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Statistical Issues In Studies of the
Long-Term Effects of Air Pollution:
The Southern California Children’s
Health Study

Kiros Berhane, W. James Gauderman, Daniel O. Stram and Duncan C. Thomas

Abstract. In this article we discuss statistical techniques for modeling data
from cohort studies that examine long-term effects of air pollution on chil-
dren’s health by comparing data from multiple communities with a diverse
pollution profile. Under a general multilevel modeling paradigm, we discuss
models for different outcome types along with their connections to the gener-
alized mixed effects models methodology. The model specifications include
linear and flexible models for continuous lung function data, logistic and/or
time-to-event models for symptoms data that account for misspecifications
via hidden Markov models and Poisson models for school absence counts.
The main aim of the modeling scheme is to be able to estimate effects at var-
ious levels (e.g., within subjects across time, within communities across sub-
jects and between communities). We also discuss in detail various recurring
issues such as ecologic bias, exposure measurement error, multicollinear-
ity in multipollutant models, interrelationships between major endpoints and
choice of appropriate exposure metrics. The key conceptual issues and re-
cent methodologic advances are reviewed, with illustrative results from the
Southern California Children’s Health Study, a 10-year study of the effects
of air pollution on children’s respiratory health.

Key words and phrases:Mixed effects, time series, measurement error, eco-
logic regression, chronic effects, air pollution.

1. INTRODUCTION 1998). These results have been instrumental in set-
ting air quality standards. In contrast, health effects
of longer-term exposures have not been as extensively
investigated despite their importance in the regulatory
process.

Some of the important cohort studies of chronic
) D i i - effects of air pollution in adults are the Harvard Six-
tality and morbidity are manifest in nUMerous epi- cities study (Dockery et al., 1993), the American Can-
demiologic (e.g., Schwartz, 1994; Dominici, Samet o gociety (ACS) study of U.S. veterans (Pope et al.,
and Zeger, 2000) and chamber studies (Gong et al.,1995)1 and the Seventh Day Adventist study (Abbey

et al., 1999). These studies examined effects of long-

Kiros Berhane, W. James Gauderman, Daniel O. Stramterm levels of pollution on mortality using multilevel
and Duncan C. Thomas are members of the Depart-analogues of the Cox proportional hazards model (Cox,
ment of Preventive Medicine, University of Southern 1972; Ma, Krewski and Burnett, 2000). The Harvard
California, Los Angeles, California 90089-9011, USA Six-Cities and the ACS studies have been reanalyzed
(e-mail: kiros@usc.edu). by Krewski et al. (2003).

Health effects of air pollution can be broadly clas-
sified into two types:acute effects associated with
short-term fluctuations in pollution levels antronic
effects of long-term exposures to pollution. The acute
health effects of ambient air pollution on daily mor-
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The Southern California Children’s Health Study, issues and outlines areas that require additional re-
hereafter referred to as the CHS, is one of very few search.
prospective studies of children. It was designed to ex-
amine long-term effects of air pollution on respiratory 2. DESIGN OF THE CHILDREN'S HEALTH STUDY

health, using comparisons between communities, be- The primary aims of the CHS are to assess rates of
tween children within communities and within children lung growth, incidence of respiratory disease and fre-
over time. The CHS is the longest currently running quency of respiratory symptoms or school absences in
prospective study on chronic effects of air pollution in  re|ation to long-term air pollution levels. Secondary
children. aims include studying the relationships between the
Other studies on children that have played major health outcomes, the confounding or modifying effects
roles in regulatory decisions include an Austrian study of personal risk factors, underlying disease processes,
(Frischer et al., 1999), the Harvard Six-Cities study exposure factors, and time/activity patterns, the shape

(Ferris et al., 1979) and 24-Cities study (Raizenne of the dose-response relationships, and disentangling
et al., 1996) The Austrian study followed 1150 chil- the effects of mu|tip|e p0||utantsl

dren from nine communities. Lung function tests were
conducted bi-annually for three years (1994-1997)
and their association with air pollution was studied.

The Harvard Six-Cities study enrolled (1974-1979)

13,378 first and second grade school children from six
U.S. cities. Questionnaire and lung function data were
then collected until their graduation from high school.

The 24-Cities study collected questionnaire and lung
function data (1988-1991) from 10,251 8-12-year-old
children in U.S. and Canadian communities with a di-

versity of pollution levels.

These studies all sought to include communities
with a diverse pollution profile. They also provide
the opportunity to examine within-subject effects over
time. The resulting data have a rich structure, allow-

ing comparisons (1) over time (within subjects or com- statistical power (Navidi et al., 1994). On-study mea-

munities), (2) between subjects and/or (3) between g, ements have confirmed the original pollution pat-
communities. A comprehensive discussion of statisti- terns

cal methods for analyzing data from such study designs _

is of public health importance. Enroliment of cohorts Approximately 150 fourth
This article discusses modeling of and related meth- graders and 75 seventh and tenth graders were enrolled

odologic issues for data from such multilevel designs. in 1993 from each community. Whole classes were in-

ologic attention or require further research are out- & Signed consent form were enrolled. In 1994, 386

lined. We discuss a broad range of issues that arise infifth and 111 eighth graders were added from the same

many epidemiologic studies in environmental health, schools. A second fourth grade cohort of 2081 children

not necessarily restricted to respiratory diseases or aifVas enrolled in 1996. Thus, 6259 children have en-
pollution. The CHS results will be used to highlight rel- tered the study for observation. Attrition was about 8%

evant methodologic issues. Methodologic comparisonsP€" Y&ar, with 95% due to moving away from partici-
are made to other studies when appropriate. pating schools. A survey of chlld_ren who moved away
The design of the CHS is outlined in Section 2. was conducted in 1998 to examine the effects of mov-

Section 3 discusses statistical issues in longitudinal N9 from less to more polluted areas or vice versa (Avol

analysis of major endpoints and presents a general mul St al., 2001).

tilevel modeling approach. Section 4 discusses various Health assessment3he primary care giver of each
recurring themes, such as ecologic bias, measurementhild completed a baseline questionnaire that cov-
error and choice of exposure metrics. Finally, Section 5 ered residential history, current residential characteris-
provides further discussion of the main methodologic tics (e.g., ventilation and sources of indoor pollution),

Selection of communitiesAt the outset between-
community comparisons were considered likely to be
the most informative. This view motivated the selec-
tion of communities that exhibited maximum vari-
ability with respect to ambient levels of ozone3z{O
particulates (PMb), nitrogen dioxide (NQ@) and acid
(including nitric, acetic and formic acids). Initially,
86 Southern California communities with routine air
quality monitoring were classified as “high” or “low”
on each pollutant, using 1986—1990 multiyear average
levels. Only 8 of the 2= 16 possible pollution “pro-
files” were represented in sociodemographically com-
parable communities that had reliable monitoring data
(Table 1). Then the 12 most promising communities
(Figure 1) were selected, based on cost, feasibility and
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TABLE 1
Average ambient air pollution levels for 199412 Southern California communities selected for the Chiltsdriealth Study

Design strata 1994 ambient measurements

O3 PM 19 NO» Acid Communities 032 PMygP PM 5° NO,d Acid®

H H H H San Dimas (SD) 82 367 221 362 50
Upland (UP) 73 490 240 426 4.7

H H H L Mira Loma (ML) 76.3 707 315 313 31
Riverside (RV) 806 452 255 339 37

H H L H Lancaster (LN) 597 336 9.3 17.8 23

H H L L Lake Elsinore (LE) 761 347 134 219 33

H L H H Lake Gregory (LA) 97.5 242 111 85 35

H L H L

H L L H

H L L L Alpine (AL) 71.3 213 9.2 132 26

L H H H Long Beach (LB) 413 388 163 364 35

L H H L

L H L H

L H L L

L L H H

L L H L

L L L H

L L L L Atascadero (AT) 501 207 7.6 141 13
Santa Maria (SM) 35 292 6.7 43 13
Lompoc (LM) 427 130 7.3 27 10

210 AM-6 PM average (ppb).

b24-hour average (gn3).

CTwo-week average (ppb).

d24-hour average (ppb).

€Two-week average (HN@+ HCL; ppb).

fLake Gregory is identified as Lake Arrowhead (LA) in subsequent years.
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FiGc. 1. Geographical distribution of communities in the Childrefdealth Study
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personal risk factors, usual respiratory symptoms andability to separate the effects of the various pollutants.
usual activities. An abbreviated yearly follow-up ques- See Section 4.3 for details on an analytic approach to
tionnaire collects data on chronic respiratory symp- deal with this problem.
toms and diseases, and time-dependent covariates (see
Peters et al., 1999a, for details). 3. STATISTICAL MODELS FOR

A field team visits participating schools in the MAJOR ENDPOINTS
winter—spring of each year (January—June) to conduct
lung function tests (Peters et al., 1999b). Our examples
focus on one of the lung function measures, namely the
maximum mid-expiratory flow (MMEF). In contrast to
lung size measures such as the forced expiratory vol-

meinon nd (F&Y, MMEF m resflowr . o .
ume in one second (FRY, easures flow rates a larger population of communities. If so, what then is

and tends to show larger deficits in susceptible SUb_the interpretation of the-values or confidence limits
groups (e.g., asthmatics). Daily school absences are re: P ®

) ; : -
ported weekly or bi-weekly throughout the school year. th?r;agzz:;? :Ele; anl?ggst;zr?t ws (;?murgupr:z I?r\ll((:tlﬁo ds
From 1996-1997, causes of absences were ascertainele0 q ; 9

by phoning parents of the second fourth grade cohort r inference at t_he c_ommunlty level are _tho;e that
within 4 weeks of each absence. would be appropriate in a grouped randomization set-

ting. Under this scenario, air pollution levels would

Air pollution assessmentdn all 12 communities, somehow have been assigned at random to a sample
monitoring stations provide continuous hourly ambi- of communities, which may or may not have been se-
ent Gz, PMjgand NG, and 2-week measures of BN lected at random. Despite the randomization, residual
and acid vapors. Individual exposure predictions us- differences in aggregated health outcomes may remain
ing the “microenvironmental” approach were based on between the communities that are left unexplained by
data on ambient exposure, housing characteristics andhe assigned levels of air pollution, even after adjust-
time/activity patterns. Dispersion models have beening for subject-specific data. The random assignment
used to estimate exposures from major roadways (seef air pollution levels to a community would permit
Section 4.2 for details). inferences to be drawn about the effect of air pollu-

To date, most chronic effects analyses rely on yearly tion on health outcomes in the community-level analy-
or multiyear exposure data. Table 2 summarizes thesis, while still allowing the residual heterogeneity to
correlations of major pollutants, based on multiyear remain between communities. The way in which com-
averages of 1994-1997 data from hourly (BMOs3 munities have been selected may impact the general-
and NQ) or 2-week integrated (Pi% and acid) mea- izability of the results of the study to children living
surements. Despite designing the study to minimize in other places, but a nonrandom selection of commu-
them, many correlations remain quite high. The corre- nities would not invalidate the statistical tests, which
sponding correlations that were based on year-to-yearderive their validity from the randomization.
variations in pollution levels showed a similar pattern,  Of course, in most large-scale air pollution studies,
with the exception of those involving Qwhich ex- we observe, rather than manipulate, pollution levels.
hibited relatively higher correlations). This limits the The use of the same statistics (for the community-

level analysis) as would be appropriate to a group ran-

Assessment of chronic effects of air pollution has
relied to a large extent upon comparisons of aggre-
gate health outcomes between communities with di-
verse pollution profiles. The communities included in
such studies may not constitute a random sample from

TABLE 2 domization experiment assumes that the causal forces
Correlations between multiyear averages of pollutants that lead to any unexplained community differences
(1993-1997 in the 12 communities selected for the (residual heterogeneity) in outcomes are not them-
Childrer's Health Study selves related to air pollution exposure. This amounts
Pollutant O3 PMyy PMos NO, Adid to assuming that this residual heterogeneity is random

relative to air pollution. Admittedly, this assumption is
O3 (10AM-6PM) 073 @8 029 -003 046 not directly statistically testable. However, the use of

O3 (24-h avg) —031 -033 -054 009 g piact-specific covariates (e.g., age, height, race) to
PM10 096 067 073 ) .

PMs s 076 082 adjust for the effect of other determinants of the out-

NO, 0.85 come is designed to reduce the possibility that con-

founding is the root cause of the effects observed.



418 K. BERHANE, W. J. GAUDERMAN, D. O. STRAM AND D. C. THOMAS

We sought a modeling framework that can simul- subject-specific random intercept and slope of follow-
taneously handle all of the aspects that we have de-up time (or age)s.;;, respectively. Model (1) is ad-
scribed above including (1) time-dependent adjustmentjusted for time-dependent covariates and allows a test
variables; (2) between-community differences in ag- of air pollution effects via the slop®; on deviations of
gregate air pollution measurements and outcomes;community annual-average ambient levels from their
(3) within-community differences by time in aggregate |ong-term averages.
air pollution and outcomes; and finally (4) individual Models (2) and (3) include random effects for com-
differences in cumulativg exposure or in_predi_cted eX- munity (4. and B.), and subject-specific covariates.
posure based on modeling. Such considerations leadrpey allow for a second test of air pollution effects via
natura]ly to multilevel models as the analytic method ¢ regression of subject-specific slopes or intercepts
of choice. from (1) on deviations of personal exposures from the
3.1 The Multilevel Modeling Paradigm community means. The residualg and f.; are as-

. sumed to be uncorrelated across subjects.
Here, except for school absences (see Section 3.3), Models (4) and (5) relate the community mean ad-

we present the multilevel model using time-dependent . ted intercents and slobes to the lona-term average
pollution measures that are based on yearly average us ptS SIopes 9 9

A discussion of the choices of exposure metrics is pre- ambu—int pollléuon Ieve!ts, aIIow!?g |ndepf3?dent ra;gdcl)m
sented in Section 4.5. Our multilevel models are equiv- &MO" terms. Lommunity-Specilic covariates could also

alent to mixed effects models for Gaussian (Laird and P& included (see Section 4.1). _

Ware, 1982) and non-Gaussian (Breslow and Clayton, Although the model can be fitted using a sequence of

1993) data. These, in turn, are based on growth curve'egressions, the generalized linear mixed effect model

models as in, say, Harville (1977). (Diggle, Liang and Zeger, 1994), where all levels are
combined with multiple error terms, provides a more

General formulation.Denote byy.;; the healthend- | .0y approach as given by

point for subjecti in communityc at timet.;;, where
J indexes year. Predictors can be time-dependent, ime- g () = oo + @} X, + 93z
constant (depicting fixed subject-specific attributes)

or community-specific. Uppercase and lowercase let- +a§(xc,- —Xe) +ecteci

ters denote community-specific and subject-specific(6) +[Bo+ BEXc + p 2
quantities, respectively. Thug,;; represents time-

dependent covariates (e.g., height, agg)represents + B (Xei = Xe) + fot feilteij

time-constant fixed covariates (e.g., gender, ethnicity),
X.i represents subject-specific average pollution levels

(e.g., from microenvironmental modeling§.; repre- wheree,; ~ N(0,62 ) ande. ~ N(0,02,) are ran-

sents the community annual-average levels of pollution gom supject- and (e:’éinmunity-specific intercepts. Sim-
and X, represents the community-specific multiyear ilarly, f.; ~ N(O, G}gﬂ_) and £, ~ N(O, O“)%,c) are the

avg:)a:]gs?o:g\r/eallstﬁ:epeo IIltlej\?eolneneralized linear model of corresponding random slopes. For continuous out-
9 comes (e.g., lung function), an overall error term

+ V{Zcij + a;{(xcj —Xe)s

the form ecij ~ N(0, Gczij) is given. Model (6) assumes indepen-
g(Wheij) = aci + beiteij + }’{Zcij dence between the random effects. This assumption
(1) T could be relaxed to allow for more complex temporal
+og (Xej = Xeo), and/or spatial correlation structures.
(2) aei = Ac + 1) 20 +ad (xei — Xo) + e, When model (6) is applied to non-Gaussian data
T T (e.g., disease symptoms), fixed effects are interpreted
) bei = Be +y32ci + B2 (Xei = Xe) + fei conditional on the random effects. If distributional as-
(4) Ac=ap+ ochc + ec, sumptions for the random effects are violated, the es-
T timates for ecologic comparisons (e.g3) could be
() Be=po+ Bz X+ fe. biased. An alternative is to use marginalized multilevel

Here,g(ui;) denotes a link function (McCullagh and models that lead to fixed effects with marginal interpre-
Nelder, 1989)u.; = E(y.ij) and Roman letters rep- tations. See Heagerty and Zeger (2000) and references
resent random effects. In (1. and b.; represent therein for details.
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3.2 Longitudinal Analysis 14 =047
135 p= 0is

Linear models.To assess the chronic effects of air
pollution on lung function, the mixed effects model (6)
is used with the identity link, perhaps with a transfor-
mation (e.qg., log transformation) to improve normality.

For the CHS, Peters et al. (1999b) applied a two-level
model to the baseline lung function measurements,
with subject- and community-level random effects, in
essence modeling the intercepts. We refer to this modele  **
as a “cross-sectional” model. Gauderman et al. (2000) ”r
applied model (6) to the first five years of lung func- )
tion data, but treated the intercept terms as fixed
effects rather than as random effects using (2) and (4).Fic. 2. Adjusted annual MMEF growth rates by commu-
Treating the intercepts as fixed effects is equivalent to nity-specific multiyear average pollution leve($993-1997 of
forcing the variance of the intercept terms in a multi- 24" mean NQ. The community labels are as defined in Table
level model to infinity. This ensures robustness to pos- The solid line depicts _the ecologic linear fit of the adjusted MMEF

. ; o . growth rates on multiyeaf1993-1997 average levels oR4-h
sible misspecification of the models for the intercept mean NG.
terms (Dempster, Rubin and Tsutakawa, 1981).

The above two models are compared in Table 3
with a full model that includes all five levels as in
(1)—(5), with ambient pollution levels appearing only in

h mmunity-level model (multiyear aver in th .
the community-level model (muitiyear averages in the should be conducted to make sure that modeling as-

longitudinal models and baseline levels in the cross- . . .
. . . sumptions are not grossly violated. This could be done
sectional model). All models included adjustments for ~. "™ A
via visual plots or by trial fitting of more complex mod-

age, height, sex and race/ethnicity. Figure 2 depicts the : :
third-level “ecologic” regression of adjusted MMEF els that test modeling assumptions. For the CHS data,

. L . assumptions of linearity, normality and homoscedas-
growth rates on N@ showing a significant negative .~ ;
. . . : ticity appear to be well supported. More research is
relationship. The standard error bars (Figure 2) illus- . : ) .
. ) ; . needed in the development of diagnostic techniques for
trate the degree of within-community variance in the .
. . . multilevel models.
estimated growth rates and the relative homogeneity
in these variances across communities. Similar results Flexible models.As duration of follow-up is ex-
were observed for PM and acid, but not for @ tended, the constant growth rate assumption for lung
(Table 3). The slope estimates and their standard errordunction becomes less tenable. In the CHS this was

& 0N

nstad & e MEEF qpaowsil (5
2

MO (s

were insensitive to whether the subject-specific inter-
cepts were modeled as random or fixed effects.
As in any modeling process, diagnostic analysis

TABLE 3
Comparisons of ecologic regression effects of pollution from longitudinal and cross-sectional models foPMMEF

Cross-sectional Longitudinal Full modd
intercepts slopes Inter cepts Slopes

Pollutant (%) (%) (%) (%)

O3 0.80(0.93 —0.20(0.26) 1.15(1.19 —0.18(0.27)
PMyg —1.54(0.93) —0.49 (0.20)° —1.65(0.80)° —0.45(0.21)°
PMy 5 —2.62(1.58) —-0.74 (0.34)b —2.83(1.44)°¢ —0.68(0.37)¢
NO» —1.69(1.15 —0.47 (0.25)¢ —1.97 (1.07)¢ —0.46 (0.27)¢
Acid —0.44 (1.15) —0.43(0.22)¢ —0.78(1.08) —0.41(0.24)¢

3The dependent variable in these models is log(MMEF). Estimates are the predicted percent difference in level (in-
tercepts) or growth rate (slopes) per increase of 20 ppbzo&@ NG, 20 ugm3 of PMg and PN 5 and 2 ppb

of acid.

b, <0.05.

¢p <0.10.
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see de Boor (1978). Figure 3 depicts gender-specific

Females

w 4| Males growth curves for MMEF using natural splines, from a
= mixed effects model with subject-specific random in-
e 4 | tercepts.

2 Berhane et al. (2000) used a flexible mixed effects

g o model analogous to model (1) to account for nonlin-

L ear effects of age and height in modeling the effects of

% asthma on lung function (see Section 4.4 for details).
o

Biologically important features of growth curves (such
as peak growth rate and maximum attained value)
- can, in principle, be calculated for each subject us-
' ‘ ‘ ' ' ‘ ing the first and second derivatives of the fitted curves.
8 10 12 14 16 18 Such features of nonlinear curves, known as function-
als, were studied by Ramsay and Silverman (1997).
Modeling functionals directly allows for examination
Fic. 3. Gender-specific growth curves for MMEF in  of air pollution effects on biologically meaningful as-
8-1&year-old participants of the Childréa Health Study  pects of children’s growth trajectories. Generalized
:ﬁif;;vg;eiﬁ fnn;zztmtt'gg'msdﬁ‘:‘:mfgfgegi' natural splines frommixe_d additive models, which focus on fully nonpara-
metric smoothing techniques, have been introduced
) . (Lin and Zhang, 1999; Hastie and Tibshirani, 2000).
clear from the growth trajectories across the fourth, g iiher research is needed in the development of mod-

seventh and tenth grade cohorts (Figure 3). This wasgs \vith random flexible terms, with inferential focus
also recognized in the Harvard Six-Cities study (Wypij, on functionals

Pugh and Ware, 1993). Exploratory analysis of CHS
data revealed that height and lung function are linearly ~Logistic models.Annual reports of symptoms (e.g.,
related over short age intervals, but both the interceptbronchitis) can be modeled with a logistic mixed ef-
and the slope vary with age. This leads to a model thatfects model (Breslow and Clayton, 1993). An alterna-
has a nonlinear function of age and a linear term of tive is to use conditional logistic models as outlined in
height, with slope that is age-dependent. Diggle, Liang and Zeger (1994, pages 175-183). This
While several parametric functions have been tried last approach is equivalent to that of stratified case-
for modeling lung growth in children (Wypij, Pugh and control studies, where each subject is treated as a stra-
Ware, 1993), regression splines (Hastie and Tibshirani,tum with y.;. = 3~ ; y.i;; cases and,; — y.;. controls.
1990) provide a flexible way to model the growth Itis sometimes helpful to distinguish between preva-
curves. Here, the nonlinear growth trajectory is de- lence and incidence for chronic diseases such as
picted via piecewise polynomials between breakpoints, asthma. This leads to a pair of first-level models
known as knots. These polynomials are then smoothlygiven as
joined at the knots. A set of basis functions with such
properties, known aB-splines, is (7)

AGE

logitPr(y.i1 =1) = a. + )’{Zcil,

G-}
= bei[Ateij] + 1 Zeij +ad (Xej — Xe).

By(t)=(tgra—19) ), —7z ,
i=g iz q e j (tk = 1))

g=1,...,m+4,

Second- and third-level models are as described in
(2)—(5). Thus, person-time would be counted only up
for a variabler at m knots. A variant set of basis to the first appearance of a given symptom in this ap-
functions, known as natural splines, imposes additional proach. Analyses of baseline symptoms using a two-
constraints of linearity beyond the boundary points. level logistic model were reported by Dockery et al.
Natural splines are less sensitive to sparsity of infor- (1989) and Peters et al. (1999a) for the Harvard Six-
mation at the edges of the data due to their additional Cities study and the CHS, respectively.

constraints. Once the basis functions are constructed, Subjects often report being diagnosed for a chronic
the resulting mixed effects model is then fully para- disease (e.g., asthma) on one or more occasions and not
metric, allowing for formal inference. For more details, subsequently. In this case, was the first report correct
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and the later negative reports incorrect or vice versa? In the CHS, data on school absences are being
Models for such scenarios are not well developed. collected from school records. In 1995-1996, a sub-
A sensible approach to this problem would be via hid- study known as the Air Pollution and Absences Study
den Markov models (MacDonald and Zucchini, 1997). (APAS) was conducted to ascertain whether absences
Let Y.;; represent the true disease status andgt were illness related, and if so the specific health rea-
represent the reported status. A multilevel model would sons. Analysis of the resulting binary time series
then be specified for log®r(Y.;; = 1Y j—1=0)] data falls into the general multilevel framework with
and logifPr(Y.;1 = 1)] as above, together with mod- a logit link. However, additional refinements are war-
els for misclassification rates, which take the form ranted to handle the complex lag structure of the ef-
logit[Pr(yeij| Yei1, - - - » Yeij)1 contribution for each sub- fects of air pollution and/or to account for the serial
ject. The likelihood could be formed by summing the autocorrelation induced by unmeasured confounders

product of these probabilities over all possible subject- (€.9., influenza epidemics). Several methods have been
specific outcomes. proposed for examining associations between daily ag-
i i ) .. gregate mortality and morbidity counts. These include

Time-to-event modelsRisk factors for disease inci-  he filtered least squares approach (Zeger, 1988; Samet,

dence (e.g., using tl_me to first asthma report) can be €X-zeger and Berhane, 1995; Berhane and Thomas, 2002),
amined via proportional hazards models (Cox, 1972). generalized additive models (Schwartz, 1994; Kelsall,
For the CHS, such models revealed that the risk of Zeger and Samet, 1999; Zanobetti et al., 2000:

asthma was elevated in those who played at least thregyominici, Samet and Zeger, 2000) and transition mod-
team sports in high ozone communities (McConnell |5 (Brumback et al., 2000).

et al,, 2002). Here, the effect of air pollution was  Given this article’s focus on the “chronic” effects
investigated by stratifying the communities into low, of ajr pollution, we give details only for models that
medium or high ambient pollution levels or via a two- ¢ollapse the binary school absence data over time to
level proportional hazards model (Burnett et al., 2001) y|e|d absence counts per Subject_ b@tt] and Feij be

asin binary indicators of an incident absence and for being
() = Ao(t) “at risk” on that dayj, respectively. Let,; :‘Zj Yeij
9) ‘ be the _total number 01_‘ absences for child After _
- eXp(Ac + BeZei + )’Izcij + ygza'), computing an expectation under the null hypothesis
of no air pollution, community or covariate effects
(10)  B.=po+B3Xc+ fe, as Eci =) ;Ajreij, wherei; = 3. Y;;/ > Rej, an

wherez,; denotes the variable assumed to modify the _overdispersed Poisson mixed e_ffects model [i.e., allow-
effect of pollution (e.g., outdoor sports in McConnell N9 for V(Yeilpei) > pei in (11)]is

et al, 2002),A50(r) denotes baseline hazards with (11 4. = E(Y,) = E. exp(Ac + 95 z.),

s strata (e.g., by age groups and gender) gnd- -

N(0,02,) denotes a community-level random effect. (12)  Ac=ao+azXc+ec.

A unified random effects Cox model was proposed Here, A, are logarithms of the community mean ab-
by Ma, Krewski and Burnett (2000). This general ap- sence rates, adjusted for personal covariatesyguie-
proach was used to examine the effects of pollution onnptes a vector of parameters for long-term average
adult mortality (Krewski et al., 2003). pollution levelsX... For the CHS, high levels of body
mass index g = 0.03), current smoking by the mother
(p = 0.02), wheezing f = 0.01) and active asthma
Data on school absences provide a good opportu-(» < 0.01) were associated with elevated number of
nity to study the effect of air pollution on children’s iliness related absences, but no long-term pollution ef-
health. In one notable study, Ransom and Pope (1992¥ects were observed.
studied the relationship between Pdvand school ab- The models given by (11) and (12) allow adjustments
senteeism in the Utah Valley between 1985 and 1990for personal time-constant covariates, while they do
based on weekly data from a school district and daily not allow adjustments for time-dependent covariates.
data from one elementary school. They showed thatOn the other hand, time series models that aggregate
high PMyg levels were associated with significant in- over subjects allow adjustments for temporal covari-
creases in school absenteeism. ates, but not for personal characteristics. Three-level

3.3 Analysis of School Absence Count Data
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models can be developed that incorporate both individ- such main effects; for example, we are interested in
ual time-constant covariates and community-specific how air pollution affects lung function level at baseline
time-dependent exposures. Details of one such modelthe subject-specific intercept parameters) or growth in
explored by our group will be reported elsewhere. lung function over time (the slopes). The inclusion of
other time-dependent variables that are not modifiers
of subject-specific intercepts or slopes is required to

Model (6) has been implemented in several soft- incorporate adjustments for factors such as tempera-
ware packages. For Gaussian data, PROC MIXED inture at the time of the examination. A pure growth
SAS (Littell, Milliken, Stroup and Wolfinger, 1996) fits  curve model would correspond to eliminating the time-
mixed effects models via maximum likelihood or re- dependent covariates and air pollution variables in (1)
stricted maximum likelihoods. For non-Gaussian data, and the subject-specific adjustment and air pollution
PROC NLMIXED or GLIMMIX in SAS could be variables in level 2. Then, focusing on the subject-
used. PROC NLMIXED maximizes an approximation specific slopes, models (3) and (5) could be modified to
(e.g., a first-order Taylor series) to the likelihood in- allow for uncertainties in the estimates of the subject-
tegrated over the random effects. The estimation al- specific slopes, that is,
gorithm implemented in the SAS macro GLIMMIX T T
is also based on a Laplace approximation to the in- bei=Be+y3Zi+ B2 Xei = Xe) + fei + Vi
tegrated likelihood function (Breslow and Clayton (13) T

. . . ! Bc‘:ﬂ0+ﬂ3xc+fc+v/c,

1993). Inadequacies of these approximations may lead
to biased estimates (Breslow and Lin, 1995; Lin and wherevy.; ~ N (0, V;;) and . ~ N (0, V) are addi-
Breslow, 1996). tional random effects withV,; and V., given by the

The R/Splus NLME library of Pinheiro and Bates Sampling variances df.; and B, respectively. Here,
(2000) provides an alternative way to fit the mixed ef- f.; and f. are residual error terms as in (3) and (5),
fects model. The well developed routines for regres- respectively. In either level, estimation proceeds iter-
sion splines in R/Splus are particularly useful for the atively between estimations for regression parameters
flexible models discussed in Section 3.2. Splus func- and the residual variances.
tions for fitting flexible mixed effects models can be A multilevel model that uses this meta-analytic
obtained from the authors of this paper. scheme gives results that are nearly equivalent to those

Other computationally efficient software [e.g., MLn from (6) for a growth curve model (Ware and Stram,
(Rasbash and Woodhouse, 1995) and HLM (Bryk, 1988; Stram, 1996). Complications arise when time-
Raudenbash and Congdon, 1996)] also is available.dependent covariates are included in (1), because cor-
Model (6) could be extended to allow random compo- relations are induced between estimates Bof for
nents ofy, ande2, which allow subject-specific effects ~ various communities, due to shared sampling errors in
of time-dependent variables such as height. Becauséhe estimation ofj,, y, y» andB, in (6). Incorporat-
age and height are correlated and due to the generaing these covariances intg,; andV, in the multilevel
monotonic pollution trends, it would be difficult to approach would lead to results which are nearly equiv-
distinguish between subject-specific variation in these alent to those obtained using (6). This near equivalence
terms and the variation in subject-specific intercepts of estimates follows from the fact that, for normally
and slopes on age. distributed data, the full mixed effects model can be

We now briefly discuss the conditions under which fitted using a set of sufficient statistics for the random
the combined mixed effects model (6) and the sequenceeffects rather than using the full data set of all mea-
of regressions (1)—(5) could be equivalent. This is im- surements. In fact, this is how the multilevel modeling
portant because some modeling situations are not suit-software HLM fits the full model (Bryk, Raudenbash
able for fitting the unified mixed effects model as in (6). and Congdon, 1996).

In a pure growth curve model for lung function,
the fixed effects may all be regarded as modifying the 4. RECURRING THEMES
means of the subject-specific random effects. More for-
mally, the columns of the fixed effects design matrices
in a growth curve model are all linear combinations In the classic “ecologic correlation” study, the rate
of the columns of the random effects design matrices of disease or some average health effEctin a set
(Laird and Ware, 1982). The main interest here is in of populations (typically geographically defined) is

3.4 Computational Issues

4.1 Ecologic Bias
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related to some measure of average exposxire In Section 4.2, we describe some approaches, based
possibly adjusted for group-level covariatgs. The on microenvironmental and spatial modeling, to as-
so-called ecologic fallacy (Selvin, 1958) or cross-level sess interindividual variation in personal pollution ex-
bias (Firebaugh, 1978) concerns the difference be-posures:.;. To date, such variation appears to be small
tween the regression estimates from such an analy-compared to the between-community variation in am-
sis and those estimated from individual data, that bient pollution. Community-level confounding vari-
is, a regression ofy,; on x., and z.;. Greenland ables, such as altitude or weather, may interact with
and Morgenstern (1989) described three ways suchindividual-level exposure (or confounding) variables.
bias can come about: (1) within-group confound- For example, the effect of personal variation in expo-
ing that acts differentially across groups, (2) con- sure (due to time—activity patterns, indoor sources or
founding by group effects and (3) effect modification within-community spatial variation in pollution) may
by group. Omitting covariates and focusing only on have a relatively larger effect in low ambient pollution
baseline data, the multilevel model (6) with iden- communities. Itis also possible that exposure measure-
tity link is y.; = o + 2(xei — X¢) + 23X +eci +ec. ment error could act differently at the different levels.
Then the absence of cross-level bias can be writ- Suppose that temperature is measured with less error
ten asas = as3. Equivalently, rewriting the model than air pollution levels. An analysis of health end-
asy.i =ag+ agx.; + (a2 — a3) X + eci + e, We see points may then provide stronger statistical evidence of
that the absence of ecologic bias corresponds to noa temperature effect than an air pollution effect, even
effect of X. on y., beyond its effect throughx,;. if temperature is only a determinant of pollution lev-
Such a group-level effect could arise, however, not els and has no direct impact on health (Zidek, Wong,
as a causal effect, but by confounding by some omit- Le and Burnett, 1996; Zeger et al., 2000). See Brenner
ted group-level covariat&.. This understanding of et al. (1992) and Wakefield and Elliott (1999) for the
ecologic bias appears to have been expressed first byffect of measurement error on ecologic regressions
Robinson (1950) and has been treated in numerousand see Greenland and Brenner (1993) for methods for
reviews (Greenland, 2002; Morgenstern, 1982, 1995; correction.
Wakefield and Salway, 2001). A lengthy series of arti- ~ With only a few communities, the prospects for in-
cles (with numerous letters to the editor and rejoinders) cluding many ecologic covariates are limited and there
on the subject of the ecologic regression of lung canceris some danger of “overadjustment’—controlling for
rates on domestic radon levels is particularly revealing variables which do not have a causal effect on health
about these issues (Cohen, 1990; Darby et al., 2001outcomes, but are simply determinants of pollution
Greenland and Robins, 1994; Lubin, 1998; Stidley and variables that are the real causal factors. Weather pat-
Samet, 1994). terns, for example, are major determinants of pollution
The CHS differs from the classic ecologic study in levels and thus one must think carefully about whether
that outcome and covariate data are available on indi-they are plausibly direct risk factors for health out-
viduals, but the exposure variable of primary interest— comes. There is evidence that temperature and humid-
ambient air pollution—is measured only at a central ity are associated with mortality and hospitalization
site and varies much less within communities than be- rates, independent of air pollution (Schwartz, 1994),
tween them. Several authors (Kiinzli and Tager, 1997;so inclusion of such variables in the third-level model
Sheppard, 2003) distinguished four types of design: themight be justified. However, there is less evidence that
truly individual design where all variables are mea- wind is associated with health outcomes. Inclusion of
sured at the individual level; the “semi-individual” de- wind in the model might constitute overadjustment,
sign, in whichy andz are measured at the individual since it is probably an even stronger determinant of
level, butX. is measured only at the aggregate level; pollution level than is temperature.
the “aggregate” design, in whichandz are measured We analyzed personal income as a potential con-
at the individual level (say via sample surveys in each founder of the association between air pollution and
group), butY, is measured only at the aggregate level lung growth. The estimated difference in MMEF
(Prentice and Sheppard, 1995); and “ecologic” designs,growth rate per increase of 20 ppb of MNQvas
where all variables are measured only at the individual —0.46%, with standard error 0.27% (Figure 2). Per-
level. The CHS corresponds to the semi-individual de- sonal income at the individual level was a significant
sign for which multilevel models are particularly rele- (inversely related) predictor, but did not appear to be
vant (Greenland, 2002). a confounder of the third-level Neffect. It has been
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argued, however (cf. Pearce, 2000), that the within- uncertainties, and then discuss their use in the hierar-
community income disparities may have a stronger chical model for health effects in the context of mea-
impact on health than does one’s own personal in- surement error models.

come. Thus we may consider as predictors, n Qd_ Microenvironmental modelsA standard approach
dition to personal income, the average level within

. L . to estimation of personal exposure in the occupational
the community or some other statistic (e.g., the vari- d . tal hvaiene literature. the “microenvi-
ance of income within each community). Using the and environmen » ygiene '
community-average personal income as an adjustmen onmental model,” was first mtroduced_ by Duan (1982,
variable in (4) and (5) produced little change in the 991) and was further developed by Lioy et al. (1992),
estimated NQ effect (—0.45%), although the stan- McCurdy (1995), Johnson, Long and OII|_son (2000)
dard eror got larger (Gi%) ljsing an average in- and Burke, Zufall and Ozkaynak (2001). This approach
: : : has been implemented for the CHS as in Navidi and
come variable computed at the neighborhood SChOOILurmann (1995). For each subject, we obtained an-

level (_betwet:ent Ie;f/elst 2F and t?;]) also dhzli?ha sotr_nevzhgtnual guestionnaire data on usual time—activity patterns,
more Important efiect. =rom {his model the estimate namely the proportion of timeg,;;,, spent in microen-

0 i .
NO2 %fgegii wzﬁhreduhced ht(}IO'?’S/O with stan_dard vironmentm (home, school, outdoors, car, etc.) and
error 0- ough school-zone average INCOMe .5 sed to estimate ventilation rates (sports, etc.).

was not significantly related to MMEF grov_vth rate Using measurements made in a sample of homes and
(p = 0.49), some people WOU!d argue that it should schools, supplemented with data from the literature, we
be treated as a confounder since it caused a mOderhave constructed modefs, (We; i, X.;) for the mean

0 . . . - d cijms 4 cj .
at? change E§4/(;_]rcfeductlon) n the}zl}l@ff_ect eggrma;te exposure level in each microenvironment as a function
(of course the difference seen iere in ’-N TeClS ™ of ambient exposur; and various characteristics of
between these analyses was not itself statistically Sig-y . microenvironmenty.... (indoor sources, air con-

cijm ’

nificant). Additional models did not reveal any interac- ditioning, etc.). Combining the two components, we
tion of personal income with community-level income. estimate,pers-o.nal exposure as ’

Nevertheless, it as important to consider the potential

“contextual” effect (Greenland, 2001) of possible con- (14) Xeij = Z Peijm fm Weijms Xej)-
founders, even when they are measured at the individ- m
ual level. The time—activity patterns and the microenvironmental

models may have uncertainties characterized by prob-
ability distributions. These distributions are informed
in part by data from a sample of children with short-
Most studies tend to focus on between-communities term personal measurements o @nd concurrent
comparisons of pollution effects. Some additional daily diaries of time—activity patterns (Avol, Navidi
comparisons may also be made at the temporal leveland Colome, 1998). To allow for these uncertainties,
(by year-to-year or daily variation in ambient expo- we repeatedly evaluate (14) with random samples from
sures as in Sections 3.2 and 3.3). While such analyseshe various inputs (times, exposures, model parame-
address questions of immediate public policy concern, ters, etc.), and summarize these by the mganand
the evidence for causality would be enhanced if it its variance.
were possible to assess exposure—response relation- In general, between-subjects variation in assigned
ships at the individual level. There are three principal exposures was small compared with between-commu-
approaches to quantifying individual variation in expo- nity—9% of the total variance for § 33% for PMyg
sure: (1) using time—activity patterns and housing char- and 3% for NG—and the within-person uncertainties
acteristics to model personal exposure; (2) exploiting were even smaller—1, 3 and 0.3% of the total, respec-
spatial variation in measured pollutant concentrations tively. While the use of community mean personal ex-
and traffic density within communities; and (3) com- posures a¥. instead of the central site measurement
paring lifetime exposures of permanent residents andled to modestly improved significance in some cases,
those who moved from areas of higher or lower pollu- the small within-community variance has so far pre-
tion (or subsequently moved away). Any of these com- cluded finding any significant associations at the indi-
parisons could entail substantial measurement error. Invidual level. We view these “assigned” exposures as
this section we describe our approaches to estimatinghaving a Berkson error structure (Fuller, 1987), that is,
these three sources of interpersonal variation and theirthe subjects’ true exposures are randomly distributed

4.2 Personal Exposure Models and
Measurement Error
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around these model predictions, as discussed furthemay thus be a suitable surrogate for exposure to air
below. Below we also discuss a Monte Carlo approach pollution from motor vehicles (generally the domi-
to the problem that some components of these uncer-nant source of particulate and N@ollution in South-
tainties are correlated across children. ern California). Furthermore, since traffic patterns are
One approach to examining the effect of personal fairly stable, it may be a more accurate predictor of
modifying factors such as time—activity patterns views long-term average exposure than actual measurements,
them as determinants of persoeaposurex,;;, which particularly where spatial interpolation is required.
is the covariate of primary interest. This is the approach Several models for predicting pollution have been
taken to allow for time spent in different microenvi- proposed. These range from empirical models based
ronments in the models discussed in this section andon summing the traffic density on each nearby road-
could, in principle, be extended to allow for breathing way with weights depending on the shortest distance
rate differences in different activities to compute per- (Pearson, Wachtel and Ebi, 2000; Rijnders et al., 2001)

sonaldoseto the lung. to complex models that account for traffic speeds, vehi-
Another approach views time—activity patterns as cle types and densities in each segment, along with me-
modifiers of the effect of ambient exposuré(,;, teorological information [e.g., U.S. EPAs MOBILE6

now viewed as the covariate of primary interest, to- model (U.S. EPA, 2002)]. The former do not account
gether with its interaction with such factors. For for prevailing wind patterns, whereas the latter re-
example, Gauderman et al. (2000) showed that the ef-quire more detailed information and more computa-
fect of ambient exposure was stronger in children who tion than would be feasible for Iarge studies. We used
spent more time outdoors. The difference in annual the CALINE4 model (Benson, 1989), which incorpo-
MMEF growth rate per 20 ppb increase in N@v- rates traffic counts on major roadways along with local
els was—1.04% (p = 0.01) in more-outdoors children, wind-rose data (the distribution of daily wind direction
but only —0.62% (p = 0.17) in less-outdoors children. and speed) to estimate trz_:lffic—der_ived pollutant levels
This difference may be thought of as (1) due to better (€-9., N@, CO) at each child’s residence and at study
correlation between ambient and personal exposuresschools. _ _

or (2) due to modification of dose or risk by increased ~ For the CHS, both traffic density and measured

ventilation rates for the more-outdoors children. NO2 concentrations vary significantly from house to
house within all study communities. Spatial mixed ef-

Modeling local dispersion patterngxtensive ef-  fects models are being used (e.g., via PROC MIXED
forts are being made in the CHS to assess the hetin SAS) to describe the dependence of measured NO

erogeneity of ambient exposure levelsthin study  concentrations on traffic density and other factors. The
communities. Due to cost constraints, we can only pasic model is of the form

obtain sample data at selected locations at particular , 5 5 5
times. Low-cost integrating monitors (Palmes tubes) Xe~MVN(Z:B,0°1 + 0"B(¢) + T7A(0)),
were deployed for N@at all 34 elementary schools whereX. is the vector of all the available home mea-
and at a sample of 287 of the subjects’ homes for syrements for community, Z. is a design matrix of
2-week periods in winter and summer. A means of us- covariates such as the ambient levels at the central site
ing these data to predict pollution levels at any location and the schools, and traffic density estimates of homes.
is desirable. The covariance structure has three components: an un-
Spatial interpolation techniques like kriging correlated residual varianee?, a spatially correlated
(Cressie, 1993) could be used descriptively. However, community random effect with varianee? and dis-
the sparseness of available measurements in space angnce parameteg, and a spatially correlated home
time could render this approach unreliable as an in- random effect with variance? and distance parame-
dicator of the extent of the true variability in concen- terd. Both the community mean and several measures
trations within communities. A promising alternative of traffic density were significant predictors. As a pro-
is to build models for dispersion from known sources. portion of the total variance, 21% was independent
The strong observed associations with fgind NG residual, 68% was spatially correlated community ef-
suggest that the most relevant source of pollution mayfect and 10% was spatially correlated within the com-
be fresh motor vehicle exhaust. Fortunately, there aremunity. The predictions from this model can then be
abundant data available in geographic information sys-used to assign exposures to all study homes and esti-
tems on traffic density patterns. Proximity to roadways mate their uncertainties for inclusion in the exposure—
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response analyses. Preliminary analyses suggest @verse correlation with @ There were no significant
modest influence of the within-community deviations differences betweeng y and «g p. Further analysis

on the subject-specific intercepts of MMEF, but not with longitudinal data is planned that will allow for
on their slopes. The asthmatics (at baseline) among thewithin-subject comparisons over time, in the hope of
measured subset also tended to have the highest NOlearning whether differential migration rates explain
levels within most communities. these observations. This also allows tests of whether

Lifetime exposureCumulative exposures could vary previous exposure affects on_Iy the lung function levels
at entry to the study or modifies the effect of current

substantially due to subjects’ differing residential his- b fch
tories. We constructed exposure histories using data®*Posures on subsequent rates of change.

from the U.S. EPA's AIRS data base for the closest There are two components of uncertainty in lifetime
monitoring stations for each child who moved from €XPosure estimates: errors or gaps in residence histo-

outside of the study area. Here we required that at'ies gnd uncertaintigs in community- and year-specific
least 90% of the residential history be complete and @mbient concentrations. We plan to address these ar-
located within the United States. A priori, one would ©2S by using Monte Carlo methods similar to those
expect between-community comparisons of ambientdescrlbeq above to repgatgdly_sample exposure levels
exposure to show a stronger effect on initial lung func- from their uncertainty distribution for each place of
tion in nonmigrants than in migrants, since the lat- residence (if location is known precisely) or for the
ter would also be influenced by their prior exposures. corresponding region (if known only approximately) or
On the other hand, within-community comparisons of from the distribution of all levels in that year (if com-
lifetime exposure up to entry into the study would be Pletely unknown).

more informativg pnly among migrants, since there Measurement error model§he approaches dis-
would be no variation in nonmigrants at the same age. ossed above to estimating personal exposure could
Differences in outcomes _between migrants and nonmi-pa combined by using the spatial estimates of local
grants could be due to differences in their mean expo-qtqoor exposures as input to the microenvironmental
sures, to se_lectlon bias, to uncontrolled confounding or 5 4el and integrating over time. The goal here is to
to differential effect; of exposure measurement error. propagate the uncertainty in these personal exposure
Exposures at certain critical periods of lung develop- assignments through to the exposure—response analy-
ment could also be important. Hence, we plan 0 ex- gis o4 a5 to adjust for the bias due to measurement error

aminé the']lrnﬂtt_Jence 'ogpers?n?)l i)épljc)surlgs a;:curr}ulate(ind to conduct inference that reflects this uncertainty.
Over Speciiic ime windows to both baseline Iung func- rpqq is a large literature on measurement error correc-

tion and subsequent rates of change. To explore thes?ion models (see, e.g., Fuller, 1987; Carroll, Ruppert

Issues, a'two-level versjon C.’f mod'el (6) could be set YP and Stefanski, 1995; Thomas, Stram and Dwyer, 1993;
for baseline lung function, including personal covari- Zeger et al., 2000)

9 ' surement error: the “classical model,” in which mea-

community exposure (zero for nonmigrants), together sured exposures are seen as distributed around the

with individual and community random effects: true (unknown) exposures for each individual, and the
oo N +a3 NXe N+ nZTzC,- +e.+eg “Berkson model,” in which the true exposures of indi-
for nonmigrants viduals are seen as distributed around some assignment
for a group with otherwise indistinguishable charac-
teristics. The classical model would be appropriate
for analysis of data derived from samples where per-
The above setup allows tests on whetheR = a3 u, sonal exposures have been measured, say using a pas-
azy = 0 or ag yy = az . Preliminary results indi-  sive O3 badge or household NOexposures using
cate a significant effect of individual lifetime exposure Palmes tubes. The Berkson model is more appropriate
to Oz on MMEF in migrants. In between-community for predictions from microenvironmental or traffic den-
comparisons for nonmigrants, associations tended tosity models. Both models conventionally assume that
be negative (but nonsignificant) with all three pollu- measurement errors are independent across subjects.
tants. For migrants there was a significant protective This assumption could be violated when subjects share
effect of NO that could be a reflection of its strong exposures (e.g., through attending the same school) or

Yci =
com+azmXem+ o2 m(Xei — Xem)

+ 0%z +ec+e for migrants
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when the inputs to a prediction model are uncertain; is general and could be applied to other parts of the
see Stram (2002). mixed effects model described in Section 3.1.

To incorporate the uncertainties in exposure—re- Let D = {(B;, X.), c=1,...,C} denote the data,
sponse modeling, the full likelihood that incorporates let m = 1,...,2F index the set of all possible re-

the measurement error process is given by gression models with subsets of tiRevariables, let
g denote the number of variables in modeland
L(B) =/L(y|x; p) Pr(x|2) dz, let SS, denote the corresponding regression sum of

squares. George and Foster (2000) suggested priors for

wherez denotes the available measurements or mputsﬂm andm of the form

to the model predictions ard denotes the unknown

true exposures. We used a Monte Carlo approxima- Pr(B,,Im,y) = Ny, {0, yaZ(X,/nXm)‘l}
tion to this likelihood described by Thomas, Stram and (15)

Dwyer (1993) via repeated realizations of predicted ex- fory >0,
posurest:;;- as (16) Pr(m|w) = wi (1 — w)P~9 forw e (0, 1),

. wherey andw are hyperparameters that control the

LB =R Lylx:p). variance of the coefficients and the parsimony of the

r=t models. They derived expressions for the full condi-
This likelihood is evaluated via hierarchical sampling tjonal distributions ofn and ., given D and the cur-
of realizations that reflect those components of un- yant estimates of and w, together with a marginal
certainty that are shared between subjects or acrossikelinood fory andw given onlyD. Finally, they sug-

time. These could be shared uncertainties in true gegted a form of Bayes model averaging in which the

ambient exposures by all members of the same com-y,sterior density of is obtained by averaging over the
munity. For example, for a given sample of model gt of g possible models

parameters and ambient exposures, we drew multi-

ple samples of time—activity profiles and personal— a7 Pr(B|D, y, W)
microenvironmental covariates for each subject to o A
generate distributions of, vectors with appropriate = ;Pr{ﬂmM),m, v, W) Prom| D, y, ).

correlational structure. _ o
Rather than evaluating these probabilities at the max-

4.3 Multipollutant Models imum likelihood estimators (MLEs) ofy and w,

Due to high correlations between pollutants (Ta- We use a fully Bayesian approach to integrate over
ble 2), it is difficult to separate the effects of the the posterior distributions of these parameters using
different pollutants. In multipollutant models, rarely MCMC methods. This entails five types of sampling:
do two pollutants both contribute significantly to the [m|D,y, wl, [BID, v, w], [y|D,m, w], [w|D,m,y]
same model. Rather than try to resolve the questionand[o?|SS,., ¢, ]. Details will be reported elsewhere.
of which is the “best” model, we wish to draw infer- Our results below are based on 1,000,000 iterations of
ences on each pollutant’s effect that take into accountthis process, after discarding 100,000 iterations to al-
our uncertainty as to which other pollutants should be low for convergence.
adjusted for. This is the problem that “Bayes model Inference can be based on the posterior distributions
averaging” (Raftery, Madigan and Hoeting, 1997) at- for m andg using informative priors foy andw. This
tempts to address. The basic idea is to fit all possibletakes into account prior knowledge about the antici-
models and then draw inference on the marginal dis- pated degree of parsimony, if available. Lacking such
tribution of model coefficients. These calculations are knowledge, we prefer to base our inferences on Bayes
difficult, but have been facilitated by recent develop- factors (BF), which minimize the influence of prior
ments in Markov chain Monte Carlo (MCMC) methods specifications by taking the ratio of the posterior to the
(Gilks, Richardson and Spiegelhalter, 1996). We im- prior and can be thought of as a form of marginal likeli-
plemented a MCMC version of an approach described hood ratio (Kass and Raftery, 1995). For the Bayes
by George and Foster (2000) for application to the re- factor is defined as Bfn) = Pr(m|D)/ Pr(m), where
gression of the community-level effedBs on a vector  the numerator is simply the frequency distributiomof
of p=1,..., P predictor variableX, (e.g., multiple  from the MCMC iterations, and the denominator is
pollutants) in the third-level model (5). The approach [ Pr(m|w)Pr(w)dw, computed by sampling a large
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number of values oy from the prior and averaging the Kass and Raftery (1995), a BF of 1-3 is interpreted
resulting probabilities ofz. From P(m|D) other mar-  as “very mild evidence,” 3-20 as “positive,” 20-150
ginals such as g, # 0) and P(g,,) can be computed  as “strong” and greater than 150 as “very strong.” By
readily for comparison with their corresponding poste- these criteria, the evidence for the single best-fitting
rior distributions. Forg, we tabulated RpB, # 0|D), model that contains only acid is “strong” (B£30 rel-
Pr(8, < 0|, # 0,D), Pr(B, < 0|D), E(BylBy # ative to the null model). Marginally, the evidence that
0, D) and vatB,|B, # 0, D), and compared them implicates acid is only “positive.” Eight two-pollutant
with their corresponding priors to compute Bayes fac- models had BFs greater than 2, including all mod-
tors. We also computed Bayes factors to adjust for els with acid. No three-pollutant or higher models
other pollutants [e.g., based on(By < 0|8, # 0, D) had BRm) > 2, although 22 of the 35 possible three-
and its corresponding prior probability]. pollutant models had BFs greater than 1, again predom-

We applied this approach to estimates of the com-jnantly those which included acid. Single-pollutant
munity-specific adjusted 4-year rates of change in models with NQ, PM;o and EC also had BFs greater
MMEF separately for the two fourth-grade cohorts than 1, relative to all models.

(enrolled in 1993 and in 1996), as defined earlier; Table 4 summarizes the marginal distribution of
thus C = 24 observations in total. They were re- the g, for each pollutant, averaging over the entire
gressed on the community mean ambient levels overmodel space. The evidence for acid is the strongest,
1992-1995 and 1996-1999 for seven pollutants, re-ith a BR(8, # 0) =5.27, BRB, < 08, # 0) =3.79
spectively: @, NOz, PMio, PM 5, elemental carbon  ang BRg, < 0) = 7.53. However, the marginal dis-
(EC), organic carbon (OC) and acid (EC and OC are ripytion has a much larger variance than the con-
constituents of PMs). Linear regression (adjusted for  gjtiona) distribution for the model with only acid:
cohort) showed significant associations with all pollu- he conditional MLE and its standard error (SE) is
tants except @ with the strongest association for acid _ 1044 0.033, whereas the marginal mean and stan-
(p = 0.0012). No two-pollutant model had significant  garq geviation (SD) is only-0.024+ 0.054. This
contributions from both pollutants, althoughe @as jifterence reflects the larger conditional SEs for the
marginally significant = 0.056) in a model which 1, tinollutant models which include acid and the
included NG (p = 0.006). . . between-model variance in tifgs.

The posterior probability that no varlablgs co.ntrlbute Ultimately, we suspect that even the use of sophis-
to f[he model was 0.112, much less than its prior prob- ticated techniques may not resolve the multipollutant
ability 0'4.19’ for a Bkm) qf 0.268 relative to _aII mod- issue without exploiting comparisons at other spatial
els combined. Models with one or two variables had and/or temporal levels
BFs greater than 1 relative to the set of all possi- '
ble models, or 7.58 and 5.29, respectively, relative to Summarization across subgroug@ayesian model
the null model. According to guidelines suggested by averaging techniques also could be used to explore ef-

TABLE 4
Marginal distribution ofg,, for the seven pollutants under consideration in the Chiltsetealth Study

Posterior summary O3 NO, PM 19 PMsg EC? ocb Acid®
Pr(8, #0IB) 0.1312 01653 01116 01339 01051 02039 05061
BF(Bp #0) 0.78 102 065 079 0.60 132 527
Pr(8p <0|Bp #0,B) 0.6280 06672 05210 05926 05525 07118 Q7911
BF(8, < 0|8, #0) 1.69 200 109 145 123 247 379
Pr(8, <0QI|B) 0.0824 01103 00582 00793 00580 01452 04004
BF(Bp <0) 1.01 140 070 097 070 192 753
E(BplBp #0,B) —0.0034 —0.0051 Q0006 —0.0039 —0.0061 —0.2093 —0.0338
SD(Bp|Bp #0,B) 0.0121 00196 00218 Q0337 Q0706 05344 00535

NOTE: P8, # 0) = 0.1629; Pt8), < 0|8, # 0) = 0.5000; P8, < 0|8, # 0) = 0.5000.
8Elemental carbon (in ppb).

bOrganic carbon (in ppb).

CComposed of HN@ and HCI (in ppb).



STATISTICAL ISSUES IN AIR POLLUTION STUDIES 429

fect modification and to assess the consistency of find- E(yiiz}) - ag) + bﬁ? (teij — Lei. j—1)
ings over several stratification factors. Some factors are ,
expected to modify the slope of air pollution effects +9P 24+ @ yc(})j—l'

and some of these modifying factors may interact with
each other, for example, girls reach their growth spurts Here, ¥ measures the dependence of lung function
earlier than boys, leading to the need for joint strati- changes on previous school absences @At mea-
fication by age and sex due to the possible three-waysures the dependence of school absences on previous
agex sexx pollution interaction effect. As the num- lung function levels. The models account for intrasub-
ber of such stratification factors increases, we expect toject serial correlation.

see some spurious interaction effects simply by chance, Inthe CHS, all lung functions [except for forced vital
due to the increase in the number of strata and thecapacity (FVC)] showed qualitatively similar associa-
corresponding reduction in sample size per stratum.tions with all pollutants. Associations were somewhat
Hence, lacking a strong prior belief that there ought stronger with measures of flow rates (e.g., MMEF)
to be many higher-order interactions, one ought to try than with measures of lung volume (e.g., FEVThis

to average stratum-specific slope estimates over simi-suggests that air pollution may be a stronger determi-
lar strata and thus improve the power for detecting real nant of small airways obstructive disease. Univariate
heterogeneity. Bayes model averaging techniques offeranalysis provides a means to describe such patterns,
a way to average over the set of all possible interactionput it may fail in formally testing whether the associ-
models. See Chipman (1996) for more discussion onations for several measures are significantly different.

models with main effects and interactions. Moreover, it may lead to a proliferation of significance
4.4 Integrated Analysis of Several tests with elevated risk (_)f falsg posit_ive inferen;es.
Longitudinal Outcomes However, because of their relatively high correlation,

_ ) simple Bonferroni adjustment gf-values may not suf-
The methods discussed so far deal with each type office Some form of multivariate analysis would there-
outcome (lung function, symptoms, school absences)yre be desirable.

univariately. It is of interest to perform integrated A two stage least squares approach for model-
analysis of several outcomes to be able to examine pat-Ing two continuous outcomes by modeling one out-

terns in lung function tests and/or to identify biologi- come, followed by a model for the second outcome

caIthTdeanEngr]]ful Itrhends in the ?ﬁeCtS of air p?]llution with predicted values from the first model as covari-
on children’s health. For example, we may Wish to test oo *\yas proposed by Amemiya (1985). This was
whethe_r respiratory _|Ilnesses lead to long-term decre-later extended to allow for joint analysis of a dis-
Iment? In tl_ung_funct_lol? for,tcor;versely,_ V\{heth.ﬁr POOT -rete and a continuous outcome via a latent variable
ung ftunction 1S a risk tactor for respiratory [in€ss. approach (Bartholomew, 1987; Catalano and Ryan,

A major streng'gh of longitudinal studies _is that they 1992). Fitzmaurice and Laird (1995) proposed an alter-
offer a way to disentangle such complex interrelation- native model that instead focused on the discrete out-

ships. .Nevertheless, t'he .aytocorr_elatlon of t_he d.'ﬁeremcome. Direct extensions of the work of Laird and Ware
endpoints may make it difficult to infer the direction of ) .
(1982) for inference on multiple outcomes also have

causation even in longitudinal data. .

An overall strategy for addressing this question been proposed for bal_anced o!ata (R_el_nsel, 1984) and

1 @ unbalanced designs with possibly missing data (Shah,
could be set up as follows. Lefi; = (yij ¥eij) Laird and Schoenfeld, 1997).
denote a vector of multivariate responses over time, 5 descriptive analysis of the relationship between
. .

where, for exampley;) might be lung function mea- lung function tracking and asthma status by age at di-
surements at time;;; andyc(,l.z? might be the number of  agnosis was reported by Berhane et al. (2000) using the
school absences for respiratory illness betwegn 1 model
andt.; ;. For simplicity, we treat both endpoints as con- Dy 3 N ,
tinuous, although other types of outcome as in the gen- E[Iog(ycif)] = dei + filteij) + falteij) - log(heighy

eralized linear models framework could be considered. T
ta o+ B @t Yy Zij,
cij

We consider a coupled set of models of the form Yeij
E(ygil} B yc(‘il,)j—l) =aP + b (teij — tei 1) wherea,; ~ N (0, 2) is a subject-specific random in-

- tercept,f1(¢) is a smooth function of age)and f>(z) is
+ y(ll) Zj + ¢(1)y£§)j_l, a smooth function of age that depicts the age-dependent
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TABLE 5
Gender-specific effects of asthma on MMEF by age at diagnosis baskgear follow-up data on
participants of the Childrers Health Study

Aih drin%%;ge Main effect of asthma Trend (asthma x age)
Gender (years) % difference 95CL.I. % difference 95C.l.
Female 0-2 —1572 (—256, —4.9) -0.8 (—3.4,1.8)
3-5 —-2.8 (=158, 122) -0.4 (=35, 28
6-9 -2.2 (—9.4,5.7) 0.1 (—1.6, 1..8)
>10 —57° (9.7, —15) —0.01 (—0.9, 0.9
Male 0-2 —188P (—26.0, —114) 0.6 (-1.0,2.2)
3-5 43 (—5.9, 15.6) -0.1 (—2.0, 1..8)
6-9 -7.3 (—134, —-0.8) -1.0 (—2.3,0.4)
> 10 —6.5° (=110, —1.7) -0.2 (-1.1,0.8)
ap <0.01.
b, <0.05.

slopes of log(height), both fitted using regression sures (e.g., 24-hour mean) could be used. However, the
splines (see Section 3.2 for details). Hetig, mea- choice of an appropriate “metric” is crucial, since pol-
sures parallel deviations between the four asthmalution levels vary across the year and even within days,
groupsy®, andg, depicts the trend in the deviations and the biological effect of this variation is not well
over time between the four groups. Table 5 summarizesunderstood.
the estimates of the deviation and trend parameters. For the CHS, our choice of the time-weighted
Early diagnosis of asthma is associated with a signif- average is based on a hypothesis that chronic effects
icant deficit in MMEF in both females and males, but represent an accumulation of small insults received
the percent differences do not seem to change with in-continuously over time and these insults depend lin-
creasing age. Figure 4 depicts this relationship for fe- ear|y on po"ution levels. This approach can be ex-
males in various “age at diagnosis” categories. tended to allow for nonlinearities in the instantaneous
4.5 Exposure Metrics dose-response relationship or interactions between
_ pollutants, possibly lagged over time. Our approach is
For annual outcomes such as lung function, an- o ¢ try to estimate the parameters of this unobserved
nual averagesY. of daily summary exposure mea- continuous process. Instead, we use the predictions of
such a process to motivate the choice of exposure met-

o 7 rics for the chronic effects analysis that could test hy-
T e potheses about nonlinearities and interactions.

< SO We are currently evaluating a family of additional
T s exposure metrics which are motivated by a Taylor se-

ries approximation to a general dose-response relation-
ship of the formt = [ g[X (r)]dt, whereg(X) denotes
the effect of ambient exposure on the instantaneous
rate of change of. Following this line of reasoning,
a general test of nonlinearity in(X) is obtained by
adding as a covariate in a community-level model the
- varianceV, of exposure over time in each commu-
' ' ' ' ' nity (Thomas, 1988). These variances can be decom-
10 12 14 16 18 posed into hourly, daily, weekly, seasonal and annual
components.
To distinguish nonlinearities in the instantaneous
FiG. 4. Growth curves for MMEF by age at diagnosis of asthma dose—response from nonlinearity in the relationship
for 8-18-year-old participants of the Childréa Health Study betweenY and X, variance-based metrics could be

MMEF (litres/sec)
3

AGE (in Years)
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added to a model that includes not just but also and ecologic levels. Many environmental agents are ge-

some transformation(s) thereof, suchX¥&or X In X. ographically determined, necessitating some form of
Transformations of the&X axis leave the rankings of ecologic comparison (Thomas, 2000).
the communities intact, whereas addition@fto the The development of optimal study designs that in-
model can change their rankings and, hence, contributeyolve careful selection of geographic areas and ap-
additional information. propriate balancing of resources between ecologic,
This approach could be extended to allow for (1) ef- individual and temporal observations should be of high
fects of rate of change of exposube(r) = dX/dt  priority. Numerous analytical challenges remain, many
via metrics of the form/[ X (t)X'(t)dt; (2) inter-  of which have been touched on herein. In particular,

aCtionS between pO”UtantS Via met”CS Of the fOI‘m the problem of exposure measurement error is ubiqui_
J X1(1)X2(1) dt to be added to a model that includes toys and serious in environmental epidemiology, and
the main effects ofX, (p = 1,2), their product and  pag peen an active area of statistical research; epidemi-
their respective variance¥,; and (3) lag effects  gggic applications, however, remain in their infancy.

via metrics of the form/ X1(1)X5(r)dt. Various in- ¢ is hoped that this article will stimulate further re-
dices of interest to the regulatory community may gagrch along these lines.

be considered, such as threshold models of the form
[ maxX(t) — t, 0} dt for values of thresholds;, such
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thing they have achieved with limited resources. There Gaussian data), as reviewed by McCulloch and Searle
remain numerous challenging opportunities for contin- (2001) and McCulloch (2003).

ued research, combining statistics and science to as- Several components in the GLMM [BGST, (6)]
sess air pollution health impacts on children. | refer were chosen, including the random effects distribu-
to Dominici, Sheppard and Clyde (2003) for a com- tion fy(u), and the fixed and random effect design
plementary review of methods and designs for both matrices. Similar components were chosen in their hi-
acute and chronic health effect studies on a variety of erarchical models (1)—(5). Please would the authors
time scales and age groups, and to Piegorsch, Smithcomment further on their choice of design matrices, in-
Edwards and Smith (1998) for an environmental statis- cluding whether interactions were included. In BGST

tics review that also discusses health impacts. model (6), the authors assume normally distributed
random effects on the link scale and mention poten-

2. GENERALIZED LINEAR MIXED MODEL, tial bias of ecological comparisons if the distributional
DIAGNOSTICS AND INFERENCE assumptions are violated. | would value further discus-

As BGST indicate, their model (6) is a generalized sion on available diagnostics for nonnormality of these
linear mixed model (éLMM). Many recent GLMM re- effects, especially for non-Gaussian data, and sensitiv-

search advances were reviewed by McCulloch (2003), Y 10 these assumptions.
together with further research needs. For example, ad-
ditional diagnostics are needed to evaluate sensitivity 3. FLEXIBLE MODELS

to the random effects distribution, and likelihood in- |5 BGST models (1)—(5) and (6), fixed effect pa-
ference for GLMM variance components is not well rameters and random effects enter linearly in the in-
understood for small samples. BGST also mention thetercept and slope components. BGST later describe
need for additional research on both diagnostics andfexiple B-spline models for age-dependent growth
inference. In this section | elaborate further on this (gte and the need for further inference methodology
need. | later pose several scientific questions that relat&qy functionals. The methodology for flexible mod-
to model specification in the CHS study and discuss gjs for functional/longitudinal/spatial data is expanding
spllne-‘pre models to study interactive air pollution rapidly, including approaches with spline and mixed
health impacts. _ _model connections (in addition to references pro-
By grouping together subject- and community- yiged by BGST, see, e.g., Diggle, 1997; Brumback
specific terms, Equation (6) in BGST may be writtenin 5,4 Rice, 1998; Ke and Wang, 2001; Ramsay and
the general GLMM form (see, e.g., McCulloch, 2003, Silverman, 2002; Wand, 2003; Liu, Meiring and Wang,

Equation 4.5) 2005; Zhang and Lin, 2003). Flexible spline-based
(1) Yilu~ fy.u(yilu). models may pr_ove'valuable' _in both modeling and
model diagnostics, in the spirit of BGST's comment
ElYilul = pi, on fitting “more complex models that test modeling

g(ui) =X:B +Wwiu, assumptions.”
2 Certain families of flexible models have earned pop-
@) u~ fuu), ularity in epidemiological health effect studies, in-

where fy,ju(y;|u) is an exponential family probability ~ cluding generalized additive models (GAM; Hastie
density/mass functiony is a vector of random effects, and Tibshirani, 1990; Dominici, McDermott, Zeger
w; indicates the multipliers of random effects for re- and Samet, 2002; Dominici, McDermott and Hastie,
sponse, x; are the fixed effect explanatory variables 2003, and references therein). The GAMs also may be
for response, B are parameters that correspond to the viewed as special cases of functional analysis of vari-
fixed effects ang is a link function. Correlation isin- ance (ANOVA) models. Functional ANOVA models
corporated through correlated random effacts (2) extend analysis of variance concepts to include func-
or by random effects that are common to sets of ob- tional spaces, enabling the study of main effects and
servations. The conditional distributions in (2) often interactions between combinations of functional or dis-
are assumed independent, but this assumption may berete covariates. Suppose that a vector of explanatory
relaxed. Generalized linear mixed models extend sev-variablesv = (v1, ..., vy) has M components, each
eral commonly used families of models, including gen- of which may be multidimensional. H observations
eralized linear models and linear mixed models (for were made, théth observation would correspond to
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a vector of explanatory variables = (vi1, ..., vim), 4. INTERACTIVE EXPOSURE PROCESSES
for eachi € {1, ...,n}. A functional ANOVA model

) Many of the pollutants under study are produced or
decomposes a modeled function Y P y P

depleted in complex chemical reactions that rely on
M other pollutants and meteorological factors (see, e.g.,
FOD)=v+ Y fiCoir) + Y fua ik, vir) + -+ Meng, Dabdub and Seinfeld, 1997; Seigneur, 2001).
=1 k<l They also are measured subject to error at both the
community and individual levels. As BGST notes, it is
extremely difficult in observational studies to identify
the effects of individual pollutants due to these chemi-
cal associations. The difficulties of studying health im-
pacts of individual pollutants potentially also rise from
interactive and compounded health impacts within the
human body. For example, Brunekreef and Holgate

+ fr.mit, ..., vim),

where the first termv is an overall intercept and the
second term on the right-hand side is the sum\bof
flexible main effects, followed by additive functional
interaction terms of different orders. Some components

may be parametric (su<_:h as linear te”‘?s) and Other(2002, referred to as BH in the remainder of this com-
components may be spline-based. Functional ANOVA ment) reviewed many recent air quality health impact

models include smoothing spline (SS) ANOVA (e.9., gy dies at a variety of time scales, together with state
Wahba et al., 1995; Gu, 2002; Wang, 1998; with f knowledge physical mechanisms of health impact.
smoothness controlled by multiple smoothing para- BH discussed mechanisms by which ozone acts as a
meters) and the reduced basis approach of Stonestrong oxidant in the human body and antioxidants in
Hansen, Kooperberg and Truong (1997). The GAM the lung reduce the health impacts of inhaled ozone.
corresponds to a model with only the intercept and Less is known about the damage mechanisms and long-
main effects. Each estimation approach has its ownterm impact of nitrogen dioxide and particulate matter.
challenges. | do not attempt a unified review here, However, BH also indicated that both particulate mat-
but | note that GAM standard errors and the choice ter and nitrogen dioxide have the potentialattivate

of smoothness recently have been improved for cer-0xidant pathwayshat impact on the respiratory and
tain time series health impact studies (see Dominici, cardiovascular systems. While the mechanisms may
McDermott and Hastie, 2003, and references therein).Pe different and while pollutants may travel to differ-
Concerns have been raised about biased GAM stan-_ent parts of_ the lung (with ultra-fine part_icles penetrat-
dard error estimates for spatial air pollution data due "9 further into the lung than larger particles), | would
to concurvity (Ramsay, Burnett and Krewski, 2003). value the authors’ comments on the potential presence

The GAM constraints for model identifiability may and form 9f |r_1teract|ve pollution health |m_pacts. For
: o . . example, if different pollutants damage different as-
need investigation for certain sampling schemes and

. del pects of the respiratory system simultaneously, even at
covariate models. individual low to moderate levels, is there potential that

These models also have been extended. Of partiCuypg hegith impacts will be more severe and reported
lar relevance to BGST, Karcher and Wang (2001) de- yqre frequently? Is there a combined point where the

veloped generalized nonparametric mixed effect model effects increase in severity nonlinearly? Might flexible

extensions of GLMM that include SSANOVA-type spline-based models aid the investigation of possible
components in the explanatory fixed and random ef- combined health impacts, including possible nonlin-

fects. Such approaches hold promise for investigatingearities in the severity of health impact and frequency
model form and interactions in health impact studies, of chronic disease diagnosis?

motivating continued research. Further understanding

is needed on sensitivity to multiple smoothing parame- 5. SPACE-TIME SCALES OF

ter selection and theurse of dimensionalitfor multi- POLLUTION VARIATION

ple explanatory variables, together with computational  Ampjent pollution levels and personal exposure ac-
improvements for large data sets. Rapid advances injyities vary on a variety of time scales, with long-term
the areas of GLMM and flexible models testify to their trends as well as seasonal and daily cycles. To study
value to address particular questions, with further needchronic effects, BGST usually use yearly averaged pol-
of diagnostic and inference methods, including infer- lutant levels as the shortest time scale (although there is
ence about interactions. discussion of the need to examine other time scales in
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the paper, and it is not clear to me currently if models at offer promise for assessing exposure uncertainty. This
other times scales were implemented). Yearly pollutant ideally would be combined with scientific knowledge
averages eliminate information on smaller time scales about atmospheric chemistry, microenvironment varia-
that may be important in chronic air pollution studies. tion and measurement error.

It will be important to investigate whether there may be ~ The error in using ambient measurements or mi-
increased cumulative risk for repeated exposure at highcroenvironment models versus true exposures varies
levels compared with constant exposure at medium lev-substantially with pollutant. For example, exposures
els. The amplitude and shape of the daily cycle may to some PMs constituents are poorly represented by
be a very important factor for certain pollutants. For ambient measurements, whereas some others corre-
example, surface ozone is a secondary pollutant pro-late well with ambient outdoor measurements (e.g.,
duced in photochemical reactions. Daily patterns in Ebelt et al., 2000). Also, there is personal cloud
primary pollutant emissions (anthropogenic and bio- phenomenor_1 related to activities that increase parti-
genic), photochemical activity and transport lead to a €& suspension levels, leading to higher personal ex-
daily cycle in ozone levels. The shape of this daily cy- POSUres than microenvironment measurements. Hgalth
cle varies in space and time (see, e.g., Guttorp, Meiring'mpaCtS of _pa_rtlculate matter cgrrently receive high
and Sampson, 1994). In 1997, the United States Envi_rgsearch pI‘I.OI’Ity (see, e.g., National Research Coun-
ronmental Protection Agency changed the ozone regu—c.'l’ 1998;_L|ppmann et al., 200.3) af‘d new regula-
lation from a standard based on daily maximum hourly tions are mtr_odgc_ed. HOW?Ve“ little is known_ about
ozone values to one based on daily 8-hour averagethe.'mpaCt of|nd|V|du_aI pe_lrtlculat_e matter constituents,
ozone levels. Have the authors tried to include countsWhICh vary substantially in relative proportion within
of days exceeding some standard, and possibly alsothe United States and globally. Many analyses rely only

the durati f individual isod h due t on size distribution (ford € {2.5, 10}, PM,; consists
€ duration of individual €piSodes (per aps due 1o particles less thad um in aerodynamic diameter).
persistent meteorological conditions) in their statisti-

. ) oth elemental and organic carbon (EC and OC) con-
pal mo_dels, relate_d to the exposure metrics dlscus_se tituents of particulate matter were used by BGST in
in Section 4.5? This may be a first step toward detailed ggtion 4.3, Please would the authors comment on the

consideration of multiple time scales to investigate gnace time variation in these (and other) particulate
whether the severity of the chronic impact increases yatter constituents and their correlations on a variety
nonlinearly with exposure on a variety of time scales. ot gpace—time scales. Is there reason to believe that
I would value the authors’ additional comments on this. the pi 5 relative composition is similar across all the
Due to large variation in N@levels within each  sjtes in the CHS on an annual basis and throughout the
community, BGST use a spatial mixed model com- year? Do the authors have additional comments about

bined with traffic estimates to estimate AQev- individual particulate matter composition and impact?
els at unmonitored locations. Spatial mixed models

have also been extended to spatial GLMM (see, e.g., 6. REGULATION POLICY AND

Diggle, Tawn and Moyeed, 1998; Christensen and MODEL UNCERTAINTY

Wa_agepetersen, 2002; Kamma_nn_ and Wand, 2003), The development of regulations depends on the per-
which may be of value for predicting the number of ejed health impact. Sensitivity of analysis conclu-
days exceeding pollution standards at an unmonitoredgions to model choice has been found. in mortality
location/microenvironment, given the corresponding gydies on shorter time scales (e.g., Smith, Davis and
number of days at monitoring sites. Space-time es-gpeckman, 1999). Bayesian model averaging provides
timation methodology is constantly advancing and yajuable information on statistical model uncertainty
detailed reviews appear elsewhere. In particular, hier-y combining inference from a family of statistical
archical space—time dynamic models are enabling themodels (BGST; Clyde, 2000; Dominici, Sheppard and
inclusion of science in the statistical model through Clyde, 2003). This requires specification of the gen-
a conditionally specified hierarchy (as reviewed by eral family of candidate models, including the nature
Wikle, 2003). Many of the pollutant fields are non- of any interactions. Model specification diagnostics re-
separable and nonstationary in space and time (seemain crucial.

e.g., Guttorp, Meiring and Sampson, 1994; Sampson, The valuable work by BGST and other health im-
Damian and Guttorp, 2001; Zidek, Sun, Le and pact researchers leads toward the challenge of incor-
Ozkaynak, 2002). Stochastic simulation of potential porating uncertainty about individual and combined
air pollution fields, conditional on observations, may pollution health impacts into emissions control deci-



438 K. BERHANE, W. J. GAUDERMAN, D. O. STRAM AND D. C. THOMAS

sions. Improved statistical approaches are needed tauncertainty measures. Statisticians must continue to
contribute to decision making (Barnett and O’Hagan, improve cost-effective sampling designs and proba-
1997; Novartis Foundation, 1999). Atmospheric chem- bilistic models for exposure assessment at the indi-
istry models are developed to investigate the changesvidual and community levels (see, e.g., Zidek and Le,
in pollution levels under different emissions scenar- 1999; Zidek et al., 2003). Continued study of the health
ios. These models must be evaluated under the currentmpacts of multiple air pollutants on children will be a
scenario by comparison with observations (SampsonVital component of policy development to protect peo-
and Guttorp, 1999) and ideally must be combined with Ple of all ages.

Comment

Lianne Sheppard and Jonathan C. Wakefield

The article by Berhane, Gauderman, Stram andfect(«1, a2, 3, 82, B3) that allow the consideration of
Thomas (BGST) addresses an array of statistical as-many possible scientific questions.
pects that relates to estimation of the long-term effects The hierarchical model described in (1)-(5) of the
of air pollution. The Southern California Children’s paper includes exposure effects of yearly exposure
Health Study (CHS) is an important resource for the («1), individual exposurgaz), community exposure
community of scientists and policy makers who are (including contextual contributionsjxs), individual
trying to understand the long-term effects of air pol- exposure modified by timé3,), and community expo-
lution on health. Many complex topics are discussed sure (including contextual contributions) modified by
by BGST, but we focus our discussion here on just time (83). The exposure parameterization therefore al-
a small number of the issues considered. In particu-lows for different effects for exposures that vary be-
lar, we discuss the role of complex hierarchical models tween cities(X.), over time within cities ¥.; — X.)
in environmental health research, the role of exposureand across individuals within cities — X.). This
variation and measurement, and ecological inference. flexibility is a strength in the sense that one source of
exposure variation does not influence estimation of the
1. HIERARCHICAL MODELS effect of another. For instance, the purely ecological
comparisons can be separated from the effects of ex-
Most air pollution studies attempt to address the posure variation across individuals or over time within
broad questions of whether and how air pollution is jties. However, scientifically, it becomes imperative to
associated with health outcomes. In the CHS, the Ul-question whether we expect these parameters to be the
timate goal is to understand the long-term effects of air ggme. For instance, cross-sectiopal, a3) versus lon-
pollution on children’s health. Since this goal is broad, gitudinal 1) effects are often believed to be differ-
it must be refined and translated into contrasts (para-ent, A contextual effecbf exposure is the additional
meters or functions of parameters) that can be eSti-mOdifying effect on the outcome of exposure through
mated from the available data. The approach describedoek)nging to a group. Cross-sectional contextual ef-
in BGST is the specification of a complex hierarchical tgcts are present in BGST’s model when+ o3 (and
model that is sufficiently general to allow for multi- \yhen the associated predictors have shenedefini-
ple levels of variation and types of confounding, and tion: see Section 2). However, it is often reasonable
includes an array of parameters for the exposure ef-t5 assume that contextual effects are absent for envi-
ronmental exposures (Sheppard, 2002). Furthermore,
Lianne Sheppard and Jonathan C. Wakefield are Re-€ven when the parameters are the same, their estimates
search Associate Professor and Professor, Depart-can be different, because of uncontrolled confounding
ment of Biostatistics, Box 357232, University of or covariate measurement error. Sheppard (2003) ar-
Washington, Seattle, WA 98195-7232, USA (e-mail: gued that biases operating at one level (or differently
sheppard@u.washington.edu). at several levels) can drive the differences in the es-
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timates, even when the underlying parameters are theA contextual effect is induced when there is either
same (an example of this follows). This suggests thatwithin- or between-community dependengsy(s£ 0
side-by-side comparisons of parameter estimates, suclor pg # 0), unless they cancel out, which is extremely
as the cross-sectional versus longitudinal effects givenunlikely. The size of the induced contextual effect is re-
in Table 3, are a crucial step to identifying the poten- duced when either of the ratios of between- or within-
tial biases in these studies. Note that the cross-sectionatommunity variability in confounder to exposure is
estimates in Table 3 are 2-3 times larger than the lon-small. This indicates that the interpretation of contex-
gitudinal estimates (although nearly all the estimates tual effects requires great care. The above development
are within 2 standard errors of 0). It remains to be de- is analogous to the role of unmeasured confounding in
termined whether the differing estimates reflect real longitudinal studies (see Palta and Yao, 1991).

differences in the parameters or are merely different

The underlying scientific questions must be related

biases. Separation of the parameters is useful for com+o the proposed contrasts. It is a dilemma for statis-
paring estimates and identifying different sources of ticians to decide whether to present a simple model
bias (and this step should not be neglected). However,that highlights a specific contrast of interest or to use
because the exposure variation is partitionEd into SeV-g very Comp|ex model within which the same contrast
eral variables, reporting separate parameter estimatess embedded. Presentation of the simple model is often
may not be a desirable approach to answering the sciomych easier, but risks hidden bias. Complex hierarchi-
entific questions of whether there are, and how big are, ca| models are difficult to convey to a broad audience

the exposure effects.

and are less straightforward to interpret since estimates

We demonstrate how contextual effects may be in- are only rarely direct functions of the data. However,
duced by unmeasured confounding in a simple situa- specification of the complex hierarchical model can in-

tion. Suppose the true model is given by
E[Yci|Xci» Zci] = eXp(Ol + ,BXci + VZci),
where within areas
() L
Zei Z:. | ow W, W,
and between areas
(E1-(5) Lot 5]
Zc pz ] pB By B; BZZ

If the confoundersZ,; and Z. are unmeasured we
obtain

/OWWEWZ ] )
WZ

. pw W.
E[Ycilxci’xc]:exp(a +Xci{lg+ Y Z}

X
B W,

+XC{K)B 2 PW Z})/),
B, Wy

wherea* does not depend oK.; or X.. Hence a con-
textual effect has beeimducedby unmeasured con-
founding. The effect of individual exposuig.; is only

form the simple contrasts by giving a structure for de-
ciding which sensitivity studies should be done and
how to approach them. Simpler models can be de-
rived from the complex multilevel model by collaps-
ing over one or more levels or by dropping one or
more sources of variation. In BGST, very interesting
unanswered questions remain regarding whether either
of the simpler cross-sectional or longitudinal change
models shown in Table 3 is adequate relative to the full
multilevel model. The simpler models, while not ex-
plicitly shown in this paper, are easier to understand.
The coefficients suggest the simpler models perform
similarly for all pollutants except @ In general, the
combination of data and comparison of results from
different analysis approaches and study designs, in-
cluding cohort, case-control, ecological and longitudi-
nal studies, is a vital area of research since the strengths
of each can be exploited and the potential for hidden
biases can be decreased.

We now discuss parameter interpretation with ref-

confounded in the presence of within-community de- erence to a simplified form of the model given by
pendencedy # 0), and confounding does not depend (1)—(5) of the paper, in which we ignore the time ef-
on the between-community dependence between thdects. (We would be interested in the authors’ interpre-

average exposure and confoundes, because a con-
textual effect of exposureX(.) has been included in

tation of 8> and 83.) For clarity of exposition we take
a log link, a common choice for rare events. Hence we

the model. If this term is excluded from the model, have the model

then there will be confounding due g also. Hence

to prevent confounding from this source, a contex-
tual effect should be included in the above model.

Wei = eXplag + a3 X + ec + n2zei
+ 012(xci - Xc) + eci}-
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Suppose all of the exposures in areare increased be arequired part of a hierarchical analysis that focuses
by 1 unit. Then the relative risk associated with this on interpretation of exposure effects.

change for each of the individuals in communityas- The exposure definition can be potentially problem-
suming that individual confounders and random effects atic too. BGST mention that two of the exposure pre-
remain constant, is given by e). The relative risk  dictors,X. andX,;, are community levels of pollution,
between two individuals,andi’ say, in the same com-  implying that these are ambieebncentrationmea-
munity whose exposures differ by 1 unit but have the sures. However, distinguished by its notatiay; is
same confounders, is e + e — e./). Finally con- described as a subject-specific average pollution level
sider individuals andi’ in two communities: andc¢’, from microenvironmental models, suggesting that this
and suppose they have the same individual exposured€'™M is & measure of individuaixposure Since such
and confounders, but the average exposure in commu&mbient exposures are often attenuated relative to am-
nity ¢ is 1 unit higher than in community. Then the  Pient concentrations due to the amount of time people
relative risk is exfus — a2 + eqi — ecir + e — eu). spend indoors (Ott, Wallace and Mage, 2000; Wilson,

The presence of random effects makes interpretation'\r/l]figj_f?nd Grant, iOOO;}Sheppard ar_lthami?na_?OOO),
of these relative risks more difficult, as discussed by; IS tl ference makes tTeh par?hmemQrm ereg_tl_)t/ Ib-
Heagerty and Zeger (2000). erent from oy OF o3. 1hus e comparability be-
tween thax’s and their interpretation will be lost when
The form of the random effects model may be sec- . . .
, : . . the comparability between exposure predictors is not
ondary to other considerations when effect estimation

is the goal of the analysis. Wakefield (2003) argued thatmz.?.lﬁéa;lenz(:'e additional questions regarding exposure
in the ecological setting, spatial effects will frequently that need to be incorporated into the modeling frame-
be of secondary importance compared to issues of CONYvork. How do we know which exposure metric to
founding and pure specification bias (see Section 3).

) ’ choose in these models? What implications does this
Guthrie, Sheppard and Wakefield (2002) showed that-pice have on the parameters in the model? Fur-

the efficiency of an aggregate data model was unaf-ihermore, measurement error distributions can vary by
fected by ignoring the spatial dependence, unless thggyg| of analysis and exposure measurement proper-
exposures varied on the same scale as the random efjes with a consequent impact on the parameter esti-
fects. When the exposures varied quickly in compar- mates. For instance, while temporal variation within a
ison to the residual variation over space, the Standardcity may be reasonab|y assessed by a Sing|e fixed-site
error of the exposure effect estimates was similar for monitor, the city-specific mean from that same fixed-
models that incorporated spatial dependence as withsite monitor may still be subject to measurement error.
models that ignored its presence.

To the discussion of software for hierarchical mod- 3. ECOLOGICAL INFERENCE
els in Section 3.4, we mention the WinBUGS software
(Spiegelhalter, Thomas and Best, 1998). It is straight-
forward to fit complex hierarchical models within a
Bayesian framework using WinBUGS.

Although the CHS provides individual-level data,
since BGST devote a section to ecological bias we feel
it is useful to examine the effects of aggregation in a
purely ecological setting. In our own research in this
setting we have found it beneficial to begin with an
2. EXPOSURE MEASUREMENT individual-level model and then average to determine
the effects of aggregation. For simplicity, consider a
single exposure and a single confoundet and sup-
pose that for individual in communityc the risk is
given by the log-linear form

The relative variation of exposure at each level of the
hierarchy has implications for the relative information
about and interpretability of each of the exposure ef-
fect parameters in the model. When there is limited ex-
posure variation, the parameters are poorly estimated. Pei = expla + Bxei + Y Zei)s
The standard error estimates given in Table 3 suggestwhiCh upon aggregation, yields average risk
the between-community variability is lower than the ' '
average tempqral variability within community, even pe= exp(a)/exp(ﬁx +y2) fulx, ) dx dz,
though the design of CHS would suggest the opposite.

Reporting numerical summaries of the key predictors, where f.(x, z) represent the joint distribution af
particularly exposure, at each level of analysis should and z within areac. Unfortunately only marginal in-
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formation is typically available and the most diffi- In an epidemiological context, consider a single binary
cult aspect of ecological analysis is to control for exposure and the individual risk model
within-community confounding (between-community
confounding is analogous to individual-level con- Poc = ao + box.
founding in a study at the level of the individual). S ) ] ]
Wakefield (2004) highlighted two sources of ecolog- fOr unexposed individuals in a community with ex-
ical bias: that due to the noncollapsibility of nonlinear Posed proportion. and
association measures, and that due to confounding. The
presence of the former illustrates that even in the ab-
sence of confounding, bias may occur when a nonlin- ¢, o 5556 individuals, which leads to the aggregate
ear individual risk model is distorted upon aggregation. form
Greenland (1992) referred to this pgre specification
bias Note that if there is no variability in exposure
within an area, then this bias will be absent, which
provides one motivation for utilizing small area data. wherea = ag, B = a1 + bg — ap and y = b1 — by,
As an example, Wakefield (2003) considered the caseso that the effects of interest are nonidentifiable, even
in which the within-community variability is given by  under the simplified model in which a common con-
N(Xc,02), whereo? = a + bX.. In this scenario we  textual effect for unexposed and exposed individuals,
obtain the aggregate model bo = b1, is assumed.

De = expla + B2a/2+ X [B + B?b/2)), In an ep?demiological cqntext, a Iin_ear risk moglel is

less plausible and a log-linear form is more typically
showing that the variance is acting like an unmeasuredused. Contextual effects are of great interest in social
confounder (so that if the variance is independent of epidemiology. For example, suppose we begin with the
the mean, no bias will result). For environmental ex- individual-level model
posures the variance typically increases with the mean
(b > 0), so for a harmful exposure (> 0) the effect Yeilxei, xo ~ Bernfexpla + Bxe + 8x0)},
will be overestimated (in the absence of other biases).
Contextual effects are an example of confounding in SO that the contextual effec, is the same for ex-
which Z, corresponds to the average exposure. posed and unexposed individuals. We then obtain the
There is a long history of ecological analysis in aggregate-level model

the social sciences; this literature was reviewed by
Wakefield (2004), while Salway and Wakefield (2004) Pe = €xpla + 8xc){(1 — xc) + xc €xp(B)}.

compared and contrasted the aims and models of eco.. N L
L . : , . .~ Simultaneous estimation of the individual and con-
logical inference in epidemiology and the social sci-

ences. In a highly influential paper, Robinson (1950) textual effects is, therefore, theoretically possible, but

highlighted the inconsistency of summary associa- thges on atngnltlnear(ljty, Wh'CTd'S utnbcheckable frodmd
tion measures across different levels of aggregation € aggregate data and so woulid not be recommended.

(noncollapsibility) and, by example, illustrated that Similar arguments (e.g., Little, 1985; Copas and Li,
the correlation between literacy and race ranged be-1997) have been made against a class of methods for
tween 0.95 and 0.20 across different geographical@voiding selection bias, for example, those proposed
units. Selvin (1958) later coined the terecological ~ PY Heckman (1979). Similarly, estimation of both ef-
fallacy for the situation in which, “relationships be- fects is possible with the aggregate data approach of
tween characteristics of individuals are wrongly in- Prentice and Sheppard (1995), but the amount of infor-
ferred from data about groups.” Much of the discussion mation available on the contextual effect (in the pres-
in the social sciences literature concerns the difficulties ence of individual effects) is small (Sheppard, 2002).
associated with simultaneous estimation of individual As we hope is obvious from this discussion, we
and contextual exposure effects. This difficulty is sim- found the paper very stimulating and we would like
ply illustrated by consideration of what is known in to encourage the authors in their pursuit of the difficult
the social sciences literature as extended ecological reyet vital endeavor of investigating the complex rela-
gression (Goodman, 1959; Achen and Shively, 1995). tionship between air pollution and health.

Dle = a1+ bix.

Pe = poc(1—x;) +P1c=a+ﬂxc+)/x3,
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Comment

Nhu D. Le and James V. Zidek

We congratulate the authors on a stimulating and 1. The health of three susceptible and one healthy sub-
comprehensive article on spatial epidemiology and en-  population in Seattle, Spokane and other cities is be-
vironmental health risk. They provide a broad survey  ing monitored. The susceptible individuals are 65 or
of the methods that have been developed in this area as older and have chronic obstructive pulmonary dis-
well as the issues that arise in the analysis of that risk.  ease, cardiovascular disease or asthmatic children.
By couching their survey in terms of an ongoing inves-  The health endpoints include such things as pulse
tigation on the long-term effects of air pollution, they rate and blood pressure in the case of the adults and
endow their presentation with a sense of timeliness and symptoms of asthma in the case of the children.
importance. Furthermore, their survey possesses alives | this subproject personal exposure measurements

liness t_hatamere review might well |<’_:1Ck- _ are being collected for the subjects to determine
The importance of the study on which this paper fo- o contribution of ambient sources to personal

cuses cannot be overestimated, for the potential im- PM exposures. Models are being developed to pre-
pact of chrpnic diseases gr_eatly outweighs that of its dict such exposures for nonmonitored subjects.
acute cousins. Indeed, cynics have suggested that the Finally, the association between these measure-

treatment of acute morbidity would be a cheaper and - .
) ments/predictions and acute health outcomes will
preferable option to the costly abatement programs be determined

that would be needed to reduce pollution to the levels The third subproiect ch teri hemical and
needed to eliminate it! We find it hard to imagine that ~- € third subproject characterizes chemical an
physical parameters of different sizes of ambient

the same could be said of chronic morbidity if, in fact, ) . X -
that is a product of excessively high levels of pollution. ~ &nd indoor aerosols in simulated airway conditions.

However, that brings us to the second important aspect The Uw study, in particular, is seeking to iden-

of studies like the one described in this paper. tify specific components of PM such as chemical con-
Such studies are extremely difficult and expensive 10 gy ents that cause ill health. Of particular interest

carry out, both in measuring health outcomes gnd EXPO-3re the high exposures to PM and associated products
sure to PM.s. Thus, both responses and predictors are of combustion in the Northwestern United States and

susce_ptlple to.hlgh 'e"e.'s qf error, making qle_tectlon of whether these are associated with acute cardiorespira-
association with chronic disease effects difficult. The . :
tory physiologic health measures.

_study in th|§ paper is all the more rem_arkable in that it These two studies can be contrasted with that of

is prospective, rather than retrospective, meaning thatL M S d Zidek (2004 hich i ¢

subjects are subject to long-term follow-up and a large €, Vao, sun and zice ( ), which is a retro-
spective analysis of the cancer effects of air pollu-

response burden. i ) ‘
h tion. In this case-control study, cancer patients and

For comparison, we briefly describe another such ., N ) o
study, centered in the Northwest Center for Particu- nealthy” (noncancer) individuals were identified

late Matter and Health Effects at the University of through population-based provincial registries. The
Washington (UW), that seeks to make a COmprehen_part|C|pants’ residential histories, along with informa-
sive exposure and health effect assessment in suscepion on important confounding factors such as smok-
tible subpopulations. Like the study addressed in thising, diet and occupational histories, were collected
paper, that at the UW integrates personal exposure astsing the self-administered questionnaire approach.
sessment, exposure characterization and the study offhe key feature of this study is the estimation of
health effects. Three subprojects are underway: lifetime exposure to air pollutants which is obtained
through the use of residential histories in conjunction

Nhu D. Le is Senior Scientist, British Columbia Can- With historical air pollution measurements from fixed

cer Research Centre, Vancouver, BC, Canada VV5Z 4E6monitoring stations; some have been in operation for
James V. Zidek is Professor, Department of Statis-over 20 years. Concentration levels for pollutants at
tics, University of British Columbia, Vancouver, BC, residential locations are obtained through a Bayesian
Canada V6T 1Z2 (e-mail: jim@stat.ubc.ca). spatial interpolation method which does not assume
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stationarity of the environmental fields. Cumulative be called a panel study. In particular, they note that
exposure levels for individual pariticipants are then chronic effects and acute effects may not be separable
obtained by aggregating over the predictions at their in a cohort study. They conclude that “[u]ltimately, the
residential locations. Unlike cohort studies, this type choice of an optimal design depends upon the research
of study can only examine impact for one specific ad- question and the availability of data.”
verse health outcome. However, for chronic and rare Dominici, Sheppard and Clyde (2003) also consid-
diseases with long latency such as cancer, it can beered methodological problems, although not with re-
very cost-effective. spect to a specific study like this paper. Their paper,
It should be added that in studies where the cumu- unlike this one, takes a hierarchical Bayesian model-
lative exposure levels for individual participants are ing approach that comes equipped with an inferential
available (e.g., cohort studies considered in this paperbase. These authors face some conceptual difficulties
and the type of case-control studies described above)pecause of their seeming reluctance to adopt a more
investigators have the flexibility to adjust for poten- subjectivist position. They note that their communities
tial latency or for the induction period of the chronic are not a random sample. So what is to be made of their
disease under examination. This flexibility may not be results? More precisely, “...what is then the interpre-
available for ecological studies due to the mobility of tation of thep-values or confidence limits arising from
the population. the analysis at the community level.” Their answer
The authors focus on the methodological problems is that “...air pollution levels would have somehow
and the substantive issues that arise in such studiesheen assigned at random to a sample of communities,
and they provide a remarkably comprehensive list. which may or may not have been selected at random.”
However, although they describe their study design, Hmmm.... No doubt the reader will be left with some
they do not explicitly discuss its merits in compari- unqertalnty about how to assess the validity of that
son to others. In contrast, “design” does rate a sepa-claim.
rate section in Dominici, Sheppard and Clyde (2003), The (by now fairly standard) multilevel modeling
who considered strengths and weaknesses of varioufaradigm is imaginatively invoked here and yields an
types of studies: (1) ecological time series; (2) case analysis that allows time-dependent covariates, on the
crossover; (3) panel (repeated measures); (4) cohorPhe hand, while enabling a wide range of comparisons
studies (time to event), which in this paper would at bothindividual and aggregate levels.

Rejoinder
Kiros Berhane, W. James Gauderman, Daniel O. Stram and Duncan C. Thomas

We thank all the discussants for their kind words and of interest to us. In fact, one of our major substud-
their many insightful comments on the issues raised byies, the Air Pollution and Absenteeism Study (APAS),
the paper. We truly believe that their discussions, with- deals with the effects of day-to-day variation in air pol-
out exception, have immensely enriched our paper.  Iution on school absenteeism. Upon analysis of daily

First, we feel obliged to explain the reasons for time series data from APAS, we showed that a 20-ppb
our exclusive focus on cohort studies that examine increase in daily 10 AM—6 PM levels of ozone is asso-
chronic effects of air pollution, as opposed to the ciated with an 83% increase in illness related absen-
many other study designs that could potentially ex- teeism (Gilliland et al., 2001). Technical details on a
amine acute and/or subacute effects of air pollution. two-stage model for daily time series of counts that
The reasons were twofold: (1) the CHS (and henceis based on the polynomial distributed-lag approach
most of our related methodologic work) was mainly were reported by Berhane and Thomas (2002) and a
intended to handle chronic effects of air pollution and three-level model for binary time series was reported
(2) the discussion easily could have gotten out of handby Rondeau, Berhane and Thomas (2004). We also be-
if we tried to accommodate both acute and chronic ef- lieve that a systematic review of methods that exam-
fects. That said, methods for acute effects (as ably re-ine the interrelationships between acute and chronic ef-
viewed by Dominici, Sheppard and Clyde, 2003) are fects of air pollution is timely. Such a review could tie
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together the issues that have been raised by BGST ando this, we add the work by Guo (2002) that developed
Dominici, Sheppard and Clyde (2003). a general GLMM model that allows for nonparamet-
Meiring highlighted our point on the need for more ric modeling at both the fixed and the random parts of
research on diagnostics and inference in the longitudi-the GLMM. We share Meiring’s enthusiasm regarding
nal setting and we thank her for her elaboration on the the usefulness of GLMM and flexible models, and the
current state of methodologic work in this area. Our ap- continued need for more research in dealing with prob-
proach in the CHS for examining the adequacy of the lematic areas, such as the well documentadse of
normality assumption about the various random ef- dimensionalityin models with multiple flexible terms
fects, for both the Gaussian and non-Gaussian outcomdHastie and Tibshirani, 1990).
data, has been to fit preliminary models separately by Meiring asks for some elaboration on our choice of
levels and then examine the residuals from each of thedesign matrices and whether interaction effects were
levels. In our experience so far, this assumption wasincluded. This question can be addressed separately at
not found to be violated. For the lung function models, each level of the model. At the temporal level, time-
a log transformation was required to ensure the nor-specific covariateg.;x included such factors as the
mality of the overall residual error term. We also note presence of an acute iliness at the time of testing and in-
that in situations where the random effects themselvesdicator variables for technician and spirometer. At the
are of interest, one needs to check the adequacy of thesubject level,z.; included time-fixed covariates such
normality assumption. Currently available methods for as race and baseline asthma status. Some interaction
checking the adequacy of the normality assumption in- effects were included, such as sex by race and sex by
clude the graphical approach to testing the adequacy ofasthma at the community level. Most analyses included
normality (Lange and Ryan, 1989) and nonparametric only a single pollutant at a time K., with no adjust-
approaches to estimating the distribution of the random ment for ecologic confounders except in an exploratory
effect (Davidian and Gallant, 1993). The former is lim- mode, as discussed in our paper. With only 12 com-
ited to continuous outcomes and the latter could be toomunities at this level of comparison, we generally had
complicated and computationally intensive for our ap- inadequate degrees of freedom to fit multipollutant
plications. We are currently exploring a class of simple, models. While we can fit the models including two-
yet intuitive and quite general, approaches [based onway interactions, we just do not have enough infor-
the Box—Cox transformation technique (Box and Cox, mation to be able to parse out effects, let alone test
1964)] to assessing the adequacy of the normality as-for interactions between pollutants. However, it is also
sumption of the random effects and potential solutions possible to test pollution effects at the temporal and
for any detected nonnormality. Development of meth- individual levels, which we did by including year-to-
ods to handle diagnostics for mixed effects models is year deviationsX.x — X..) of the ambient concen-
an area that could benefit from more research. Examin-trations from the long-term average in the first level,
ing the effects of outliers and influential observations in and deviations(x.; — X..) of person-specific expo-
the longitudinal setting becomes challenging becausesures (based on spatial or microenvironmental model-
outliers and/or influential observations could appear ating) from the ambient level in the subject-level model.
the observation and/or the subject level. This can be helpful for unscrambling multipollutant ef-
We agree with Meiring that flexible models (e.g., fects because the correlations between pollutants can
generalized additive models) could also be used tobe quite different within and between communities,
assess the adequacy of functional forms of covariate ef-and across time as shown in our study of air pollution
fects. This was the approach we used to flexibly depict and asthma exacerbation (McConnell et al., 2003). In
the nonlinear growth trajectory of lung function mea- some cases we also tested for interactions between ex-
sures in children. Based on this exploratory finding, our posures at different levels. For example, in our analyses
recent focus has been on developing functional basedof school absences, we found that daily Bvels had
multilevel models for our data on lung function growth a bigger effect in communities with low than high PM
patterns. This has allowed us to examine the effectsexposure (Gilliland et al., 2001; Berhane and Thomas,
of air pollution on biologically important aspects (e.g., 2002).
maximum rate of growth) of the lung function trajecto-  This question is related to Meiring’s later discus-
ries. We welcome the comprehensive review of related sion of biological processes, multipollutant models,
methodologic work in this area that Meiring provided, space—time correlations and time scales. The oxidative
including the more general functional ANOVA models. stress hypothesis she discusses indeed underlies our
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thinking about mechanistic hypotheses, as discussedetween days (within weeks), and to a lesser extent be-
by Gilliland et al. (1999). This indeed could guide the tween weeks (within seasons), was significantly asso-
selection of models for investigating multipollutant ef- ciated with slower lung function growth (unpublished
fects, such as providing a rationale for the observationdata), suggesting a possible threshold effect. We are
noted above about the apparent interaction betweercontinuing to explore this phenomenon by studying a
O3 and PM on school absences. However, we feel thatflexible spline-based class of exposure indices that in-
the most promising line of research involves charac- volve the percentage of time above thresholds, which
terization of the specific genes involved in modulat- may be useful for regulatory purposes.
ing these processes (Gilliland et al., 2002b, c, 2003), We strongly concur with Meiring’s comments on the
as well as dietary factors such as antioxidant intake, regulatory policy implications of our work and, in par-
which could modify host susceptibility (Gillland, Li ticular, the importance of accounting for exposure and
and Peters, 2001; Gilliland et al., 2002a). Ultimately, model uncertainties. Kinzli et al. (2003) elaborated
we hope to build comprehensive models for the en- some of these implications, in particular, the trade-offs
tire oxidative stress pathway, incorporating environ- between primary (emission) and secondary (personal
mental, genetic and host factors, perhaps using some oéxposure) interventions. Further research on propaga-
the techniques discussed by Conti et al. (2003). Othertion of uncertainties through health effects analyses
promising approaches to the multipollutant problem in- and risk assessment is needed, as well as vigorous pub-
clude using source apportionment methods and explor-lic debate about the appropriate interpretation of uncer-
ing alternative temporal metrics. tainty in risk estimates to establish regulatory policy
In the source apportionment approach (Schauerwithout leading to paralysis.
et al., 1996), the chemical species in PM are used to On the issue of parameter interpretation, Sheppard
estimate the proportions of pollutants that are derived and Wakefield accurately point out that understanding
from such sources as automobile and diesel emissionspollutant effects from a multilevel model can be diffi-
wood burning and tire wear. We plan to extend the cult in the context of a log link (or other nonidentity
Bayes model averaging approach described in our padink functions). They demonstrate this issue in the con-
per to include such data as “prior covariates” in a hi- text of a model for the main effect of pollution on a bi-
erarchical model, thereby allowing improved estimates nary outcome at the individual and community levels
of specific pollutant effects by borrowing strength from [as parameterized by, andas, respectively, in (1)—(5)
other pollutants derived from similar sources and by of BGST]. Although these equations also parameterize
providing estimates of the overall health effects of an effect of time on the outcome (through tBeara-
the source contributions themselves, information that meters), we do not envision these terms being used in
would be particularly useful for regulation. a model for a binary outcome. Rather, we have applied
We are exploring alternative exposure metrics basedthe full model described in (1)—(5) to analyze contin-
on different temporal patterns of exposure. Most of the uous outcomes in the CHS, most notably lung func-
results given in BGST are based on the long-term av-tion. In this case, we have adopted the identity link.
erage concentration, under the hypothesis that chronicThe parameterg, and g3 then quantify the effect of
effects represent the cumulative burden of incrementalpollution at the individual and community levels, re-
exposure effects that are linear and additive. However,spectively, on average lung function. The parameters
it is certainly plausible (as suggested by Meiring) that «2> and a3 quantify the corresponding effects of pol-
there are threshold, saturation or interactive effects thatlution on change in lung function over some time in-
act at different time scales and could violate this as- terval. Under the identity link, all random effects in
sumption, implying that exposure metrics that allow for (1)—(5) drop out (as they have expectation zero) in any
these nonlinearities might predict chronic effects bet- comparison of exposure effects on expected outcome.
ter. Preliminary exploration of such effects for 4-year All other things being equal, the expected effect of
changes in MMEF in the two fourth-grade cohorts one unit change in pollution will have similar interpre-
showed no evidence of nonlinear effects for the clus- tations at either the individual or community level.
ter of highly correlated N@PM/acid pollutants, but We should point out one subtlety in the interpretation
suggested a possible nonlinear effect far While the of thea’s from the model in (1)—(5) of BGST. As in any
long-term average exposure t@ @as not significantly ~ model, the intercept quantifies some expectation of the
associated with any lung function measurement, theoutcome at “baseline,” that is, when all other terms in
variance in Q levels between hours (within days) and the model drop out. For the model in (L),; denotes
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the individual specific intercept when all covariates their random effects cancel out in a linear but not in a
(zeij and X¢; — X.) and the time variablez(;;) equal log-linear model. Nevertheless, we agree that it is gen-
zero. Whereas the.; are then treated as random ef- erally helpful to test for a contextual effect. We believe
fects to be modeled in the second and third level mod-that our multilevel modeling approach, in which the
els, understanding what is being quantifiediyin the effects of individual exposures and confounders are as-
first model is important for interpreting pollutant effect sessed by deviations from the community means, and
estimates. As an example, consider a simplification of community mean exposures are also included, accom-
the model in (1) of the formu,;j = aci + bei (teij — 1*). plishes this.

The valuer* can be chosen to estimate pollutant effects ~ Le and Zidek provide some interesting comparisons
on lung function level at any point along the observed With their own Bayesian spatial modeling of pollu-
age range. For example,f is chosen to be the aver- tion levels. We are exploring similar approaches using
age age at study entry, theparameters will approxi-  Our data on N@ and & levels at sampled residences
mate the effects that would have been estimated fromand traffic density measures available on all homes.
a cross-sectional analysis of baseline data only. ThisOUr approach relies on Bayesian spatial modeling, in
choice oft* was used for the “full model” (Table 3) which the (Iog) true pollgtlon levels are assumed to
to facilitate comparisons of the pollutant effects on in- P& normally distributed with means given by a regres-
tercepts from this model with those from the intercepts SIOn on traffic density and a spatial covariance within
from the pure cross-sectional analysis. However, oneCommunities (note that, like Le and Zidek, this does

may alternatively choose to be the average age over not assume stationarity of the environ_me_ntal fie_Id).
some study period to quantify the overall average ef- Measured values are assumed to be distributed inde-

fect of pollution on level or the average age at the end P€ndently around these true values and the health ef-

; ; ; ; fects are regressed on the true exposures. We have
of the study period to quantify the effect of air pollution . i . .
on attaineglrt)evel a fy P implemented this model using the WinBUGS soft-

We welcome the comments of Sheppard and ware, thereby providing an estimate of the relation-

Wakefield about ecologic inference and exposure mea—.ShIIO between health outcomes and exposure at the

. o - individual level in the entire cohort, combining the
surement. In particular, we agree that associations with .
. . . . actual measurements on the subset and the predic-
the community ambient concentratiods and with

: . . tions on everybody. For MMEF and NQwe find a
personal microenvironmental exposures estimate

X marginally significant negative association using this
conceptually different parameters. Our use of the same gina’ly sig g g

bol for both i h fusi dapproach, whereas the small sample of actual mea-
Symbal for both quantiies was perhaps contusing andg, e ments alone is inadequate to demonstrate such
was adopted only to avoid proliferation of notation.

) . . an effect (Molitor et al., private communication). We
Conceptually, it might be simpler to think of,. as ( P )

g are currently attempting to extend this approach to
f[he com_mumty mean of personal exposures, althoughjoim modeling of NG and Q, allowing for the pre-
in practice we do not have adequate measures of th&jicted negative correlation between the two due to
latter for most pollutants. Setting this issue aside, we scavenging.

note that some of the complexities of contextual ef- e design of the CHS was aimed purely at esti-
fects described arise from Sheppard and Wakefield'smating chronic effects of air pollution, unlike those
use of a log-linear model, whereas our discussion of jeviewed by Dominici, Sheppard and Clyde (2003).
ecologic bias was focused on linear models. While cer- A major outstanding question is whether acute and
tainly convenient for analysis of event data, many of chronic effects studies estimate the same quantity
our analyses concern continuous normally distributed (Kuinzli et al., 2001; Rabl, 2003) and, if not, whether
traits such as lung function, for which we use an iden- poth can be derived from an appropriate multilevel
tity link. In this case, the dependence of the community study design that incorporates temporal and spatial
mean outcome on the variance of exposure induced bycomparisons.

a log-linear model at the individual level disappears, Le and Zidek raise interesting points regarding our
as does the “contextual” effect of. in a model that  choice of communities and its implications on inter-
includesX,; (but notZ.;) whenever the between- and preting results from the study. The evaluation of long-
within-community correlations iX andZ differ. This term effects of air pollution exposure has relied to a
is also true for the comparison between individuals in very large extent (and not just in our study) on the com-
communities with different ambient exposures but the parisons of health outcomes in communities with dif-
same personal exposure, where the expected values derent levels of air pollution. It is often asked whether
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the communities studied constitute a random sample ofBox, G. E. P. and ©x, D. R. (1964). An analysis of transforma-

communities from a larger population and, if not, then tions (with discussion). Roy. Statist. Soc. Ser2B 211-252.

how arep-values to be interpreted? In the main paper BRUMBACK, B. A. and_RCE, J. A. (1998). Smoothing spline mod-

we rationalize our statistical inferences not by assum- &S for the analysis of nested and crossed samples of curves

. . (with discussion)J. Amer. Statist. Ass083 961-994.

Ing Fhat the commgmtles are arandom Sample ofa po_p-BRUNEKREEF, B. and HOLGATE, S. T. (2002). Air pollution and

ulation of communities, but rather by assuming that air  health.Lancet360 1233-1242.

pollution levels are independent of other unmeasuredcHrisTENSEN O. F. and WKAGEPETERSEN R. (2002). Bayesian

confounders that influence disease risk so that air pol-  prediction of spatial count data using generalized linear mixed

lution may be regarded as having been applied to the =~ modelsBiometricss8 280-286.

communi%i/es at rgndom. For relatged discuspsﬁons on theCLYDE, M (2000). Model_uncertaﬁnty and health effect studies for
. o . particulate mattelenvironmetricsll 745-763.

general topic of randomization and causal mf_erence,CONTll D. V.. CORTESSIS V.. MOLITOR, J. and TOMAS, D. C.

refer to Greenland (1990) and references therein. (2003). Bayesian modeling of complex metabolic pathways.

We make three brief further comments about this  Human Heredity6 83-93.
view. First, we recognize that the independence of Copas J.B.and I, H. G. (1997). Inference for non-random sam-
community aggregate air pollution levels from other ples (with discussion)l. Roy. Statist. Soc. Ser.38 55-95.
unmeasured variables that affect a child’s disease riskPAVIDIAN , M. and GALLANT, A. R. (1993). The nonlinear mixed
is not a testable assumption in our strictly observa- renﬁeet(r:itlfag(])Of?e; ‘Zgg a smooth random effects densijo-
tional sett.lng, ‘T’md o itis partICUIa_rIy important tha,t DIGGLE, P. J. (1997). Spatial and longitudinal data analysis: Two
efforts to identify, measure and adjust for other vari- histories with a common futurefodelling Longitudinal and
ables be continued and improved upon in this and in  Spatially Correlated DataMethods Applications and Future
future studies. Second, taken literally, this view of our Directions Lecture Notes in Statisfl22 387-402. Springer,
study design leads naturally to permutation-based test- ~ Berlin.
ing of the significance of regression estimates at the P'¢GLE: P- J., BWN, J. A. and MOYEED, R. A. (1998).

. . . Model-based geostatistics (with discussiofppl. Statist.47

between-community level of analysis, by developing 299-350.
a permutation distribution of the regression estimate poynici, F., McDErMOTT, A. and HasTIE, T. (2003). Im-
under the null hypothesis of no influence of air pol- proved semi-parametric time series models of air pollution and
lution on risk. However, it seems unlikely to us that mortality. Available at http://www-stat.stanford.edu/"hastie/
important differences would arise between the results ~ pub.htm.
of such permutation-based tests and those based ofOMINIC!, F., MCDERMOTT, A., ZEGER S.L. and BMET, J. M.
using regression-based inference that allows for ran- ~ (2002)- On the use of generalized additive models in time-

. . B series studies of air pollution and healmerican J. Epidemi-
dom effects for community. Third, a community level ology 156 193-203.
view of our analyses is required because we are cer-powminici, F., SHEPPARD, L. and Q.YDE, M. (2003). Health ef-
tain that other unmeasured risk factors that cluster by  fects of air pollution: A statistical revievnternat. Statist. Rev.
community exist, so the children in our study cannot 71243-276.
be assumed to have been sampled at random with reEBELT, S. T., FETKAU, A. J., VEDAL, S., ASHER T. V. and
spect to their sensitivity to the effects of air pollution. BRAUER, M. (2000). Exposure of chronic obstructive pul-

. L. . monary disease patients to particulate matter: Relationships
Ult'mately’ however, it is individual children rather between personal and ambient air concentratidngir and
than communities that make up the fundamental popu-  \waste Management Associati6®1081-1094.
lation at which that inference is aimed. GILLILAND , F. D., BERHANE, K. T., LI, Y.-F. and Kwm, D.

In conclusion, we are encouraged by this discussion  H. (2002a). Dietary magnesium, potassium, sodium and chil-
that our aim to stimulate further methodologic research  dren’s lung functionAmerican J. Epidemiologys5 125-131.
in environmental epidemiology has been fruitiul and ®'-L/*AND. F. D., BERHANE, K. RAPPAPORT E.,

. . g THomAs, D. C., AvoL, E., GAUDERMAN, W. J.,
we hope to see further developments in this field. LoNDON. S. J. MARGOLIS. H. G. McCCONNELL R.
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