “wrap around” the boundary of the unit
cube. Careful choices af andxn, made by combina-
tions of algebra and computer search, lead to points
that are very regularly spaced. Figure 2 shows a lattice
rule withz = (1, 89) andn = 144.

Classical lattice rules have a fixed sample size
like a (z, m, s) net. The development of extensible lat-
tice rules, analogous to digital sequences, is fairly re-
cent. The key insight is that one can replage—
1t/nmod1 with ¢ (i — D)t mod 1, wherep, is the
radical inverse function. The resulting points lie on
a shifted lattice. Extensible shifted lattice rules allow
the sample sizex to increase through a sequence of
values of the formp™ for increasing integers:. It
has been shown by Hickernell and Niederreiter (2003)
that there existo-dimensional generating vectors=
(11, 72, ...) that depend only on some bake 2 and
that give good lattice rules for all dimensionsand
for all n equal to a power ob. Computer searches
for vectorst that give good lattices for a range of

Korobov (1959). Textbooks on the topic include Hua g andx have been made by Hickernell, Hong, LEcuyer
and Wang (1981), Sloan and Joe (1994) and Fang antynd Lemieux (2000). The viability of component-by-

Wang (1994).

DEFINITION 5.  Ans-dimensional lattice is a set of
the form {3_%_, o;v; | «; € Z}, wherevy, ..., v, are
linearly independent vectors IR’.

DEFINITION 6. An s-dimensional integration lat-
tice is ans-dimensional lattice that contains every
member ofZ*.

DEFINITION 7. An s-dimensional lattice rule is
the intersection of am-dimensional integration lattice
with [0, 1)5.

The simplest lattice rule method is that known as
“good lattice points.” There one selects a sample size
and a vector = (11, ..., t;) of honnegative integers.
Thenfori =1,...,n,let

7) _ @—Dr

wherezmod 1=z — |z]| and|z] is the greatest integer
less than or equal tg. Integration lattices that can be
written in the form (7) are known as rank 1 lattices, be-
cause they have one generating veatokattice rules

of ranks 1 through were described by Sloan and Joe
(1994). We emphasize rank 1 rules here. The lattice

X; mod 1

component constructions has been demonstrated by

e
-

0.8

0.6

0.2

0.0 08

FIG. 2. The 144 points of an integration lattice.
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Sloan and Reztsov (2002) and Sloan, Kuo and Joea QMC property. Becaus&; ~ U[0, 1), it follows

(2002a, b).

that E(7) = I. The variance ofl can be estimated

Whereas nets are designed to integrate indicatorsthrough a small number of independent replications of

of b-ary boxes, lattice rules integrate certain sinu-
soidal functions without error. Consider the multi-
variate trigonometric polynomials et®r/—1k7 x),
wherek € Z° is an integer wave number vector. Sup-
pose thak belongs to the dual lattice- = {k : kTt =
Omodn} of a rank 1 lattice rule. Then the function
exp(2r+/—1kT x) is completely aliased with the con-
stant function 1 on the points of the lattice defined
by (7). Lattice methods integrate trigonometric func-
tions that correspond t& € L+ \ {0} with 100%
error. However, fork = 0 or k ¢ L+, the function
exp(2r+/—1k" x) is integrated with zero error by lat-
tice methods. For latticefs is the sum of the functions
exp(2r+/—1k" x) times the corresponding Fourier co-
efficients, taken ovet in L\ {0}. Thenfg = f — f&
is the corresponding sum of Fourier contributions for
k¢ L+ —{0}.

From the Weyl criterion we might expect that inte-
grating trigonometric polynomials well will lead to a

the RQMC method. Studying RQMC also allows us to
make sharper comparisons with MC, because variances
can be estimated for both. Methods of randomizing
nets and lattices were surveyed by Owen (1998a) and
by L'Ecuyer and Lemieux (2002). Hong and Hickernell
(2003) described software to randomize nets.

A scrambled net is a randomization of the baskg-
its of the points of a digital net1, ..., A,. Let A{ =
> 1aijb~*, where eacla; jx € {0,1,...,b—1}. The
points of a scrambled net ark/ = Y22, x; kb7 *,
where x;;; are obtained through some random per-
mutations ofag;j;. In the scrambling method pro-
posed by Owen (1995);;1 = m;.(a;;1), thenx;j» =
Tj.a;j1(aij2), SO that the permutation of the second
digit depends on what the first digit was; generally
Xijk = Tjeajnaiji1(@ijk)s where eachr is a uniform
random permutation of 1 through— 1. Eacth.J has
the U0, 1) distribution and if(A;) are a digital net or
sequence, then so a(&;) with probability 1. These

good quadrature rule. On a good sequence of latticescrambling schemes require a lot of permutations, and

rules, the dual latticd.- becomes sparser asin-

some derandomizations using fewer permutations have

creases. The star discrepancy can be shown to approacheen proposed by Matousek (1998) and Hong and
zero at the same rate found for nets. The more rapidlyHickernell (2003).

the Fourier coefficients of decay, the better the as-
ymptotic error rate fof/ — I|. For functionsf with
" f/11; d(x/)" continuous on0, 1)*, the error rate
can be madeO(n~""¢) (Niederreiter, 1992), where
n® hides powers of log, although for larges it may
take very large: for this rate to be relevant.

2.4 Randomized QMC

The law of large numbers is used to justify Monte

For the scrambling method proposed by Owen
(1995), as well as random linear scrambling (Matousek,
1998; Hong and Hickernell, 2003), the variance of
scrambledO, m, s)-net quadrature satisfies

Varmed ) < & / fa(0)2dx < eVarme(D),
n

where e = exp(1) = 2.718. Whenr > 0, the vari-
ance bound/n has to be increased, but we still find
Varme(I) < Cp.s.; [ fa(x)?>dx/n for a constanCy, ;.

Carlo methods, but not to compute error estimates. gaa Owen (1998b), Niederreiter and Pirsic (2001) or

Practical error estimation is based on sample-basedy o and Hickernell (2002). As: increases,fg ac-
variance estimates, sometimes with a calibration via counts for more of the structure of. In the limit

the central limit theorem. Bounds like (5) justify the
use of QMC, but they are poorly suited to error esti-

[ fa(x)2dx — 0 and so Vate(I) = o(1/n) for any
square integrablef. Loh (2003) has proved a cen-

mation. Discrepancy is hard to calculate—total varia- tra] limit theorem for the scramble proposed by Owen

tion is harder still—and the resulting bound kfn— 1],
while tight for some worst-cas¢, can be extremely
conservative.

(1995).
For smooth functions, the rate at which
[ fa(x)?dx — 0 can be studied. Owen (1997b)

Randomized quasi-Monte Carlo (RQMC) methods showed that scrambled net integration attains a
have been developed to combine QMC accuracy with variance of 0(n‘3(logn)s—1), so that |l — I]| =

the practical error estimation methods of MC. Typical
RQMC methods replace a QMC sequente..., A,

by a randomized versioXy, ..., X,, such that each
X; ~ U[0, 1)* while the ensembl&, ..., X, still has

0,(n~%2(logn)“~Y/2), under a mild smoothness
condition onf, given in Section 6.3. Note that in this
setting, scrambling reduces the error of unscrambled
nets by approximately a multiple af/2.
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Yue (1999) studied the variance over randomized only up to a normalizing constant. Then MCMC gener-
(A, t,m,s) nets. Hickernell and Yue (2000), Ma- ates approximate samples frgm while QMC would
touSek (1998) and Heinrich, Hickernell and Yue (2004) have to fall back on ratio estimation methods.
investigated the discrepancy of scrambled nets and se- An important difference between MCMC and QMC
guences. Owen (2002) studied the variance of scram-algorithms is that for MCMC the number of replica-
bled net quadrature, finding that it can depend in ations n is small, perhaps one long run, while the di-

strong way on the details of the scrambling. mensions is large, nominally infinite. For QM is
The usual randomization of lattice rules is a form ysually large and can be small.
of rotation modulo 1, due to Cranley and Patterson

(1976). They took 3. CONTROL VARIATES

(—Dr mod 1 The idea in control variates is to exploit known val-

ues of [ h(x)dx for j =1,...,J to sharpen the es-

whereU ~ U[0, 1)*. Rotated lattice rules are a form timate of /. The method is particularly compelling
of cluster sampling. They do not improve the error whenJ =1 andh; = f with 6; = [ h1(x)dx known.
rate of lattice rules, but they do allow replication- Most books on Monte Carlo methods consider control
based error estimates. Rotation affects the aliasing:variates. See, for example, Bratley, Fox and Schrage
For k in the dual lattice, ex@®r+/—1k" X;) equals  (1987), Ripley (1987) or Fishman (1996). Essentially
exp(2r+/—1k"U) instead of 1. the same method goes by the name “regression esti-

To study randomized lattice rules, recall that some mators” in the survey sampling literature. See Cochran
trigonometric polynomials are integrated exactly by (1977) and Lohr (1999). Here we simply summarize

8) X;=U+

the lattice while the others are constanton ... ., X,,. some well-known results.

For ranzdomized lattice rules, Vag(/) = Var(fs) = Suppose that we know the valug (x) dx = 6 for

J fa(x)“dx. As with nets, the parfg does not con-  the vectorm = (hy, ..., h,)" of functions and the vec-
tribute to the error, but unlike nets, there is @o1/n) tor = (01,...,60,)T of scalars. Then for any vector

factor multiplying the contribution of the aliased B=(p1,....8)T e R’ the estimate
part fg. The decay of Vapi(/) with increasingn is
due to increasing sparsity of the dual lattice. 1& (

©) Ip=-)"

J
(X0) = D Bi(hj(X0) =
2.5 QMC and MCMC i3 ! ZIBJ( ’ J))

j=1
Markov chain Monte Carlo (MCMC) is better known satisfiesE(fﬁ) — ] whenX,; ~ U[0, 1)*.
to statisticians than QMC. Both fields have along his- ~ 1, avoid  trivialities.  we suppose  that
tory and both have grown tremendouslyinrecentyears.maxl<,<thg(x)dx - 00 ’and that Vaf’_, B; -
We have found only a little overlap between the meth- . X_j_ 0 ff X ~10.1)° wh Flo J|f
ods. Liao (1998) reported some results using the Gibbsvé(r(ﬂ)%hTX)) Sro for s[or’ne) nxzir;c;ve:hir?éon.e or
sampler in a QMC application. Ostland and Yu (1997) more of the ?unctionsh~ is redunda;ﬂ and can be
applied QMC to estimation of marginal distributions. q q J
One reason why QMC and MCMC are so disjoint is r?l'Fr)lpeMb _ i S Var () — o2 o
that the integrands used in MCMC are often very spiky. e MC variance ofg Is Vatnc(lg) = o/n, where
For such problems, not much benefit can be expected 2 T 2
from more uniform sampling of the entire space. Even (10) o = E([f(X0) =1 = p7 (h(Xi) = 0)]").
if RQMC errors are likeAn~%2 while MCMC errors 4 quadratic function of the vectgt. The minimizing
are like Bn=%2, the ratioA/B for a spiky integrand  value ofg is given by
could be much larger than amywe might be able to

-1
use. - _ Brme = (/(h(x) —0)(h(x) —e)de>

In some applications a well chosen importance sam-
pling scheme could reduce the spikiness of the inte- (11)
grand to the point where QMC would be beneficial at '/(h(x) —0)f(x)dx.
realistic sample sizes, but effective importance sam-
pling is very problem specific. It is also much more It always holds thabZ =07 < o?, because? cor-
common in MCMC applications fof (x) to be aprod-  responds tg = (0,...,0)”. We assume that,%c >0
uct p(x)g(x), where p is a density function known to rule out some trivial cases.
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The valuefmc is typically unknown, and is usually the X; are not independent. This variance is still a

estimated by guadratic ing, and the minimizing value is now
n -1 5 -1 g 7
A n A 15 = Cov H,H) ~Cov H,I).
fnc = (Z(h(xi) ~ H)(h(X;) ~ H)T) 90 Prame = GOkt 1. H) = COUmel 1. D
(12) i=1 There is always a control variate strategy that is at least
. as good as using no control variates: Ma&(/g,qm.) <
'Z(h(xi) — H) (X)), Varrgmo(I) because Vagme(/) corresponds to using
i=1 B = 0. A suboptimal or poorly estimated coefficient
whereH = (H, ..., H,)T and can, however, lead to worse results than obtained from
1 not using the control variate. It is also clear from (14)
ﬁj = Zhj(Xi)- that a control variaté ; for which Vakgmc(H;) =0 is
n redundant.

The known values); could possibly be used in place ~ AS (14) and (15) show, an effective set of control

of A;, but typically are not. Insteainc is the ordi- variates must be correlated withunder RQMC sam-

nary least squares estimator of the regression coeffi-Pling. This is not necessarily the same as correlation
cients that relatef (X;) to 4 (X;). of 4 with f under IID sampling. In particular, writing

f = fe+ fs andh = hg + hg, we find thatfg andig

i A _ _ do not contribute to (14), and we would rather hage
tained by substitutingmc for g in (9). The resulting  correlated withf than have: correlated withy .

The control variate estimator iéﬁmc' which is ob-

error is Note that formula (12) foBmc applied to an RQMC
I, — 1= fﬁ —I+1, —1 sample will estimat@mc, Not frgme. The use of RQMC
Bme mc Bme Bme . A . .
(13) R R — sampling does not turfimc into an estimate oBrgme,
= Iy — I + (Bmc — Bme)” (H —0). but instead simply provides a more accurate estimate
The second term in (13) does not ordinarily have mean Of Amc than MC sampling would provide. '
zero, so the use ofmc typically introduces a small There is a further complication in that (15) is a

bias. It is ordinarily true that botiBme — Bme and moving target. It depends on the sample size~or
H — 0 are 0,(n~%?), and then the last term in (13) 7 =1, we havefigmc = Bmc. As the sample size in-
is O,(1/n). This small term and the associated bias creases, more of the structure frofnis integrated
are customarily ignored. Cross-validatory methods canexactly, andBigmc is determined only by the parts of
remove the bias in the estimate bfand also in the  f andh; not integrated exactly.
variance estimate (Avramidis and Wilson, 1993).
Control variate methods are forgiving of mild errors
in the coefficients. Becauser7 is a quadratic func- The following simple example highlights the possi-
tion of the vectorg with a minimum atBp_, it follows ble differences betweeinc andfrgme. Takes = 1 and,

thatof —of = O(IB — Bmcll5) and, in particular,  for 37 = 0. let £(x) = (1 + 2| Mx| — Mx)/M be a

4.1 Cautionary Example

Ggmc/ﬁgmc =14+0,(™h. sawtooth function with teeth of width/M. Figure 3
shows such a function fa¥ = 50. In ordinary Monte
4. CONTROL VARIATES WITH RQMC Carlo sampling, the linear functidn. (x) = x is an ex-

tremely good control variate fof. The optimal coef-
ficient can be shown to bgne = 1 — 2M 2 and then
02c=402(M—2 — M~%). Thus forM = 50, the con-
trol variate reduces the variance by a factor of @85
Now consider a randomized, 1, 1) net in base
; b=n. This trivially simple net reduces to a strati-
A A A fied sample in which one point is taken uniformly
(14)  Varigme(lp) :Varrqm(:(] - Zﬁij)’ from each of the: intervals[(i — 1)/n,i/n) for i =
=t 1,...,n. For simplicity suppose thatf = n. The vari-
where ﬁj = (1/n) >} _1hj(X;), as before. Equa- ance of{ for this f(x) under this stratified sampling
tion (14) does not simplify as in the IID case because is 1/(12M3). Using the control variate with the coef-

Suppose thax, ..., X, are generated by an RQMC
rule. Let f be the integrand of interest and let=
(h1,....hp)T be a vector with{ h(x)dx =6 = (61,
..., . The estimatefﬂ from (9) is still an unbiased
estimate off, but now
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Fic. 3. Asawtooth function f with tooth width 0.02 and a linear
function i1 (x) = x.

ficient Bc approximately doubles the variance com-

pared to RQMC without a control variate.

The linear functioni1(x) = x is in fact a good
control variate for the sawtooth integrarnd Taking
Brame = —1, we find that Vagmc(/gqme) = 0. In this
case, using a coefficiept optimized for RQMC elim-

inates the variance, while using the ordinary MC coef-

ficient doubles the RQMC variance.

5. REPLICATION AND INTERNAL REPLICATION

In this section we consider the use Bfindepen-
dent replicates of ain point RQMC method. The to-
tal sample size is them = Rn and replication allows
us to estimate the vectghqmc appropriate to a sam-

ple of 7 observations. A related idea is to exploit an

“internal replication” structure, wherein consecutive
RQMC points can be broken int® consecutive blocks

of n points, in which each block constitutes a smaller
RQMC rule. As described below, there is a trade-off in

choosingR.
5.1 Replication Estimates of Brgmc

For J control variates, let us takR > J 4+ 1 indepen-
dent replications of the RQMC method withpoints
each, producing for =1, ..., R the estimatesf, and
H, = (Hi,, ..., H;)T. These estimates depend &n
but we suppress that dependence here.

Define I, = (1/R)Y* I, and H, = (1/R) -
YR | H,. The combined replication estimate bfs
=1.-p"(H -0,

(16) s

where

R -1
p= (Z(ﬁr — H)(H, — ﬁ.ﬂ)
17) r=1

R A A A A
: (Z(Hr — H)(I, - 1.))
r=1

is a sample version of (15). The sum of squares

R
(18)  SSBo.B) = (I, —po— A p)*
r=1

is minimized by taking the scaldgy = I}; — AT6 and
the vectorg = B. A natural estimate of Vag) is then
Var(B) = SSo, B)/(R(R — J —1)).

5.2 Choosing R

For a given budget of = Rz an important practical
problem is to decide whether to use a lageand a
smallz or vice versa. The QMC error decreases faster
in n than in R, suggesting thaR should ordinarily be
taken as small as other considerations allovgdfc is
not being estimated from replications, then taki¢p
be about 5 should give at least a reasonable number of
degrees of freedom in a variance estimate. When there
are J coefficients infgmc to estimate as in Sections
5.1 and 5.3, then taking = J + 5 might suffice, tak-
ing note that control variate methods are forgiving of
modest errors irB. The trade-off in picking smalR
is thatR is the sample size for subsidiary tasks of es-
timating 8 and the replication variance. To attempt an
optimal choice ofR is a topic for further research.

5.3 Internal Replication

QMC schemes can often be considered to be “in-
ternally replicated.” For example, &.,7,m,s) net
taken from a(z, s) sequence can be decomposed into
R = AbMm—m consecutive, m, s) nets for 0<m < m.
Likewise, an extensible shifted lattice with= 5"
points can be decomposed iko= """ consecutive
shifted lattices ofi = ™ points each.

For nets scrambled as described by Owen (1995), the
formulas from Section 5.1 can ordinarily be used di-
rectly. As Owen (1997a) discussed, variance estimates
based on internal replication tend to be conservative.
Each internal replicate tends to fill in spaces avoided by
the others and this tends to induce negative correlations
among quantities such &sfrom different replications.
Negative correlations among} reduce the variance
of 7, while simultaneously increasing the usual vari-
ance estimates.



10 F. J. HICKERNELL, C. LEMIEUX AND A. B. OWEN

Internal replication is more complicated for shifted  We present three cases: (1) stratified sampling of
lattice rules, owing to the aliasing phenomenon. One [0, 1), (2) stratified sampling of0, 1)* and (3) ran-

consequence of aliasing is that N@(f) = Var(fg) domized(0, m, s) nets. For the first two cases the limit
and similarly for#, so that (15) reduces to is obtained by correlating certain differential operators
1 applied tof andh. A similar result by Owen (1992)
Briat = </ hB(x)hg(x) dx) shows that a g.ood control varlatefo_r. Latin hyper-
(19) CL_Jbe sampling is one_whose nonad(_jltlve part correlates
with that of . The variance expressions for nets do not
‘/hB(x)fB(x)dx~ provide an expression feig, ., but do suggest a value
that can be tested empirically. For extensible shifted
We discuss how to estimatg hs(x)hg(x)dx lattices, itis not clear whefits, exists.

from (19); similar comments apply yth(x)fB(x) dx.
For lattices,H = 6 + Hg, where Hg is the quadra- 6.1 Stratified Sampling of [0, 1)
ture rule applied tohg. Within replicater we get

Hj;., =6 + Hg ;. », using notation that recognizes how
the functionsg ; depends on the within-replicate sam-

Suppose that; and f have Lipschitz continuous
derivativesh/j and ' on [0,1]. That is, for some
A € (0,1], someB < oo and allx, x* € [0, 1], both

ple sizen. "(x) — f'(x*)| < Blx — x*|2 and max |/ (x) —
The denominator matrix in (19) may then be esti- |Jj (%) = O] = Alx x| _ )f| J (x)__
h.(x*)| < B|x — x*™|* hold. In practice this condition
mated by J )
may commonly hold withA = 1.
1 R o - We stratify [0, 1) into » intervals, and sample inde-
2 > (H.— H,)(H, — H,) pendently and uniformly within each of them. Specifi-
r=1 cally, our sample has independent random variakles
R uniformly distributed on[(i — 1)/n,i/n) for i =
1 2 4T 5. AT
(20) :EZHB’ﬁ’r B,ﬁ,l’_HBHB 1,...,”.
r=1 Let g be a function with Lipschitz continuous deriva-
1. o tive g’ satisfying|g’(x) — g’(x*)| < B|x — x*|2 for alll
=— > hp;i(X; )h ~(X;) — HgHg, x,x* € [0, 1]. Then from Section 3 of Owen (1997b)
i we obtain

wherein the first equality follows because averages of 10

h reduce to averages @k ; and the second equality Varstrat(; Zg(Xi)>

follows from aliasing. Inspecting (20) we see thiak; (21) =

from (19) depends on mean squares defined thrgiggh _3A
andg, while the internal replication estimate reduces 12”3/ g2 dx+0(n™%).
to corresponding mean squaresfgf; andig ;. Thus

the internal replication estimafeis seen to be a direct It is natural to substitutef — "4 for ¢ in the lead
estimate of8yat ; for ii < n. term of (21) and then minimize ovgd. Some care is

required with the error term. We show below that this

6. LIMITING VALUES OF B minimization gives the rlght answer.

LEMMA 1. Assumethat f and i ; have Lipschitz
derivatives as described above with common values of
B and A, and that [ /' (x)h'(x)” dx has full rank J.
Then the optimal control variate coefficient under

The previous section considered estimateg g
appropriate to sample sizés< n. In some cases we
can compute or approximate

:qumc— lim ﬁrqmc stratified sampling satisfies
. AoA Aa 1 -1
= nIL>moo COqumc(H, H)_l COqumc(H, I), nli—)moo ,BstratE ﬁgt?at: <A h/(x)h/(x)T dx)
22
and the results provide qualitative insight and suggest( ) -/h’(x)f’(x)dx
some methods for choosiy '
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PROOFE By (21) we get

1 ! / 4 /
iy (7~ L)
j:

J
+ <1+ Z|ﬂ,~|>0(n“>,

j=1

2

Varstraf I B) = dx

(23)

where the constant inside tliesymbol is independent
of 8. Let that constant b®/12 for 0< D < oc.

Because/y h'(x)/'(x)T dx has full rank, the right-
hand side of (22) is the unique minimizer of the first
term in (23). Lets; > 0 be the smallest eigenvalue
of folh/(x)h’(x)de. By a sequence of elementary
bounds, for large enoughwe have

1203 (VarsyatIp) — VarsyatIsz )
> 85118 — Bevalls — Dn ™2 (1+ 11Bl11)
> 85118 — Bevadls — Dn ™2 (1+ 11Bl11)
> 6518 — Bavadli/
—Dn~ (A +IBll1 + 1B — Beadln)-
Suppose that — B l1 > & > 0. Then VagyafIg) >

VarsuatIgz.) holds for large enough. The result fol-

strat

lows. O

Lemma 1 shows that the asymptotically optimal con-
trol variate coefficient is obtained through the expected

cross-products of first derivatives gfand# ;. Notice
that the averages qof’ andh’j are not first subtracted.

In practice we can estimafgg;,,; from the stratified
sample as

n -1
BSrar= (Zh/(xah’(Xi)T)
24) =t

n
DX f(X0)
i=1
and replication is not necessary. H@&.,; is obtained

by least squares regression, without an intercept term,

of f/onh'.
A simple special case hag(x) = x. Thenh/l(x) =1
andBZa= Jo f'(x)dx = f(1) — £(0), and so

n

R 1
Ipgw= =2 (f(X0) = (/D) = F(0)(X; = 0.5)
i=1
with variance (12¢3)~1Var(f'(x)) + 0(n=32) in-
stead of (12231 [ f/(x)2dx + O(n~3"2). If the

11

variance of f/(X) for X ~ U[0,1) is much smaller
than its mean square, then an appreciable variance re-
duction is obtained.

The stratification scheme above describes a simple
special case of randomized nets. A similarly simple
special case of lattice rules has = (i — 1+ U)/n
fori =1,...,n, where the same random varialdle~
[0,1) is used in alln random values. In this case we
also find that (22) is the best regression coefficient, but
the factor ¥(12:3) in the variance has to be replaced
by 1/(1212). The stratified sample by usimgindepen-
dent uniform deviations achieves an additional vari-
ance reduction factor af from error cancellation.

6.2 Stratified Sampling of [0, 1)*

For smalls it is feasible to stratify the unit cube
into n = m® congruent subcubes having side dimen-
sion 1/m and to sample on&; uniformly within each
such cube. Foy' andi ; smooth enough we find a sim-
ilar result to the one-dimensional case.

If the real-valued functiong has two continuous
derivatives, then the variance gfX) for X sampled
uniformly within a hypercube of size/in with cen-
tercis

L IVg@I3+ 0
12m?2 2 ’
whereVyg is the 1 bys gradient (row) vector o§.
The lead term Vagra(/p) is then
J
V(f(x) — Zﬂﬂu(ﬂ)
j=1

2

dx.
2

(25)

12nl+2/s /[\O, 1)

The variance rate—(1+2/9) describes the well-known
deterioration of cubic stratification in higher dimen-
sions.

Recalling our definition ofv from Section 1.1 we
may write the asymptotically optimal coefficient as

-1
% — VhVhT dx)
ﬂstrat (/[Ao’]_)s

26)
: / VhV fdx
[0,

and estimate it by

n -1
BSrar= (ZVh(X»wT(xi))
@7) =1

Y VR(X)V f(X)).

i=1
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The results fors-dimensional stratification generalize

found in Owen (1997b). Aa — oo the highest-order

those of one-dimensional stratification by replacing the ANOVA term dominates, having a coefficiemt(; )

scalar first derivatived’ and f’ with the correspond-
ing gradientsvi andV f. An argument along the lines

that is larger by powers of Igg) than any other terms.
Equation (30) can be written without an ANOVA com-

of Lemma 1 shows that optimizing the dominant term ponent becausg’ fi1,.. 5;/dx = 98° f/dx.

of (25) gives the asymptotically optimal coefficient.

6.3 Randomized Nets

Things simplify considerably ifz; only has one
nonzero ANOVA component. If, for exampld, = 1
andhr1(x) = [1e, (x* — 0.5), thendlny(x)/9,x = 1

Finite sample variance formulas are available for and then

randomized nets, but they appear to be too cumber-

some to help us choosg. The asymptotic variance

formulas are not sharp enough to allow us to derive

the exact value ofy,, but they do suggest a way to
compute a candidate valy#S,. This and other candi-
dates, such as estimatesfafc, can then be compared
numerically in applications.

Let 8° f/ox denote the order mixed partial deriv-

ative of f taken once with respect to each component

of x. Let 3!“l f/9,x denote the mixed partial deriva-
tive of f taken once with respect to each indexuin
Owen (1997b) defined smoatkdimensional functions
as those that satisfy

aS
@) |3 (w - f67)| < Bl - 213
for finite B > 0 and A € (0, 1]. Then, under a scram-
bled (0, m, s) net,

~ [(logn)—? 5
Valnel(l) = [ n3 125(s — 1)!
2 s—1 § 2
(29) () () @]
logb dx
1+ 0®)

asn — oo, for the scrambling in Owen (1995), where
the constant ir0 (1) depends orB and A only.

If we replacef with f — g7 h in (29) and minimize
the integral there ove#, we obtain

o ash( )ashT( ) -1
,Bmet:< axx 8xx dx)
(30)
/ 3 f(x) a°hT (x)
. dx
ax ox

as the optimizer of an estimate of V@f(fﬁ).
Equation (29) arises in the limit as— oo of a sum

Iy (Mu—i-O(l))/(a;j){u)zdx.

n
lu|>0

The sum contains*2- 1 terms, one for every noncon-
stant ANOVA termf, in f. The coefficientds, can be

- alul £,
ﬁfﬁetzfﬂdx.

Oy X

In special settings we might know this value or be able
to approximate it using sample values of the required
partial derivative.

7. ORTHOGONAL CONTROL
VARIATE COEFFICIENTS

If we can show thaBrgmc = Bmc, then we can expect

Iﬁmc to be effective in RQMC sampling. For a strati-
fied sample, consider a functignsuch that the aver-
age value of: is 6 within every one of the strata. Then
COVstrat(ﬁ,AI:I) = CC)Vmc(lfl, [:I) and CO\étrat(['AI, i) =
Covimc(H, 1), and sofstrat= Pmc-

For a scrambled, 0, m, s) net in baseb, there
are some integrands known to have exactly the Monte
Carlo variance. For €, m, s) net in base, it follows
from Owen (1997a) that the indicator function of a suf-
ficiently fine b-ary box, one Wichj.:lkj > m, will
be integrated with exactly the Monte Carlo variance as
will a linear combination of such fine-ary boxes.

The variance of scrambled net integration is known
to be a sum of contributions from each nonconstant
ANOVA term in the integrand. In examples with
smooth integrands (Owen, 1997b; Caflisch, Morokoff
and Owen, 1997), one sees that the contribution from
a given ANOVA term tends to decay at the MC rate
1/n until aboutn = »/“I**. Then it declines more
rapidly. Thus we can expect control variates dominated
by their higher-dimensional ANOVA contributions to
haveprgmc close tofmc.

A good control variate for scrambled nets would be
one that matched the high dimensional and fine parts of
the function, leaving a differenceé— g7 i that had pri-
marily low dimensional, and coarse parts. That is, the
control variate would leave an integrand of low effec-
tive dimension in the superposition sense of Caflisch,
Morokoff and Owen (1997).

For shifted extensible lattices a good control variate
is one whose aliased part is strongly correlated with the
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aliased part off. Aliasing makes it harder to estimate
the coefficient for such a control variate. If, however,

we know thatBat = Bmc, then the strategy from Sec- ‘ff.) i
tion 5.3 with a small value of is reasonable. -
8. SMALL NUMERICAL EXAMPLE ‘?’..J i

Here we present a two-dimensional numerical
example. Because the dimension is so low and theg
functions involved are smooth, we can expect the as- 2
ymptotic variance formulas to be reliable, even for
modest sample sizes.

Forx = (x1,x9)T €10, 1)?, let f(x) = sin(w(x +
x2)). It is common to select control variates that have
a qualitative similarity to the integrand. Here we let
J=1andtakeri(x) = (x1+x2 - 13— (x1+x2-1)
as such a similar function. We know thak1(x) dx =
1 = 0. We also know thaf = 0, but we will inves- FIG. 4. The asymptotic standard deviations of Ig versus n for
tigate the accuracy of estimates kf The various in- the methods in Table 1. The solid lines are, top to bottom, for MC,
tegrals in the asymptotic variance formulas have beenstratification and randomized nets. Below these are parallel dotted
computed by averaging over a 100 by 100 midpoint lines that represent when control variates are employed. Lines for

. 2 - . different control variate values largely overlap on this plot.
grid in [0, 1)< and also by averaging over 36 points
obtained from a scramble@, 15, 2) net in base 2 and

1e-08

1e-10

T T T
1e+01 1e+03 1e+05

its antithetic points of the formil — X1, 1 — x?)7. Standard deviations found as square roots of the as-
These two methods agree for the values reported beymptotic variances from Table 1 are plotted in Figure 4.
low. The story for this example is that nets work better than
The simple estimator (2) has variancg(2z) un- stratification, which works better than IID sampling.
der MC sampling. The variablé is highly corre- For all methods, using the control variate brings an im-

lated with £, and we find Bmc = 2.675. Equation provement and the amount of improvement does not
(26) givespL, = 2.809 and (30) giveB S, = 2.547. depend strongly on which coefficient was used. The
Table 1 records the asymptotic sampling variances benefit from using this control variate diminishes as
of f,g for all three methods and all four control vari- one uses better sampling methods.

ate coefficient values. Each method has its own as- These asymptotic variances predict that stratification
ymptotic rate inn. The coefficients are computed without control variates will surpass MC with an opti-
through (10), (25) and (29), including the constants mal control variate at roughly = 139, which we ought
1/12 and 122(2%2 — 1)/log(2) = 0.0301 in the latter  to round to 144 because stratification requires ihag
two. a perfect square. Scrambled nets without control vari-

TABLE 1
Asymptotic variances of MC, stratification and QMC for a two-dimensional problem from the text

CV coefficient
None Bmc B at Brnet
Method Rate 0 2.675 2.809 2.547 Gain
MC n1 0.5 0.00594 000718 000707 842
Strata n—2 0.8245 00351 00333 00402 247
(0,m, 2) net n—3log(n) 1.464 Q297 Q307 Q294 498

NoOTE. The coefficient®mc from (11), 854t from (27) andﬁr‘ﬁ’et from (30) were computed nu-
merically and are displayed above the table. The asymptotic variance formulas (10), (25) and (29)
applied tof — BT h have rates im given to the left of the table with numerically determined con-
stants given in the body of the table. The rightmost column shows the variance reduction comparing
the 8 = 0 variance to the smallest variance in the row.
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ates overtake MC with the optimal control variate at the strike price and, ..., ¢, are the dates at which the
roughly n = 29, which we round to 32 because these asset’s price is recorded. Somebody planning to make
nets require: to be a power of 2. For nets without the  regular purchases of the asset between times 0rand
control variate, to overcome stratification with the con- might buy this option as a hedge against high future
trol variate takes: = 241, which again we round to prices.
256. Under the Black—Scholes model, the value of this op-
For Monte Carlo sampling, the control variate in this tjon at timer = 0 is the expected value of the payment,
example allowed us to redupe the variance by ?‘_fac‘assuming thaS(r) follows geometric Brownian mo-
tor of 842. The corresponding factors for stratified tjon times a discount factor that reflects the time value

sampling and randomized nets are2and 498, re- 4t money. Geometric Brownian motion atime points
spectively. It happened that the better balanced samplecan be expressed through a veotor U[0, 1)° as
points gained less from the control variate and, what is ’

almost the same thing, were more forgiving of inaccu- S@t) = S(t, x)
rate control variate values.

Matchinghi to f we found that there was a lesser, — 5(0) exp[(r —o2/2)
but still useful, correlation between certain derivatives

of h1 and corresponding derivatives ¢f There was ;

one surprise. Viewing stratification as intermediate be- +oT/s Y. q;-l(xj)}

tween MC and RQMC, we might have expected to find =

that Bt would lie betweenBme and Brgme, but it did _ _ _ _

not. where the drift parameter is the risk-free rateg is
Notice that the benefit from a variance reduction is the volatility of the asset prices arii~ is the inverse

higher for MC sampling than it is for QMC. For ex- of the standard normal cumulative distribution func-

ample, in MC sampling a variance reduction of 10 is tion. Incorporating the discount we find the value is

equivalent to a 10-fold increase in the effective sam- [ f(x)dx, where

ple size. In settings where the variance decreases more

quickly, the gain translates into smaller sample size T 18

multiples. When the variance decreases proportionally fx)=e max(o, s Z S, x) = K)'

to n=2 or n=3, then a 10-fold reduction in variance =t

would equate to sample size increases df4& 3.16 In our experiments, we used an initial price of
and 13/3 = 2.15, respectively. The rate—3 corre- S(0) =100, an annualized interest raterok 0.05, an

sponds to scrambled net variance ignoring logarithmic expiration of7 = 1 year ands = 16 equispaced times
powers, whilen—2 is appropriate to bivariate stratifi- 7 =i/16 fori = 1,...,16. The volatility iso = 0.3.
cation and, ignoring logarithmic powers, some other The strike price isK = 120, so that the option is ini-

RQMC methods. tially out of the money. For this option the probability
of a nonzero payout is roughly17. When the payout
9. ASIAN OPTION probability is much smaller than this, then some form
This section considers an examplesin= 16 vari-  Of importance sampling becomes helpful.
ables. There is no assurance that asymptotic error rates A Widely used control variate for Asian options re-
for QMC are relevant for this dimension untilis ex-  Places the arithmetic option by a geometric one:

tremely large. There is, however, empirical evidence s
that QMC and RQMC methods usually surpass MC hix)=e"T max(o, 1‘[ S, )Y — K).
methods, well before entering their asymptotic regime. =1

The integral we study represents the value of an ] o
Asian call option. Valuing Asian options is a prob- The geometric mean inside;(x) has a log-normal
lem of practical interest in financial applications and is distribution that allowsf h1(x)dx to be found via a
also a widely studied test problem for MC and QMC one-dimensional integration that reduces to the Black—
methods. In this setting there is an underlying assetScholes formula
with price S(¢) at time¢. The option pays an amount 7 )
max0, (1/s) Y¥_, S(t;) — K) at time T, wherek is fhl(x)dx =e " [expla + b%/2)@(d1) — K ®(d2)],
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where
a=1In(S0) + (r —o2/2)T(s + 1)/ (2s),
b? =o2T (s + 1)(2s + 1)/ (65),
di=(—InNK +a+b%)/b,
d>»=d1— b,
taking » > 0, and where ® is the standard
normal cumulative distribution function. See

Ritchken, Sankarasubramanian and Vijh (1993).
The functions

B 7rT 1- S . B
(31) Ax)=e (s;lsg,,x) K),

(B2) Gx)=e'T ( [1S@. 0 - K)

i=1
are useful in a control variate strategy for QMC. The

standard asymptotic results for QMC assume inte-

The Monte Carlo methods we consider are listed in
Table 2. They all use IID pointX; ~ U[O, 1)*. The
MCy is plain Monte Carlo with no control variates;
MC1 uses one control variateé;; MC3 uses three con-
trol variates,h1, A and G; MCg uses the bounded
function f — A; and MGsg uses the bounded function
f — A with a bounded control variate; — G. The co-
efficientsg; required are estimated by least squares on
the Monte Carlo sample.

We also considered (randomized) QMC versions of
all of these strategies. For an out of the money option
such as thisf (x) = 0 for mostx and has smaller vari-
ance thanf (x) — A(x). It is reasonable a priori to ex-
pect MGs to be worse than Mg; but QMG might be
better than QM@ due to boundedness ji— A.

The RQMC strategies we investigated were based on
(0, m, 16) nets in base 17 using the generalized Faure
construction described in Tezuka (1995). Our first ver-
sion usedR = 85 independent replicates of a random-

grands of bounded variation in the sense of Hardy ized (0, 2, 16) net. Our second version usetl= 5

and Krause. The functiong (x) and h1(x) are un-
bounded o1i0, 1)* and hence are not of bounded varia-
tion. The functionsf (x) — A(x) andh1(x) — G(x) are

at least bounded, although lacking sufficient smooth-

ness to be of bounded variation. Note also tfiat A
andhi — G represent the discounted payoff from the
corresponding put options, which pay ni@xK —
(1/s) 33_1 S(t;)) and max0, K — [Ti_; St)Y*), re-
spectively. Both/ A(x)dx and [ G(x)dx are easily
obtainable. For this problem,

/hl(x)dx — 1916
/ A(x)dx = —16.454

/G(x) dx = —17.191

replicates of a(0, 3,16) net. Both versions require

n =5 x 17° = 24,565 function evaluations, and this
is also the number of function evaluations used in the
MC simulations. The randomization was a random dig-
ital shift as described in LEcuyer and Lemieux (2002).
We denote the methods QN and QMC?. The su-
perscript showsn and the control variate method is
specified through the same list of subscripts used for
MC.

For the 85 replicates of the, 2, 16) net, the repli-
cation strategy in Section 5.1 was used to estimate the
control variates and the variance ly In each of the
five replicates of th&0, 3, 16) net, the coefficientg;
were estimated using the formula 8k, applied to
QMC data. These five values were then averaged and
the sample standard error was computed.

TABLE 2
The Monte Carlo methods used in the Asian option example

Name Estimate

MCo A 1)

MC, R I(f — B1rh1) + Bl (hy)

MCj3 I(f — B2h1 — B3A — BaG) + B2l (h1) + B3I (A) + B4l (G)
MCpg I(f =A)+1(A)

MCgg I(f — A= Bs(h1 — G)) + 1 (A) + BsI (h1 — G)

NOTE. Ineach estimaté(g) is the sample average gfX;) and! (g) = Jg(x)dx

is assumed known. ThE; employed are IID froni/[0, 1)* and8; are estimated by

least squares regression. The mnemonic underlying the first three subscripts is that
those methods use 0, 1 and 3 control variatesghiorks directly with a bounded
integrand and M@g uses a bounded integrand and a bounded control variate.
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The results of the simulation are shown in Tables _ TABLE 4

3 and 4. The standard errors in Table 3 were obtained Estimated root mean squared errors

by analyzing the MC and QM@ data as 85 replicate MC oMc®@ oMc®

samples of size 289 and those for QMCwere ob-

tained in an analysis of five replicates of size 4913. As 0 44le-2 205e-2 3.70e-3

might be expecteds is close to— B4, while the other 1 299e-3 216e-3 13de-3
C 3 2.08e-3 148e-3 104e-3

coefflc!ents_ are close to 1. The values f&y and 4 B 9.056_2 16962 59463

are quite different for QM than those for the other BB 281e-3 152e—3 735e—4

methods. The reason is that QMG having only 5 - _
replicates, used estimates Bf,c, while the 85 repli- NoTE. The row labels describe the control variate

. ) L . . strategy as described in Table 2. The column labels de-
cates in QM® were sufficient to allow estimation scribe the sampling strategy: MC or QMC within-

of ,qumc- ) dicated as a superscript 2 or 3.
In Table 4 we see that for each set of control variates,

QMC® is more accurate than QM€&, which is in turn
more accurate than MC. In particular, while QNC
could only be used with estimates of suboptimal coef-
ficients, it still outperformed QM.

Without control variates, the root mean square error

: : As expected, M@ was worse than Mg For
(RMSE) for MC is about 1B2 times that for QM. .
For MC to attain that reduced error would require a both QMC methods the bounded function approaches

sample size 1922 = 142 times as large. The QM& QMCY™ were (slightly) better than the corresponding
attained a smaller improvement over MC. QMCE)’") methods. Similarly there were small advan-
The best control variate strategy for MC was to use tages for QM(g'é) using the bounded functions— A
all three variates. For this function the control variates and 1, — G over QMdl’") using corresponding un-
reduced RMSE by a factor of ZLcorresponding to @  pounded functiong’ andh.
sample size improvement of about 450. In this problem  The results discussed above can be brought out in
control variates alone bring a better result than QMC an ANOVA of the logarithms of the numbers in Ta-
alone. ble 4. An additive model fits with ak? of 90%. The
With optimal coefficients, using all three variates fitted main effects may be interpreted as follows. Com-
would also be the best strategy for QMC, because pared to MC, QM and QMC? reduce variance by
the other control variate strategies can be obtained agactors of 44 and 33, respectively. Control variates re-
choices of, B3 and 4. The QMC? used 85 repli-  duce variance by factors of 53 for method 1, 103 for
cates and also had its smallest error with all three con-method 3 and 104 for method BB, while method B in-

to MCp. The two best methods for this problem are
QMCf’) and QMC%SE);. They gave option values of
2.162 and 2163, respectively, with the standard errors
in Table 4.

trol variates. For QM®& with QMC estimates 0Bmc, creases variance by abouR1The interaction effects,
the method Ql\/ltg’% with just one control variate had when exponentiated, result in some synergies, most no-
better accuracy than Ql\@. tably a further 5-fold variance reduction for B with
. . QMC® and about a F-fold variance increase for B
The best combined strategy was Q@C with an e Mc

efficiency gain of(4.41/0.07352 = 3600 compared
10. CONCLUSIONS

_ ~ TABLE3 In this paper we have investigated the consequences
Estimated ‘?‘t)r:‘tro! Vs”atlgdcoeﬁ'c'ems“or_ '\:'g a“gfor QMC of combining QMC with control variates. Replacing
W'( a;”né;récgror:s;esi‘:]p;fce:&a;; MC with QMC usuTaIIy improves accuracy. Applying
this notion tof — ' h, we ordinarily expect the com-
Coef. MC omMc® omc® bined method to improve on MC with control variates.
Incorporating control variates into MC or QMC also

gl i'(l)g ggg:j; 13?2??5’;2 i'ég Eiézj; improves accuracy, in general, although for QMC it can
ﬁg 0:534(1:56_3) 1:33(1:36_1) 0:519(2:76_3) be harder to select control variates.

Ba  —0525(15e-3) —137(9.7e-2) —0510(2.7e—3) Not surprisingly, in our examples we saw diminish-
Bs 0.988(2.0e—4)  1.03(9.0e—3) 0.987(L2e—4) ing returns to employing both strategies: the improve-

ment from control variates was smaller for QMC than
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Comment

Pierre L'Ecuyer

Randomized quasi-Monte Carlo (RQMC) is a form not independent. The easiest way to estimate the vari-
of variance reduction technique (VRT) that aims to in- ance of an RQMC estimator is to replicate the RQMC
duce negative dependence between the replicates wheachemeR times, independently, and use the sample
a mathematical expectation is estimated by an aver-variance of theR averages as a variance estimator.
age. It works in the same spirit as stratification and This same methodology can be used to estimate all the
the method of antithetic variates, for example. Another variances and covariances involved in the expression
way to reduce the variance is to exploit the dependencefor frgme. So, instead of am-point RQMC scheme,
between the estimator amontrol variates (CVs; i.e., one usesk independently randomizettpoint RQMC
other random variables with known expectation, cor- schemes, where = Rn. The difficulty is that taking
related with the original estimator), and make an ap- a large R compromises the effectiveness of RQMC,
propriate correction to the estimator. Of course, thesewhereas with a smalR, the variance and covariance
two techniques can be combined. However, combining estimators can be very noisy, making the estimator of
VRTSs often gives rise to complicated synergetic effects Brgmc unreliable.
that are not always easy to analyze (see, e.g., Avramidis This problem does not occur for the Asian option ex-
and Wilson, 1996; Glynn and Szechtman, 2002) and ample in Section 9, where usirfjc instead offrgmc
this applies to the RQMC—-CV setup. Two important works reasonably well anyway, but it may certainly oc-
observations are that (1) the variance reduction factorcur in other applications. Would it be rare or frequent?
for the combined method can be no better than for eachl guess only experience will tell.
method alone, but can also be orders of magnitude bet- The controlled estimator (16) is also biased in gen-
ter than the product of variance reduction factors of the eral whengygmc is estimated from the same data. The
two methods and (2) the optimal CV coefficients with bias vanishes wheR — co. There is no bias for finite
and without RQMC frqme and Bmc) may be very dif- R if the distribution of(/;, H)T is multinormal, but
ferent and the former is often harder to estimate. otherwise, for smalR, there could be significant bias

Hickernell, Lemieux and Owen’s interesting paper and it becomes more difficult to have reliable variance
provides good insight on these issues and, perhapsgstimates. We may be interested in finding the value of
more importantly, opens the door to attractive and R that minimizes the mean square error of (16) for a
largely unexplored territory. Their paper starts with givenn, for example. The solution is of course highly
a nice compact and authoritative overview of QMC problem dependent and dependsronTo get useful
methods and their randomizations. Although artificial, insight on whatR should be used in actual applica-
their small example in Section 4.1 gives a case wheretions, it seems that empirical investigations with spe-
the RQMC—CV estimator reduces the variance to zerocific classes of models and RQMC methods are neces-
with its optimal CV coefficientBigme, while Brgmc is sary.

approximately thepposite of Ame, S0 using RQMC— To avoid diluting RQMC'’s effectiveness, one can
CV with coefficientfmc in this caséncreasesthe vari-  also use thenternal replications heuristic discussed
ance. This underlines the importance of estimating theby the authors, where an RQMC method is used based
optimal CV coefficienfor the correct setting. on a point set of cardinality that can be partitioned
into R highly uniform point sets of cardinality. The
ESTIMATING Brqme WITH R REPLICATES idea is topretend that the estimates obtained with these

R different subsets of points are independent, as if
As the authors rightly point out, estimatinfjgmc  these wereR independent replicates of a given RQMC
defined in their equation (15) is harder than estimat- scheme. In fact, these estimates are not independent,
ing fme, because with RQMC the observatiokisare g this heuristic providestaased estimator offrgme.
The authors argue that in certain settings where the
Pierre L’ Ecuyer is Professor, Département d’ Informa- R RQMC estimators based gnpoints areidentically
tique et de Recherche Opérationnelle, Université de distributed [this is a key property that underlies the va-
Montréal, Montréal, Québec, Canada H3C 3J7. lidity of their equation (20), in particular], the method
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provides valid estimators of the variances, covariancesrandom) number of dimensions. Nevertheless, RQMC
and optimalg that correspond tone of thesen-point methods, stratification and their combination with CVs

RQMC estimators (instead af). If both » andn are can help improve simulation efficiency if we take ad-

large, it should be typically true that these variances vantage of the structure of the model.

and covariances fat andn do not differ much. On For example, suppose thét agents do not report to
the other hand, one can construct examples where theyvork (and cannot be replaced) on a given day, where
differ by arbitrarily large factors. M is a random variable that takes valuewith proba-

Suppose for instance thaf has the ANOVA bility ¢,,, m=0,1,...,v. Clearly,L andG(s) should
decompositionf = fc + fg + fes, Where fg is in- be significantly correlated with/. So stratifying on\/
tegrated with zero error by thépoint rule, fg is in- (or using a one-dimensional RQMC scheme with re-
tegrated with zero error by the-point rule but with ~ spect toM and independent random numbers else-
100% error by thei-point rule andfgg is integrated ~ Where) immediately comes to mind. Moreovey,is
with 100% error by both rules. We may decompbse an obvious choice for a CV. Suppose we want to strat-
a similar way, a% = hg + hg + hgg. It may very well ify on M with an optimal allocation, that is, by do-
happen thaf hg(x) fg(x) dx differs significantly from  ing n,, simulation runs withM fixed atm, where
[ hee(x) fes(x)dx or that [hg(x)hg(x)dx differs no+---+n, =n, n, is approximately proportional to
significantly from/ hgg(x)hgg(x) dx, SO Brgme, May qmom anda,,% is t_he variance of the_ _estimator of inter-
turn out to be quite different fronBgmes. This did ~ €St[L or G(s), with the CV A] conditional onM = m.
not happen in the Asian option example examined by Here,o2 will depend on the CV coefficiens,, used
the authors and perhaps it is unlikely to happens in ain stratumm. The optimal,, will also depend omn.

majority of practical cases, but the danger still exists. Thus, one must first estimate the optinga/ and the
corresponding value af,, for eachm, perhaps by us-

STRATIFICATION ing a fixed fraction of the: simulation runs, and then
allocate the remaining runs so that the global allocation
In their Section 6 the authors discuss the choice approximates the optimal one.
of g and provide convergence results for a CV with  There are cases where we cannot control the alloca-
stratified sampling. Their analysis assumes a singletjon to strata. If wepoststratify only instead of stratify-
CV coefficient for all strata. However, there are many ing with a selected allocation, we can still optimize the
situations where it is more appropriate to setdiffer-  coefficientg,, within each stratum. This can be done if
ent coefficientsg for the different strata. we use RQMC on the random variates that determine
I will illustrate this with an example of a tele- the strata, for example. This differs from the authors’
phone call center, modeled as a queueing system withsetting, in which the samg = Brqme Would be used
a nonstationary Poisson arrival process, gamma sereverywhere.
vice times and a single first-in—first-out FIFO queue  Another place where stratification or RQMC would
(see, e.g., Pichitlamken, Deslauriers, L'Ecuyer and help in this application is as follows. Empirical evi-
Avramidis, 2003). Agents answering calls are the dence shows that a nonstationary Poisson process with
serversin the queueing system. Customers have a ran-deterministic rate function does not provide a real-
dom patience time and abandon the queue (are lost) istic model for call arrivals to a telephone call cen-
when their waiting time in the queue exceeds this pa- ter, because the number of calls received in any given
tience time. Two quantities that interest call center time interval is a random variable that typically has a
managers ar&[L] andE[G(s)], whereL isthe num-  much larger variance than its mean. One model that
ber of abandonments in a day a@ds) is the number  better fits the data is a doubly stochastic one, where
of callers who waited less thanseconds in a day. Let  the arrival process on a given day is Poisson with
A be the total number of arrivals in a day. It is easy to rate functionR(¢r) = BA(t), where{A(t), t > 0} is de-
computeE[A] from the model, so in the long run (over terministic andB is a random variable with mean 1
an infinite number of days), the fraction of callers who which can be interpreted as thasiness factor for the
abandon i [L]/E[A] and the fraction whose waiting day. Thegamma distribution is often a good choice
time is less than is E[G(s)]/E[A]. These fractions for B (Avramidis, Deslauriers and L'Ecuyer, 2004).
can be estimated by estimating their numerators. CallWhenever the variance o is important (which is
centers may receive several thousands of calls per daytypical), one would surely want to stratify oB, be-
so these expectations are integrals with a huge (andcauseL and G(s) should be strongly dependent with
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it. As a CV to be used jointly with the stratification,
one may consideH = A — E[A|B], with a coeffi-
cient 8(B) that depends on the value &f. The op-
timal coefficient isp*(B) = E[HL|B]/E[H?|B] if
the goal is to estimat&[L]. To estimates*(b) as a
function of b, one could estimate the two functions
q1(b) = E[HL|B = b] and ga2(b) = E[H?B = b]
from the samplg(B;, H;, L;), i =1,...,n} of n val-
ues of(B, H, L), for example, using least-squares ap-
proximation to fit a curvej; to the points(B;, H;L;)
and another curvé, to the points(B;, Hl.z). The ra-
tio will estimate the functiorg*(b). In the situations
where this function is far from being a constant, this
could make a significant difference compared with us-
ing the sames for all values ofB.

CVS FOR FUNCTIONS OF
SEVERAL EXPECTATIONS

The authors have considered a setting where lin-

ear CVs are used to correct the estimator ofira

21

of a function of several expectations, sa(u) =
g(ua, ..., pa) by

g()?l,..

whereg is continuously differentiable ap1, ..., wq)
and/n(X1 — u1, ..., Xq — nq) converges to a multi-
normal with mean zero whem — oo (as in Glynn,
1994, e.g.). The asymptotically optim@lin this case

is Bmc = (COMH]) "1 CoMH, X]Vg (1), and similarly
for RQMC, whereX = (X1, ..., X4). In other words,

in the generalization it suffices to replace CBv /]
with Cov{H, X1Vg(n) in (15). One simple useful ex-
ample of this is the estimation of a ratio of expecta-
tions, whereg (1, u2) = 1/ 2.

L Xa)—BT(H —0),
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Comment: Computation, Survey

and Inference

Xiao-Li Meng

1. THE SURVEY CONNECTION

1.1 Anticipating the “Surprises”

As someone who has benefited greatly from the sam-
ple survey literature, | am particularly pleased to see

Hickernell, Lemieux and Owen’s (HLO) emphasis on

sample (SRS) of a well-defined population of house-
holds (SRS is too simplistic for most practices, but
adequate for the current discussion). Suppose a pre-
vious year’s population counterpart is available (e.g.,
from a census source) for covariance adjustment (i.e.,
as a control variate). LetY be the variable for the
current semiannual consumption and J}etrepresent

the equivalence between the control variates in Monte ha same period of the previous year. Given an SRS
Carlo estimation and regression estimators in the sam-(y, v,), i = 1,...,n}, asymptotically our best esti-

ple survey literature. Indeed, the “surprises” described mator is the well-known regression estimator

in HLO can be anticipated from similar phenomena
in sample survey. For example, suppose that we, as

marketing firm, want to estimate the average house-

hold consumption of a certain product for the first

a

/:\Ly =Yn — ﬂy,x(in — x),

(1.1)

whereu, andpu, are population averages, aﬁgx is
the usual least-squares estimator from regres3ing

six months of this year, based on a simple random onX.

Xiao-Li Meng is Professor, Department of Satistics,
Harvard University, Cambridge, Massachusetts 02138,
USA (e-mail: meng@stat.harvard.edu).

Suppose, however, that we discover that the popu-
lation average consumption for the first quarter, de-
noted byuym, can be treated as known (e.g., there
was a much larger survey for the first quarter by a dif-
ferent marketing firm). Then we can estimate by
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;l’; = [y +/ly<s> , Wherew sy denotes the population  be two regression estimators for the same estimand ¢,
average for the second quarter, assunfing’, i = where ,38&2 Cov(0®, )/ Var(y)) > 0 is treated
1,...,n} were available (e.g., we collected monthly asknown. Let

consumption for the first six months). This setting AL2) A @ (51 )

mimics HLO's setting with £(x) = fo(x) + fa(x), &3 007 =0 = o™ — )

where the integration ofc is done with no error by  pe the “wrong” regression estimator, that is, it uses
design, so all the estimation or integration errors come v () _ (D tg adjust 6V, but with the regression slope
from the second component. [The analogy, of course, from the other estimator. Then Var(@:-2)) > Var(@®)
is not perfect because in HLO the choicefgfdepends it and only if

on the design andg approacheg (in L2) as the data

size increases. In sample surveys, the estimand rarely ﬁc(,f))t .
depends on the choice of designs, including the sam- ~0 1‘ >1,  thatis,
ple size. Fortunately, these differences are immaterial (1 4 opt

for our current discussion because the use of control ﬂé?t ﬂc()%)t
variates is postdesign and with a given finite sample - >2 o — <0
size.] Bopt Bopt

This hypothetical survey example makes it clearer  The proof of this lemma follows directly from the
that as far as the estimation pfs) goes, neitheX fact that

nor B, . is necessarily the best choice, even if they are

o . ) A A 172 A
for (1.1). Itis likely that a better covariance adjustment Var(§®?) = Var(dV) — [Bgpr]* var(y )
for Y is X(S)_, the second quarter consumption for n [/3(2) 3 ﬁ(l)]ZVar(z}m)
the same previous year, perhaps due to the seasonal- opt — Popt :

ity of the product. This is analogous to HLO's discus- Thjs result provides theoretical support of HLO'’s em-
sion in Section 4 withf = fc + fg andh = hg + hg; pirical finding that the use ofuc still often leads
since fg andhg do not contribute to the variance cal- g yseful improvement with QMC, because it assures
culation, the goal is not to have correlated withf, us that unless the regression slope changes substan-
but ratherhp correlated with fg. Furthermore, even tg|ly, that is, either it changes the sign or it is at least
if the semiannual consumptiok is still a better co-  yyice as large in magnitude, the use of the wrong re-
variance adjustment fafS) because Cof(x, Y9)) > gression slope is still beneficial compared to not mak-
CorP(X®,¥®), the regression slope in (1.1) will ing any adjustment, regardless of whether or not we
need to be changed fromfl, . to By ,. Therefore,  yse the same control covariate. For HLO's “caution-
unless Cof(X, Y®) > Cor(X®, Y®) andB, , = ary example” (Section 4.1)8yc = 1 — 2M~? > 0,
Bys) . USINGBy x (X, — 1) to adjustys® willnotpro-  but Bromc = —1, so there is a switching of the sign
duce an optimal estimator. This is in agreement with of the regression slope. Consequently, usfiyg in
HLO’s summary discussion at the beginning of Sec- place of Bromc Will lead to an estimator with larger
tion 4. variance than the RQMC estimator without adjusting
for the control variate. Note that in HLO’s example,
U ® = @: indeed Lemma 1 can be recast with only

Indeed, it is also well known in the survey literature one regression class estimatyy= 6 — (1 — ), and
that using a nonoptimal adjustment may actually do then using a nonoptim#@ becomes harmful if and only
some harm compared to no adjustment, for example,if |(8/Bopt) — 1/ > 1. Also note that in real applications
in the context of comparing ratio estimators with SRS the regression slope is seldom known and will be re-
estimators (e.g., Cochran, 1977, Chapter 6). The sameplaced by its least-squares estimator. This replacement,
survey literature inspires the following general result however, does not affect the conclusion of Lemma 1
regarding when it becomes harmful to use a wrong op- asymptotically because of the forgiving nature of the
timal regression adjustment compared to making no regression estimators to the error in the slope, as dis-
adjustment. cussed toward the end of Section 3 of HLO.

It is also known from the survey literature that the
. . use of regression estimators tends to have diminishing
(1.2) Gyp=0" — By —yD), =12, gains for stratified sample designs relative to SRS, be-

1.2 When Does the Wrong Optimality Hurt?

LEMMA 1. Let
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cause covariance/regression adjustment is essentially One may argue that the problem occurred simply be-
a form of (deep) stratification. Consequently, unless cause the user did not understand the actual form of the
the two stratifying variables are uncorrelated with each estimator, but this is exactly the issue: For a general es-
other, the stratified design has already “achieved” atimation procedure, which can be of arbitrary complex-
part of gain in efficiency intended by the regression ad- jty, how can we tell when it is and when it is not benefi-
justment. The degree of the “achievement” depends oncial to substitute a part of our estimation procedure by a
how deep the original stratification is in the sampling more precise estimator (including its true value)? This
design. Since QMC designs, especially the more ad-qestion is particularly relevant for Monte Carlo esti-
vanced ones as reviewed in HLO, are often very deepmators, be they quasi or not, because in a simulation
_stratlflcatlons (compa_red to the types of str_atlflcatlons setting, nothing isinknown, in its original sense. Con-

in sample surveys), it comes as no surprise that thegeqently, the formulation of optimal estimators based
gains of using control variates tend to be noticeably on simulated data will depend intricately on how we
less pronounced for QMC than for MC, as summarized model what weignore, not what we know—a question

in Section 10 of HLO. that is beyond the realm of any design-based perspec-

1.3 Why Do We Need to Go beyond the tive. A different perspective is therefore needed, which
Design-Based Perspective? is the subject of the next section. In particular, we shall

see how the new perspective leads to a new interpreta-

The sampling survey, or more generally the design- > _ :
based perspective, however, does not explain every—t'on of control variates and, more importantly, leads to

thing. Consider the following question/comparison. In & NeW control-variate estimator that appears to be diffi-
the semiannual consumption example in Section 1.1 cult to anticipate from the traditional design-based per-
we had spective of Monte Carlo integration or of sample sur-
. . . . . vey.

(1.5)  fy=h(iye, idys) = Ly + L.
When the true value ohym is known, it is almost 2. THE INFERENCE CONNECTION

impossible to resist the temptation to repla«fzgm h ikelihood Inf
with its true value inh(/ly<p>,,&y<s>) to form ¥ = 2.1 Why Does Likelihood Inference Appear to Be

N Y - Y Useless with Simulated Data?
h(pym), ly®) = [y + [y to estimatep,. In-

deed, why not? How could we get hurt, as far as effi-  To define optimality meaningfully, we first need to
ciency/variance goes, by taking advantage of as muchquantify what data and model assumptions we permit

truth as we know? ourselves to use. In a real-data analysis, once the data
Now consider the regression estimator givenin (1.1), are collected or provided, the central challenge typi-

which can also be written as cally is to postulate a suitable set of reasonable as-

(1.6) iy =8Tns Ens Byx) = I — By.x (Fn — 1) sumptions, parametric or nonparametric, to link our

data with our estimand of interest. Once the model is
posited and a measure of efficiency is chosen (e.g.,
variance), the corresponding optimality can then be
quantified theoretically, at least asymptotically (e.qg.,

It is legitimate to consider (1.1) as a function¥f, x,
andﬁy,x only, because only these quantities depend on
the sample. Putting it differently, we can give a user a
“black-box” software routine that computes the value 7 """ . )
of fiy, with y,, x, and ,éy,x as input, calculated from via Fisher mforrnaﬂon_). . .

the User's particular sample. Suppose that the user ac- 1€ above discussion might lead us to believe that
cidentally discovered that the population true value of du@ntifying optimality with simulated data is an eas-
1, was actually available from a census source, just '€" task, because there is no issue of model uncer-
as we (hypothetically) discovered that the true value of tainty, for we are the one who generated all the data
jtym Was available. Now if the user adopts the same (or design points). Ironically, the issue turns out to
reasoning/intuition as we did with, then she or he be far more complicated, precisely because we know
would surely inpuiu, in g in place of her or his sample  too much. To illustrate, consider importance sampling,
averagex,. However, this action will completely wipe as discussed in HLO. We are interested in the value
out the regression adjustment. See Liu, Rubin and Wuof c1 = [ q1(x)u(dx), where g1(x) is our known
(1998) for a similar discussion in the context of view- integrand andu is the baseline measure, typically
ing the PX—EM algorithm as a covariance adjusted EM Lebesgue or counting. We have draws from a trial den-
algorithm. Sity po = g2/c2, denoted by X2, i =1, ...,n2}. Then
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the well-known importance sampling identity which is free of any data! So once again, the likelihood
1 q1(X) method seems to fail, whereas estimators based on the
(2.1) r=—= 2[ X ] estimation equation approach abound (see Meng and
. 2 LaX) Wong, 1996).
where E is the expectation with respect je, pro- One answer to the above paradoxes is simply that

vides us with an estimation equation from which we |ixelinood methods are not applicable to simulated
arrive at the well-known importance sampling (IS) €s- a3 Whereas logically this is an admissible answer, if

timator it were true, it certainly would be the most disturbing
. 1 & (X2 puzzle lying in the foundation of likelihood inference,
(2.2) = ns ~ g2(Xi2)’ at least to some of us. How could it be? How could
i=1 an inferential method so powerful with an uncertain

Note that in common IS settings, as in HL@,is cho-  gata-generating mechanism becomes completely use-

sento be 1 and thus= c1, but in more general settings

ratios are of interest; see Meng and Schilling (2002) for

a recent discussion of this issue. 2.2 The Answer: Because We Were Looking at the
So on what basis can we claim (2.2) is optimal? Wrong Parameter!

How do we know there is no other estimation equation

that can deliver a more efficient estimator than (2.1)

can? Since asymptotically the maximum likelihood . . L

estimator is most efficient (under standard regularity norma_llzmg constant; is deterministically related

conditions) and since asymptotic arguments are moret® 4j Via

relevant for simulated data because the size of data is .

under our control, we naturally wonder what the well (2.5) ¢ = /Q‘Ij Wudx), j=12

established likelihood theory can tell us for such ques- _

tions. For simplicity, let us assume that the draws from S©Whenwe ignorg; (X;;) from (2.4) because they are

P2 = qa/co are i.i.d. Then the density of our “data” known, we actually have also effectively ignored a part

less when the mechanism is completely known?

An astute reader may have already seen a hidden
problem with the “likelihood” as given in (2.4). The

{Xi2, i =1,...,n2) is given by of the “parameter” that our likelihood intends to infer.
s A closer inspection of .(2.5) reveals_ that the problem is

(2.3) P(X12. ... Xny2) = l—[ ClZ(XiZ)‘ far more serious than just appropriately sorting out the
i1 €2 connection between; andg;(X;;). The problem is

The above expression immediately suggests that some‘Ehat itis impossible to treat; as an unknown parame-

thing is quite amiss. On one hand, our estimandoes Ler wlhen we treag; as krlw(own, urI\Iestshwe car:jtrea:]the
not even appear in our “likelihood function” (2.3). On aseline measufe as unknown. In otherwords, when

the other hand, it is clear that witholK», i = 1, yve treat bothy; andu as known, there_is no_statistical
... n2}, we do not even have the IS estimator (2.2). So Nference problem for; to speak of, since, is com-
could this be an obvious counterexample to the likeli- P€tely determined by; and .. Putting it differently,
hood principle? althoughc;’s or their ratios are what we are after, they
Take bridge sampling as another example. Bridge c@nnot be thenly unknown model parameters for any
sampling is a generalization of importance sampling, Meaningful statistical modeling.
as described by Meng and Wong (1996). Here our 10 resolve this problem, Kong, McCullagh, Meng,
goal is still to estimate = c1/c, as in the IS set- Nicolae and Tan (2003) proposed to conduct the like-
ting. The difference is that we now have draws from lihood inference by treating the baseline meaguas
both p1 = gq1/c1 andp2 = g2/c, denoted by X;;, i = the unknown parameter and then to estimatas a lin-
1,...,n;}, j =1,2. Sinceq1 andg; are assumed to  ear functional ofu via (2.5). With this approach, (2.3)
be known, under the assumption of independent draws pbecomes a well-defined and meaningful likelihood in

the “likelihood” for ¢1 andcy becomes the form of
L(C]_, ool{Xij, i=1...,n5}, j=1, 2) L(IL|X12, L anz)
>
4) =T1 7 4 X)) x My 2.6) 1"—2[ (X (Xi2) [172; n(Xi2)
j=1i=1 ¢ i1 [aa)pdx) — [f g2(x)u(dx)]m2’
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where u(X) = n({X}) or u({dX}). The maximum
likelihood estimator oft, among all possible nonnega-
tive measures, is given y(x) o P,,(x)/q2(x), where
Py, (x) is the usual empirical measure, whljl mass

at each observed;,. Clearly from (2.6),u (and
thusc;’s) can only be estimated up to a multiplicative
constant. Substituting in (2.5) with & shows that

of (2.2) is indeed the (nonparametric) maximum likeli-
hood estimator (MLE) of under the likelihood (2.6).
This suggests that, without employing any other in-
formation, 7 of (2.2) is indeed (asymptotically) the
best possible estimator sfgiven{X;2, i =1, ..., n2}.
Similarly, Kong et al. (2003) have shown that the op-
timal bridge sampling estimator given in Meng and

25

measure is invariant to reflection with respect to the
origin, we can restrict our parameter space to all non-
negative measures that satisfy this invariance property,
if the trueu is indeed Lebesgue. The resulting MLE of
ris

1 & 1(Xia) + q1(—Xi2)

n2 = q2(Xi2) + q2(—=Xi2)’

Ak
r =

2.7)

which is the Rao—Blackwellization treatment ohy
averaging over the orbit of the reflection group—1},

and hence its variance never exceeds that @fnder
the assumption of i.i.d. draws). See Kong et al. (2003)
for a general formulation of using group invariance to
restrict the parameter space foand hence to improve

Wong (1996) is the same as the MLE when we have Monte Carlo efficiency. Also see Casella (1996) for a

{X;i,i=1,...,n;; j=1,2} asour data.
J J

The reason why this likelihood perspective can eas-
ily resolve these paradoxes is that it captures the real

inference structure of Monte Carlo integration. Specif-
ically, Monte Carlo simulation means that we $sar
plesto represent, and therefore effectivelyimate, the
underlying populatiow ; (x) . (dx), and hencestimate
w sincegq; is known. One may find the phrase “esti-
mate” puzzling because we invariably know whats

(e.q., Lebesgue or counting). However, our knowledge .

of u is never used in any way, for example, in form-

ing (2.2). This can be best seen by considering that
there are two individuals: a simulator and an analyst.

The simulator provides the simulated d&é», i =

1, ..., n2} to the analyst, who has the task of estimat-
ing r. The analyst is also given both andg», but is
never told about the actualused in simulation. Never-
theless, the analyst can consistently estimatghich
obviously depends op, as long as the support gf
does not exceed that @b. (This well-known condi-

detailed discussion of the use of Rao—Blackwellization
methods in Monte Carlo simulation and, more gener-
ally, the interrelationship between statistical inference
theory and computational algorithms.

2.3 Indeed a Surprise: An Unexpected
Control-Variate Estimator and Insight

Another fundamental advantage of this likelihood
approach is that it provides a unified framework for
investigating variance reduction techniques, including
control variates. In the importance sampling context,
when we use g with
(2.8) | e@nn =0
as a control variate, we effectively put a constraint
on the unrestricted parameter sp&ge= {x :all non-
negative measures @}. Consequently, the MLE un-
der this submodel will be more efficient than the MLE
under the full model. The resulting MLE far under

tion on the supports can also be clearly seen from theys constraint, however, is not the usual regression es-

likelihood perspective, because we can only make in-

ference abouft on a support that is identifiable from
the data{X;2, i = 1,...,n2}.) Consequently, as far
as (2.2) goesyu is completely unknown; more pre-
cisely, no knowledge of: is used in (2.2) and thus it
is legitimate (and actually necessary) to trgaas the
unknown model parameter.

timator, albeit asymptotically they are equivalent, as
they should be.

Specifically, because any measure with zero mass at
any single observation will lead to a zero likelihood
in (2.6), the maximization of (2.6) under constraint
(2.8) is effectively discrete, as is typical with nonpara-
metric or empirical MLE (e.g., Owen, 2001). The dis-

The above diSCUSSiOﬂ aISO SUggEStS that we can US%rete problem we need to Solve is

partial knowledge ofx to improve upon (2.2), as long
as the resulting MLE for is still easy to compute.
Clearly we should not use our full knowledge abauit
which will lead us back to the infeasible analytic calcu-

np n2
(2.9) max Z'Og(ui)—nzlog[Zqzim”,

ned,d li=1 i=1

lation required by (2.5). For example, since Lebesguewhere, for simplicity, we have letu; = u(X;2),
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q2i = q2(Xi2), & = g(X;2) and

O =1(u1....
(2.10)

sMnp) i >0, i=1,...,ny;

nz

and Zgiﬂi =0;.
i=1

Second, we can show that the inequality in (2.14)
actually is an equality. This is because, under condi-
tion (A), A,, is a finite open interval containing zero
and

np
) =) log(gai + Agi)
i=1

(2.15)

Tan (2003) presented an elegant solution to this maxi-js 4 strict concave and differentiable function ap,.

mization problem under the more general setting with Consequently¢(%) has the unique maximutne A
multiple control variates. The following is a slightly which satisfies

more elementary recast of Tan’s (2003) derivation.
We start by assuming condition (A): migy < O

and maxg; > 0. This is not a real restriction in

view of (2.8) and relatively large, in practice, but

n»

ey &2 ;
(2.16) ) 8 g
dx i—192i +Ag

technically it is a necessary and sufficient condition In other words, when we lét= 1 in (2.13), the result-

for (2.9) to have a solution. Clearly it is necessary, ing i = (i1, .

because without it©' will be empty. The suffi-

.., ln,) indeed satisfies the constraint in
(2.13), and therefore this, and only this, choiceuof

ciency is established by the following argument, which equates the two sides of (2.14). Consequently,

shows that (2.9) has the uniqgue maximizer when con-

dition (A) holds.
First, becaus@ 2, gini = 0, (2.9) is the same as

np

max {Z log(u:)

neo iz

(2.11) 1 M
—n2 |09[n—2 > (g2 + /\gi)m} —n2 |09n2}

i=1
foranyr e Ay, ={A:iq2 + 28>0, i=1,...,n2},
which is nonempty because it contains at lgast 0

Pnz(x)
g2(x) + Ag(x)
is the unique solution to (2.9), wheRg, (x) is the stan-

dard empirical measure based Xy, ..., X,,}. The
corresponding MLE of is given by

. 1 & 1(Xi2)
(218) fmE=—) R :
n2 1 q2(Xi2) + Ag(X;2)
The form of this MLE is rather intriguing. First,
unlike the standard regression estimator, which takes

(2.17) fi(x) o

since allgz; > 0 by our sample design. Consequently, g jinear form for adjustmentfy e retains a ratio
by Jensen's inequality applied to the second log expres-torm. The advantage of the ratio form is that it en-

sion in (2.11), we obtain

n» na
max [Zlog(m) — nzlog[qui“

peo® iz i—1

(2.12

np
< —>_l0g(g2i + Agi) — n2logna,
i=1
where the equality holds if and only if

n2

1
(2.13) ujx—— and gini =0.
q2i + Agi ;
Since (2.12) holds for any € A,,, we can minimize
the right-hand side ovet, which leads to

np n2
max{ » "log(u;) — n2 |09[ > 6]21#1} }
o) li=1 i=1
(2.14
n2
< — max Y _log(qz + Agi) — n2logns.

€ .
ngi_q

sures the nonnegativity éf; e whenever the integrand
q1 is nonnegative. This is, of course, expected because
FMLE is an MLE and hence it must be within the orig-
inal allowable space of (as determined by our usable
knowledge ofg1). In contrast, the regression estimator
does not have this property. Asymptotically, however,
linear adjustment is all one needs, and thiyse is
equivalent to the regression estimator by a Taylor ex-
pansion argument, as given in Tan (2003).
Second/uLe has the same form as the IS estima-
tor (2.2), but withgo(x) + Ag(x) as the “trial” density.
This can be seen more clearly when our control variate
is introduced by using an unnormalized dengiyuch
that [ g2(x)u(dx) = [q3(x)u(dx) (see Kong et al.,
2003, for anillustration), that ig,(x) = g3(x) — g2(x).
Then the function in the denominators in (2.18) be-
comes a mixture of, andgs, (1 — A)g2 + Aga, where
X is the MLE of the mixture weight from fitting the
mixture model(1 — X)g2 + Ag3 to the simulated data
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{X;2, i=1,...,n2}. (Note that here. is not restricted  generating mechanism to start with), the inference per-
to the unit interval, as long as it is insi@fg).) spective is still very fruitful. This was, for example,
This fitting aspect is the most intriguing part of the discussed by Diaconis (1988), where a Bayesian ap-
MLE approach because the true valuerofs known  proach, which does not necessarily require a sampling
to be zero, since all the data were drawn frgm scheme or a likelihood, was investigated. This ap-
However, with any finite sample, the best fitted  Proach is to put a prior model—a stochastic process—
under the mixture model will almost surely deviate ©N the integrang, with ¢’s values at the design points
from the true valuer = 0, indicating an “imperfec- S the observations. The inference is then carried out by
tion” of the sample to répresent the intended popu- computing the conditional distribution of the process,
lation ¢». The MLE approach uses this deviation to and hence the integration, given the observations. The
adjust for the imperfection via the known relation- gdvantage C.Jf this class c.)f methods is that, by chqos-
ship (2.8), in the same spirit as the regression esti-'"NY appropriate stochastic models, one can take into

mator usest, — s, to adjust. Specifically, just as the account known properties of the integraqpdin con-

. , . trast, our likelihood approach takes advantage of us-
regression estimator (1.1) effectively treats an “imper- : ) .
., 4 . . able known properties of the baseline measure, either
fect” sample{yy, ..., y,} with meanu, as a “perfect

sample with meanz, + By (%, — 1), the MLE via group restrictions or other constrqints such as con-
ireats an imperfect sya mpl év)fcrogg as ; [')erfect sam- trol variates. As a resul't,'the Bayesian apprqgch can
A ~ . produce much more efficient results for specific inte-

ple fr_om (1 —4)g2 + Ags! It Is perfect as far as es- grands. Indeed, many well-known numerical integra-
timating /o g(x)u(dx) =0 goes because of (2.16). o methods can be rederived from this perspective, as
The MLE then uses this “perfect” model/sample 10 ghown by Diaconis (1988) and the references therein.
perform the usual importance sampling, as in (2.18). on the other hand, the MLEs obtained under the like-
This construction appears to be dlfflcu_lt to conceive jihood approach are much more generally applicable,
from a purely design-based perspective, which in- pyt they can be made more efficient if specific knowl-
evitably would only call for inverse-probability weight  edge of the integrand (e.g., differentiability) can be uti-
1/g2(X), sinceX was drawn fromy,. In particular, this  ized. So the two approaches complement each other
is another example where the use of the fitted value isand, ideally, we would like to have a combined infer-
better than using the truth, as discussed in Section 1.3.ence method that will model the usable knowledge of
both the baseline measure and the integrand. Research
in this direction is very much needed, and HLO’s inves-

The discussion so far centers on MC designs, wheretigation of using control variates with RQMC methods
there is a natural sampling distribution and hence acan be viewed as an important step in this direction be-
natural likelihood. The central issue there is to recog- cause it takes into account both the properties of the
nize what the correct model parameter is. For deter-integrand and the restriction on the baseline measure
ministic QMC, this approach is not directly applicable via the use of the control variates.
since there is no sampling distribution in the design. Finally, to complete the circle, the new ratio-type
However, when randomness is reintroduced into QMC, control-variate estimator also suggests a possible cor-
as with the RQMC methods discussed in HLO, the responding counterpart for sample survey applications,
likelihood method appears to be applicable, albeit the Where the two standard estimators for covariance ad-
implementation could be more complicated in view justments have been the direct ratio estimator [i.e.,
of the more stratified nature of the design compared ity = (¥n/%x)f1x] @nd the regression estimator (1.1).
to i.i.d. or even the more genera| MCMC designS, Such a counterpart, if it exists, would be of direct prac-
which are typically without stratification. In addition, fical value, because it retains important advantages of
there appear to be more constraints pnsuch as both the_ ratio est_imator _and the regre_ssion esti_mat_or,
[ fo(x) fa(x)u(dx) = 0 with the QMC methods (Sec- &S We discussed in S_ectlon 2.3, espfs_ually considering
tion 2.1 of HLO). It would be interesting to see the thatmany survey estimands are positive by nature.
form of the resulting MLE forf[ fo(x) + fa(x)]u(dx)
under the likelihood approach.

For deterministic QMC, although the likelihood ap-
proach is not directly applicable (and this time there As HLO correctly pointed out in their Section 2.5,
is no paradox, because there is no random data-both MCMC and QMC have a long history and both

2.4 Possible Applications to QMC and Surveys

3. FURTHER CONNECTIONS BETWEEN
MCMC AND QMC
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have grown rapidly in recent years, yet there is very a pair of antithetic variables is used (e.g., Frigessi,
little overlap between the two fields. This is certainly a Gasemyr and Rue, 2000). Viewing antithetic variates
very unfortunate and ironic situation, considering that as a form of stratification, employing more than two
both fields share exactly the same goal. HLO’s paper strata becomes an obvious next step. However, unlike
is certainly a very timely contribution to changing this the case of using a pair, generating a set of 2 an-
situation—a change that is much needed, because théithetic variates is not a trivial task. This is because
two fields can learn a great deal from each other, asthere is no unique way to generate- 2 antithetic vari-
HLO's paper clearly demonstrates. Here | want to add ates that ar@egatively associated (i.e., preserve neg-
two topics from recent work that | was involved in to  ative correlation under monotone transformation) and
demonstrate the great benefit of using techniques andextremely antithetical (i.e., as negatively correlated as
ideas from both fields. _ o possible). Nevertheless, we (Craiu and Meng, 2005)
The f_|rst topic Is path sa_mpllng, Wh'_ch IS '@ §€N" f5und that Latin hypercube sampling, as mentioned in
er_allzatlon of bridge sampling with mflnltely many  gection 6 of HLO, as well as an iterative extension
bndges;, as well asa ge”.e“?" formulgnon of thermo- of it, serves as an effective general-purpose scheme.
dynamic integration in statistical phyS|cs,_ as sh_own by The advantages of running multiprocess antithetically
Gelman and Meng (1998). The method is particularly coupled MCMC, for both the standard forward imple-

suited for handling some very high-dimensional inte- - i L )
grations, as discussed by Ogata (1989). The key iden_mentatlon and the backward perfect-sampling imple

fity that underlies path sampling exoressesloghere mentation (see Casella, Lavine and Robert, 2001, for
y P piing expres ognere an introduction), include not only further reduction of
r is the same as in (2.1), as a low-dimensional inte- . ,
. . ) ) . Monte Carlo variances compared to usihg- 2, but
gration over a prior parameter of a high-dimensional

: . " ._also reduction of biases due to slow mixing, because
expectation that is conditional on the parameter. This antithetically coupled chains can search a state space
presents an ideal situation to use both MCMC meth- Y P b

ods and QMC methods, with the former applied to more thoroughly compared with usirigindependent
estimate the high-dimehsional expectation and thechains, which is the current common recommendation

latter applied to numerically estimate the outside low- (eig., Gelrlna_n an?tEUb:(n’Hngng)' iting this timel
dimensional integration. The effectiveness of such a n conclusion, 1 than or writing this timely
hybrid approach was demonstrated by Gelman andand inspiring article and the Editor for inviting me to
Meng (1998), where very basic numerical approachesdiscuss it. Given the clear benefit of cross-fertilization

(e.g., trapezoidal rule; rectangular lattices) were usedbetw_een MCMC and QMC, | hope this set of dis-
for the low-dimensional integrations. It is likely that cussion articles can serve as a successful matchmaker

the effectiveness will be even more impressive if the [°F @101, happy and (re)productive marriage between

more advanced QMC methods, such as those reviewed@MC and MCMC!
in HLO, are used for these low-dimensional integra- ACKNOWLEDGMENTS
ions.

The second topic is multiprocess parallel antithetic | thank Radu Craiu, Andrew Gelman, Martin
coupling for backward and forward MCMC (Craiu and Romero and Zhigiang Tan for helpful comments and
Meng, 2005). Using antithetic variates is a very old exchanges. The research was supported in part by NSF
variance reduction technique in the Monte Carlo lit- Grant DMS-02-04552.
erature (e.g., Hammersley and Morton, 1956). How-
ever, in the standard MCMC literature, typically only

Rejoinder
Fred J. Hickernell, Christiane Lemieux and Art B. Owen

We thank Professor L'Ecuyer and Professor Meng duction techniques, and Meng'’s references to combina-
for their thoughtful remarks. We particularly liked tions of antithetic and Latin hypercube sampling with
L'Ecuyer’s concise summary of combining variance re- MCMC. Our reply is organized by topic.
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EFFICIENCY control variates to be larger than The intercept term

in a quasiregression is an estimate of the integral. See
Jiang and Owen (2003) and Jiang (2003) for details of
guasiregression with plain Monte Carlo methods.

L'Ecuyer’s idea of breaking the problem into pieces
each with its own control variate seems to be a good
compromise between using a single coefficient and us-
ing O (n) or more coefficients. The call center example
seems well suited to multiple control variates.

It should be possible to incorporate some applica-
tions of poststratification and stratum-specific coeffi-
cients into the framework of this paper. If there are two
strata, takingk; to be an indicator function for one
of those strata captures the benefits of poststratifica-
tion. Then for a second variable, putting 23(x) =
hi1(x)ho(x) captures the benefits of stratum-specific
coefficients.

In the Asian option example only a small inefficiency
arose from estimatin@m instead offrgmc. LEcuyer
asks whether this will be rare or frequent. As he notes,
experience will tell. We expect that the inefficiency will
very often be small. The cost of having the wrong co-
efficient is quadratic in the coefficient error, so small
coefficient errors are largely forgiven.

From Meng's comment, we learn that even some
large coefficient errors have mild effects: for a scalar
B # Bopt to give a larger variance thgh= 0 gives, you
have to either get the sign wrong or hayk > 2| Bopt|.
Unlesspopt is close to zero, there is a wide window to
aim for.

An inefficiency that is often small can also be often
large. Moreover, one can construct worst-case prob-
lems for which the inefficiency is arbitrarily large. For-
tunately, in practice one can estimate the error variance

both with and without the control variate. NONPARAMETRIC LIKELIHOOD
It is intriguing to see how nonparametric and em-
CONFIDENCE INTERVALS pirical likelihood can be used in Monte Carlo prob-

L'Ecuyer points out that things would be easier for 18ms. Meng advocates treating the baseline measure as
small R if (., H,) had a multivariate Gaussian dis- Unknown instead of the parameter. Of course, in the

tribution. In the case of scrambled nets, the central Mathematical sense the baseline measure is at least as

limit theorem of Loh (2003) gives reason to suppose knoyvn as the parameter. The test is wh_ether this point
that a multivariate Gaussian distribution would be a Of view helps us to solve problems, and it appears to do
good approximation. On the other hand, Loh’s theo- SO-
rem allows for an extremely slow rate of convergence ~Once again, this is a setting where survey sampling
to the Gaussian distribution. The magnitude of the bias 'ésearchers have been active. A survey of empirical
L’Ecuyer mentions is an interesting open issue. likelihood methods for complex survey samples ap-
We usually prefer a smalk, supposing that accu- Peared in Owen (2001, Chapter 8, Sections 5-8). Key
racy in estimating/ is more important than accuracy contributions were made by Jing Qin, Jiahua Chen,
in estimating error. That assumption is not valid for all Randy Sitter, Changbao Wu, Bob Zhong and Jon Rao.
applications. In such cases one can use a laRg&y
get a more reliable confidence interval arounat the BAYESIAN CONNECTION

cost of less accurate estimation/of As mentioned by Meng, the Bayesian approach, de-

scribed by Diaconis (1988), has proven quite useful in
studying the problem of integration. Ground-breaking

As L’Ecuyer points out, we have used only a sin- work was done by Sacks and Ylvisaker (1966, 1968,
gle control variate coefficient vector, while in stratified 1970a, b). A comprehensive survey of classical and re-
sampling one often prefers to use a different coefficient cent results was given by Ritter (2000). The Bayesian
within each stratum. For scrambled nets, the number ofapproach has a long history: Diaconis (1988) traced it
strata is equal to the number of sample valueghen to Poincaré. That approach is also well suited to ap-
t =0 ands = 1. Fors > 1, the number of simultane- proximation.

STRATIFICATION

ously balanced strata can be much larger thart In the Bayesian approach, the values of the random
these extremes, one cannot afford to estimate one coefintegrand at two different positions are described by the
ficient per stratum by least squares. covariance kernel. The smoothness of this kernel then

Quasiregression with coefficient shrinkage is an al- affects the convergence rate of the numerical integra-
ternative to least squares that allows for the number oftion algorithm. Error analysis in the Bayesian setting
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has many parallels to the worst-case analysis for deter-CaseLLa, G. (1996). Statistical inference and Monte Carlo algo-
ministic integrands. In the latter case, the Hilbert space  rithms (with discussion)Test 5 249-344.
of integrands is often defined by its reproducing kernel CASELLA, G., LAVINE, M. and FOBERT, C. P. (2001). Explaining
(Wahba, 1990; Hickernell, 2000). The error measures __ "€ perfect samplingimer. Satist. 55 299-305. _
for linear numerical integration rules are the same in CRAIY: R- and MENG, X.-L. (2005). Multiprocess parallel anti-

. . thetic coupling for backward and forward Markov chain Monte
the Bayesian and worst-case settings when the kernels -0 Ann. Satist. 33 661-697.
are the same. However, for the same kernel, the Hilbertp aconis, P. (1988). Bayesian numerical analysis. Sratisti-
space of integrands in the worst-case setting typically ~ cal Decision Theory and Related Topics IV (S. Gupta and
corresponds to a subset of measure zero in the space of J. O. Berger, eds) 163-175. Springer, Berlin.
random integrands in the Bayesian setting. This is dugFRIGESSL A., GASEMYR, J. and REE, H. (2000). Antithetic cou-

to the worst-case setting’s more conservative or pes- _ Ping of two Gibbs sampler chainénn. Satist. 28 11281149,
L GELMAN, A. and MENG, X.-L. (1998). Computing normalizing
simistic approach.
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path samplingStatist. Sci. 13 163-185.
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