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Control Variates for Quasi-Monte Carlo
Fred J. Hickernell, Christiane Lemieux and Art B. Owen

Abstract. Quasi-Monte Carlo (QMC) methods have begun to displace ordi-
nary Monte Carlo (MC) methods in many practical problems. It is natural and
obvious to combine QMC methods with traditional variance reduction tech-
niques used in MC sampling, such as control variates. There can, however,
be some surprises. The optimal control variate coefficient for QMC methods
is not in general the same as for MC. Using the MC formula for the control
variate coefficient can worsen the performance of QMC methods. A good
control variate in QMC is not necessarily one that correlates with the target
integrand. Instead, certain high frequency parts or derivatives of the control
variate should correlate with the corresponding quantities of the target. We
present strategies for applying control variate coefficients with QMC and il-
lustrate the method on a 16-dimensional integral from computational finance.
We also include a survey of QMC aimed at a statistical readership.

Key words and phrases: Digital nets, lattice rules, low discrepancy meth-
ods, stratification, variance reduction.

1. INTRODUCTION

We consider here the problem of computing the in-
tegralI of a functionf defined on thes-dimensional
unit cube[0,1)s :

I =
∫

f (x) dx.(1)

Here and elsewhere, integrals without explicit ranges
are understood to be over[0,1)s . It is very common
in applications that the integrals arise in a form other
than (1), but are translated into that form.

The basic form of Monte Carlo (MC) sampling simu-
lates independent random vectorsX1, . . . ,Xn that have
theU [0,1)s distribution. Then the MC estimate ofI is

Î = Î (f ) = 1

n

n∑
i=1

f (Xi).(2)
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It is elementary thatE(Î ) = I and if we suppose that
the variance of the integrandσ 2 = ∫

(f (x)−I )2 dx sat-
isfies 0< σ 2 < ∞, then we can write the mean square
error as

E
(
(Î − I )2) = Var(Î ) = σ 2/n.

Many techniques have been developed to improve
the accuracy of MC methods. Two such techniques
are quasi-Monte Carlo (QMC) sampling, which can be
likened to a very intense multiple stratification, and the
classical method of control variates. To employ both
of these methods at once is an obvious idea and one
that is easy to implement. Less obvious is that the con-
trol variate strategy for MC applied to QMC points can
reduce the accuracy of the QMC method. The opti-
mal control variate coefficient depends on the sampling
strategy and even on the sample size. In MC a good
control variate is one that correlates with the integrand.
In QMC methods it can be better to have some other
aspect of the control variate, such as a derivative or a
sum of high frequency Fourier components, correlate
with the corresponding aspect of the target integrand.

Monte Carlo variance reductions for QMC have been
studied earlier. Spanier and Maize (1994) discussed
combinations of importance sampling with QMC and
mentioned some early work by Chelson (1976).
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While our main contribution is on the interplay be-
tween QMC and control variates, we also present a
brief survey of QMC methods. This survey appears
as Section 2. It presents some historical motivations
of QMC, and the main techniques in use today, for
readers with a statistical background. Section 3 records
some basic results on control variates that we use. Sec-
tion 4 describes how estimating the control variate co-
efficient becomes a challenge when we combine the
two methods. Section 5 describes replication and re-
lated ideas that estimate a control variate coefficient
for QMC, though possibly tuned to a smaller sample
size than the one in use. Section 6 considers the coef-
ficient appropriate in the limit as the sample size tends
to infinity. Section 7 describes cases where the MC and
QMC coefficients coincide so that the MC coefficient
can be estimated from QMC data. Section 8 presents
a low dimensional example for which we can compute
the variance formulas of this paper. Section 9 illustrates
these ideas on a 16-dimensional integral that arises as
the value of an Asian call option. Section 10 summa-
rizes our conclusions.

1.1 Notation

We complete this introductory section by describing
some notation. Some additional notation is introduced
at the point where it is used.

The integralI of f is the same over[0,1]s or (0,1)s

or [0,1)s . We employ[0,1)s only because it partitions
easily into congruent subhypercubes.

A generic point in the unit cube is denoted byx =
(x1, . . . , xs)T , while a point used in an integration rule
is Xi = (X1

i , . . . ,X
s
i )

T . For a functiong(x) on [0,1)s ,
the term Var(g) denotes

∫
(g(x) − ∫

g(x) dx)2 dx, the
variance ofg(X) whenX ∼ U [0,1)s . For a vectorz,
the usual Euclidean norm is denoted‖z‖2, and‖z‖1 de-
notes the sum of absolute values of components ofz.

Let u ⊆ {1, . . . , s}. We use|u| for the cardinality of
u and−u for the complementary set{1, . . . , s} − u.

There is an analysis of variance (ANOVA) decompo-
sition for functions on the unit cube that is analogous
to the ANOVA decomposition used in factorial exper-
iments. A square integrable functionf can be written
as a sumf = ∑

u fu(x) over 2s subsets of{1, . . . , s},
wherefu(x) depends onx only throughxj for j ∈ u.
Then Var(f ) = ∑

|u|>0 Var(fu). See Hoeffding (1948),
Sobol’ (1969) and Efron and Stein (1981).

When s = 1, the derivative ofg is denoted byg′.
For s ≥ 1, the gradient ofg is ∇g, taken as an
s-dimensional row vector. For a column vectorh of
J functions on[0,1)s , the gradient∇h is aJ by s ma-
trix of partial derivatives.

2. QUASI-MONTE CARLO

The Monte Carlo estimatêI from (2) converges toI
with probability 1 by the strong law of large numbers.
Quasi-Monte Carlo sampling may be thought of as a
way to get a law of large numbers to hold without us-
ing randomness. The rate at which|Î − I | converges to
zero may be better for QMC than for MC, at least for
functionsf with some spatial regularity.

2.1 Uniformity and Discrepancy

Quasi-Monte Carlo grew out of the theory of uni-
formly distributed sequences initiated by Weyl (1914,
1916); see Kuipers and Niederreiter (1974, Chapter 1).
Let a andb be two points of[0,1)s for which a < b

holds coordinatewise, let[a, b) be thes-dimensional
box of pointsX ∈ [0,1)s for which a ≤ X < b holds
coordinatewise and let vol([a, b)) be thes-dimensional
volume of that box. ForXi ∈ [0,1)s with 1 ≤ i < ∞,
the sequence(Xi) is uniformly distributed in [0,1)s if
limn→∞(1/n)

∑n
i=1 1a≤Xi<b = vol([a, b)) for all 0 ≤

a < b ≤ 1.
If the sequence(Xi) is uniformly distributed,

then limn→∞(1/n)
∑n

i=1 f (Xi) = ∫
f (x) dx holds for

every f that is Riemann integrable on[0,1)s . Thus
the uniform distribution provides a deterministic ana-
logue of the law of large numbers. Although Riemann
integrability is a more stringent condition than the
Lebesgue integrability required for Monte Carlo sam-
pling, Riemann integrability is a very mild condition
for applications.

The celebrated Weyl criterion is that(Xi) is uni-
formly distributed if and only if limn→∞(1/n) ·∑n

i=1 exp(2π
√−1kT Xi) = 0 for every nonzero vector

k ∈ Z
s . The Weyl criterion provides a way to establish

that a given sequence is uniformly distributed.
Given two or more uniformly distributed sequences,

it is of interest to decide which is better. Discrepancy
measures are used to quantify the uniformity of a se-
quence of points.

The star discrepancy of a finite sequenceX1, . . . ,Xn

is defined as

D∗
n(X1, . . . ,Xn)

(3) = sup
a∈[0,1)s

∣∣∣∣∣1

n

n∑
i=1

10≤Xi<a − vol([0, a))

∣∣∣∣∣.
The star discrepancy is ans-dimensional generaliza-
tion of the Kolmogorov–Smirnov distance between the
discrete uniform distribution takingXi with probabil-
ity 1/n for i = 1, . . . , n and the continuous uniform
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distribution on[0,1)s . Replacing the supremum over
anchored boxes[0, a) in (3) by the supremum over
general axis parallel boxes[a, b) yields the extreme,
or unanchored, discrepancyDn(X1, . . . ,Xn). Because
D∗

n ≤ Dn ≤ 2sD∗
n, asymptotic rates inn, for fixed s,

are identical for these discrepancies. Other discrepan-
cies have been defined by replacing the supremum over
boxes by suprema over other collections of subsets of
[0,1)s .

A different type of generalization of star discrepancy
replaces the supremum with anLp norm as

Dp∗
n (X1, . . . ,Xn)

(4)
=

(∫ ∣∣∣∣∣1

n

n∑
i=1

10≤Xi<x − vol([0, x))

∣∣∣∣∣
p

dx

)1/p

for p ≥ 1, with p = 2 the most widely studied. Beck
and Chen (1987) and Matoušek (1999) provided book
length treatments of discrepancy. In yet another gen-
eralization, we may interpret the star discrepancy as
the worst case integration error overf in the class of
indicator functions of anchored boxes. Discrepancies
defined with respect to classes of smooth functions
appear in Paskov (1993), who considered integrated
indicators of anchored boxes, and in Hickernell (1996),
who considered functions in reproducing kernel Hilbert
spaces.

Measures of discrepancy can be related to the qua-
drature error|Î − I |. The best known connection is the
Koksma–Hlawka inequality

|Î − I | ≤ D∗
n(X1, . . . ,Xn)VHK(f ),(5)

where VHK(f ) denotes total variation off in the
sense of Hardy and Krause. See Niederreiter (1992,
Chapter 2) for a discussion of (5), Zaremba (1968)
for an analogous inequality based onD2∗

n , Sobol’
(1969, Chapter 8) for an inequality involvingDp∗

n and
Hickernell (1996) for a treatment bounding|Î − I | by
a generalization of discrepancy times a generalization
of variation.

Some infinite sequences(Xi) with D∗
n(X1, . . . ,

Xn) = O(n−1(logn)s) are known. It is suspected that
D∗

n cannot beo(n−1(logn)s) along an infinite se-
quence, but it has only been proved fors = 1 ands = 2.
It is known thatD∗

n(X1, . . . ,Xn) ≥ Csn
−1(logn)s/2

for infinitely manyn for someCs > 0.
The fast convergence ofD∗

n combined with (5)
shows that QMC is asymptotically superior to MC for
functions of bounded variation. Whens is large, the
quantityn−1(logn)s is not small at usual Monte Carlo
sample sizesn. In empirical investigations (Morokoff

and Caflisch, 1995; Sarkar and Prasad, 1987; Schlier,
2002) QMC is sometimes found to be much better than
MC; other times the methods are comparable.

There are also triangular array constructionsXni ∈
[0,1)s for 1≤ i ≤ n < ∞ for whichD∗

n(Xn1, . . . ,Xnn)

attains the slightly better rateO(n−1(logn)s−1). A dis-
advantage of triangular array schemes is that the points
of the n point quadrature rule are not necessarily
present in then + 1 point rule. Rules based on the first
n points of an infinite sequence, by constrast, are nec-
essarily extensible. There are many links between ex-
tensible rules ins dimensions and nonextensible ones
in s + 1 dimensions. Matoušek (1999, Chapter 1) dis-
cussed this point.

Two QMC methods have dominated recent research
and practice: digital nets and lattice rules. Digital nets
are constructed to integrate the indicator functions of
certain axis parallel boxes without error. Lattice rules
integrate a class of sinusoidal functions without error.
Each method then integrates linear combinations of its
ideal integrands without error. Functions that are well
approximated by such linear combinations are then in-
tegrated with small errors.

In both settings we will write the integrand as
f (x) = fG(x) + fB(x). Here fG is a function on
which the QMC method does a good job, integrat-
ing it without error. The error of QMC is then de-
termined by the functionfB on which it does badly.
The definitions offG and fB differ for nets and lat-
tices and depend on the sample sizen. As n in-
creases,

∫
(f (x) − fG(x))2 dx → 0. For each method,∫

fG(x)fB(x) dx = 0 whenf andg are inL2.

2.2 Digital Nets

A thorough treatment of digital nets, also known as
(t,m, s) nets, was given by Niederreiter (1992). This
section presents brief formal definitions of(t,m, s)

nets,(t, s) sequences and(λ, t,m, s) nets.
The following geometric discussion may be helpful

for the reader who is encountering these definitions
for the first time. A(t,m, s) net in baseb is a form
of stratified sample wherein the number of simultane-
ously balanced strata can be much larger than the sam-
ple size. The strata are hyperrectangular cells called el-
ementary intervals orb-ary boxes. The sides of these
b-ary boxes have endpoints that areb-adic fractions:
integer multiples ofb−k for some integerk ≥ 0 and in-
teger baseb ≥ 2. Givenn pointsX1, . . . ,Xn in an inte-
gration rule, we would like everyb-ary box of volume
b−K to contain exactlynb−K of them. Nets manage to
do this, at least for small enoughK .
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DEFINITION 1. For integerb ≥ 2, a b-ary box in
[0,1)s is a set of the form

B =
s∏

j=1

[
�j

bkj
,
�j + 1

bkj

)
(6)

for nonnegative integerskj and�j < bkj .

DEFINITION 2. A (t,m, s) net in baseb is a fi-
nite sequenceX1, . . . ,Xbm for which everyb-ary box
of volumebt−m contains exactlybt points of the se-
quence.

It is clear that smaller values oft imply a better strat-
ification. For given values ofb, m ands, there may not
exist a net witht = 0, and so nets witht > 0 are also
widely used.

Figure 1 shows the points of a(0,3,5) net in base 5
projected onto two coordinates. The unit square can be
partitioned into 125 boxes of shape 1/5× 1/25. Each
such box has exactly one point of the net. The same is
true for partitions of shape 1/25× 1/5. Although the
reference lines do not show it, the 5-ary boxes of shape
1× 1/125 and 1/125× 1 also contain one point of the
net. Finally, in any three-dimensional projection there
are 125 boxes of shape 1/5× 1/5× 1/5 with one point
each.

The net shown is extensible. One can adjoin another
125 points to it, with the result that eachb-ary box

FIG. 1. The 125points of a digital net in base 5 as described in
the text.

has two points of the extended sequence. Furthermore,
some net constructions are extensible, not just twofold
but r-fold for any integerr > 1. Finally, as some nets
are extended,b-ary boxes of ever smaller volume con-
tain the proportional number of points. Such extensible
digital nets are defined through(t, s) sequences.

DEFINITION 3. A (t, s) sequence in baseb is an
infinite sequenceXi for i ≥ 1 such that for all integers
r ≥ 0 andm ≥ t , the pointsXrbm+1, . . . ,X(r+1)bm form
a (t,m, s) net in baseb.

If one samples a(t, s) sequence withn increas-
ing through valuesλbm for 1 ≤ λ < b and m ≥ t ,
then everyb-ary box eventually contains a proportional
number of points from the sequence and retains this
balance thereafter. The firstλbm points of a(t, s) se-
quence in baseb are a(λ, t,m, s) net in baseb, for any
m ≥ t and 1≤ λ < b.

DEFINITION 4. Let m, t and λ be integers with
m ≥ t ≥ 0 and 1≤ λ < b. A sequence ofλbm points
in [0,1)s is called a(λ, t,m, s) net in baseb if every
b-ary box of volumebt−m containsλbt points of the
sequence and nob-ary box of volumebt−m−1 contains
more thanbt points of the sequence.

The prototypical digital sequences are radical in-
verse sequences in baseb, originating in the base 2
sequences of van der Corput (1935a, b). For integer
baseb ≥ 2, let the nonnegative integern have baseb
expansion

∑∞
k=1 nkb

k−1, wherenk ∈ {0,1, . . . , b − 1}
and only finitely manynk are positive. The baseb radi-
cal inverse function,φb(n) = ∑∞

k=1 nkb
−k ∈ [0,1), re-

flects the baseb digits ofn through the baseb decimal
point. In anybm consecutive nonnegative integers, all
bm possible trailing digits appear exactly once. Then
the corresponding values ofφb contain allbm possible
leading digits exactly once. It is customary to start the
radical inverse sequence at 0. ThusXi = φb(i − 1) for
i ≥ 1 is a digital sequence witht = 0, s = 1 and baseb.

Higher-dimensional digital nets and sequences re-
quire number theory to describe and construct, and
are beyond the scope of an introductory survey. Faure
(1982) presented constructions of(0,p) sequences in
prime basesp and Sobol’ (1967) constructed(t, s)
sequences in base 2, where the quality parametert

depends ons. Niederreiter (1987) combined and ex-
tended these constructions. Of all presently known
(t, s)-sequence constructions, those of Niederreiter and
Xing (2001, Chapter 8) have the smallest values oft for
given values ofb ands.
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To see why nets are effective integration rules,
consider theb-ary indicator function1B(x) that is
1 if x ∈ B and 0 otherwise, whereB is the b-ary
box defined in (6). The volume ofB is b−K , where
K = ∑s

j=1 kj . If X1, . . . ,Xn are a(λ, t,m, s) net in
baseb with m − t ≥ K , then (1/n)

∑n
i=1 1B(Xi) =∫

1B(x) dx. The points of a(λ, t,m, s) net integrate
without error any function that is a linear combina-
tion of theb-ary indicator functions of volumebt−m.
A combinatorial argument shows that there are(m−t+s−1

s−1

)
bm−t different b-ary indicator functions of

volume bt−m correctly integrated by the points of a
(λ, t,m, s) net in baseb. For example, the 625 points
of a(0,4,5) net in base 5 correctly integrate the indica-
tors of 43,570 different 5-ary boxes of volume 1/625.

Let fG be the linear combination of indicator func-
tions ofb-ary boxes with volumebt−m that minimizes∫
(f (x) − fG(x))2 dx. A formula for fG can be based

on tensor products of baseb Haar wavelets (Owen,
1997a). The integration error in a(λ, t,m, s) net is the
corresponding sample average offB = f − fG.

2.3 Integration Lattices

Lattice methods for integration were introduced by
Korobov (1959). Textbooks on the topic include Hua
and Wang (1981), Sloan and Joe (1994) and Fang and
Wang (1994).

DEFINITION 5. An s-dimensional lattice is a set of
the form {∑s

j=1 αjvj | αj ∈ Z}, wherev1, . . . , vs are
linearly independent vectors inRs .

DEFINITION 6. An s-dimensional integration lat-
tice is an s-dimensional lattice that contains every
member ofZs .

DEFINITION 7. An s-dimensional lattice rule is
the intersection of ans-dimensional integration lattice
with [0,1)s .

The simplest lattice rule method is that known as
“good lattice points.” There one selects a sample sizen

and a vectorτ = (τ1, . . . , τs) of nonnegative integers.
Then fori = 1, . . . , n, let

Xi = (i − 1)τ

n
mod1,(7)

wherezmod 1= z − 
z� and
z� is the greatest integer
less than or equal toz. Integration lattices that can be
written in the form (7) are known as rank 1 lattices, be-
cause they have one generating vectorτ . Lattice rules
of ranks 1 throughs were described by Sloan and Joe
(1994). We emphasize rank 1 rules here. The lattice

rules of Korobov (1959) are rank 1 rules for which
τ = (1, η, η2, . . . , ηs−1) for someη ∈ Z.

The vectors(i − 1)τ/n are equally spaced on a ray
from the origin to(n − 1)τ/n. Taking them modulo 1
causes them to “wrap around” the boundary of the unit
cube. Careful choices ofτ andn, made by combina-
tions of algebra and computer search, lead to points
that are very regularly spaced. Figure 2 shows a lattice
rule with τ = (1,89) andn = 144.

Classical lattice rules have a fixed sample sizen

like a (t,m, s) net. The development of extensible lat-
tice rules, analogous to digital sequences, is fairly re-
cent. The key insight is that one can replace(i −
1)τ/nmod 1 with φb(i − 1)τ mod1, whereφb is the
radical inverse function. The resulting points lie on
a shifted lattice. Extensible shifted lattice rules allow
the sample sizen to increase through a sequence of
values of the formbm for increasing integersm. It
has been shown by Hickernell and Niederreiter (2003)
that there exist∞-dimensional generating vectorsτ =
(τ1, τ2, . . . ) that depend only on some baseb ≥ 2 and
that give good lattice rules for all dimensionss and
for all n equal to a power ofb. Computer searches
for vectors τ that give good lattices for a range of
s andn have been made by Hickernell, Hong, L’Ecuyer
and Lemieux (2000). The viability of component-by-
component constructions has been demonstrated by

FIG. 2. The 144points of an integration lattice.
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Sloan and Reztsov (2002) and Sloan, Kuo and Joe
(2002a, b).

Whereas nets are designed to integrate indicators
of b-ary boxes, lattice rules integrate certain sinu-
soidal functions without error. Consider the multi-
variate trigonometric polynomials exp(2π

√−1kT x),
wherek ∈ Z

s is an integer wave number vector. Sup-
pose thatk belongs to the dual latticeL⊥ = {k : kT τ =
0modn} of a rank 1 lattice rule. Then the function
exp(2π

√−1kT x) is completely aliased with the con-
stant function 1 on the points of the lattice defined
by (7). Lattice methods integrate trigonometric func-
tions that correspond tok ∈ L⊥ \ {0} with 100%
error. However, fork = 0 or k /∈ L⊥, the function
exp(2π

√−1kT x) is integrated with zero error by lat-
tice methods. For latticesfB is the sum of the functions
exp(2π

√−1kT x) times the corresponding Fourier co-
efficients, taken overk in L⊥ \ {0}. ThenfG = f − fB
is the corresponding sum of Fourier contributions for
k /∈ L⊥ − {0}.

From the Weyl criterion we might expect that inte-
grating trigonometric polynomials well will lead to a
good quadrature rule. On a good sequence of lattice
rules, the dual latticeL⊥ becomes sparser asn in-
creases. The star discrepancy can be shown to approach
zero at the same rate found for nets. The more rapidly
the Fourier coefficients off decay, the better the as-
ymptotic error rate for|Î − I |. For functionsf with
∂rsf/

∏
j ∂(xj )r continuous on[0,1)s , the error rate

can be madeO(n−r+ε) (Niederreiter, 1992), where
nε hides powers of logn, although for larges it may
take very largen for this rate to be relevant.

2.4 Randomized QMC

The law of large numbers is used to justify Monte
Carlo methods, but not to compute error estimates.
Practical error estimation is based on sample-based
variance estimates, sometimes with a calibration via
the central limit theorem. Bounds like (5) justify the
use of QMC, but they are poorly suited to error esti-
mation. Discrepancy is hard to calculate—total varia-
tion is harder still—and the resulting bound on|Î − I |,
while tight for some worst-casef , can be extremely
conservative.

Randomized quasi-Monte Carlo (RQMC) methods
have been developed to combine QMC accuracy with
the practical error estimation methods of MC. Typical
RQMC methods replace a QMC sequenceA1, . . . ,An

by a randomized versionX1, . . . ,Xn such that each
Xi ∼ U [0,1)s while the ensembleX1, . . . ,Xn still has

a QMC property. BecauseXi ∼ U [0,1)s , it follows
that E(Î ) = I . The variance ofÎ can be estimated
through a small number of independent replications of
the RQMC method. Studying RQMC also allows us to
make sharper comparisons with MC, because variances
can be estimated for both. Methods of randomizing
nets and lattices were surveyed by Owen (1998a) and
by L’Ecuyer and Lemieux (2002). Hong and Hickernell
(2003) described software to randomize nets.

A scrambled net is a randomization of the baseb dig-
its of the points of a digital netA1, . . . ,An. Let A

j
i =∑∞

k=1 aijkb
−k , where eachaijk ∈ {0,1, . . . , b−1}. The

points of a scrambled net areXj
i = ∑∞

k=1 xijkb
−k ,

where xijk are obtained through some random per-
mutations of aijk . In the scrambling method pro-
posed by Owen (1995),xij1 = πj ·(aij1), thenxij2 =
πj ·aij1(aij2), so that the permutation of the second
digit depends on what the first digit was; generally
xijk = πj ·aij1···aij k−1(aijk), where eachπ is a uniform

random permutation of 1 throughb − 1. EachX
j
i has

theU [0,1) distribution and if(Ai) are a digital net or
sequence, then so are(Xi) with probability 1. These
scrambling schemes require a lot of permutations, and
some derandomizations using fewer permutations have
been proposed by Matoušek (1998) and Hong and
Hickernell (2003).

For the scrambling method proposed by Owen
(1995), as well as random linear scrambling (Matoušek,
1998; Hong and Hickernell, 2003), the variance of
scrambled(0,m, s)-net quadrature satisfies

Varrnet(Î ) ≤ e

n

∫
fB(x)2 dx ≤ e Varmc(Î ),

where e = exp(1)
.= 2.718. When t > 0, the vari-

ance bounde/n has to be increased, but we still find
Varrnet(Î ) ≤ Cb,s,t

∫
fB(x)2 dx/n for a constantCb,s,t .

See Owen (1998b), Niederreiter and Pirsic (2001) or
Yue and Hickernell (2002). Asm increases,fG ac-
counts for more of the structure off . In the limit,∫

fB(x)2 dx → 0 and so Varrnet(Î ) = o(1/n) for any
square integrablef . Loh (2003) has proved a cen-
tral limit theorem for the scramble proposed by Owen
(1995).

For smooth functions, the rate at which∫
fB(x)2 dx → 0 can be studied. Owen (1997b)

showed that scrambled net integration attains a
variance of O(n−3(logn)s−1), so that |Î − I | =
Op(n−3/2(logn)(s−1)/2), under a mild smoothness
condition onf , given in Section 6.3. Note that in this
setting, scrambling reduces the error of unscrambled
nets by approximately a multiple ofn1/2.
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Yue (1999) studied the variance over randomized
(λ, t,m, s) nets. Hickernell and Yue (2000), Ma-
toušek (1998) and Heinrich, Hickernell and Yue (2004)
investigated the discrepancy of scrambled nets and se-
quences. Owen (2002) studied the variance of scram-
bled net quadrature, finding that it can depend in a
strong way on the details of the scrambling.

The usual randomization of lattice rules is a form
of rotation modulo 1, due to Cranley and Patterson
(1976). They took

Xi = U + (i − 1)τ

n
mod1,(8)

whereU ∼ U [0,1)s . Rotated lattice rules are a form
of cluster sampling. They do not improve the error
rate of lattice rules, but they do allow replication-
based error estimates. Rotation affects the aliasing:
For k in the dual lattice, exp(2π

√−1kT Xi) equals
exp(2π

√−1kT U) instead of 1.
To study randomized lattice rules, recall that some

trigonometric polynomials are integrated exactly by
the lattice while the others are constant onX1, . . . ,Xn.
For randomized lattice rules, Varrnet(Î ) = Var(fB) =∫

fB(x)2 dx. As with nets, the partfG does not con-
tribute to the error, but unlike nets, there is noO(1/n)

factor multiplying the contribution of the aliased
part fB. The decay of Varrlat(Î ) with increasingn is
due to increasing sparsity of the dual lattice.

2.5 QMC and MCMC

Markov chain Monte Carlo (MCMC) is better known
to statisticians than QMC. Both fields have a long his-
tory and both have grown tremendously in recent years.
We have found only a little overlap between the meth-
ods. Liao (1998) reported some results using the Gibbs
sampler in a QMC application. Ostland and Yu (1997)
applied QMC to estimation of marginal distributions.

One reason why QMC and MCMC are so disjoint is
that the integrands used in MCMC are often very spiky.
For such problems, not much benefit can be expected
from more uniform sampling of the entire space. Even
if RQMC errors are likeAn−3/2 while MCMC errors
are likeBn−1/2, the ratioA/B for a spiky integrand
could be much larger than anyn we might be able to
use.

In some applications a well chosen importance sam-
pling scheme could reduce the spikiness of the inte-
grand to the point where QMC would be beneficial at
realistic sample sizes, but effective importance sam-
pling is very problem specific. It is also much more
common in MCMC applications forf (x) to be a prod-
uct p(x)g(x), wherep is a density function known

only up to a normalizing constant. Then MCMC gener-
ates approximate samples fromp, while QMC would
have to fall back on ratio estimation methods.

An important difference between MCMC and QMC
algorithms is that for MCMC the number of replica-
tions n is small, perhaps one long run, while the di-
mensions is large, nominally infinite. For QMC,n is
usually large ands can be small.

3. CONTROL VARIATES

The idea in control variates is to exploit known val-
ues of

∫
hj (x) dx for j = 1, . . . , J to sharpen the es-

timate of I . The method is particularly compelling
whenJ = 1 andh1

.= f with θ1 = ∫
h1(x) dx known.

Most books on Monte Carlo methods consider control
variates. See, for example, Bratley, Fox and Schrage
(1987), Ripley (1987) or Fishman (1996). Essentially
the same method goes by the name “regression esti-
mators” in the survey sampling literature. See Cochran
(1977) and Lohr (1999). Here we simply summarize
some well-known results.

Suppose that we know the values
∫

h(x) dx = θ for
the vectorh = (h1, . . . , hJ )T of functions and the vec-
tor θ = (θ1, . . . , θJ )T of scalars. Then for any vector
β = (β1, . . . , βJ )T ∈ R

J , the estimate

Îβ = 1

n

n∑
i=1

(
f (Xi) −

J∑
j=1

βj

(
hj (Xi) − θj

))
(9)

satisfiesE(Îβ) = I whenXi ∼ U [0,1)s .
To avoid trivialities, we suppose that

max1≤j≤J

∫
h2

j (x) dx < ∞ and that Var(
∑J

j=1 βj ·
hj (X)) > 0 for X ∼ [0,1)s whenever β �= 0. If
Var(βT h(X)) = 0 for some nonzeroβ, then one or
more of the functionshj is redundant and can be
dropped.

The MC variance of̂Iβ is Varmc(Îβ) = σ 2
β/n, where

σ 2
β = E

([
f (Xi) − I − βT (

h(Xi) − θ
)]2)

,(10)

a quadratic function of the vectorβ. The minimizing
value ofβ is given by

βmc =
(∫ (

h(x) − θ
)(

h(x) − θ
)T

dx

)−1

(11)
·
∫ (

h(x) − θ
)
f (x) dx.

It always holds thatσ 2
mc ≡ σ 2

βmc
≤ σ 2, becauseσ 2 cor-

responds toβ = (0, . . . ,0)T . We assume thatσ 2
mc > 0

to rule out some trivial cases.
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The valueβmc is typically unknown, and is usually
estimated by

β̂mc =
(

n∑
i=1

(
h(Xi) − Ĥ

)(
h(Xi) − Ĥ

)T )−1

(12)

·
n∑

i=1

(
h(Xi) − Ĥ

)
f (Xi),

whereĤ = (Ĥ1, . . . , ĤJ )T and

Ĥj = 1

n

n∑
i=1

hj (Xi).

The known valuesθj could possibly be used in place
of Ĥj , but typically are not. Instead̂βmc is the ordi-
nary least squares estimator of the regression coeffi-
cients that relatef (Xi) to hj (Xi).

The control variate estimator iŝI
β̂mc

, which is ob-

tained by substitutinĝβmc for β in (9). The resulting
error is

Î
β̂mc

− I = Îβmc − I + Î
β̂mc

− Îβmc
(13)

= Îβmc − I + (β̂mc − βmc)
T (Ĥ − θ).

The second term in (13) does not ordinarily have mean
zero, so the use of̂βmc typically introduces a small
bias. It is ordinarily true that botĥβmc − βmc and
Ĥ − θ areOp(n−1/2), and then the last term in (13)
is Op(1/n). This small term and the associated bias
are customarily ignored. Cross-validatory methods can
remove the bias in the estimate ofI and also in the
variance estimate (Avramidis and Wilson, 1993).

Control variate methods are forgiving of mild errors
in the coefficientβ. Becauseσ 2

β is a quadratic func-
tion of the vectorβ with a minimum atβmc, it follows
that σ 2

β − σ 2
βmc

= O(‖β − βmc‖2
2) and, in particular,

σ 2
β̂mc

/σ 2
βmc

= 1+ Op(n−1).

4. CONTROL VARIATES WITH RQMC

Suppose thatX1, . . . ,Xn are generated by an RQMC
rule. Let f be the integrand of interest and leth =
(h1, . . . , hJ )T be a vector with

∫
h(x) dx = θ = (θ1,

. . . , θJ )T . The estimatêIβ from (9) is still an unbiased
estimate ofI , but now

Varrqmc(Îβ) = Varrqmc

(
Î −

J∑
j=1

βj Ĥj

)
,(14)

where Ĥj = (1/n)
∑n

i=1 hj (Xi), as before. Equa-
tion (14) does not simplify as in the IID case because

the Xi are not independent. This variance is still a
quadratic inβ, and the minimizing value is now

βrqmc= Covrqmc(Ĥ , Ĥ )−1 Covrqmc(Ĥ , Î ).(15)

There is always a control variate strategy that is at least
as good as using no control variates: Varrqmc(Îβrqmc) ≤
Varrqmc(Î ) because Varrqmc(Î ) corresponds to using
β = 0. A suboptimal or poorly estimated coefficient
can, however, lead to worse results than obtained from
not using the control variate. It is also clear from (14)
that a control variatehj for which Varrqmc(Ĥj ) = 0 is
redundant.

As (14) and (15) show, an effective set of control
variates must be correlated withf under RQMC sam-
pling. This is not necessarily the same as correlation
of h with f under IID sampling. In particular, writing
f = fG +fB andh = hG +hB, we find thatfG andhG

do not contribute to (14), and we would rather havehB

correlated withfB than haveh correlated withf .
Note that formula (12) for̂βmc applied to an RQMC

sample will estimateβmc, notβrqmc. The use of RQMC
sampling does not turn̂βmc into an estimate ofβrqmc,
but instead simply provides a more accurate estimate
of βmc than MC sampling would provide.

There is a further complication in that (15) is a
moving target. It depends on the sample sizen. For
n = 1, we haveβrqmc = βmc. As the sample size in-
creases, more of the structure fromf is integrated
exactly, andβrqmc is determined only by the parts of
f andhj not integrated exactly.

4.1 Cautionary Example

The following simple example highlights the possi-
ble differences betweenβmc andβrqmc. Takes = 1 and,
for M > 0, let f (x) = (1 + 2
Mx� − Mx)/M be a
sawtooth function with teeth of width 1/M . Figure 3
shows such a function forM = 50. In ordinary Monte
Carlo sampling, the linear functionh1(x) = x is an ex-
tremely good control variate forf . The optimal coef-
ficient can be shown to beβmc = 1 − 2M−2 and then
σ 2

mc = 4σ 2(M−2 − M−4). Thus forM = 50, the con-
trol variate reduces the variance by a factor of 625.25.

Now consider a randomized(0,1,1) net in base
b = n. This trivially simple net reduces to a strati-
fied sample in which one point is taken uniformly
from each of then intervals[(i − 1)/n, i/n) for i =
1, . . . , n. For simplicity suppose thatM = n. The vari-
ance ofÎ for this f (x) under this stratified sampling
is 1/(12M3). Using the control variate with the coef-
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FIG. 3. A sawtooth function f with tooth width 0.02and a linear
function h1(x) = x.

ficient βmc approximately doubles the variance com-
pared to RQMC without a control variate.

The linear functionh1(x) = x is in fact a good
control variate for the sawtooth integrandf . Taking
βrqmc = −1, we find that Varrqmc(Îβrqmc) = 0. In this
case, using a coefficientβ optimized for RQMC elim-
inates the variance, while using the ordinary MC coef-
ficient doubles the RQMC variance.

5. REPLICATION AND INTERNAL REPLICATION

In this section we consider the use ofR indepen-
dent replicates of añn point RQMC method. The to-
tal sample size is thenn = Rñ and replication allows
us to estimate the vectorβrqmc appropriate to a sam-
ple of ñ observations. A related idea is to exploit an
“internal replication” structure, whereinn consecutive
RQMC points can be broken intoR consecutive blocks
of ñ points, in which each block constitutes a smaller
RQMC rule. As described below, there is a trade-off in
choosingR.

5.1 Replication Estimates of βrqmc

ForJ control variates, let us takeR > J +1 indepen-
dent replications of the RQMC method with̃n points
each, producing forr = 1, . . . ,R the estimateŝIr and
Ĥr = (Ĥ1r , . . . , ĤJ r)

T . These estimates depend onñ,
but we suppress that dependence here.

Define Î• = (1/R)
∑R

r=1 Îr and Ĥ• = (1/R) ·∑R
r=1 Ĥr . The combined replication estimate ofI is

Î
β̂

= Î• − β̂T (Ĥ• − θ),(16)

where

β̂ =
(

R∑
r=1

(Ĥr − Ĥ•)(Ĥr − Ĥ•)
T

)−1

(17)

·
(

R∑
r=1

(Ĥr − Ĥ•)(Îr − Î•)

)
is a sample version of (15). The sum of squares

SS(β0, β) =
R∑

r=1

(Îr − β0 − Ĥ T
r β)2(18)

is minimized by taking the scalarβ0 = Î
β̂

− β̂T θ and

the vectorβ = β̂. A natural estimate of Var(β̂) is then
V̂ar(β̂) = SS(β̂0, β̂)/(R(R − J − 1)).

5.2 Choosing R

For a given budget ofn = Rñ an important practical
problem is to decide whether to use a largeR and a
small ñ or vice versa. The QMC error decreases faster
in ñ than inR, suggesting thatR should ordinarily be
taken as small as other considerations allow. Ifβrqmc is
not being estimated from replications, then takingR to
be about 5 should give at least a reasonable number of
degrees of freedom in a variance estimate. When there
areJ coefficients inβrqmc to estimate as in Sections
5.1 and 5.3, then takingR = J + 5 might suffice, tak-
ing note that control variate methods are forgiving of
modest errors inβ. The trade-off in picking smallR
is thatR is the sample size for subsidiary tasks of es-
timatingβ and the replication variance. To attempt an
optimal choice ofR is a topic for further research.

5.3 Internal Replication

QMC schemes can often be considered to be “in-
ternally replicated.” For example, a(λ, t,m, s) net
taken from a(t, s) sequence can be decomposed into
R = λbm−m̃ consecutive(t, m̃, s) nets for 0≤ m̃ ≤ m.
Likewise, an extensible shifted lattice withn = bm

points can be decomposed intoR = bm−m̃ consecutive
shifted lattices of̃n = bm̃ points each.

For nets scrambled as described by Owen (1995), the
formulas from Section 5.1 can ordinarily be used di-
rectly. As Owen (1997a) discussed, variance estimates
based on internal replication tend to be conservative.
Each internal replicate tends to fill in spaces avoided by
the others and this tends to induce negative correlations
among quantities such asÎr from different replications.
Negative correlations amonĝIr reduce the variance
of Î• while simultaneously increasing the usual vari-
ance estimates.
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Internal replication is more complicated for shifted
lattice rules, owing to the aliasing phenomenon. One
consequence of aliasing is that Varrlat(Î ) = Var(fB)

and similarly forĤ , so that (15) reduces to

βrlat =
(∫

hB(x)hT
B(x) dx

)−1

(19)

·
∫

hB(x)fB(x) dx.

We discuss how to estimate
∫

hB(x)hT
B(x) dx

from (19); similar comments apply to
∫

hB(x)fB(x) dx.
For lattices,Ĥ = θ + ĤB, whereĤB is the quadra-
ture rule applied tohB. Within replicate r we get
Ĥñ,r = θ + ĤB,ñ,r , using notation that recognizes how
the functionhB,ñ depends on the within-replicate sam-
ple sizeñ.

The denominator matrix in (19) may then be esti-
mated by

1

R

R∑
r=1

(Ĥr − Ĥ•)(Ĥr − Ĥ•)
T

= 1

R

R∑
r=1

ĤB,ñ,r Ĥ
T
B,ñ,r − ĤBĤ T

B(20)

= 1

n

n∑
i=1

hB,ñ(Xi)h
T
B,ñ(Xi) − ĤBĤ T

B ,

wherein the first equality follows because averages of
h reduce to averages ofhB,ñ and the second equality
follows from aliasing. Inspecting (20) we see thatβrlat

from (19) depends on mean squares defined throughfB

andhB, while the internal replication estimate reduces
to corresponding mean squares offB,ñ andhB,ñ. Thus
the internal replication estimateβ is seen to be a direct
estimate ofβrlat,ñ for ñ < n.

6. LIMITING VALUES OF β

The previous section considered estimates ofβrqmc

appropriate to sample sizesñ ≤ n. In some cases we
can compute or approximate

β∞
rqmc ≡ lim

n→∞βrqmc

= lim
n→∞ Covrqmc(Ĥ , Ĥ )−1 Covrqmc(Ĥ , Î ),

and the results provide qualitative insight and suggest
some methods for choosingβ.

We present three cases: (1) stratified sampling of
[0,1), (2) stratified sampling of[0,1)s and (3) ran-
domized(0,m, s) nets. For the first two cases the limit
is obtained by correlating certain differential operators
applied tof andh. A similar result by Owen (1992)
shows that a good control variateh for Latin hyper-
cube sampling is one whose nonadditive part correlates
with that off . The variance expressions for nets do not
provide an expression forβ∞

rqmc, but do suggest a value
that can be tested empirically. For extensible shifted
lattices, it is not clear whenβ∞

rqmc exists.

6.1 Stratified Sampling of [0,1)

Suppose thathj and f have Lipschitz continuous
derivativesh′

j and f ′ on [0,1]. That is, for some

 ∈ (0,1], someB < ∞ and all x, x∗ ∈ [0,1], both
|f ′(x) − f ′(x∗)| ≤ B|x − x∗|
 and maxj |h′

j (x) −
h′

j (x
∗)| ≤ B|x − x∗|
 hold. In practice this condition

may commonly hold with
 = 1.
We stratify[0,1) into n intervals, and sample inde-

pendently and uniformly within each of them. Specifi-
cally, our sample has independent random variablesXi

uniformly distributed on[(i − 1)/n, i/n) for i =
1, . . . , n.

Let g be a function with Lipschitz continuous deriva-
tive g′ satisfying|g′(x) − g′(x∗)| ≤ B|x − x∗|
 for all
x, x∗ ∈ [0,1]. Then from Section 3 of Owen (1997b)
we obtain

Varstrat

(
1

n

n∑
i=1

g(Xi)

)
(21)

= 1

12n3

∫ 1

0
g′(x)2 dx + O(n−3−
).

It is natural to substitutef − βT h for g in the lead
term of (21) and then minimize overβ. Some care is
required with the error term. We show below that this
minimization gives the right answer.

LEMMA 1. Assume that f and hj have Lipschitz
derivatives as described above with common values of
B and 
, and that

∫
h′(x)h′(x)T dx has full rank J .

Then the optimal control variate coefficient under
stratified sampling satisfies

lim
n→∞βstrat≡ β∞

strat=
(∫ 1

0
h′(x)h′(x)T dx

)−1

(22)
·
∫

h′(x)f ′(x) dx.
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PROOF. By (21) we get

Varstrat(Îβ) = 1

12n3

∫ 1

0

(
f ′ −

J∑
j=1

βjh
′
j

)2

dx

(23)

+
(

1+
J∑

j=1

|βj |
)
O(n−3−
),

where the constant inside theO symbol is independent
of β. Let that constant beD/12 for 0≤ D < ∞.

Because
∫ 1
0 h′(x)h′(x)T dx has full rank, the right-

hand side of (22) is the unique minimizer of the first
term in (23). LetδJ > 0 be the smallest eigenvalue
of

∫ 1
0 h′(x)h′(x)T dx. By a sequence of elementary

bounds, for large enoughn we have

12n3(Varstrat(Îβ) − Varstrat(Îβ∞
strat

)
)

≥ δ2
J ‖β − β∞

strat‖2
2 − Dn−
(1+ ‖β‖1)

≥ δ2
J ‖β − β∞

strat‖2
2 − Dn−
(1+ ‖β‖1)

≥ δ2
J ‖β − β∞

strat‖2
1/J

− Dn−
(1+ ‖β‖1 + ‖β − β∞
strat‖1).

Suppose that‖β −β∞
strat‖1 > ε > 0. Then Varstrat(Îβ) >

Varstrat(Îβ∞
strat

) holds for large enoughn. The result fol-
lows. �

Lemma 1 shows that the asymptotically optimal con-
trol variate coefficient is obtained through the expected
cross-products of first derivatives off andhj . Notice
that the averages off ′ andh′

j are not first subtracted.
In practice we can estimateβ∞

strat from the stratified
sample as

β̂∞
strat=

(
n∑

i=1

h′(Xi)h
′(Xi)

T

)−1

(24)

·
n∑

i=1

h′(Xi)f
′(Xi)

and replication is not necessary. Hereβ∞
strat is obtained

by least squares regression, without an intercept term,
of f ′ onh′.

A simple special case hash1(x) = x. Thenh′
1(x) = 1

andβ∞
strat=

∫ 1
0 f ′(x) dx = f (1) − f (0), and so

Îβstrat =
1

n

n∑
i=1

(
f (Xi) − (

f (1) − f (0)
)
(Xi − 0.5)

)
with variance(12n3)−1 Var(f ′(x)) + O(n−3−
) in-
stead of(12n3)−1 ∫ 1

0 f ′(x)2 dx + O(n−3−
). If the

variance off ′(X) for X ∼ U [0,1) is much smaller
than its mean square, then an appreciable variance re-
duction is obtained.

The stratification scheme above describes a simple
special case of randomized nets. A similarly simple
special case of lattice rules hasXi = (i − 1 + U)/n

for i = 1, . . . , n, where the same random variableU ∼
[0,1) is used in alln random values. In this case we
also find that (22) is the best regression coefficient, but
the factor 1/(12n3) in the variance has to be replaced
by 1/(12n2). The stratified sample by usingn indepen-
dent uniform deviations achieves an additional vari-
ance reduction factor ofn from error cancellation.

6.2 Stratified Sampling of [0,1)s

For small s it is feasible to stratify the unit cube
into n = ms congruent subcubes having side dimen-
sion 1/m and to sample oneXi uniformly within each
such cube. Forf andhj smooth enough we find a sim-
ilar result to the one-dimensional case.

If the real-valued functiong has two continuous
derivatives, then the variance ofg(X) for X sampled
uniformly within a hypercube of size 1/m with cen-
ter c is

1

12m2‖∇g(c)‖2
2 + O(m−2),

where∇g is the 1 bys gradient (row) vector ofg.
The lead term Varstrat(Îβ) is then

1

12n1+2/s

∫
[0,1)s

∥∥∥∥∥∇
(
f (x) −

J∑
j=1

βjhj (x)

)∥∥∥∥∥
2

2

dx.(25)

The variance raten−(1+2/s) describes the well-known
deterioration of cubic stratification in higher dimen-
sions.

Recalling our definition of∇ from Section 1.1 we
may write the asymptotically optimal coefficient as

β∞
strat=

(∫
[0,1)s

∇h∇hT dx

)−1

(26)
·
∫
[0,1)s

∇h∇f dx

and estimate it by

β̂∞
strat=

(
n∑

i=1

∇h(Xi)∇hT (Xi)

)−1

(27)

·
n∑

i=1

∇h(Xi)∇f (Xi).
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The results fors-dimensional stratification generalize
those of one-dimensional stratification by replacing the
scalar first derivativesh′ andf ′ with the correspond-
ing gradients∇h and∇f . An argument along the lines
of Lemma 1 shows that optimizing the dominant term
of (25) gives the asymptotically optimal coefficient.

6.3 Randomized Nets

Finite sample variance formulas are available for
randomized nets, but they appear to be too cumber-
some to help us chooseβ. The asymptotic variance
formulas are not sharp enough to allow us to derive
the exact value ofβ∞

rnet, but they do suggest a way to
compute a candidate valuẽβ∞

rnet. This and other candi-
dates, such as estimates ofβmc, can then be compared
numerically in applications.

Let ∂sf/∂x denote the orders mixed partial deriv-
ative off taken once with respect to each component
of x. Let ∂ |u|f/∂ux denote the mixed partial deriva-
tive of f taken once with respect to each index inu.
Owen (1997b) defined smooths-dimensional functions
as those that satisfy∣∣∣∣ ∂s

∂x

(
f (x) − f (x∗)

)∣∣∣∣ ≤ B‖x − x∗‖

2(28)

for finite B ≥ 0 and
 ∈ (0,1]. Then, under a scram-
bled(0,m, s) net,

Varrnet(Î ) =
[
(logn)s−1

n3

λ2

12s(s − 1)!
(29) ·

(
b2 − 1

logb

)s−1 ∫ (
∂sf (x)

∂x

)2

dx

]
· (

1+ O(1)
)

asn → ∞, for the scrambling in Owen (1995), where
the constant inO(1) depends onB and
 only.

If we replacef with f − βT h in (29) and minimize
the integral there overβ, we obtain

β̃∞
rnet =

(∫
∂sh(x)

∂x

∂shT (x)

∂x
dx

)−1

(30)

·
∫

∂sf (x)

∂x

∂shT (x)

∂x
dx

as the optimizer of an estimate of Varrnet(Îβ).
Equation (29) arises in the limit asn → ∞ of a sum

1

n

∑
|u|>0

(
Mu + O(1)

) ∫ (
∂ |u|fu

∂ux

)2

dx.

The sum contains 2s − 1 terms, one for every noncon-
stant ANOVA termfu in f . The coefficientsMu can be

found in Owen (1997b). Asn → ∞ the highest-order
ANOVA term dominates, having a coefficientM{1,...,s}
that is larger by powers of log(n) than any other terms.
Equation (30) can be written without an ANOVA com-
ponent because∂sf{1,...,s}/∂x = ∂sf/∂x.

Things simplify considerably ifhj only has one
nonzero ANOVA component. If, for example,J = 1
andh1(x) = ∏

�∈u(x
� − 0.5), then∂ |u|h1(x)/∂ux ≡ 1

and then

β̃∞
rnet=

∫
∂ |u|fu(x)

∂ux
dx.

In special settings we might know this value or be able
to approximate it using sample values of the required
partial derivative.

7. ORTHOGONAL CONTROL
VARIATE COEFFICIENTS

If we can show thatβrqmc= βmc, then we can expect
Î
β̂mc

to be effective in RQMC sampling. For a strati-
fied sample, consider a functionh such that the aver-
age value ofh is θ within every one of the strata. Then
Covstrat(Ĥ , Ĥ ) = Covmc(Ĥ , Ĥ ) and Covstrat(Ĥ , Î ) =
Covmc(Ĥ , Î ), and soβstrat= βmc.

For a scrambled(λ,0,m, s) net in baseb, there
are some integrands known to have exactly the Monte
Carlo variance. For a(0,m, s) net in baseb, it follows
from Owen (1997a) that the indicator function of a suf-
ficiently fine b-ary box, one with

∑s
j=1 kj ≥ m, will

be integrated with exactly the Monte Carlo variance as
will a linear combination of such fineb-ary boxes.

The variance of scrambled net integration is known
to be a sum of contributions from each nonconstant
ANOVA term in the integrand. In examples with
smooth integrands (Owen, 1997b; Caflisch, Morokoff
and Owen, 1997), one sees that the contribution from
a given ANOVA term tends to decay at the MC rate
1/n until about n = b|u|+t . Then it declines more
rapidly. Thus we can expect control variates dominated
by their higher-dimensional ANOVA contributions to
haveβrqmc close toβmc.

A good control variate for scrambled nets would be
one that matched the high dimensional and fine parts of
the function, leaving a differencef −βT h that had pri-
marily low dimensional, and coarse parts. That is, the
control variate would leave an integrand of low effec-
tive dimension in the superposition sense of Caflisch,
Morokoff and Owen (1997).

For shifted extensible lattices a good control variate
is one whose aliased part is strongly correlated with the
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aliased part off . Aliasing makes it harder to estimate
the coefficient for such a control variate. If, however,
we know thatβrlat = βmc, then the strategy from Sec-
tion 5.3 with a small value of̃n is reasonable.

8. SMALL NUMERICAL EXAMPLE

Here we present a two-dimensional numerical
example. Because the dimension is so low and the
functions involved are smooth, we can expect the as-
ymptotic variance formulas to be reliable, even for
modest sample sizes.

For x = (x1, x2)T ∈ [0,1)2, let f (x) = sin(π(x1 +
x2)). It is common to select control variates that have
a qualitative similarity to the integrand. Here we let
J = 1 and takeh1(x) = (x1 +x2 −1)3 − (x1 +x2 −1)

as such a similar function. We know that
∫

h1(x) dx =
θ1 = 0. We also know thatI = 0, but we will inves-
tigate the accuracy of estimates ofI . The various in-
tegrals in the asymptotic variance formulas have been
computed by averaging over a 100 by 100 midpoint
grid in [0,1)2 and also by averaging over 65,536 points
obtained from a scrambled(0,15,2) net in base 2 and
its antithetic points of the form(1 − X1

i ,1 − X2
i )

T .
These two methods agree for the values reported be-
low.

The simple estimator (2) has variance 1/(2n) un-
der MC sampling. The variableh is highly corre-
lated with f , and we findβmc = 2.675. Equation
(26) givesβ∞

strat= 2.809 and (30) gives̃β∞
rnet = 2.547.

Table 1 records the asymptotic sampling variances
of Îβ for all three methods and all four control vari-
ate coefficient values. Each method has its own as-
ymptotic rate in n. The coefficients are computed
through (10), (25) and (29), including the constants
1/12 and 12−2(22 − 1)/ log(2) = 0.0301 in the latter
two.

FIG. 4. The asymptotic standard deviations of Îβ versus n for
the methods in Table 1. The solid lines are, top to bottom, for MC,
stratification and randomized nets. Below these are parallel dotted
lines that represent when control variates are employed. Lines for
different control variate values largely overlap on this plot.

Standard deviations found as square roots of the as-
ymptotic variances from Table 1 are plotted in Figure 4.
The story for this example is that nets work better than
stratification, which works better than IID sampling.
For all methods, using the control variate brings an im-
provement and the amount of improvement does not
depend strongly on which coefficient was used. The
benefit from using this control variate diminishes as
one uses better sampling methods.

These asymptotic variances predict that stratification
without control variates will surpass MC with an opti-
mal control variate at roughlyn = 139, which we ought
to round to 144 because stratification requires thatn be
a perfect square. Scrambled nets without control vari-

TABLE 1
Asymptotic variances of MC, stratification and QMC for a two-dimensional problem from the text

CV coefficient

None βmc β∞
strat β̃rnet

Method Rate 0 2.675 2.809 2.547 Gain

MC n−1 0.5 0.00594 0.00718 0.00707 84.2
Strata n−2 0.8245 0.0351 0.0333 0.0402 24.7
(0,m,2) net n−3 log(n) 1.464 0.297 0.307 0.294 4.98

NOTE. The coefficientsβmc from (11),β∞
strat from (27) andβ̃∞

rnet from (30) were computed nu-
merically and are displayed above the table. The asymptotic variance formulas (10), (25) and (29)
applied tof − βT h have rates inn given to the left of the table with numerically determined con-
stants given in the body of the table. The rightmost column shows the variance reduction comparing
theβ = 0 variance to the smallest variance in the row.
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ates overtake MC with the optimal control variate at
roughly n = 29, which we round to 32 because these
nets requiren to be a power of 2. For nets without the
control variate, to overcome stratification with the con-
trol variate takesn = 241, which again we round to
256.

For Monte Carlo sampling, the control variate in this
example allowed us to reduce the variance by a fac-
tor of 84.2. The corresponding factors for stratified
sampling and randomized nets are 24.7 and 4.98, re-
spectively. It happened that the better balanced sample
points gained less from the control variate and, what is
almost the same thing, were more forgiving of inaccu-
rate control variate values.

Matchingh1 to f we found that there was a lesser,
but still useful, correlation between certain derivatives
of h1 and corresponding derivatives off . There was
one surprise. Viewing stratification as intermediate be-
tween MC and RQMC, we might have expected to find
thatβ∞

strat would lie betweenβmc andβ∞
rqmc, but it did

not.
Notice that the benefit from a variance reduction is

higher for MC sampling than it is for QMC. For ex-
ample, in MC sampling a variance reduction of 10 is
equivalent to a 10-fold increase in the effective sam-
ple size. In settings where the variance decreases more
quickly, the gain translates into smaller sample size
multiples. When the variance decreases proportionally
to n−2 or n−3, then a 10-fold reduction in variance
would equate to sample size increases of 101/2 .= 3.16
and 101/3 .= 2.15, respectively. The raten−3 corre-
sponds to scrambled net variance ignoring logarithmic
powers, whilen−2 is appropriate to bivariate stratifi-
cation and, ignoring logarithmic powers, some other
RQMC methods.

9. ASIAN OPTION

This section considers an example ins = 16 vari-
ables. There is no assurance that asymptotic error rates
for QMC are relevant for this dimension untiln is ex-
tremely large. There is, however, empirical evidence
that QMC and RQMC methods usually surpass MC
methods, well before entering their asymptotic regime.

The integral we study represents the value of an
Asian call option. Valuing Asian options is a prob-
lem of practical interest in financial applications and is
also a widely studied test problem for MC and QMC
methods. In this setting there is an underlying asset
with price S(t) at time t . The option pays an amount
max(0, (1/s)

∑s
i=1 S(ti) − K) at timeT , whereK is

the strike price andt1, . . . , ts are the dates at which the
asset’s price is recorded. Somebody planning to make
regular purchases of the asset between times 0 andT

might buy this option as a hedge against high future
prices.

Under the Black–Scholes model, the value of this op-
tion at timet = 0 is the expected value of the payment,
assuming thatS(t) follows geometric Brownian mo-
tion times a discount factor that reflects the time value
of money. Geometric Brownian motion ats time points
can be expressed through a vectorx ∼ U [0,1)s as

S(ti) = S(ti, x)

= S(0)exp

[
(r − σ 2/2)ti

+ σ
√

T/s

i∑
j=1

�−1(xj )

]
,

where the drift parameterr is the risk-free rate,σ is
the volatility of the asset prices and�−1 is the inverse
of the standard normal cumulative distribution func-
tion. Incorporating the discount we find the value is∫

f (x) dx, where

f (x) = e−rT max

(
0,

1

s

s∑
i=1

S(ti, x) − K

)
.

In our experiments, we used an initial price of
S(0) = 100, an annualized interest rate ofr = 0.05, an
expiration ofT = 1 year ands = 16 equispaced times
ti = i/16 for i = 1, . . . ,16. The volatility isσ = 0.3.
The strike price isK = 120, so that the option is ini-
tially out of the money. For this option the probability
of a nonzero payout is roughly 0.17. When the payout
probability is much smaller than this, then some form
of importance sampling becomes helpful.

A widely used control variate for Asian options re-
places the arithmetic option by a geometric one:

h1(x) = e−rT max

(
0,

s∏
i=1

S(ti, x)1/s − K

)
.

The geometric mean insideh1(x) has a log-normal
distribution that allows

∫
h1(x) dx to be found via a

one-dimensional integration that reduces to the Black–
Scholes formula∫

h1(x) dx = e−rT [
exp(a + b2/2)�(d1) − K�(d2)

]
,
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where

a = ln(S(0)) + (r − σ 2/2)T (s + 1)/(2s),

b2 = σ 2T (s + 1)(2s + 1)/(6s2),

d1 = (− lnK + a + b2)/b,

d2 = d1 − b,

taking b ≥ 0, and where � is the standard
normal cumulative distribution function. See
Ritchken, Sankarasubramanian and Vijh (1993).

The functions

A(x) = e−rT

(
1

s

s∑
i=1

S(ti, x) − K

)
,(31)

G(x) = e−rT

(
s∏

i=1

S(ti, x)1/s − K

)
(32)

are useful in a control variate strategy for QMC. The
standard asymptotic results for QMC assume inte-
grands of bounded variation in the sense of Hardy
and Krause. The functionsf (x) and h1(x) are un-
bounded on[0,1)s and hence are not of bounded varia-
tion. The functionsf (x)−A(x) andh1(x)−G(x) are
at least bounded, although lacking sufficient smooth-
ness to be of bounded variation. Note also thatf − A

andh1 − G represent the discounted payoff from the
corresponding put options, which pay max(0,K −
(1/s)

∑s
i=1 S(ti)) and max(0,K − ∏s

i=1 S(ti)
1/s), re-

spectively. Both
∫

A(x)dx and
∫

G(x)dx are easily
obtainable. For this problem,∫

h1(x) dx = 1.916,∫
A(x)dx = −16.454,∫
G(x)dx = −17.191.

The Monte Carlo methods we consider are listed in
Table 2. They all use IID pointsXi ∼ U [0,1)s . The
MC0 is plain Monte Carlo with no control variates;
MC1 uses one control variate,h1; MC3 uses three con-
trol variates,h1, A and G; MCB uses the bounded
functionf − A; and MCBB uses the bounded function
f − A with a bounded control variateh1 − G. The co-
efficientsβj required are estimated by least squares on
the Monte Carlo sample.

We also considered (randomized) QMC versions of
all of these strategies. For an out of the money option
such as this,f (x) = 0 for mostx and has smaller vari-
ance thanf (x) − A(x). It is reasonable a priori to ex-
pect MCB to be worse than MC0, but QMCB might be
better than QMC0 due to boundedness inf − A.

The RQMC strategies we investigated were based on
(0,m,16) nets in base 17 using the generalized Faure
construction described in Tezuka (1995). Our first ver-
sion usedR = 85 independent replicates of a random-
ized (0,2,16) net. Our second version usedR = 5
replicates of a(0,3,16) net. Both versions require
n = 5 × 173 = 24,565 function evaluations, and this
is also the number of function evaluations used in the
MC simulations. The randomization was a random dig-
ital shift as described in L’Ecuyer and Lemieux (2002).
We denote the methods QMC(2) and QMC(3). The su-
perscript showsm and the control variate method is
specified through the same list of subscripts used for
MC.

For the 85 replicates of the(0,2,16) net, the repli-
cation strategy in Section 5.1 was used to estimate the
control variates and the variance ofÎ

β̂
. In each of the

five replicates of the(0,3,16) net, the coefficientsβj

were estimated using the formula forβ̂mc applied to
QMC data. These five values were then averaged and
the sample standard error was computed.

TABLE 2
The Monte Carlo methods used in the Asian option example

Name Estimate

MC0 Î (f )

MC1 Î (f − β1h1) + β1I (h1)

MC3 Î (f − β2h1 − β3A − β4G) + β2I (h1) + β3I (A) + β4I (G)

MCB Î (f − A) + I (A)

MCBB Î (f − A − β5(h1 − G)) + I (A) + β5I (h1 − G)

NOTE. In each estimatêI (g) is the sample average ofg(Xi) andI (g) = ∫
g(x) dx

is assumed known. TheXi employed are IID fromU [0,1)s andβj are estimated by
least squares regression. The mnemonic underlying the first three subscripts is that
those methods use 0, 1 and 3 control variates. MCB works directly with a bounded
integrand and MCBB uses a bounded integrand and a bounded control variate.
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The results of the simulation are shown in Tables
3 and 4. The standard errors in Table 3 were obtained
by analyzing the MC and QMC(2) data as 85 replicate
samples of size 289 and those for QMC(3) were ob-
tained in an analysis of five replicates of size 4913. As
might be expected,β3 is close to−β4, while the other
coefficients are close to 1. The values forβ3 and β4
are quite different for QMC(2) than those for the other
methods. The reason is that QMC(3), having only 5
replicates, used estimates ofβmc, while the 85 repli-
cates in QMC(2) were sufficient to allow estimation
of βrqmc.

In Table 4 we see that for each set of control variates,
QMC(3) is more accurate than QMC(2), which is in turn
more accurate than MC. In particular, while QMC(3)

could only be used with estimates of suboptimal coef-
ficients, it still outperformed QMC(2).

Without control variates, the root mean square error
(RMSE) for MC is about 11.92 times that for QMC(3).
For MC to attain that reduced error would require a
sample size 11.922 .= 142 times as large. The QMC(2)

attained a smaller improvement over MC.
The best control variate strategy for MC was to use

all three variates. For this function the control variates
reduced RMSE by a factor of 21.2 corresponding to a
sample size improvement of about 450. In this problem
control variates alone bring a better result than QMC
alone.

With optimal coefficients, using all three variates
would also be the best strategy for QMC, because
the other control variate strategies can be obtained as
choices ofβ2, β3 andβ4. The QMC(2) used 85 repli-
cates and also had its smallest error with all three con-
trol variates. For QMC(3) with QMC estimates ofβmc,
the method QMC(3)

BB with just one control variate had

better accuracy than QMC(3)
3 .

The best combined strategy was QMC(3)
BB, with an

efficiency gain of(4.41/0.0735)2 .= 3600 compared

TABLE 3
Estimated control variate coefficients for MC and for QMC

with m indicated as a superscript 2 or 3
(standard errors are in parentheses)

Coef. MC QMC(2) QMC(3)

β1 1.10 (4.9e−4) 1.08(5.6e−3) 1.10 (1.1e−3)

β2 1.04 (2.3e−4) 1.01(7.7e−3) 1.04 (4.0e−4)

β3 0.534(1.5e−3) 1.33(1.3e−1) 0.519(2.7e−3)

β4 −0.525(1.5e−3) −1.37(9.7e−2) −0.510(2.7e−3)

β5 0.988(2.0e−4) 1.03(9.0e−3) 0.987(1.2e−4)

TABLE 4
Estimated root mean squared errors

MC QMC(2) QMC(3)

0 4.41e−2 2.05e−2 3.70e−3
1 2.99e−3 2.16e−3 1.34e−3
3 2.08e−3 1.48e−3 1.04e−3
B 9.05e−2 1.69e−2 2.94e−3
BB 2.81e−3 1.52e−3 7.35e−4

NOTE. The row labels describe the control variate
strategy as described in Table 2. The column labels de-
scribe the sampling strategy: MC or QMC withm in-
dicated as a superscript 2 or 3.

to MC0. The two best methods for this problem are
QMC(3)

1 and QMC(3)
BB. They gave option values of

2.162 and 2.163, respectively, with the standard errors
in Table 4.

As expected, MCB was worse than MC0. For
both QMC methods the bounded function approaches
QMC(m)

B were (slightly) better than the corresponding

QMC(m)
0 methods. Similarly there were small advan-

tages for QMC(m)
BB using the bounded functionsf − A

and h1 − G over QMC(m)
1 using corresponding un-

bounded functionsf andh1.
The results discussed above can be brought out in

an ANOVA of the logarithms of the numbers in Ta-
ble 4. An additive model fits with anR2 of 90%. The
fitted main effects may be interpreted as follows. Com-
pared to MC, QMC(2) and QMC(3) reduce variance by
factors of 4.4 and 33, respectively. Control variates re-
duce variance by factors of 53 for method 1, 103 for
method 3 and 104 for method BB, while method B in-
creases variance by about 1.2. The interaction effects,
when exponentiated, result in some synergies, most no-
tably a further 5-fold variance reduction for B with
QMC(3) and about a 5.7-fold variance increase for B
with MC.

10. CONCLUSIONS

In this paper we have investigated the consequences
of combining QMC with control variates. Replacing
MC with QMC usually improves accuracy. Applying
this notion tof − βT h, we ordinarily expect the com-
bined method to improve on MC with control variates.
Incorporating control variates into MC or QMC also
improves accuracy, in general, although for QMC it can
be harder to select control variates.

Not surprisingly, in our examples we saw diminish-
ing returns to employing both strategies: the improve-
ment from control variates was smaller for QMC than
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for MC. Equivalently, the improvement from QMC
was smaller with control variates than without. These
results are consistent with Ben Ameur, L’Ecuyer and
Lemieux (1999), who reported numerical examples in
which control variates improve QMC, but not as much
as they improve simpler methods. Furthermore, as re-
marked in Section 8, a given variance reduction factor
corresponds to a larger sample size reduction for MC
than for QMC.

In our two numerical examples, using estimates
of βmc with QMC gave very good results, and this is re-
assuring. In the Asian option problem we saw better re-
sults using estimated suboptimal coefficientsβmc with
our best equidistribution strategy QMC(3) than we saw
using a weaker equidistribution QMC(2) for which we
could estimate the corresponding optimalβrqmc. The
tentative conclusion is that if one is using both QMC
and control variates, the quality of the QMC method is
more important than that of the control variate coeffi-
cient.

In other problems, estimates ofβmc could lead to
poor performance. In practice this can be tested by
comparing standard errors for QMC with and without
control variates. Then, if necessary, replicates may be
used to estimateβrqmc or, what seems better, internal
replicates can be used to estimate the value ofβrqmc ap-
propriate to a smaller sample size than the one in use.

We found theoretically that effective control variates
for QMC are not necessarily the same as for MC. For
MC, a good control variate is one that correlates with
the integrand, while for QMC, a good control variate is
one wherein certain derivatives or high frequency com-
ponents correlate with the corresponding aspects of the
integrand.

In our derivations we explored control variates for
RQMC instead of for QMC per se. An alternative ap-
proach is to define the optimalβqmc as one that min-
imizes an error bound, such as one proportional to
the total variation off − βT h. We found that alter-
native less attractive for several reasons. First, the to-
tal variation is a factor in a bound on the error and
the value ofβ that minimizes the bound is not nec-
essarily the one that minimizes the error itself. Sec-
ond, the total variation is not as tractable to optimize
as the variance. For smooth enough functions, the total
variation may be written as anL1 norm applied to the
s-dimensional mixed partial derivative∂s/∂x, suggest-
ing that we should consider minimizing

∫ |∂s(f (x) −
βT h(x))/∂x|dx. Thus, qualitatively at least, effective
control variates are again those for which a certain
derivative is approximately linearly related to the cor-
responding derivative of the target integrand.
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Comment
Pierre L’Ecuyer

Randomized quasi-Monte Carlo (RQMC) is a form
of variance reduction technique (VRT) that aims to in-
duce negative dependence between the replicates when
a mathematical expectation is estimated by an aver-
age. It works in the same spirit as stratification and
the method of antithetic variates, for example. Another
way to reduce the variance is to exploit the dependence
between the estimator andcontrol variates (CVs; i.e.,
other random variables with known expectation, cor-
related with the original estimator), and make an ap-
propriate correction to the estimator. Of course, these
two techniques can be combined. However, combining
VRTs often gives rise to complicated synergetic effects
that are not always easy to analyze (see, e.g., Avramidis
and Wilson, 1996; Glynn and Szechtman, 2002) and
this applies to the RQMC–CV setup. Two important
observations are that (1) the variance reduction factor
for the combined method can be no better than for each
method alone, but can also be orders of magnitude bet-
ter than the product of variance reduction factors of the
two methods and (2) the optimal CV coefficients with
and without RQMC (βrqmc andβmc) may be very dif-
ferent and the former is often harder to estimate.

Hickernell, Lemieux and Owen’s interesting paper
provides good insight on these issues and, perhaps
more importantly, opens the door to attractive and
largely unexplored territory. Their paper starts with
a nice compact and authoritative overview of QMC
methods and their randomizations. Although artificial,
their small example in Section 4.1 gives a case where
the RQMC–CV estimator reduces the variance to zero
with its optimal CV coefficientβrqmc, while βrqmc is
approximately theopposite of βmc, so using RQMC–
CV with coefficientβmc in this caseincreases the vari-
ance. This underlines the importance of estimating the
optimal CV coefficientfor the correct setting.

ESTIMATING βrqmc WITH R REPLICATES

As the authors rightly point out, estimatingβrqmc
defined in their equation (15) is harder than estimat-
ing βmc, because with RQMC the observationsXi are

Pierre L’Ecuyer is Professor, Département d’Informa-
tique et de Recherche Opérationnelle, Université de
Montréal, Montréal, Québec, Canada H3C 3J7.

not independent. The easiest way to estimate the vari-
ance of an RQMC estimator is to replicate the RQMC
schemeR times, independently, and use the sample
variance of theR averages as a variance estimator.
This same methodology can be used to estimate all the
variances and covariances involved in the expression
for βrqmc. So, instead of ann-point RQMC scheme,
one usesR independently randomized̃n-point RQMC
schemes, wheren = Rñ. The difficulty is that taking
a largeR compromises the effectiveness of RQMC,
whereas with a smallR, the variance and covariance
estimators can be very noisy, making the estimator of
βrqmc unreliable.

This problem does not occur for the Asian option ex-
ample in Section 9, where usingβmc instead ofβrqmc
works reasonably well anyway, but it may certainly oc-
cur in other applications. Would it be rare or frequent?
I guess only experience will tell.

The controlled estimator (16) is also biased in gen-
eral whenβrqmc is estimated from the same data. The
bias vanishes whenR → ∞. There is no bias for finite
R if the distribution of(Îr , Ĥ

T
r )T is multinormal, but

otherwise, for smallR, there could be significant bias
and it becomes more difficult to have reliable variance
estimates. We may be interested in finding the value of
R that minimizes the mean square error of (16) for a
givenn, for example. The solution is of course highly
problem dependent and depends onn. To get useful
insight on whatR should be used in actual applica-
tions, it seems that empirical investigations with spe-
cific classes of models and RQMC methods are neces-
sary.

To avoid diluting RQMC’s effectiveness, one can
also use theinternal replications heuristic discussed
by the authors, where an RQMC method is used based
on a point set of cardinalityn that can be partitioned
into R highly uniform point sets of cardinalitỹn. The
idea is topretend that the estimates obtained with these
R different subsets of points are independent, as if
these wereR independent replicates of a given RQMC
scheme. In fact, theseR estimates are not independent,
so this heuristic provides abiased estimator ofβrqmc.

The authors argue that in certain settings where the
R RQMC estimators based oñn points areidentically
distributed [this is a key property that underlies the va-
lidity of their equation (20), in particular], the method
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provides valid estimators of the variances, covariances
and optimalβ that correspond toone of theseñ-point
RQMC estimators (instead ofn). If both n and ñ are
large, it should be typically true that these variances
and covariances forn and ñ do not differ much. On
the other hand, one can construct examples where they
differ by arbitrarily large factors.

Suppose for instance thatf has the ANOVA
decompositionf = fG + fB + fBB, wherefG is in-
tegrated with zero error by thẽn-point rule,fB is in-
tegrated with zero error by then-point rule but with
100% error by thẽn-point rule andfBB is integrated
with 100% error by both rules. We may decomposeh in
a similar way, ash = hG + hB + hBB. It may very well
happen that

∫
hB(x)fB(x) dx differs significantly from∫

hBB(x)fBB(x) dx or that
∫

hB(x)hB(x) dx differs
significantly from

∫
hBB(x)hBB(x) dx, soβrqmc,n may

turn out to be quite different fromβrqmc,ñ. This did
not happen in the Asian option example examined by
the authors and perhaps it is unlikely to happens in a
majority of practical cases, but the danger still exists.

STRATIFICATION

In their Section 6 the authors discuss the choice
of β and provide convergence results for a CV with
stratified sampling. Their analysis assumes a single
CV coefficient for all strata. However, there are many
situations where it is more appropriate to selectdiffer-
ent coefficientsβ for the different strata.

I will illustrate this with an example of a tele-
phone call center, modeled as a queueing system with
a nonstationary Poisson arrival process, gamma ser-
vice times and a single first-in–first-out FIFO queue
(see, e.g., Pichitlamken, Deslauriers, L’Ecuyer and
Avramidis, 2003). Agents answering calls are the
servers in the queueing system. Customers have a ran-
dom patience time and abandon the queue (are lost)
when their waiting time in the queue exceeds this pa-
tience time. Two quantities that interest call center
managers areE[L] andE[G(s)], whereL is the num-
ber of abandonments in a day andG(s) is the number
of callers who waited less thans seconds in a day. Let
A be the total number of arrivals in a day. It is easy to
computeE[A] from the model, so in the long run (over
an infinite number of days), the fraction of callers who
abandon isE[L]/E[A] and the fraction whose waiting
time is less thans is E[G(s)]/E[A]. These fractions
can be estimated by estimating their numerators. Call
centers may receive several thousands of calls per day,
so these expectations are integrals with a huge (and

random) number of dimensions. Nevertheless, RQMC
methods, stratification and their combination with CVs
can help improve simulation efficiency if we take ad-
vantage of the structure of the model.

For example, suppose thatM agents do not report to
work (and cannot be replaced) on a given day, where
M is a random variable that takes valuem with proba-
bility qm, m = 0,1, . . . , ν. Clearly,L andG(s) should
be significantly correlated withM . So stratifying onM
(or using a one-dimensional RQMC scheme with re-
spect toM and independent random numbers else-
where) immediately comes to mind. Moreover,A is
an obvious choice for a CV. Suppose we want to strat-
ify on M with an optimal allocation, that is, by do-
ing nm simulation runs withM fixed at m, where
n0 + · · ·+nν = n, nm is approximately proportional to
qmσm andσ 2

m is the variance of the estimator of inter-
est [L or G(s), with the CVA] conditional onM = m.
Here,σ 2

m will depend on the CV coefficientβm used
in stratumm. The optimalβm will also depend onm.
Thus, one must first estimate the optimalβm and the
corresponding value ofσm for eachm, perhaps by us-
ing a fixed fraction of then simulation runs, and then
allocate the remaining runs so that the global allocation
approximates the optimal one.

There are cases where we cannot control the alloca-
tion to strata. If wepoststratify only instead of stratify-
ing with a selected allocation, we can still optimize the
coefficientβm within each stratum. This can be done if
we use RQMC on the random variates that determine
the strata, for example. This differs from the authors’
setting, in which the sameβ = βrqmc would be used
everywhere.

Another place where stratification or RQMC would
help in this application is as follows. Empirical evi-
dence shows that a nonstationary Poisson process with
deterministic rate function does not provide a real-
istic model for call arrivals to a telephone call cen-
ter, because the number of calls received in any given
time interval is a random variable that typically has a
much larger variance than its mean. One model that
better fits the data is a doubly stochastic one, where
the arrival process on a given day is Poisson with
rate functionR(t) = Bλ(t), where{λ(t), t ≥ 0} is de-
terministic andB is a random variable with mean 1
which can be interpreted as thebusiness factor for the
day. Thegamma distribution is often a good choice
for B (Avramidis, Deslauriers and L’Ecuyer, 2004).
Whenever the variance ofB is important (which is
typical), one would surely want to stratify onB, be-
causeL andG(s) should be strongly dependent with



CONTROL VARIATES FOR QUASI-MONTE CARLO 21

it. As a CV to be used jointly with the stratification,
one may considerH = A − E[A|B], with a coeffi-
cient β(B) that depends on the value ofB. The op-
timal coefficient isβ∗(B) = E[HL|B]/E[H 2|B] if
the goal is to estimateE[L]. To estimateβ∗(b) as a
function of b, one could estimate the two functions
q1(b) = E[HL|B = b] and q2(b) = E[H 2|B = b]
from the sample{(Bi,Hi,Li), i = 1, . . . , n} of n val-
ues of(B,H,L), for example, using least-squares ap-
proximation to fit a curvêq1 to the points(Bi,HiLi)

and another curvêq2 to the points(Bi,H
2
i ). The ra-

tio will estimate the functionβ∗(b). In the situations
where this function is far from being a constant, this
could make a significant difference compared with us-
ing the sameβ for all values ofB.

CVS FOR FUNCTIONS OF
SEVERAL EXPECTATIONS

The authors have considered a setting where lin-
ear CVs are used to correct the estimator of asin-
gle mathematical expectation estimated by a sample
average. This could be generalized to the estimation

of a function of several expectations, say,g(µ) =
g(µ1, . . . ,µd) by

g(X̂1, . . . , X̂d) − βT (Ĥ − θ),

whereg is continuously differentiable at(µ1, . . . ,µd)

and
√

n(X̂1 − µ1, . . . , X̂d − µd) converges to a multi-
normal with mean zero whenn → ∞ (as in Glynn,
1994, e.g.). The asymptotically optimalβ in this case
is βmc = (Cov[Ĥ ])−1 Cov[Ĥ , X̂]∇g(µ), and similarly
for RQMC, whereX̂ = (X̂1, . . . , X̂d). In other words,
in the generalization it suffices to replace Cov[Ĥ , Î ]
with Cov[Ĥ , X̂]∇g(µ) in (15). One simple useful ex-
ample of this is the estimation of a ratio of expecta-
tions, whereg(µ1,µ2) = µ1/µ2.
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Comment: Computation, Survey
and Inference
Xiao-Li Meng

1. THE SURVEY CONNECTION

1.1 Anticipating the “Surprises”

As someone who has benefited greatly from the sam-
ple survey literature, I am particularly pleased to see
Hickernell, Lemieux and Owen’s (HLO) emphasis on
the equivalence between the control variates in Monte
Carlo estimation and regression estimators in the sam-
ple survey literature. Indeed, the “surprises” described
in HLO can be anticipated from similar phenomena
in sample survey. For example, suppose that we, as a
marketing firm, want to estimate the average house-
hold consumption of a certain product for the first
six months of this year, based on a simple random

Xiao-Li Meng is Professor, Department of Statistics,
Harvard University, Cambridge, Massachusetts 02138,
USA (e-mail: meng@stat.harvard.edu).

sample (SRS) of a well-defined population of house-
holds (SRS is too simplistic for most practices, but
adequate for the current discussion). Suppose a pre-
vious year’s population counterpart is available (e.g.,
from a census source) for covariance adjustment (i.e.,
as a control variate). LetY be the variable for the
current semiannual consumption and letX represent
the same period of the previous year. Given an SRS
{(xi, yi), i = 1, . . . , n}, asymptotically our best esti-
mator is the well-known regression estimator

µ̂y = ȳn − β̂y,x(x̄n − µx),(1.1)

whereµx andµy are population averages, andβ̂y,x is
the usual least-squares estimator from regressingY

onX.
Suppose, however, that we discover that the popu-

lation average consumption for the first quarter, de-
noted byµy(F) , can be treated as known (e.g., there
was a much larger survey for the first quarter by a dif-
ferent marketing firm). Then we can estimateµy by
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µ̂∗
y = µy(F) + µ̂y(S) , whereµy(S) denotes the population

average for the second quarter, assuming{y(S)
i , i =

1, . . . , n} were available (e.g., we collected monthly
consumption for the first six months). This setting
mimics HLO’s setting withf (x) = fG(x) + fB(x),
where the integration offG is done with no error by
design, so all the estimation or integration errors come
from the second component. [The analogy, of course,
is not perfect because in HLO the choice offG depends
on the design andfG approachesf (in L2) as the data
size increases. In sample surveys, the estimand rarely
depends on the choice of designs, including the sam-
ple size. Fortunately, these differences are immaterial
for our current discussion because the use of control
variates is postdesign and with a given finite sample
size.]

This hypothetical survey example makes it clearer
that as far as the estimation ofµy(S) goes, neitherX
nor βy,x is necessarily the best choice, even if they are
for (1.1). It is likely that a better covariance adjustment
for Y (S) is X(S), the second quarter consumption for
the same previous year, perhaps due to the seasonal-
ity of the product. This is analogous to HLO’s discus-
sion in Section 4 withf = fG + fB andh = hG + hB;
sincefG andhG do not contribute to the variance cal-
culation, the goal is not to haveh correlated withf ,
but ratherhB correlated withfB. Furthermore, even
if the semiannual consumptionX is still a better co-
variance adjustment forY (S) because Corr2(X,Y (S)) >

Corr2(X(S), Y (S)), the regression slope in (1.1) will
need to be changed fromβy,x to βy(S),x . Therefore,

unless Corr2(X,Y (S)) > Corr2(X(S), Y (S)) andβy,x =
βy(S),x , usingβ̂y,x(x̄n −µy) to adjustȳ(S)

n will not pro-
duce an optimal estimator. This is in agreement with
HLO’s summary discussion at the beginning of Sec-
tion 4.

1.2 When Does the Wrong Optimality Hurt?

Indeed, it is also well known in the survey literature
that using a nonoptimal adjustment may actually do
some harm compared to no adjustment, for example,
in the context of comparing ratio estimators with SRS
estimators (e.g., Cochran, 1977, Chapter 6). The same
survey literature inspires the following general result
regarding when it becomes harmful to use a wrong op-
timal regression adjustment compared to making no
adjustment.

LEMMA 1. Let

θ̂
(i)
opt = θ̂ (i) − β

(i)
opt

(
ψ̂(i) − ψ(i)), i = 1,2,(1.2)

be two regression estimators for the same estimand θ ,
where β

(i)
opt = Cov(θ̂ (i), ψ̂(i))/Var(ψ̂(i)) > 0 is treated

as known. Let

θ̂ (1,2) = θ̂ (1) − β
(2)
opt

(
ψ̂(1) − ψ(1))(1.3)

be the “wrong” regression estimator, that is, it uses
ψ̂(1) −ψ(1) to adjust θ̂ (1), but with the regression slope
from the other estimator. Then Var(θ̂ (1,2)) > Var(θ̂ (1))

if and only if ∣∣∣∣β(2)
opt

β
(1)
opt

− 1
∣∣∣∣ > 1, that is,

(1.4)
β

(2)
opt

β
(1)
opt

> 2 or
β

(2)
opt

β
(1)
opt

< 0.

The proof of this lemma follows directly from the
fact that

Var
(
θ̂ (1,2)) = Var

(
θ̂ (1)) − [

β
(1)
opt

]2 Var
(
ψ̂(1))

+ [
β

(2)
opt − β

(1)
opt

]2 Var
(
ψ̂(1)).

This result provides theoretical support of HLO’s em-
pirical finding that the use ofβMC still often leads
to useful improvement with QMC, because it assures
us that unless the regression slope changes substan-
tially, that is, either it changes the sign or it is at least
twice as large in magnitude, the use of the wrong re-
gression slope is still beneficial compared to not mak-
ing any adjustment, regardless of whether or not we
use the same control covariate. For HLO’s “caution-
ary example” (Section 4.1),βMC = 1 − 2M−2 > 0,
but βRQMC = −1, so there is a switching of the sign
of the regression slope. Consequently, usingβMC in
place ofβRQMC will lead to an estimator with larger
variance than the RQMC estimator without adjusting
for the control variate. Note that in HLO’s example,
ψ̂(1) = ψ̂(2); indeed Lemma 1 can be recast with only
one regression class estimator,θ̂β = θ̂ −β(ψ̂ −ψ), and
then using a nonoptimalβ becomes harmful if and only
if |(β/βopt)−1| > 1. Also note that in real applications
the regression slope is seldom known and will be re-
placed by its least-squares estimator. This replacement,
however, does not affect the conclusion of Lemma 1
asymptotically because of the forgiving nature of the
regression estimators to the error in the slope, as dis-
cussed toward the end of Section 3 of HLO.

It is also known from the survey literature that the
use of regression estimators tends to have diminishing
gains for stratified sample designs relative to SRS, be-
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cause covariance/regression adjustment is essentially
a form of (deep) stratification. Consequently, unless
the two stratifying variables are uncorrelated with each
other, the stratified design has already “achieved” a
part of gain in efficiency intended by the regression ad-
justment. The degree of the “achievement” depends on
how deep the original stratification is in the sampling
design. Since QMC designs, especially the more ad-
vanced ones as reviewed in HLO, are often very deep
stratifications (compared to the types of stratifications
in sample surveys), it comes as no surprise that the
gains of using control variates tend to be noticeably
less pronounced for QMC than for MC, as summarized
in Section 10 of HLO.

1.3 Why Do We Need to Go beyond the
Design-Based Perspective?

The sampling survey, or more generally the design-
based perspective, however, does not explain every-
thing. Consider the following question/comparison. In
the semiannual consumption example in Section 1.1
we had

µ̂y = h(µ̂y(F), µ̂y(S)) ≡ µ̂y(F ) + µ̂y(S) .(1.5)

When the true value ofµy(F) is known, it is almost
impossible to resist the temptation to replaceµ̂y(F )

with its true value inh(µ̂y(F), µ̂y(S)) to form µ̂∗
y =

h(µy(F), µ̂y(S)) = µy(F) + µ̂y(S) to estimateµy . In-
deed, why not? How could we get hurt, as far as effi-
ciency/variance goes, by taking advantage of as much
truth as we know?

Now consider the regression estimator given in (1.1),
which can also be written as

µ̂y = g(ȳn, x̄n, β̂y,x) = ȳn − β̂y,x(x̄n − µx).(1.6)

It is legitimate to consider (1.1) as a function ofȳn, x̄n

andβ̂y,x only, because only these quantities depend on
the sample. Putting it differently, we can give a user a
“black-box” software routine that computes the value
of µ̂y , with ȳn, x̄n and β̂y,x as input, calculated from
the user’s particular sample. Suppose that the user ac-
cidentally discovered that the population true value of
µx was actually available from a census source, just
as we (hypothetically) discovered that the true value of
µy(F) was available. Now if the user adopts the same
reasoning/intuition as we did withh, then she or he
would surely inputµx in g in place of her or his sample
averagex̄n. However, this action will completely wipe
out the regression adjustment. See Liu, Rubin and Wu
(1998) for a similar discussion in the context of view-
ing the PX–EM algorithm as a covariance adjusted EM
algorithm.

One may argue that the problem occurred simply be-
cause the user did not understand the actual form of the
estimator, but this is exactly the issue: For a general es-
timation procedure, which can be of arbitrary complex-
ity, how can we tell when it is and when it is not benefi-
cial to substitute a part of our estimation procedure by a
more precise estimator (including its true value)? This
question is particularly relevant for Monte Carlo esti-
mators, be they quasi or not, because in a simulation
setting, nothing isunknown, in its original sense. Con-
sequently, the formulation of optimal estimators based
on simulated data will depend intricately on how we
model what weignore, not what we know—a question
that is beyond the realm of any design-based perspec-
tive. A different perspective is therefore needed, which
is the subject of the next section. In particular, we shall
see how the new perspective leads to a new interpreta-
tion of control variates and, more importantly, leads to
a new control-variate estimator that appears to be diffi-
cult to anticipate from the traditional design-based per-
spective of Monte Carlo integration or of sample sur-
vey.

2. THE INFERENCE CONNECTION

2.1 Why Does Likelihood Inference Appear to Be
Useless with Simulated Data?

To define optimality meaningfully, we first need to
quantify what data and model assumptions we permit
ourselves to use. In a real-data analysis, once the data
are collected or provided, the central challenge typi-
cally is to postulate a suitable set of reasonable as-
sumptions, parametric or nonparametric, to link our
data with our estimand of interest. Once the model is
posited and a measure of efficiency is chosen (e.g.,
variance), the corresponding optimality can then be
quantified theoretically, at least asymptotically (e.g.,
via Fisher information).

The above discussion might lead us to believe that
quantifying optimality with simulated data is an eas-
ier task, because there is no issue of model uncer-
tainty, for we are the one who generated all the data
(or design points). Ironically, the issue turns out to
be far more complicated, precisely because we know
too much. To illustrate, consider importance sampling,
as discussed in HLO. We are interested in the value
of c1 = ∫

� q1(x)µ(dx), where q1(x) is our known
integrand andµ is the baseline measure, typically
Lebesgue or counting. We have draws from a trial den-
sity p2 = q2/c2, denoted by{Xi2, i = 1, . . . , n2}. Then
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the well-known importance sampling identity

r ≡ c1

c2
= E2

[
q1(X)

q2(X)

]
,(2.1)

whereE2 is the expectation with respect top2, pro-
vides us with an estimation equation from which we
arrive at the well-known importance sampling (IS) es-
timator

r̂ = 1

n2

n2∑
i=1

q1(Xi2)

q2(Xi2)
.(2.2)

Note that in common IS settings, as in HLO,c2 is cho-
sen to be 1 and thusr = c1, but in more general settings
ratios are of interest; see Meng and Schilling (2002) for
a recent discussion of this issue.

So on what basis can we claim (2.2) is optimal?
How do we know there is no other estimation equation
that can deliver a more efficient estimator than (2.1)
can? Since asymptotically the maximum likelihood
estimator is most efficient (under standard regularity
conditions) and since asymptotic arguments are more
relevant for simulated data because the size of data is
under our control, we naturally wonder what the well
established likelihood theory can tell us for such ques-
tions. For simplicity, let us assume that the draws from
p2 = q2/c2 are i.i.d. Then the density of our “data”
{Xi2, i = 1, . . . , n2} is given by

p
(
X12, . . . ,Xn22

) =
n2∏
i=1

q2(Xi2)

c2
.(2.3)

The above expression immediately suggests that some-
thing is quite amiss. On one hand, our estimandc1 does
not even appear in our “likelihood function” (2.3). On
the other hand, it is clear that without{Xi2, i = 1,

. . . , n2}, we do not even have the IS estimator (2.2). So
could this be an obvious counterexample to the likeli-
hood principle?

Take bridge sampling as another example. Bridge
sampling is a generalization of importance sampling,
as described by Meng and Wong (1996). Here our
goal is still to estimater = c1/c2, as in the IS set-
ting. The difference is that we now have draws from
bothp1 = q1/c1 andp2 = q2/c2, denoted by{Xij , i =
1, . . . , nj }, j = 1,2. Sinceq1 andq2 are assumed to
be known, under the assumption of independent draws,
the “likelihood” for c1 andc2 becomes

L
(
c1, c2|{Xij , i = 1, . . . , nj }, j = 1,2

)
(2.4)

=
2∏

j=1

nj∏
i=1

qj (Xij )

cj

∝ c
−n1
1 c

−n2
2 ,

which is free of any data! So once again, the likelihood
method seems to fail, whereas estimators based on the
estimation equation approach abound (see Meng and
Wong, 1996).

One answer to the above paradoxes is simply that
likelihood methods are not applicable to simulated
data. Whereas logically this is an admissible answer, if
it were true, it certainly would be the most disturbing
puzzle lying in the foundation of likelihood inference,
at least to some of us. How could it be? How could
an inferential method so powerful with an uncertain
data-generating mechanism becomes completely use-
less when the mechanism is completely known?

2.2 The Answer: Because We Were Looking at the
Wrong Parameter!

An astute reader may have already seen a hidden
problem with the “likelihood” as given in (2.4). The
normalizing constantcj is deterministically related
to qj via

cj =
∫
�

qj (x)µ(dx), j = 1,2.(2.5)

So when we ignoreqj (Xij ) from (2.4) because they are
known, we actually have also effectively ignored a part
of the “parameter” that our likelihood intends to infer.
A closer inspection of (2.5) reveals that the problem is
far more serious than just appropriately sorting out the
connection betweencj and qj (Xij ). The problem is
that it is impossible to treatcj as an unknown parame-
ter when we treatqj as known, unless we can treat the
baseline measureµ as unknown. In other words, when
we treat bothqj andµ as known, there is no statistical
inference problem forcj to speak of, sincecj is com-
pletely determined byqj andµ. Putting it differently,
althoughcj ’s or their ratios are what we are after, they
cannot be theonly unknown model parameters for any
meaningful statistical modeling.

To resolve this problem, Kong, McCullagh, Meng,
Nicolae and Tan (2003) proposed to conduct the like-
lihood inference by treating the baseline measureµ as
the unknown parameter and then to estimatecj as a lin-
ear functional ofµ via (2.5). With this approach, (2.3)
becomes a well-defined and meaningful likelihood in
the form of

L
(
µ|X12, . . . ,Xn22

)
(2.6) =

n2∏
i=1

q2(Xi2)µ(Xi2)∫
q2(x)µ(dx)

∝
∏n2

i=1 µ(Xi2)

[∫ q2(x)µ(dx)]n2
,



CONTROL VARIATES FOR QUASI-MONTE CARLO 25

where µ(X) = µ({X}) or µ({dX}). The maximum
likelihood estimator ofµ, among all possible nonnega-
tive measures, is given bŷµ(x) ∝ Pn2(x)/q2(x), where
Pn2(x) is the usual empirical measure, withn−1

2 mass
at each observedXi2. Clearly from (2.6),µ (and
thuscj ’s) can only be estimated up to a multiplicative
constant. Substitutingµ in (2.5) with µ̂ shows that̂r
of (2.2) is indeed the (nonparametric) maximum likeli-
hood estimator (MLE) ofr under the likelihood (2.6).
This suggests that, without employing any other in-
formation, r̂ of (2.2) is indeed (asymptotically) the
best possible estimator ofr given{Xi2, i = 1, . . . , n2}.
Similarly, Kong et al. (2003) have shown that the op-
timal bridge sampling estimator given in Meng and
Wong (1996) is the same as the MLE when we have
{Xij , i = 1, . . . , nj ; j = 1,2} as our data.

The reason why this likelihood perspective can eas-
ily resolve these paradoxes is that it captures the real
inference structure of Monte Carlo integration. Specif-
ically, Monte Carlo simulation means that we usesam-
ples to represent, and therefore effectivelyestimate, the
underlying populationqj (x)µ(dx), and henceestimate
µ sinceqj is known. One may find the phrase “esti-
mate” puzzling because we invariably know whatµ is
(e.g., Lebesgue or counting). However, our knowledge
of µ is never used in any way, for example, in form-
ing (2.2). This can be best seen by considering that
there are two individuals: a simulator and an analyst.
The simulator provides the simulated data{Xi2, i =
1, . . . , n2} to the analyst, who has the task of estimat-
ing r . The analyst is also given bothq1 andq2, but is
never told about the actualµ used in simulation. Never-
theless, the analyst can consistently estimater , which
obviously depends onµ, as long as the support ofq1

does not exceed that ofq2. (This well-known condi-
tion on the supports can also be clearly seen from the
likelihood perspective, because we can only make in-
ference aboutµ on a support that is identifiable from
the data{Xi2, i = 1, . . . , n2}.) Consequently, as far
as (2.2) goes,µ is completely unknown; more pre-
cisely, no knowledge ofµ is used in (2.2) and thus it
is legitimate (and actually necessary) to treatµ as the
unknown model parameter.

The above discussion also suggests that we can use
partial knowledge ofµ to improve upon (2.2), as long
as the resulting MLE forr is still easy to compute.
Clearly we should not use our full knowledge aboutµ,
which will lead us back to the infeasible analytic calcu-
lation required by (2.5). For example, since Lebesgue

measure is invariant to reflection with respect to the
origin, we can restrict our parameter space to all non-
negative measures that satisfy this invariance property,
if the trueµ is indeed Lebesgue. The resulting MLE of
r is

r̂∗ = 1

n2

n2∑
i=1

q1(Xi2) + q1(−Xi2)

q2(Xi2) + q2(−Xi2)
,(2.7)

which is the Rao–Blackwellization treatment ofr̂ by
averaging over the orbit of the reflection group{I,−I },
and hence its variance never exceeds that ofr̂ (under
the assumption of i.i.d. draws). See Kong et al. (2003)
for a general formulation of using group invariance to
restrict the parameter space forµ and hence to improve
Monte Carlo efficiency. Also see Casella (1996) for a
detailed discussion of the use of Rao–Blackwellization
methods in Monte Carlo simulation and, more gener-
ally, the interrelationship between statistical inference
theory and computational algorithms.

2.3 Indeed a Surprise: An Unexpected
Control-Variate Estimator and Insight

Another fundamental advantage of this likelihood
approach is that it provides a unified framework for
investigating variance reduction techniques, including
control variates. In the importance sampling context,
when we use ag with∫

�
g(x)µ(dx) = 0(2.8)

as a control variate, we effectively put a constraint
on the unrestricted parameter space�µ = {µ : all non-
negative measures on�}. Consequently, the MLE un-
der this submodel will be more efficient than the MLE
under the full model. The resulting MLE forr under
this constraint, however, is not the usual regression es-
timator, albeit asymptotically they are equivalent, as
they should be.

Specifically, because any measure with zero mass at
any single observation will lead to a zero likelihood
in (2.6), the maximization of (2.6) under constraint
(2.8) is effectively discrete, as is typical with nonpara-
metric or empirical MLE (e.g., Owen, 2001). The dis-
crete problem we need to solve is

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
,(2.9)

where, for simplicity, we have letµi = µ(Xi2),
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q2i = q2(Xi2), gi = g(Xi2) and

�(g)
n2

=
{
(µ1, . . . ,µn2) :µi > 0, i = 1, . . . , n2;

(2.10)

and
n2∑
i=1

giµi = 0

}
.

Tan (2003) presented an elegant solution to this maxi-
mization problem under the more general setting with
multiple control variates. The following is a slightly
more elementary recast of Tan’s (2003) derivation.

We start by assuming condition (A): mini gi < 0
and maxi gi > 0. This is not a real restriction in
view of (2.8) and relatively largen2 in practice, but
technically it is a necessary and sufficient condition
for (2.9) to have a solution. Clearly it is necessary,
because without it,�(g)

n2 will be empty. The suffi-
ciency is established by the following argument, which
shows that (2.9) has the unique maximizer when con-
dition (A) holds.

First, because
∑n2

i=1 giµi = 0, (2.9) is the same as

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi)

(2.11)
− n2 log

[
1

n2

n2∑
i=1

(q2i + λgi)µi

]
− n2 logn2

}
for any λ ∈ �n2 = {λ :q2i + λgi > 0, i = 1, . . . , n2},
which is nonempty because it contains at leastλ = 0
since allq2i > 0 by our sample design. Consequently,
by Jensen’s inequality applied to the second log expres-
sion in (2.11), we obtain

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
(2.12)

≤ −
n2∑
i=1

log(q2i + λgi) − n2 logn2,

where the equality holds if and only if

µi ∝ 1

q2i + λgi

and
n2∑
i=1

giµi = 0.(2.13)

Since (2.12) holds for anyλ ∈ �n2, we can minimize
the right-hand side overλ, which leads to

max
�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
(2.14)

≤ − max
λ∈�n2

n2∑
i=1

log(q2i + λgi) − n2 logn2.

Second, we can show that the inequality in (2.14)
actually is an equality. This is because, under condi-
tion (A), �n2 is a finite open interval containing zero
and

�(λ) ≡
n2∑
i=1

log(q2i + λgi)(2.15)

is a strict concave and differentiable function on�n2.
Consequently,�(λ) has the unique maximum̂λ ∈ �n2,
which satisfies

d�(λ̂)

dλ
=

n2∑
i=1

gi

q2i + λ̂gi

= 0.(2.16)

In other words, when we letλ = λ̂ in (2.13), the result-
ing µ̂ = (µ̂1, . . . , µ̂n2) indeed satisfies the constraint in
(2.13), and therefore this, and only this, choice ofµ

equates the two sides of (2.14). Consequently,

µ̂(x) ∝ Pn2(x)

q2(x) + λ̂g(x)
(2.17)

is the unique solution to (2.9), wherePn2(x) is the stan-
dard empirical measure based on{X1, . . . ,Xn2}. The
corresponding MLE ofr is given by

r̂MLE = 1

n2

n2∑
i=1

q1(Xi2)

q2(Xi2) + λ̂g(Xi2)
.(2.18)

The form of this MLE is rather intriguing. First,
unlike the standard regression estimator, which takes
a linear form for adjustment,̂rMLE retains a ratio
form. The advantage of the ratio form is that it en-
sures the nonnegativity ofr̂MLE whenever the integrand
q1 is nonnegative. This is, of course, expected because
r̂MLE is an MLE and hence it must be within the orig-
inal allowable space ofr (as determined by our usable
knowledge ofq1). In contrast, the regression estimator
does not have this property. Asymptotically, however,
linear adjustment is all one needs, and thusr̂MLE is
equivalent to the regression estimator by a Taylor ex-
pansion argument, as given in Tan (2003).

Second,r̂MLE has the same form as the IS estima-
tor (2.2), but withq2(x) + λ̂g(x) as the “trial” density.
This can be seen more clearly when our control variate
is introduced by using an unnormalized densityq3 such
that

∫
q2(x)µ(dx) = ∫

q3(x)µ(dx) (see Kong et al.,
2003, for an illustration), that is,g(x) = q3(x) − q2(x).
Then the function in the denominators in (2.18) be-
comes a mixture ofq2 andq3, (1− λ̂)q2 + λ̂q3, where
λ̂ is the MLE of the mixture weightλ from fitting the
mixture model(1 − λ)q2 + λq3 to the simulated data
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{Xi2, i = 1, . . . , n2}. (Note that hereλ is not restricted
to the unit interval, as long as it is inside�(g)

n2 .)
This fitting aspect is the most intriguing part of the

MLE approach because the true value ofλ is known
to be zero, since all the data were drawn fromq2.
However, with any finite sample, the best fittedλ̂
under the mixture model will almost surely deviate
from the true valueλ = 0, indicating an “imperfec-
tion” of the sample to represent the intended popu-
lation q2. The MLE approach uses this deviation to
adjust for the imperfection via the known relation-
ship (2.8), in the same spirit as the regression esti-
mator uses̄xn − µx to adjust. Specifically, just as the
regression estimator (1.1) effectively treats an “imper-
fect” sample{y1, . . . , yn} with meanµy as a “perfect”
sample with meanµy + βy,x(x̄n − µx), the MLE
treats an imperfect sample fromq2 as a perfect sam-
ple from (1 − λ̂)q2 + λ̂q3: It is perfect as far as es-
timating

∫
� g(x)µ(dx) = 0 goes because of (2.16).

The MLE then uses this “perfect” model/sample to
perform the usual importance sampling, as in (2.18).
This construction appears to be difficult to conceive
from a purely design-based perspective, which in-
evitably would only call for inverse-probability weight
1/q2(X), sinceX was drawn fromq2. In particular, this
is another example where the use of the fitted value is
better than using the truth, as discussed in Section 1.3.

2.4 Possible Applications to QMC and Surveys

The discussion so far centers on MC designs, where
there is a natural sampling distribution and hence a
natural likelihood. The central issue there is to recog-
nize what the correct model parameter is. For deter-
ministic QMC, this approach is not directly applicable
since there is no sampling distribution in the design.
However, when randomness is reintroduced into QMC,
as with the RQMC methods discussed in HLO, the
likelihood method appears to be applicable, albeit the
implementation could be more complicated in view
of the more stratified nature of the design compared
to i.i.d. or even the more general MCMC designs,
which are typically without stratification. In addition,
there appear to be more constraints onµ such as∫

fG(x)fB(x)µ(dx) = 0 with the QMC methods (Sec-
tion 2.1 of HLO). It would be interesting to see the
form of the resulting MLE for

∫ [fG(x)+fB(x)]µ(dx)

under the likelihood approach.
For deterministic QMC, although the likelihood ap-

proach is not directly applicable (and this time there
is no paradox, because there is no random data-

generating mechanism to start with), the inference per-
spective is still very fruitful. This was, for example,
discussed by Diaconis (1988), where a Bayesian ap-
proach, which does not necessarily require a sampling
scheme or a likelihood, was investigated. This ap-
proach is to put a prior model—a stochastic process—
on the integrandq, with q ’s values at the design points
as the observations. The inference is then carried out by
computing the conditional distribution of the process,
and hence the integration, given the observations. The
advantage of this class of methods is that, by choos-
ing appropriate stochastic models, one can take into
account known properties of the integrandq. In con-
trast, our likelihood approach takes advantage of us-
able known properties of the baseline measure, either
via group restrictions or other constraints such as con-
trol variates. As a result, the Bayesian approach can
produce much more efficient results for specific inte-
grands. Indeed, many well-known numerical integra-
tion methods can be rederived from this perspective, as
shown by Diaconis (1988) and the references therein.
On the other hand, the MLEs obtained under the like-
lihood approach are much more generally applicable,
but they can be made more efficient if specific knowl-
edge of the integrand (e.g., differentiability) can be uti-
lized. So the two approaches complement each other
and, ideally, we would like to have a combined infer-
ence method that will model the usable knowledge of
both the baseline measure and the integrand. Research
in this direction is very much needed, and HLO’s inves-
tigation of using control variates with RQMC methods
can be viewed as an important step in this direction be-
cause it takes into account both the properties of the
integrand and the restriction on the baseline measure
via the use of the control variates.

Finally, to complete the circle, the new ratio-type
control-variate estimator also suggests a possible cor-
responding counterpart for sample survey applications,
where the two standard estimators for covariance ad-
justments have been the direct ratio estimator [i.e.,
µ̂y = (ȳn/x̄n)µ̄x ] and the regression estimator (1.1).
Such a counterpart, if it exists, would be of direct prac-
tical value, because it retains important advantages of
both the ratio estimator and the regression estimator,
as we discussed in Section 2.3, especially considering
that many survey estimands are positive by nature.

3. FURTHER CONNECTIONS BETWEEN
MCMC AND QMC

As HLO correctly pointed out in their Section 2.5,
both MCMC and QMC have a long history and both
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have grown rapidly in recent years, yet there is very
little overlap between the two fields. This is certainly a
very unfortunate and ironic situation, considering that
both fields share exactly the same goal. HLO’s paper
is certainly a very timely contribution to changing this
situation—a change that is much needed, because the
two fields can learn a great deal from each other, as
HLO’s paper clearly demonstrates. Here I want to add
two topics from recent work that I was involved in to
demonstrate the great benefit of using techniques and
ideas from both fields.

The first topic is path sampling, which is a gen-
eralization of bridge sampling with infinitely many
bridges, as well as a general formulation of thermo-
dynamic integration in statistical physics, as shown by
Gelman and Meng (1998). The method is particularly
suited for handling some very high-dimensional inte-
grations, as discussed by Ogata (1989). The key iden-
tity that underlies path sampling expresses logr , where
r is the same as in (2.1), as a low-dimensional inte-
gration over a prior parameter of a high-dimensional
expectation that is conditional on the parameter. This
presents an ideal situation to use both MCMC meth-
ods and QMC methods, with the former applied to
estimate the high-dimensional expectation and the
latter applied to numerically estimate the outside low-
dimensional integration. The effectiveness of such a
hybrid approach was demonstrated by Gelman and
Meng (1998), where very basic numerical approaches
(e.g., trapezoidal rule; rectangular lattices) were used
for the low-dimensional integrations. It is likely that
the effectiveness will be even more impressive if the
more advanced QMC methods, such as those reviewed
in HLO, are used for these low-dimensional integra-
tions.

The second topic is multiprocess parallel antithetic
coupling for backward and forward MCMC (Craiu and
Meng, 2005). Using antithetic variates is a very old
variance reduction technique in the Monte Carlo lit-
erature (e.g., Hammersley and Morton, 1956). How-
ever, in the standard MCMC literature, typically only

a pair of antithetic variables is used (e.g., Frigessi,
Gåsemyr and Rue, 2000). Viewing antithetic variates
as a form of stratification, employing more than two
strata becomes an obvious next step. However, unlike
the case of using a pair, generating a set ofk > 2 an-
tithetic variates is not a trivial task. This is because
there is no unique way to generatek > 2 antithetic vari-
ates that arenegatively associated (i.e., preserve neg-
ative correlation under monotone transformation) and
extremely antithetical (i.e., as negatively correlated as
possible). Nevertheless, we (Craiu and Meng, 2005)
found that Latin hypercube sampling, as mentioned in
Section 6 of HLO, as well as an iterative extension
of it, serves as an effective general-purpose scheme.
The advantages of running multiprocess antithetically
coupled MCMC, for both the standard forward imple-
mentation and the backward perfect-sampling imple-
mentation (see Casella, Lavine and Robert, 2001, for
an introduction), include not only further reduction of
Monte Carlo variances compared to usingk = 2, but
also reduction of biases due to slow mixing, because
antithetically coupled chains can search a state space
more thoroughly compared with usingk independent
chains, which is the current common recommendation
(e.g., Gelman and Rubin, 1992).

In conclusion, I thank HLO for writing this timely
and inspiring article and the Editor for inviting me to
discuss it. Given the clear benefit of cross-fertilization
between MCMC and QMC, I hope this set of dis-
cussion articles can serve as a successful matchmaker
for a long, happy and (re)productive marriage between
QMC and MCMC!
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EFFICIENCY

In the Asian option example only a small inefficiency
arose from estimatingβmc instead ofβrqmc. L’Ecuyer
asks whether this will be rare or frequent. As he notes,
experience will tell. We expect that the inefficiency will
very often be small. The cost of having the wrong co-
efficient is quadratic in the coefficient error, so small
coefficient errors are largely forgiven.

From Meng’s comment, we learn that even some
large coefficient errors have mild effects: for a scalar
β �= βopt to give a larger variance thanβ = 0 gives, you
have to either get the sign wrong or have|β| > 2|βopt|.
Unlessβopt is close to zero, there is a wide window to
aim for.

An inefficiency that is often small can also be often
large. Moreover, one can construct worst-case prob-
lems for which the inefficiency is arbitrarily large. For-
tunately, in practice one can estimate the error variance
both with and without the control variate.

CONFIDENCE INTERVALS

L’Ecuyer points out that things would be easier for
small R if (Îr , Ĥr ) had a multivariate Gaussian dis-
tribution. In the case of scrambled nets, the central
limit theorem of Loh (2003) gives reason to suppose
that a multivariate Gaussian distribution would be a
good approximation. On the other hand, Loh’s theo-
rem allows for an extremely slow rate of convergence
to the Gaussian distribution. The magnitude of the bias
L’Ecuyer mentions is an interesting open issue.

We usually prefer a smallR, supposing that accu-
racy in estimatingÎ is more important than accuracy
in estimating error. That assumption is not valid for all
applications. In such cases one can use a largerR to
get a more reliable confidence interval aroundÎ at the
cost of less accurate estimation ofÎ .

STRATIFICATION

As L’Ecuyer points out, we have used only a sin-
gle control variate coefficient vector, while in stratified
sampling one often prefers to use a different coefficient
within each stratum. For scrambled nets, the number of
strata is equal to the number of sample valuesn when
t = 0 ands = 1. For s > 1, the number of simultane-
ously balanced strata can be much larger thann. At
these extremes, one cannot afford to estimate one coef-
ficient per stratum by least squares.

Quasiregression with coefficient shrinkage is an al-
ternative to least squares that allows for the number of

control variates to be larger thann. The intercept term
in a quasiregression is an estimate of the integral. See
Jiang and Owen (2003) and Jiang (2003) for details of
quasiregression with plain Monte Carlo methods.

L’Ecuyer’s idea of breaking the problem into pieces
each with its own control variate seems to be a good
compromise between using a single coefficient and us-
ing O(n) or more coefficients. The call center example
seems well suited to multiple control variates.

It should be possible to incorporate some applica-
tions of poststratification and stratum-specific coeffi-
cients into the framework of this paper. If there are two
strata, takingh1 to be an indicator function for one
of those strata captures the benefits of poststratifica-
tion. Then for a second variableh2, putting h3(x) =
h1(x)h2(x) captures the benefits of stratum-specific
coefficients.

NONPARAMETRIC LIKELIHOOD

It is intriguing to see how nonparametric and em-
pirical likelihood can be used in Monte Carlo prob-
lems. Meng advocates treating the baseline measure as
unknown instead of the parameter. Of course, in the
mathematical sense the baseline measure is at least as
known as the parameter. The test is whether this point
of view helps us to solve problems, and it appears to do
so.

Once again, this is a setting where survey sampling
researchers have been active. A survey of empirical
likelihood methods for complex survey samples ap-
peared in Owen (2001, Chapter 8, Sections 5–8). Key
contributions were made by Jing Qin, Jiahua Chen,
Randy Sitter, Changbao Wu, Bob Zhong and Jon Rao.

BAYESIAN CONNECTION

As mentioned by Meng, the Bayesian approach, de-
scribed by Diaconis (1988), has proven quite useful in
studying the problem of integration. Ground-breaking
work was done by Sacks and Ylvisaker (1966, 1968,
1970a, b). A comprehensive survey of classical and re-
cent results was given by Ritter (2000). The Bayesian
approach has a long history: Diaconis (1988) traced it
to Poincaré. That approach is also well suited to ap-
proximation.

In the Bayesian approach, the values of the random
integrand at two different positions are described by the
covariance kernel. The smoothness of this kernel then
affects the convergence rate of the numerical integra-
tion algorithm. Error analysis in the Bayesian setting



30 F. J. HICKERNELL, C. LEMIEUX AND A. B. OWEN

has many parallels to the worst-case analysis for deter-
ministic integrands. In the latter case, the Hilbert space
of integrands is often defined by its reproducing kernel
(Wahba, 1990; Hickernell, 2000). The error measures
for linear numerical integration rules are the same in
the Bayesian and worst-case settings when the kernels
are the same. However, for the same kernel, the Hilbert
space of integrands in the worst-case setting typically
corresponds to a subset of measure zero in the space of
random integrands in the Bayesian setting. This is due
to the worst-case setting’s more conservative or pes-
simistic approach.

PRIOR KNOWLEDGE

We agree with Meng that it is tricky to know how
best to use prior knowledge. Here is a particularly
simple example. Suppose thatθ = µy − µz, where
(µy,µz) = E((Yi,Zi)). One might naturally usêθ =
Ȳ − Z̄. Now supposeµz is known. ThenȲ −µz might
be attractive. Of course ifYi = Zi +θ , then the original
θ̂ has variance zero while the proposed improvement
can have infinite variance.

In general we cannot rule out side information that
would make (2.2) far from optimal. To take an extreme
example, suppose we know thatc1/c2 either equals our
phone number or our fax number. Somebody working
with this knowledge can do much better than some-
body else. It is quite hard to draw a sharp line between
side information that we can assume will not be avail-
able and side information that might well be available.

We agree with Meng that it is legitimate to use a
model in which the baseline measure is treated as an
unknown. In examples it leads to sensible answers that
can be tested. We do not see how it could be necessary.
People using classical Monte Carlo and quasi-Monte
Carlo methods can get reliable results and they do so
without treating the baseline measure as unknown. As
a case in point, the Bayesian methods described above
work conditionally on the sample points under a model
in which the baseline measure is known, but the tar-
get function has a Gaussian distribution. “There’s more
than one way to skin a cat.” No animals were harmed
in this rejoinder.
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