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Abstract: We consider a l1-penalization procedure in the non-parametric
Gaussian regression model. In many concrete examples, the dimension d of
the input variable X is very large (sometimes depending on the number
of observations). Estimation of a β-regular regression function f cannot
be faster than the slow rate n−2β/(2β+d) . Hopefully, in some situations,
f depends only on a few numbers of the coordinates of X . In this paper,
we construct two procedures. The first one selects, with high probability,
these coordinates. Then, using this subset selection method, we run a local
polynomial estimator (on the set of interesting coordinates) to estimate the

regression function at the rate n−2β/(2β+d∗ ), where d∗, the “real” dimen-
sion of the problem (exact number of variables whom f depends on), has
replaced the dimension d of the design. To achieve this result, we used a l1
penalization method in this non-parametric setup.
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1. Introduction

We consider the non-parametric Gaussian regression model

Yi = f(Xi) + ei, i = 1, . . . , n,

where the design variables (or input variables) X1, . . . , Xn are n i.i.d. random
variables with values in R

d, the noise e1, . . . , en are n i.i.d. Gaussian random
variables with variance σ2 independent of the Xi’s and f is the unknown regres-
sion function. In this paper, we are interested in the pointwise estimation of f
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at a fixed point x = (x1, . . . , xd) ∈ R
d. We want to construct some estimation

procedures f̂n having the smallest pointwise integrated quadratic risk

E(f̂n(x) − f(x))2 (1)

using only the set of data Dn = (Yi, Xi)1≤i≤n.
Assuming that the regression function enjoys some regularity properties around

x is a classical assumption for this problem. In this work, we assume f to be
β-Hlderian around x. We recall that a function f : R

d 7−→ R is β-Hlderian at
the point x with β > 0, denoted by f ∈ Σ(β, x), when the two following points
hold:

• f is l-times differentiable in x (where l = ⌊β⌋ is the largest integer which
is strictly smaller than β),

• there exists L > 0 such that for any t = (t1, . . . , tn) ∈ B∞(x, 1),

|f(t) − Pl(f)(t, x)| ≤ L‖t − x‖β
1 ,

where Pl(f)(·, x) is the Taylor polynomial of order l associated with f at
the point x, ‖ · ‖1 is the l1 norm and B∞(x, 1) is the unit l∞-ball of center
x and radius 1.

When f is only assumed to be in Σ(β, x), no estimator can converge to f (for
the risk given in equation (1)) faster than

n−2β/(2β+d). (2)

This rate can be very slow when the dimension d of the input variableX is large.
In many practical problems, the dimension d can depend on the number n of
observations in such a way that the rate (2) does not even tend to zero when n
tends to infinity. This phenomenon is usually called the curse of dimensionality.
Fortunately, in some of these problems the regression function really depends
only on a few number of coordinates of the input variables. We formulate this
heuristic by the following assumption:

Assumption 1. There exist an integer d∗ ≤ d, a function g : R
d∗ → R and

a subset J = {i1, . . . , id∗} ⊂ {1, . . . , d} of cardinality d∗ such that for any
(x1, . . . , xd) ∈ R

d

f(x1, . . . , xd) = g(xi1 , . . . , xid∗
).

Under Assumption 1, the “real” dimension of the problem is not anymore d
but d∗. Then, we hope that if f ∈ Σ(β, x) (which is equivalent to say that g
is β-Hlderian at the point x), it would be possible to estimate f(x) at the rate
given in equation (2) where d is replaced by d∗, leading to a real improvement
of the convergence rate when d∗ << d. Nevertheless, starting from the data
Dn, it is not clear that detecting the set of interesting coordinates J is an easy
task. To select this set, we use a l1 penalization technique. This technique has
been mostly used in the parametric setup (cf. Bickel et al. (2008), Zhao and Yu
(2006), Meinshausen and Yu (2008) and references therein). In the present work,
we adapt it to the non-parametric setup and we obtain our first result in this
theorem which is a short version of Theorem 1.
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Theorem A (selection of the subset J). Under Assumption 1 it is possible

to construct, only from the data Dn, a subset Ĵ ⊂ {1, . . . , d} such that, with
probability greater than 1− c0 exp(c0d− c1nh

d+2) (for a free parameter 0 < h <
1),

Ĵ = J.

Once the set J is empirically determined with high probability, we then run a
classical local polynomial estimation procedure on the set of indices Ĵ to obtain
the following theorem which is a short version of Theorem 2.

Theorem B (estimation of f). For any f ∈ Σ(β, x), with β > 1, satisfying
Assumption 1, it is possible to construct, only from the data Dn, an estimation
procedure f̂n such that

P[|f̂n(x) − f(x)| ≥ δ] ≤ c exp(−cδ2n2β/(2β+d∗)), ∀δ > 0

where c does not depend on n.

The last theorem proves that it is possible, only from the set of data, to
reduce and to detect the “real” dimension of the problem under Assumption 1.

The problem we consider in the paper is called a high-dimensional problem.
In the last years, many papers have studied these kinds of problems and sum-
marizing here the state of the art is not possible (we refer the reader to the
bibliography of Lafferty and Wasserman (2008)). We just mention some papers.
In Bickel and Li (2007); Levina and Bickel (2005); Belkin and Niyogi (2003);
Donoho and Grimes (2003), it is assumed that the design variable X belongs
to a low dimensional smooth manifold of dimension d∗ < d. All of these work
are based on heuristics techniques. In Lafferty and Wasserman (2008), the same
problem as the one considered here is handled. Their strategy is a greedy method
that incrementally searches through bandwidth in small steps. If the regression
f is in a Sobolev ball of order 2, their procedure is nearly optimal for the point-
wise estimation of f in x. It achieves the convergence rate n−4/(4+d∗+ǫ) for every
ǫ > 0, when d = O(logn/ log logn) and d∗ = O(1). Our procedure improves this
result. First, the optimal rate of convergence is achieved. Second, the regression
function does not have to be twice differentiable (actually we have the result for
any β > 1). Third, the dimension d can be taken of the order of logn.

The paper is organized as follows. In the coming section, we construct the
procedures announced in Theorem A and B. The exact version of Theorem A
and B are gathered in Section 3. Their proofs are given in Section 4.

2. Selection and estimation procedures

Our goal is twofold. First, we want to determine the set of indices J = {i1, . . . , id∗}.
Second, we want to construct an estimator of the value f(x) that converges to
the rate n−2β/(2β+d∗) when f ∈ Σ(β, x) for β > 1. To achieve the first goal, we
use a l1 penalization of local polynomial estimators.
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2.1. Selection procedure

We consider the following set of vectors

Θ̄(λ) = arg min
θ∈Rd+1

[
1

nhd

n∑

i=1

(
Yi − U

(
Xi − x

h

)
θ

)2

K

(
Xi − x

h

)
+ 2λ‖θ‖1

]
,

(3)

where U(v) = (1, v1, . . . , vd) for any v = (v1, . . . , vd)
t ∈ R

d, ‖θ‖1 =
∑d

j=0 |θj| for

any θ = (θ0 , . . . , θd)t ∈ R
d+1, h > 0 is called the bandwidth, λ > 0 is called the

regularization parameter and K : R
d −→ R is called the kernel. We will explain

how to choose the parameters h and λ in what follows. In the following, we
denote U0(v) = 1 and Ui(v) = vi, for i = 1, . . . , d for any v = (v1, . . . , vd) ∈ R

d.
The kernel K is taken such that the following set of assumptions holds:

Assumption 2. The kernel K : R
d −→ R is symmetric, supported in B∞(0, 1),

the matrix (
∫

Rd K(y)Ui(y)Uj (y)dy)i,j∈{0,...,d} is diagonal with positive coeffi-
cients independent of d in the diagonal and there exists a constant MK ≥ 1 inde-
pendent of d which upper bounds the quantities maxu∈Rd |K(u)|, maxu∈Rd K(u)2,
maxu∈Rd |K(u)|‖u‖2

1, maxu∈Rd |K(u)|‖u‖2
2,
∫

Rd K(y)2(1+‖y‖2
2)dy,

∫
Rd |K(u)|2 ×

‖u‖4
1du and

∫
Rd K(y)2(Ui(y)Uj (y))

2dy.

Note that for example the uniform kernel K(u) = 1
2d1{u∈B∞(0,1)} satisfies

the Assumption 2.
Any statistic θ̄ ∈ Θ̄(λ) is a l1 penalized version of the classical local poly-

nomial estimator. Usually, for the estimation problem of f(x), only the first
coordinate of θ̄ is used. Here, for the selection problem, we will use all the co-
ordinates except the first one. We denote by θ̂ the vector of R

d made of the d
last coordinates of θ̄.

We expect the vector θ̂ to be sparse (that is with many zero coordinates) such

that the set of all the non-zero coordinates of θ̂, denoted by Ĵ , will be the same
as the set J of all the non-zero coordinates of (θ∗1 , . . . , θ

∗
d)t where θ∗i = h∂if(x),

for i ∈ {1, . . . , d}, and ∂if(x) stands for the i−th derivative of f at point x. We
remark that, under Assumption 1, the vector (θ∗1 , . . . , θ

∗
d)t is sparse.

Note that, the estimator θ̄ ∈ Θ̄(λ) may not be unique (depending on d and n).

Hence, the subset selection method may provide different subsets Ĵ depending
on the choice of θ̄. Nevertheless, Theorem 2 holds for any subset Ĵ , whatever is
the vector θ̄ chosen in Θ̄(λ).

We also consider another selection procedure close to the previous one which
requires less assumption on the regression function. We just need to assume
that there exists fmax > 0 such that |f(x)| ≤ fmax. With the same notation, we
consider the following set of vectors

Θ̄2(λ) = arg min
θ∈Rd+1

[
1

nhd

n∑

i=1

(
Yi + fmax + Ch− U

(
Xi − x

h

)
θ

)2

K

(
Xi − x

h

)

+ 2λ‖θ‖1

]
, (4)
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where C and h will be given later. We just translate the outputs Yi’s by fmax +
Ch. This translation affects the estimator since the LASSO method is not a
linear procedure. We denote by Ĵ2, this subset selection procedure.

Remark 1. The l1 penalization technique can be related to the problem of linear
aggregation (cf. Nemirovski (2000) and Tsybakov (2003)) in a sparse setup.
Indeed, l1 penalization is known to provide sparse estimators if the underlying
object to estimate is sparse with respect to a given dictionary. Assumption 1 can
be interpreted in terms of sparsity of f w.r.t. to a certain dictionary. For that,
we consider the set F = {f0, f1, . . . , fd} of functions from R

d to R where f0 = 1
is the constant function equals to 1 and fj(t) = (tj−xj)/h for any j ∈ {1, . . . , d}
and t = (t1, . . . , td) ∈ R

d. The set F is the dictionary. That is the set within we
are looking for the best sparse linear combination of elements in F approaching f
in a neighborhood of x. In this setup, the Taylor polynomial of order 1 at point x,
denoted by P1(f)(·, x), is a linear combination of the elements in the dictionary
F . When f is assumed to belong to Σ(β, x), the polynomial P1(f)(·, x) is a good
approximation of f in a neighborhood of x. Moreover, under Assumption 1, this
linear combination is sparse w.r.t. the dictionary F . Thus, we hope that, with
high probability, minimizing a localized version of the empirical L2-risk penalized
by the l1 norm over the set of all the linear combinations of elements in F will
detect the right locations of the interesting indices i1, . . . , id∗ (which correspond
to the non-zero coefficients of P1(f)(·, x) in the dictionary F). That is the main
idea behind the procedures introduced in this section since we have:

Θ̄(λ) = arg min
θ∈Rd+1




1

nhd

n∑

i=1



Yi −
d∑

j=0

fj(Xi)θj




2

K

(
Xi − x

h

)
+ 2λ‖θ‖1



 ,

Of course, we can generalize this approach to other dictionaries (this will lead
to other sparsity and regularity properties of f) provided that the orthogonality
properties of F (cf. Proposition 1) still hold.

2.2. Estimation procedure

We now construct a classical local polynomial estimator (LPE) (cf.
Korostelev and Tsybakov (1993); Tsybakov (1986)) on the set of coordinates

Ĵ2 previously constructed.
We assume that the selection step is now done. We have at hand a subset

Ĵ2 = {̂ı1, . . . , ı̂d̂∗
} ⊂ {1, . . . , d} of cardinality d̂∗. For the second step, we consider

γx a polynomial on R
d̂∗

of degree l = ⌊β⌋ which minimizes

n∑

i=1

(Yi − γx(p(Xi − x)))
2
K⋆

(
p
(Xi − x

h⋆

))

where h⋆ = n−1/(2β+d̂∗), p(v) = (v̂
ı1
, . . . , v̂

ı
d̂∗

)t for any v = (v1, . . . , vd)
t ∈ R

d

and K⋆ : R
d̂∗ −→ R is a kernel function. The local polynomial estimator of f
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at the point x is γ̂x(0) if γ̂x is unique and 0 otherwise. We denote by f̂(x) the
projection onto [−fmax; fmax] of the LPE of f(x). Here, we don’t use the other
coefficients of γ̂x(0) like we did in the selection step.

For the estimation step, we use a result on the convergence of multivariate
LPE from Audibert and Tsybakov (2007). We recall here the properties of the
kernel required in Audibert and Tsybakov (2007) to obtain this result.

Assumption 3. The kernel K⋆ : R
d̂∗ −→ R is such that: there exists c > 0

satisfying

K⋆(u) ≥ c1‖x‖2≤c, ∀u ∈ R
d̂∗

;

∫

Rd̂∗

K⋆(u)du = 1;

∫

Rd̂∗

(1 + ‖u‖4β
2 )(K⋆(u))2du <∞; sup

u∈Rd̂∗

(1 + ‖u‖2β
2 )K⋆(u) <∞.

3. Results

In this section, we provide the main results of this work. To avoid any technical
complexity we will assume that the density function µ of the design X satisfies
the following assumption:

Assumption 4. There exists some constants η, µm > 0, µM ≥ 1 and Lµ > 0
such that

• B∞(x, η) ⊂ supp(µ) and µm ≤ µ(y) ≤ µM for almost every y ∈ B∞(x, η),
• µ is Lµ-Lipschitzian around x, that is for any t ∈ B∞(x, 1), |µ(x)−µ(t)| ≤
Lµ‖x − t‖∞ (remark that the value µ(x) is the value of the continuous
version of µ around x).

The first result deals with the statistical properties of the selection proce-
dure. For this step, we require a weaker regularity assumption for the regression
function f . This assumption is satisfied for any β-Hlderian function in x with
β > 1.

Assumption 5. There exists an absolute constant L > 0 such that the following
holds. The regression function f is differentiable and

|f(t) − P1(f)(t, x)| ≤ L‖t− x‖β
1 , ∀t ∈ B∞(x, 1),

where P1(f)(·, x) is the Taylor polynomial of degree 1 of f at the point x.

To achieve an efficient selection of the interesting coordinates, we have to be
able to distinguish the non-zero partial derivatives of f from the null partial
derivatives. For that, we consider the following assumption:

Assumption 6. There exists a constant C ≥ 72(µM/µm)LMK

√
d0 such that

|∂jf(x)| ≥ C for any j ∈ J , where the set J is given in Assumption 1 and d0 is
an integer such that d∗ ≤ d0.
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Theorem 1. There exists some constants c0 > 0 and c1 > 0 depending only
on Lµ, µm, µM , MK , L, C and σ for which the following holds. We assume
that the regression function f satisfies the regularity Assumption 5, the sparsity
Assumption 1 such that the integer d∗ is smaller than a known integer d0 and
the distinguishable Assumption 6. We assume that the density function µ of the
input variable X satisfies Assumption 4.

We consider θ̄ = (θ̄0, . . . , θ̄d) ∈ Θ̄(λ) ⊂ R
d+1 and θ̄2 = ((θ̄2)0, . . . , (θ̄2)d) ∈

Θ̄2(λ) ⊂ R
d+1 where Θ̄(λ) and Θ̄2(λ) are defined in equations (3) and (4) with

a kernel satisfying Assumption 2, a bandwidth and a regularization parameter
such that

0 < h <
µm

32(d0 + 1)LµMK
∧ η and λ = 8

√
3MKµMLh. (5)

We denote by Ĵ the set {j ∈ {1, . . . , d} : θ̄j 6= 0} and by Ĵ2 the set {j ∈
{1, . . . , d} : (θ̄2)j 6= 0}.

• If |f(x)| > Ch, where C is defined in Assumption 6 or f(x) = 0, then

with probability greater than 1 − c1 exp(c1d− c0nh
d+2), Ĵ = J .

• If |f(x)| ≤ fmax, then with probability greater than 1 − c1 exp(c1d −
c0nh

d+2), Ĵ2 = J .

We remark that Theorem 1 still holds when we only assume that there exists
a subset J ⊂ {1, . . . , d} such that ∂jf(x) = 0 for any j /∈ J instead of the more
global Assumption 1.

Theorem 2. We assume that the regression function f belongs to the Hlder
class Σ(β, x) with β > 1 and satisfies the sparsity Assumption 1 such that the
integer d∗ is smaller than a known integer d0 and the distinguishable Assump-
tion 6. We assume that the density function µ of the input variable X satisfies
Assumption 4 and |f(x)| ≤ fmax. We assume that the dimension d is such that
d+ 2 ≤ (logn)/(−2 log h) (h satisfies (5)).

We construct the set Ĵ2 of selected coordinates with a kernel, a bandwidth
and a regularization parameter as in Theorem 1. The LPE estimator f̂(x) con-

structed in subsection 2.2 on the subset Ĵ2 and a kernel K⋆ satisfying Assump-
tion 3, satisfies

∀δ > 0,P[|f̂(x) − f(x)| ≥ δ] ≤ c1 exp
(
− c2n

2β

2β+d∗ δ2
)
,

where c1, c2 > 0 are constants independent of n, d, d∗.

Note that, by taking the expectation, we obtain E[(f̂(x)−f(x))2 ] ≤ cn
−2β

2β+d∗ .

Remark. The selection procedure is efficient provided that c1nh
d+2 − c0d tends

to infinity when n tends to infinity. Namely, we need (with 0 < h < 1)

d+ 2 <
logn

− log h
. (6)
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It is interesting to note that, for d of the order of logn (like in (6)), the rate
of convergence in (2) does not tend to zero. Therefore, in this case and without
any previous selection step, a classical LPE can fail to estimate f(x).

A remarkable point of Theorem 1 is that the bandwidth h does not have to
tend to 0 when n tends to infinity. This particular behavior does not appear when
LPE are used for estimation and not for selection. This can be explained because,
we do not need to control any bias term in the selection step. The restriction on
h comes only from the fact that we need the dictionary F to be approximatively
orthogonal.

Finally, once the set of interesting coordinates is selected, we can use it to run
other non-parametric methods to estimate the function f with other pointwise
risks or integrated risks and under other smoothness assumptions on f. Note
that, by considering other order of the l1-penalized LPE in the selection step, it
is easy to find other properties of the function f. For instance, inflection points
or convexity of f can be detected with a second order method for the selection
step.

4. Proofs

4.1. Proof of Theorem 1

First note that, considering only the observations Xi in the neighborhood of x,
an estimator θ̄ = (θ̄0, . . . , θ̄d) ∈ Θ̄(λ) defined in (3) can be viewed as a Lasso
estimator in the linear regression model

Z = Aθ∗ + ε, where θ∗ = (θ∗0 , . . . , θ
∗
d)t = (f(x), h∂1f(x), . . . , h∂df(x))

t (7)

and, for any i = 1, . . . , n ∆i := αif(Xi) − Aiθ
∗ and αi := 1√

nhd
K1/2

(
Xi−x

h

)
,

the output vector Z of R
n has for coordinates Zi := αiYi, i = 1, . . . , n, the

lines of the design matrix A ∈ Mn,d+1 are Ai := αiU
(

Xi−x
h

)
, i = 1, . . . , n

(U is defined after Equation (3)) and the noise vector ε has εi = αiei + ∆i

for coordinates. We remark that the noise is not centered. The “localized” bias
term ∆ := (∆1, . . . ,∆n)t has been added to the noise. With this new notation,
we have

Θ̄(λ) = arg min
θ∈Rd+1

‖Z − Aθ‖2
2 + 2λ‖θ‖1

where Θ̄(λ) has been introduced in equation (3) and ∀z = (z1, . . . , zn) ∈
R

n, ‖z‖2
2 =

∑n
i=1 z

2
i .

For the same reason, an estimator θ̄2 ∈ Θ̄2(λ) defined in (4) can be viewed
as a Lasso estimator in the linear regression model

Ž = Aθ̌∗ + ε, where θ̌∗ = (f(x) + fmax + Ch, h∂1f(x), . . . , h∂df(x))
t

and Ž has for coordinates Ži = αi(Yi + fmax +Ch), i = 1, . . . , n. Note that the
∆i’s are not affected by this translation.

We start by studying θ̄ ∈ Θ̄(λ) when |f(x)| ≥ Ch and θ̄2 ∈ Θ̄2(λ) when
|f(x)| ≤ fmax. The study of θ̄ when f(x) = 0 will be discussed at the end. Note
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that, in both the considered cases, we have |θ∗0 | ≥ Ch and |θ̌∗0 | ≥ Ch. This fact
will be used in what follows. We first study θ̄ when |f(x)| ≥ Ch. The study of
θ̄2 when |f(x)| ≤ fmax is the same with the translated data Y̌i = Yi +fmax +Ch
and f̌ = f + fmax + Ch. Note that f̌ and f have the same partial derivatives
thus θ∗ and θ̌∗ have the same last d coordinates which are the only ones of
interest for the selection step.

Proving Theorem 1 can be viewed as a problem of sign consistency of the
Lasso estimator θ̂ = (θ̄1, . . . , θ̄d) (the vector made of the d last coordinates of
θ̄). To solve this problem, we follow the lines of Zhao and Yu (2006). We remark
that, we treat carefully the problem of uniqueness of the LASSO contrary to
the work of Zhao and Yu (2006) where uniqueness of the LASSO estimator was
assumed.

We first treat the problem of uniqueness of the LASSO. We introduce the
function

φ(θ) := ‖Z −Aθ‖2
2 + 2λ‖θ‖1, ∀θ ∈ R

d+1 (8)

and we say that θ ∈ R
d+1 satisfies the system (S) when

∀j = 0, . . . , d,

{
(A.j)

t(Z −Aθ) = −λsign(θj) if θj 6= 0
|(A.j)

t(Z −Aθ)| ≤ λ if θj = 0

where, for any j ∈ {0, . . . , d}, the vector A.j is the j-th column of A. It is known
that θ ∈ R

d+1 belongs to Θ̄(λ) if and only if θ satisfies the system (S).

Lemma 1. If θ̄ ∈ R
d+1 and θ̄(2) ∈ R

d+1 are two solutions of (S) then Aθ̄ =
Aθ̄(2).

Proof of Lemma 1. We denote by S(θ̄) the set {j ∈ {0, . . . , d} : θ̄j 6= 0}. For
any v ∈ R

d+1, we have

φ(θ̄+v)−φ(θ̄) = 2λ
∑

j∈S(θ̄)

|θ̄j+vj |−|θ̄j |−vjsign(θ̄j)+2λ
∑

j /∈S(θ̄)

|vj|−ηjvj+‖Av‖2
2 ,

where ηj = λ−1(A.j)
t(Z − Aθ̄). For any j ∈ S(θ̄), we have |θ̄j + vj| − |θ̄j| −

vjsign(θ̄j) ≥ 0 and for any j /∈ S(θ̄), we have |ηj| ≤ 1 so |vj| − ηjvj ≥ 0. Hence,

φ(θ̄ + v) − φ(θ̄) ≥ ‖Av‖2
2

We take v ∈ R
d+1 such that θ̄(2) = θ̄ + v. The vectors θ̄(2) and θ̄ are both

solutions of (S), thus they are minimizers of φ and so φ(θ̄(2)) = φ(θ̄). Therefore,
we have ‖Av‖2

2 = 0.

Next, we prove a result which deals with the identifiability of the model as
well as the uniqueness of the LASSO. We introduce the event

Ω01 :=
{
∀θ ∈ R

d+1 :
1

2

√
µm

2
‖θ‖2 ≤ ‖Aθ‖2 ≤ 2

√
3µM

2
‖θ‖2

}
.
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Proposition 1. There exists two constants c0 and c1 depending only on µm, µM

and MK such that, under Assumption 2 and the first point of Assumption 4 with
0 < h < η, we have

P[Ω01] ≥ 1 − c0 exp(c0d− c1nh
d).

Proof of Proposition 1. Let θ ∈ R
d+1. We have

‖Aθ‖2
2 =

1

n

n∑

k=1

< Z̄k, θ >
2 where Z̄k :=

√
nαkU

t
(Xk − x

h

)
.

It is easy to see that | < Z̄k, θ >
2 | ≤ (2MK/h

d)‖θ‖2
2 and V(< Z̄k, θ >

2) ≤
(MKµM/hd)‖θ‖4

2. Let 0 < γ < 1 be a number that will be chosen wisely
latter. Bernstein’s inequality yields that, with probability greater than 1 −
2 exp(−9nhdγ2µM/(16MK)),

∣∣‖Aθ‖2
2 − E‖Aθ‖2

2

∣∣ ≤ (3/2)γµM‖θ‖2
2.

Moreover, we have E‖Aθ‖2
2 =

∫
Rd K(t)(U(t)θ)2µ(x + ht)dt. To simplify the

proof we will suppose that (
∫

Rd K(t)Ui(t)Uj(t)dt)0≤i,j≤d = Id+1 but the proof
still holds when this matrix is diagonal with positive coefficients independent
of d as in Assumption 2. Then we obtain that µm‖θ‖2

2 ≤ E‖Aθ‖2
2 ≤ µM‖θ‖2

2.
Thus, with probability greater than 1 − 2 exp(−9nhdγ2µM/(16MK)), we have

(µm − (3/2)γµM )‖θ‖2
2 ≤ ‖Aθ‖2

2 ≤ (µM + (3/2)γµM )‖θ‖2
2. (9)

To control the probability measure of Ω01, we need a uniform control over
θ ∈ R

d+1 of ‖Aθ‖2
2. For that we use a classical ǫ-net argument. For the sake

of completeness, we recall here this argument. Let ǫ > 0 be chosen wisely
later and Nǫ be an ǫ-net of Sd (the unit sphere of R

d+1) for the ‖ · ‖2-norm.
Using an union bound and equation (9), with probability greater than 1 −
2|Nǫ| exp(−9nhdγ2µM/(16MK)), we have

(µm − (3/2)γµM ) ≤ ‖Aθ‖2
2 ≤ (µM + (3/2)γµM ), ∀θ ∈ Nǫ. (10)

Now, we want to extend the last result to the whole sphere Sd. Let θ ∈ Sd.
There exists θ0 ∈ Nǫ such that ‖θ − θ0‖2 ≤ ǫ. If θ 6= θ0, there exists θ1 ∈ Nǫ

which is ǫ-close to (θ−θ0)/‖θ−θ0‖2. Using this argument recursively, we obtain
that there exists a sequence (δj)j≥0 of non-negative numbers such that δ0 = 1
and |δj | ≤ ǫj , ∀j ≥ 1 and a sequence (θj)j≥0 of elements in Nǫ such that

θ =

∞∑

j=0

δjθj .

Thus, for any θ ∈ Sd, we have

‖Aθ‖2 =

∥∥∥∥∥A
( ∞∑

j=0

δjθj

)∥∥∥∥∥
2

≤
∞∑

j=0

|δj|‖Aθj‖2 ≤ 1

1 − ǫ
max
θ∈Nǫ

‖Aθ‖2 (11)
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and

‖Aθ‖2 =

∥∥∥∥∥A
( ∞∑

j=0

δjθj

)∥∥∥∥∥
2

≥ ‖Aθ0‖ −
∞∑

j=1

|δj |‖Aθj‖2

≥ min
θ∈Nǫ

‖Aθ‖2 − ǫ

1 − ǫ
max
θ∈Nǫ

‖Aθ‖2. (12)

We take γ = µm/(3µM) and ǫ = (1/4)
√
µm/(3µM ). We know that there

exists an absolute constant c > 0 such that |Nǫ| ≤ (c/2)ǫ−d. Using this fact
and equations (10), (11) and (12), with probability greater than 1− c exp(c0d−
c1nh

d), we have

1

2

√
µm

2
≤ ‖Aθ‖2 ≤ 2

√
3µM

2
, ∀θ ∈ Sd,

where c0 = log[4
√

(3µM )/µm] ∨ c and c1 = µ2
m/(MKµM ). We complete the

proof by applying this result to the vector θ/‖θ‖2 for any θ ∈ R
d − {0} (the

result is obvious for θ = 0).

We introduce the squared matrix of Md+1

Ψ(n) := AtA and Ψ
(n)
ij

:=
1

nhd

n∑

k=1

K
(Xk − x

h

)
Ui

(Xk − x

h

)
Uj

(Xk − x

h

)
, ∀i, j = 0, . . . , d,

where we recall that U0(v) = 1 and Ui(v) = vi, i = 1, . . . , d for any v ∈ R
d.

To simplify notation and without loss of generality, we will assume, in what
follows, that the interesting indexes are given by the first d∗ coordinates. Namely,
we will assume (but we did not use it to construct our procedures) that
(i1, . . . , id∗) = (1, . . . , d∗) and then J = {1, . . . , d∗}.

We introduce some notation. The vector θ∗ and the matrices Ψ(n) = AtA
and A can be written as

Ψ(n) :=

(
Ψ11 Ψ12

Ψ21 Ψ22

)
; A := (A(1)A(2)) and θ∗ :=

(
θ∗(1)

θ∗(2)

)
,

where Ψ11 ∈ Md∗+1, Ψ12 ∈ Md∗+1,d−d∗ , Ψ21 ∈ Md−d∗,d∗+1, Ψ22 ∈ Md−d∗ ,
A(1) ∈ Mn,d∗+1, A(2) ∈ Mn,d−d∗ , θ∗(1) ∈ R

d∗+1 and θ∗(2) ∈ R
d−d∗

. We remark

that, with the notational simplifications, θ∗(2) is the null vector of R
d−d∗

.

Lemma 2. On the event Ω01, the following statements hold:

• the LASSO selector exists and is unique,
• all the eigenvalues of Ψ(n), Ψ11 and Ψ22 belong to [µm/8, 6µM],

Proof of Lemma 2. For the first point, we use the convexity of the function φ
(introduced in equation (8)) to obtain the existence of a LASSO selector. By
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Lemma 1, two LASSO selectors are in the kernel of A. On the event Ω01, the
kernel of A is {0}. Thus, there is uniqueness of the LASSO on Ω01.

For the second point, we know that the eigenvalues of Ψ(n) are the square of
the singular values of A. On the event Ω01, the singular values of A belong to
[(1/2)

√
µm/2, 2

√
3µM/2]. This completes the proof for Ψ(n). Now, let λ > 0 be

an eigenvalue of Ψ11 and v(1) ∈ R
d∗+1 be an eigenvector associated with λ. We

denote by u(2) the null vector of R
d−d∗

. We have

λ‖u(1)‖2
2 = ‖A(1)u(1)‖2

2 = ‖A(ut
(1)u

t
(2))

t‖2
2 ≤ 6µM‖(ut

(1)u
t
(2))

t‖2
2 = 6µM‖u(1)‖2

2,

thus λ ≤ 6µM . For the same reason, we have λ ≥ µm/8. The proof for Ψ22

follows the same argument.

We consider the event

Ω02 :=
{
∀j ∈ {d∗ + 1, . . . , d}, ∀k ∈ {0, . . . , d∗} : |(Ψ21)jk| ≤ 2hLµMK

}
. (13)

Lemma 3. We assume that Assumption 2 and Assumption 4 hold. There exists
a constant c3 depending only on Lµ,MK and µM such that the following holds.
We have

P[Ω02] ≥ 1 − 2(d∗ + 1)(d− d∗) exp(−c3nhd+2).

We take h such that 0 < h < µm[32(d∗+1)LµMK ]−1∧η. On the event Ω01∩Ω02,
we have

∀j = d∗ + 1, . . . , d |(Ψ21(Ψ11)
−1−−→sign(θ∗(1)))j | < 1/2.

Proof of Lemma 3. The first point is a direct application of Bernstein’s inequal-
ity and of the union bound. We use both assumptions of the lemma to upper
bound the expectation |E(Ψ12)jk| ≤ hLµMK .

For the second part of the lemma, let j ∈ {d∗ + 1, . . . , d}. On the event Ω01,
the maximal eigenvalue of Ψ−1

11 is smaller than 8/µm, thus, we have

|(Ψ21Ψ
−1
11

−−→
sign(θ∗(1)))j | =

∣∣∣
d∗∑

k=0

(Ψ21)jk(Ψ−1
11

−−→
sign(θ∗(1)))k

∣∣∣

≤
( d∗∑

k=0

(Ψ21)
2
jk

)1/2

‖Ψ−1
11

−−→
sign(θ∗(1))‖2

≤
√
d∗ + 1(2hLµMK )

8
√
d∗ + 1

µm
< 1/2.

Remark. If we have Eψ(n) = Id+1, then we don’t need any restriction on h.
Because, in this case, we can obtain that, with high probability, ∀θ ∈ R

d+1,
(1 − γ)‖θ‖2 ≤ ‖Aθ‖2 ≤ (1 + γ)‖θ‖2. Thus, with the same probability, we have

∀θ ∈ R
d+1, (1 − γ)‖θ‖2 ≤ ‖Ψθ‖2 ≤ (1 + γ)‖θ‖2 .
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By applying the last inequality to the vector θ0 = (Ψ−1
11

−−→
sign(θ∗(1))

t0t)t, we obtain:

d∗ + 1 + ‖Ψ21Ψ
−1
11

−−→
sign(θ∗(1))‖2

2 = ‖(−−→sign(θ∗(1))
t, [Ψ21Ψ

t
11

−−→
sign(θ∗(1))]

−1)‖2
2

= ‖Ψθ0‖2
2 ≤ (1 + γ)2‖θ0‖2

2 = (1 + γ)2‖Ψ−1
11

−−→
sign(θ∗(1))‖2

2 ≤ (1 + γ)(d∗ + 1).

Thus, we get ‖Ψ21Ψ
−1
11

−−→
sign(θ∗(1))‖2

2 ≤ γ(d∗ + 1). Thus, for γ small enough we

have |(Ψ21Ψ
−1
11

−−→
sign(θ∗(1)))j | ≤ 1/2. The problem is that, in general, the dictionary

cannot satisfies Eψ(n) = Id+1. We just have

(µ(x) −m0h)Id+1 ≤ EΨ(n) ≤ (µ(x) +m1h)Id+1 ,

with m0 and m1 two positive constants.

We consider the following events:

Ω0 := Ω01 ∩Ω02,

Ω1 :=
{
∀j = 0, . . . , d∗ : |(Ψ−1

11 W(1))j − λ(Ψ−1
11

−−→
sign(θ∗(1)))j | < |(θ∗(1))j|

}

and
Ω2 :=

{
∀j = d∗ + 1, . . . , d : |(Ψ21Ψ

−1
11 W(1) −W(2))j| < λ/2

}
,

where W(1) = At
(1)ε ∈ R

d∗+1 and W(2) = At
(2)ε ∈ R

d−d∗

. For notational simplic-

ity, the indices of the coordinates of any vector in R
d∗+1 start from 0 and go to

d∗, and for any vector in R
d−d∗

the indices start from d∗ + 1 and go to d. We
remark that, we work only on the event Ω0 on which the minimum eigenvalue
of Ψ11 is strictly positive. Thus, on this event, Ψ11 is regular and so Ω0 ∩ Ω1

and Ω0 ∩ Ω2 are well defined.

Proposition 2. Let 0 < h < µm[32(d∗+1)LµMK ]−1∧η and Assumption 2 and

Assumption 4 hold. The event
{
∀θ̄ ∈ R

d+1 solution of (S), we have
−−→
sign(θ̂) =

−−→
sign(θ∗)

}
∩Ω0 contains the event Ω0∩Ω1∩Ω2. We recall that for any θ̄ ∈ R

d+1,

the vector θ̂ = (θ̄1, . . . , θ̄d) is the vector made of the d last coordinates of θ̄.

Proof of Proposition 2. We consider the linear functional

F :

{
R

d∗+1 −→ R
d∗+1

θ 7−→ θ− θ∗(1) − Ψ−1
11 W(1) + λα(1)

where we denote by α(1) the vector Ψ−1
11

−−→
sign(θ∗(1)). For any v = (v0, . . . , vd)

t ∈
R

d∗+1 and r = (r0, . . . , rd) ∈ (R∗
+)d∗+1, we set B(x, r) = Πd∗

j=0(xj − rj ; xj + rj).
For any vector v = (vj)j , we set |v| = (|vj |)j. We have F (B(θ∗(1), |θ∗(1)|)) =

B(−Ψ−1
11 W(1) + λα(1), |θ∗(1)|). On the event Ω1, we have 0 ∈ B(−Ψ−1

11 W(1) +

λα(1), |θ∗(1)|). Hence, there exists θ̄(1) ∈ B(θ∗(1), |θ∗(1)|) such that F (θ̄(1)) = 0.
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That is θ̄(1) = θ∗(1) + Ψ−1
11 W(1) − λα(1) and |θ̄(1) − θ∗(1)| < |θ∗(1)|. Thus, we have

−−→
sign(θ̄(1)) =

−−→
sign(θ∗(1)) and so

Ψ11(θ̄(1) − θ∗(1)) = −λ−−→sign(θ̄(1)). (14)

Using Lemma 3, on the event Ω0, we have for any j = d∗ + 1, . . . , d,

|(Ψ21Ψ
−1
11

−−→
sign(θ∗(1)))j | < 1/2. Thus, on the event Ω0 ∩ Ω2, we have

−λ1d−d∗ < Ψ21Ψ
−1
11 W(1) −λΨ21α(1) −W(2) = Ψ21(θ̄(1) − θ∗(1))−W(2) < λ1d−d∗ ,

(15)
where the last inequality is coordinates by coordinates and 1d−d∗ is the unit
vector of R

d−d∗

.
We consider the vector θ̄ = (θ̄t

(1), θ̄
t
(2))

t ∈ R
d+1 where θ̄(2) = 0d−d∗ is the null

vector of R
d−d∗

. We thus have
−−→
sign(θ̄) =

−−→
sign(θ∗) (because

−−→
sign(θ̄(1)) =

−−→
sign(θ∗(1))

and θ̄(2) = 0d−d∗ = θ∗(2)). Moreover equations (14) and (15) are equivalent to

say that θ̄ satisfies the system (S).
In particular, we prove that on the event Ω0 ∩Ω1 ∩Ω2, there exists θ̄ ∈ R

d+1

solution of (S) such that
−−→
sign(θ̂) =

−−→
sign(θ∗). We complete the proof with the

uniqueness of the LASSO on the event Ω0.

Proposition 3. There exists c0 > 0 and c1 > 0 depending only on Lµ, µm, µM ,
MK , L, C and σ such that the following holds. Under the same assumption as
in Theorem 1, we have

P[Ω0 ∩ Ω1 ∩ Ω2] ≥ 1 − c1 exp(c1d− c0nh
d+2).

Proof of Proposition 3. We study the probability measure of Ω2. We have

Ωc
2 ⊂ ∪d

j=d∗+1 {|ζj| ≥ λ/2 − |bj|} ,

where b = (bd∗+1, . . . , bd)
t = G(∆1, . . . ,∆n)t and ζ = (ζd∗+1, . . . , ζd)

t =
G(α1e1, . . . , αnen)t with G = (gij)d∗+1≤i≤d;1≤j≤n = Ψ21Ψ

−1
11 A

t
(1) − At

(2) that

satisfy GGt = At
(2)(I − A(1)Ψ

−1
11 A

t
(1))A(2). The matrix B = I − A(1)Ψ

−1
11 A

t
(1)

is symmetric and B2 = B, then its eigenvalues are 0 and 1. Moreover, ac-
cording to Lemma 2, on the event Ω0, the eigenvalues of Ψ22 = At

(2)A(2) are

smaller than 6µM . Since, GGt = At
(2)BA(2), the eigenvalues of GGt are smaller

than 6µM . For j ∈ {d∗ + 1, . . . , d}, this implies that
∑n

k=1 g
2
jk = (GGt)jj ≤

supu∈Rd−d∗

;‖u‖2=1 ‖GGtu‖2 ≤ 6µM and that ζj is a zero-mean Gaussian vari-
able with variance satisfying

V|X(ζj) = σ2
n∑

k=1

g2
jkα

2
k ≤ 6σ2MKµM

nhd
, (16)

where V|X stands for the variance symbol conditionally to X = (X1, . . . , Xn).
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Moreover, for any j ∈ {d∗ + 1, . . . , d}, we have

|bj| =
∣∣∣

n∑

k=1

gjk∆k

∣∣∣ ≤
( n∑

k=1

g2
jk

)1/2

‖∆‖2 ≤
√

6µM‖∆‖2.

The l2-norm of ∆ can be upper bounded, with high probability, by using Bern-
stein’s inequality. We have

‖∆‖2
2 =

1

n

n∑

i=1

Vi, where Vi =
1

hd
K
(Xi − x

h

)
(f(Xi) − P1f(Xi, x))

2

and we use Assumption 5 to obtain |Vi| ≤ h2−dL2MK and V(Vi) ≤ µMh4−dL4MK .
Thus, there exists an event Ω3 of probability measure greater than
1 − exp

(
− (3/8)µMnh

dµ2
MM2

K

)
, on which ‖∆‖2

2 ≤ E‖∆‖2
2 + µML2MKh

2. It
is easy to see that E‖∆‖2

2 ≤ µML2MKh
2. Thus, on the event Ω3, we have

‖∆‖2
2 ≤ 2µML2MKh

2 and so maxj=d∗+1,...,d |bj| ≤ 2
√

3MKµMLh.
We have λ = 8

√
3MKµMLh and, by using the classical upper bound on the

tail of Gaussian random variables and (16), there exists a constant c0 depending
only on µM ,MK , L, σ such that

P[Ωc
2|X ∈ Ω0 ∩ Ω3] ≤

d∑

j=d∗+1

P[|ζj| ≥ λ/2 − |bj||X ∈ Ω0 ∩ Ω3]

≤
d∑

j=d∗+1

P[|ζj| ≥ λ/4|X ∈ Ω0 ∩ Ω3]

≤ (d− d∗)
c0√
nhd+2

exp
(
− nhd+2

c20

)
,

where P[·|X ∈ Ω0 ∩ Ω3] is the probability conditionaly to X and to the event
Ω0 ∩ Ω3.

Here, we study the probability measure of Ω1. We have

Ωc
1 ⊂ ∪d∗

j=0

{
|ξj| ≥ |θ∗j | − λ|aj| − |bj|

}
,

where a = (a0, . . . , ad∗)t = (Ψ11)
−1−−→sign(θ∗(1)), ξ = (ξ0, . . . , ξd∗)t = Ψ−1

11 A
t
(1)(α1e1,

. . . , αnen)t and b = (b0, . . . , bd∗)t = Ψ−1
11 A

t
(1)(∆1, . . . ,∆n)t.

The random variable ξ is of the form H(α1e1, . . . , αnen)T with H =
(hij)0≤i≤d∗;1≤j≤n = Ψ−1

11 A
t
(1) that satisfy HHt = Ψ−1

11 . For j = 0, . . . , d∗, the

random variable ξj is a zero-mean Gaussian variable with variance (conditionally
to X) σ2

j = σ2
∑n

k=1 h
2
jkα

2
k satisfying, on the event Ω0,

σ2
j ≤ σ2MK

nhd
(Ψ−1

11 )jj ≤ 8σ2MK

µmnhd
.

The last inequality holds, because, on the event Ω0, the maximum eigenvalue of
Ψ−1

11 is smaller than 8/µm.
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Moreover, using Lemma 2, on the event Ω0, we have, for any j ∈ {0, , . . . , d∗},

|aj| ≤ ‖a‖2 ≤ 8

µm
‖−−→sign(θ∗(1))‖2 ≤ 8

√
d∗ + 1

µm
≤ 8

√
d0 + 1

µm

and

|bj| ≤
(

n∑

k=1

h2
jk

)1/2

‖∆‖2 ≤ (Ψ−1
11 )jj‖∆‖2 ≤ 8

µm
‖∆‖2.

We use the same argument as previously, to obtain that, on the event Ω3,
the l2-norm of ∆ satisfies, ‖∆‖2

2 ≤ 2µML2MKh
2 and so maxj=0,...,d∗ |bj| ≤

(8/µm)
√

2µMMKLh.
Since λ = 8

√
3MKµMLh, we have λ|aj | + |bj| ≤ 36(µM/µm)LMK

√
d0h.

Thus, by using the classical upper bound on the tail of Gaussian random vari-
ables, the upper bound on the variance of the ξj ’s and Assumption 6 with
C ≥ 72(µM/µm)LMK

√
d0, there exists a constant c1 > 0 depending only on

µm, µM ,MK , C and σ such that

P[Ωc
1|Ω0 ∩ Ω3] ≤

d∗∑

j=0

P
[
|ξj| ≥ |θ∗j | − λ|aj| − |bj|

]
≤

d∗∑

j=0

P[|ξj | ≥ Ch/2]

≤ 2(d∗ + 1)
c1√
nhd+2

exp
(
− nhd+2

c21

)
.

Thus, there exists a constant c2 depending only on µm, µM ,MK , L, C and σ
such that P[Ωc

1 ∪ Ωc
2|X ∈ Ω0 ∩ Ω3] ≤ d(c2/

√
nhd+2) exp(−nhd+2/c22). Finally,

using the results of Proposition 1 and Lemma 3, we obtain an upper bound on
the probability measure of the event Ω0. Combining this upper bound and the
result on the probability measure of Ω3, there exists c3 and c4 depending only
on Lµ, µm, µM ,MK , L, C and σ such that

P[Ω0 ∩ Ω1 ∩ Ω2] ≥ 1 − c4 exp(c4d− nhd+2c3).

Theorem 1 follows by applying Proposition 2 and Proposition 3. For the study
of θ̄ when f(x) = 0, we just need to “move” the first coordinate of θ∗ to the end.
Namely, we can use the same arguments as previously for the following model

Z = Ȧθ̇∗ + ε, where θ̇∗ = (θ̇∗1 , . . . , θ̇
∗
d+1)

t = (h∂1f(x), . . . , h∂df(x), f(x))
t (17)

and the lines of the design matrix Ȧ ∈ Mn,d+1 are Ȧi = αiU̇
(

Xi−x
h

)
, i =

1, . . . , n (with U̇(v) = (v1, . . . , vd, 1)). In models (7) and (17), all the null co-
ordinates of θ∗ and θ̇∗ are at the end of the vector and all the non-zero co-
ordinates are at the beginning of the vector. Then, we just have to consider
Ȧ = (Ȧ(1)Ȧ(2)), with Ȧ(1) ∈ Mn,d∗ and Ȧ(2) ∈ Mn,d−d∗+1, the matrices

Ψ̇ = ȦtȦ and Ψ̇ij = Ȧt
(i)Ȧ(j), i, j = 1, 2. The proof, in this case, follows the

line of the previous proof, with these notation and some minor changes in the
indices.
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4.2. Proof of Theorem 2

Let δ > 0. We have

P[|f̂(x) − f(x)| ≥ δ]

= P

[
|f̂(x) − f(x)| ≥ δ|Ĵ2 = J

]
P[Ĵ2 = J ] + P

[
|f̂(x) − f(x)| ≥ δ|Ĵ2 6= J

]
P[Ĵ2 6= J ]

≤ P

[
|f̂(x) − f(x)| ≥ δ|Ĵ2 = J

]
+ P[Ĵ2 6= J ]1δ≤(2fmax)2

≤ c1 exp(−c2n
2β

2β+d∗ δ2) + c1 exp(c1d− nhd+2c0)1δ≤(2fmax)2 ,

where, on the event {Ĵ2 = J}, we used the classical result on LPE (cf. Audibert

and Tsybakov (2007)) and, for the event {Ĵ2 6= J}, we upper bounded its
probability measure by using Theorem 1. The assumption on d completes the
proof.
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