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Abstract. Skew-symmetric distributions are defined based on the reflected
gamma, reflected Weibull and the reflected Pareto distributions. Expressions
are derived for the probability density function, cumulative distribution func-
tions, moments and the shape. Estimation procedures by the methods of mo-
ments and maximum likelihood and Fisher information matrices are pro-
vided. Evidence of flexibility of the distributions is shown. An application
is illustrated using the Old Faithful Geyser data. Some of the attractive prop-
erties of the distributions include multimodality and polynomial tails.

1 Introduction

Let X1 and X2 be two independent continuous random variables having the com-
mon probability density function (PDF) g(x) which is symmetric about zero. Then
for any real number c, both X1 and cX2 are independent and have symmetric den-
sity about 0. By the property of symmetry

1

2
= P(X1 − cX2 ≤ 0) =

∫ ∞
−∞

P(X1 − cX2 ≤ 0|X2 = x)g(x) dx

=
∫ ∞
−∞

G(cx)g(x) dx,

where G(x) is the cumulative distribution function (CDF) corresponding to the
PDF g(x).

Lemma 1 (Azzalini (1985)). If R1 is the support of g and g(x) = g(−x) for all
real numbers x then for any real number c,

f (z; c) = 2g(z)G(cz) (1)

is a skewed PDF of a continuous random variable Z, which will be denote by
SD(c).

Key words and phrases. Cumulative distribution function, moments, probability density function,
estimation, skew-symmetric distributions.

Received July 2008; accepted February 2009.

1

http://www.imstat.org/bjps
http://dx.doi.org/10.1214/08-BJPS100
http://www.redeabe.org.br/


2 M. M. Ali, J. Woo and S. Nadarajah

Various skewed distributions can be obtained from (1) by taking g(·) and G(·)
to belong to standard parametric families. Of special interest is the skewed normal
distribution given by the PDF

f (z; c) = 2φ(z)�(cz), (2)

where φ(·) and �(·) denote the standard normal PDF and the standard normal
CDF, respectively. This distribution was introduced in the seminal paper by Azza-
lini (1985). It has been studied extensively by several authors. Henze (1986), Liseo
and Loperfido (2003) and Gupta, Nguyen and Sanqui (2004) provided various
characterizations and representations of this distribution. Gupta and Chen (2001)
and Monti (2003) considered goodness-of-fit and estimation issues. Arellano-
Valle, Gomez and Quintana (2004) and Gupta and Gupta (2004) developed cer-
tain generalizations of the skewed normal distribution. Pewsey (2000) developed
the wrapped skewed normal distribution for circular data. Azzalini and Chiogna
(2004) considered stress–strength modeling using the skewed normal distribution.

Among other skewed distributions arising from (1), see Arnold and Beaver
(2000) for skewed Cauchy, Kozubowski and Panorska (2004), Aryal and Nadara-
jah (2005) for skewed Laplace and Wahed and Ali (2001) for skewed logistic. See
also Gupta, Chang and Huang (2002).

All of the skewed distributions arising from (1) have been based on symmetric
families. We are aware of no distributions based on other families. In this note, we
study properties of (1) when g(·) and G(·) correspond to the reflected versions of
the three most popular models for skewed data: gamma, Weibull and the Pareto
distributions. The reflected versions of these three distributions have widespread
applications. For example, the reflected Weibull distribution has been a popular
model for HIV infection (Commenges et al. (1992); Downs, Salamina and An-
cellepark (1995); Marston et al. (2005)), complex drug intake process (Bressolle
et al. (1994)), tensile impact (Wang and Xia (2000)) and reliability (Nadarajah
(2004)). The reflected Pareto distribution has been a popular model for human set-
tlements (Reed (2002)), income (Reed (2003); Chebotarev (2007)), magnitude and
frequency of landslides (Guthrie and Evans (2004)), airport network analysis (Li
and Cai (2004); Guida and Maria (2007)), size (Reed and Jorgensen (2004); Bab-
bitt, Kiltie and Bolker (2006)) and adjustment of ion source (Han and Hu (2005)).
The main feature in (1) is that a new parameter c is introduced to control skewness
and kurtosis. So, we can expect the skewed reflected distributions to be useful in
many more practical situations.

The contents of this note are organized as follows. Section 2 discusses some
general properties of the distribution defined by (1). Sections 3, 4 and 5 derive
mathematical properties of the skewed reflected gamma distribution, skewed re-
flected Weibull distribution and the skewed reflected Pareto distribution. We derive
explicit expressions for the PDF, CDF, moments and the shape of each distribution.
We provide graphical illustrations to show the flexibility of each distribution. We
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also provide estimation procedures by the methods of moments and maximum
likelihood and the Fisher information matrix. Finally, Section 6 illustrates an ap-
plication of the proposed skewed distributions.

2 Mathematical preliminaries

2.1 Azzalini’s results

Let F(z; c) = ∫ z
−∞ 2g(t)G(ct) dt denote the CDF corresponding to (1). The CDF

F(z; c) can be expressed as

F(z; c) ≡
∫ z

−∞
f (t; c) dt = 2

∫ z

−∞
g(t)G(ct) dt = 2

∫ z

−∞

∫ ct

−∞
g(t)g(s) ds dt

= G(z) − 2
∫ ∞
z

∫ ct

0
g(t)g(s) ds dt.

Define I (z; c) = ∫ ∞
z

∫ ct
0 g(t)g(s) ds dt for z > 0 and c > 0.

The following results are due to Azzalini (1985):

Lemma 2 (Azzalini (1985)). (a) Z ∼ SD(c) ⇐⇒ −Z ∼ SD(−c) for any real
number c. Especially, SD(0) ∼ g(x).

(b) F(z;−c) = 1 − F(−z; c).
(c) F(z;1) = G2(z), where G(x) is the original CDF of X.
(d) If g(x) is a.e. twice differentiable function and d2g(x)/dx2 ≤ 0 and

(d/dx) log{g(x)/G(x)} ≤ 0, then log{2g(z)G(cz)} is a concave function of z, that
is, the skewed distribution has always a unique mode.

(e) For positive z, limc→∞ f (z; c) becomes a half-distribution of g(x).

We note from Lemma 2(b) and (c) that if c = −1 then F(z;−1) = 1 −G2(−z).

Lemma 3 (Azzalini (1985)). (a) I (z; c) is a decreasing function of z.
(b) I (z; c) = −I (z;−c).
(c) I (−z; c) = I (z; c).
(d) 2I (z;1) = G(z)G(−z).

2.2 Definition of skewed inverse reflected distributions

We need the following fact to generate the skewed inverse reflected distributions
discussed in Sections 3 to 5.

Fact 1. Let X be a random variable with density fX(x) = dFX(x)/dx symmetric
about zero and with the real line as the support of f . Then:

(a) Y = 1/X has the density y−2fX(1/y) which is symmetric about zero.
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(b) The CDF of Y = 1/X is

FY (y) = 1

2
+ sgn(y)

{
1 − FX

(
1

|y|
)}

,

where sgn(y) = 1 if y ≥ 0 and sgn(y) = −1 if y < 0.
(c) For y > 0, fY (y) = 2y−2fX(1/y) is a half-density of the inverse random

variable.
(d) By Lemma 1, we define a skewed inverse reflected distribution as one hav-

ing its PDF specified by

f (z; c) = 1

z2 fX

(
1

z

){
1 + 2 sgn(cz)

[
1 − FX

(
1

|cz|
)]}

for x ∈ R1 and c ∈ R1.

3 Skewed inverse reflected gamma distribution

From the reflected gamma density in Johnson, Kotz and Balakrishnan (1994, 1995)
and Fact 1(a), we can obtain the density of the inverse reflected gamma random
variable as

g(y) = 1

2�(α)

1

|y|α+1 e−1/|y| (3)

for y ∈ R1 and α > 0. From formula 3.381(3) in Gradshteyn and Ryzhik (1965)
and Fact 1(b), the corresponding CDF is

G(y) = 1

2

[
1 + sgn(y)

�(α,1/|y|)
�(α)

]
(4)

for y ∈ R1, where �(α, x) = ∫ ∞
x tα−1e−t dt . The density (3) is symmetric about

zero and for y > 0, 2g(y) becomes an inverted gamma density with a shape pa-
rameter α. Using formula 8.334(3) in Gradshteyn and Ryzhik (1965), the corre-
sponding kth moment of Y is

E(Y k) = 1 + (−1)k

2

�(α − k)

�(α)

for α > k. In particular, the variance of Y is

Var(Y ) = 1

(α − 1)(α − 2)

for α > 2.
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3.1 PDF and CDF

By Fact 1(d), we can define the skewed inverse reflected gamma distribution by
the PDF

f (z; c) = 1

2�(α)|z|α+1 e−1/|z|
[
1 + sgn(cz)

�(α,1/|cz|)
�(α)

]
(5)

for z ∈ R1, α > 0 and c ∈ R1. For z > 0 and c > 0, the corresponding CDF is

F(z; c) = G(z) − 2I (z; c),
where

I (z; c) =
∫ ∞
z

∫ ct

0
g(t)g(s) ds dt

and g(·) and G(·) are given by (3) and (4), respectively. Note that the CDF for
negative values of z or c can be obtained using the facts I (z; c) = −I (z;−c) and
I (−z; c) = I (z; c).
3.2 Shape

Figure 1 illustrates possible shapes of (5). Note that the shapes are multimodal.
The modes are the solutions of the equation

sgn(cz)e−1/|cz|

�(α) + sgn(cz)�(α,1/|cz|) = |cz|α−2
(
α + 1 − 1

|z|
)
.

Note that if c > 0 then f (z) ∼ z−α−1/�(α) as z → ∞ and f (z) ∼ |z|−2α−1/

{2α�2(α) | c |α} as z → −∞. If c < 0 then f (z) ∼ |z|−2α−1/{2α�2(α) | c |α}
as z → ∞ and f (z) ∼ |z|−α−1/�(α) as z → −∞. Also f (z) ∼ |z|−α−1e−1/|z|/
{2�(α)} as z → 0.

3.3 Moments

Using formula 8.354(2) in Gradshteyn and Ryzhik (1965), we can express I (z; c)
as

I (z; c) = 1

4�(α)
γ

(
α,

1

z

)
− 1

4�2(α)

∞∑
0

(−1)i

i!(α + i)cα+i
γ

(
2α + i,

1

z

)

for c > 0 and z > 0, where γ (α,u) = ∫ u
0 yα−1e−y dy. Using formulas 3.1513.41

in Oberhettinger (1974) and 8.354(2) in Gradshteyn and Ryzhik (1965), the kth
moment corresponding to (5) can be expressed as

E(Zk; c) = {1 + (−1)k}�(α − k)

2�(α)

+ {1 − (−1)k}cα−k�(2α − k)

2�2(α)(α − k)(1 + c)2α−k 2F1

(
1,2α − k;α − k + 1; c

c + 1

)
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Figure 1 The pdf of the skewed inverse reflected gamma distribution (given by equation (5)) for
c = 0,1,3,5 and α = 1.

for c > 0 and α > k, where 2F1(a, b; c; z) is the Gauss hypergeometric function.
An alternative representation in terms of the gamma functions is

E(Zk; c) = �(α − k)

�(α)
− (1 − (−1)k)

2�2(α)

∞∑
i=0

(−1)i

i!(α + i)cα+i
�(2α + i − k).

For c < 0, the kth moment can be evaluated by the fact that E(Zk; c) =
(−1)kE(Zk;−c). For noninteger x > 0, the formula �(1 − x) = π

�(x) sinπx
can

be used for the evaluation of the kth moment. The first four moments of Z are

E(Z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

α − 1
+ 1

�2(α)

∞∑
i=0

(−1)i

i!(α + i)cα+i
�(2α + i − 1), if c > 0,

− 1

α − 1
− 1

�2(α)

∞∑
i=0

(−1)i

i!(α + i)(−c)α+i
�(2α + i − 1), if c < 0,

E(Z2) = 1

(α − 1)(α − 2)
,
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E(Z3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(α − 1)(α − 2)(α − 3)

+ 1

�2(α)

∞∑
i=0

(−1)i

i!(α + i)cα+i
�(2α + i − 3), if c > 0,

− 1

(α − 1)(α − 2)(α − 3)

− 1

�2(α)

∞∑
i=0

(−1)i

i!(α + i)(−c)α+i
�(2α + i − 3), if c < 0,

and

E(Z4) = 1

(α − 1)(α − 2)(α − 3)(α − 4)
.

The skewness and the kurtosis of Z can be calculated by using the relationships
that

Skewness(Z) = E(Z3) − 3E(Z)E(Z2) + 2E3(Z)

{E(Z2) − E2(Z)}3/2 (6)

and

Kurtosis(Z) = E(Z4) − 4E(Z)E(Z3) + 6E(Z2)E2(Z) − 3E4(Z)

{E(Z2) − E2(Z)}2 . (7)

Figure 2 shows the flexibility of (5) over (3) in terms of skewness and kurtosis.

3.4 Maximum likelihood estimation

Suppose {z1, z2, . . . , zn} is a random sample from (5). Then the maximum likeli-
hood estimators of c and α are the simultaneous solutions of the equations

n∑
i=1

sgn(czi)
�(α) ∂

∂α
�(α,1/|czi |) − �′(α)�(α,1/|czi |)

�(α) + sgn(czi)�(α,1/|czi |)

= �(α)

{
nψ(α) +

n∑
i=1

log |zi |
}

and
n∑

i=1

zi |czi |1−αe−1/|czi |

�(α) + sgn(czi)�(α,1/|czi |) = 0,

where ψ(x) = d log�(x)/dx is the digamma function. The Fisher information
matrix is given by the elements

E

(
−∂2 logL

∂α2

)
= nψ ′(α) − nI1 + nI2,

E

(
−∂2 logL

∂α∂c

)
= nI3 + nI4
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Figure 2 Skewness and kurtosis of the skewed inverse reflected gamma distribution (given by equa-
tion (5)) versus α for c = 0,1,3,5.

and

E

(
−∂2 logL

∂c2

)
= −nI5 + nI6,

where

I1 = E

[
sgn(cZ)

(
∂2

∂α2 �

(
α,

1

|cZ|
)

− �′′(α)�

(
α,

1

|cZ|
)

− �′(α)
∂

∂α
�

(
α,

1

|cZ|
))(

�(α) + sgn(cZ)�

(
α,

1

|cZ|
))−1]

,

I2 = E

[
sgn(cZ)

{
�′(α) + sgn(cZ)

∂

∂α
�

(
α,

1

|cZ|
)}

×
{
�(α)

∂

∂α
�

(
α,

1

|cZ|
)

− �′(α)�

(
α,

1

|cZ|
)}
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×
{
�(α) + sgn(cZ)�

(
α,

1

|cZ|
)}−2]

,

I3 = E

[
Z log |cZ||cZ|1−αe−1/|cZ|

�(α) + sgn(cZ)�(α,1/|cZ|)
]
,

I4 = E

[
Z|cZ|1−αe−1/|cZ|{�′(α) + sgn(cZ) ∂

∂α
�(α,1/|cZ|)}

{�(α) + sgn(cZ)�(α,1/|cZ|)}2

]
,

I5 = E

[
Z2 sgn(cZ)|cZ|−1−αe−1/|cZ|{(1 − α)|cZ| + 1}

�(α) + sgn(cZ)�(α,1/|cZ|)
]

and

I6 = E

[
Z2|cZ|2−2αe−2/|cZ|

{�(α) + sgn(cZ)�(α,1/|cZ|)}2

]
.

The partial derivatives of �(a, z) can be calculated by using the facts

∂�(a, z)

∂a
= �2(a)za

2F2(a, a;a + 1;a + 1;−z) + �(a)ψ(a) − γ (a, z) log z

and

∂2�(a, x)

∂a2 = (logx)2�(a, x) + �(a){ψ2(a) + ψ ′(a) − (log z)2}

− 2xa

a3 {3F3(a, a, a;a + 1, a + 1, a + 1;−x)

− a(log z)2F2(a, a;a + 1, a + 1;−x)},
where 2F2(a, b; c, d; z) and 3F3(a, b, c;d, e, f ; z) denote hypergeometric func-
tions. The method of moments estimators can be obtained as the simultaneous
solutions of E(Z; c) = (1/n)

∑n
i=1 zi and E(Z2; c) = (1/n)

∑n
i=1 z2

i if c > 0 and
those of −E(Z;−c) = (1/n)

∑n
i=1 zi and E(Z2;−c) = (1/n)

∑n
i=1 z2

i if c < 0.

4 Skewed inverse reflected Weibull distribution

From the reflected Weibull density in Johnson, Kotz and Balakrishnan (1994,
1995) and Fact 1(b), the density of the inverse reflected Weibull random variable
can be obtained as

g(y) = α

2

1

|y|α+1 e−1/|y|α (8)

for y ∈ R1 and α > 0, The corresponding CDF is

G(y) = 1

2

[
1 + sgn(y)e−1/|y|α ]
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for y ∈ R1. From formulas 3.381(4) and 8.334(3) in Gradshteyn and Ryzhik
(1965), we can obtain the corresponding kth moment of Y as

E(Y k) = 1 + (−1)k

2
�

(
1 − k

α

)

for α > k. In particular, the variance of Y is

Var(Y ) = �

(
1 − 2

α

)

for α > 2.

4.1 PDF and CDF

By Fact 1(d), we can define the skewed inverse reflected Weibull distribution by
the PDF

f (z; c) = α

2

1

|z|α+1 e−1/|z|α [
1 + sgn(cz)e−1/|cz|α ]

(9)

for z ∈ R1, a > 0 and c ∈ R1. The corresponding CDF can be expressed as

F(z; c) = G(z) − 2I (z; c),
where

I (z; c) = 1

4

cα

1 + cα

[
1 − e−(1+cα)/(cαzα)]

for z > 0 and c > 0.

4.2 Shape

Figure 3 illustrates possible shapes of (9). Note that the shapes are multimodal.
The modes are the solutions of the equation

sgn(cz) log |cz|e−1/|cz|α

1 + sgn(cz)e−1/|cz|α = α + 1

|z| − α

|z|α+1 .

Note that if c > 0 then f (z) ∼ αz−α−1 as z → ∞ and f (z) ∼ α|z|−2α−1/{2 | c |α}
as z → −∞. If c < 0 then f (z) ∼ α|z|−2α−1/{2 | c |α} as z → ∞ and f (z) ∼
α|z|−α−1 as z → −∞. Also f (z) ∼ (α/2)|z|−α−1e−1/|z|α as z → 0.

4.3 Moments

Using formulas 3.381(4) and 8.334(3) in Gradshteyn and Ryzhik (1965), the cor-
responding kth moment of Z can be obtained as

E(Zk; c) = 1

2
�

(
1 − k

α

)[
1 + (−1)k + (1 − (−1)k)

(
cα

1 + cα

)1−k/α]
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Figure 3 The pdf of the skewed inverse reflected Weibull distribution (given by equation (9)) for
c = 0,1,3,5 and α = 2.

for c > 0 and α > k. If c < 0, then we can obtain the kth moment using the fact
E(Zk; c) = (−1)kE(Zk;−c). The first four moments of Z are

E(Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
1 − 1

α

)(
cα

1 + cα

)1−1/α

, if c > 0,

−�

(
1 − 1

α

)(
(−c)α

1 + (−c)α

)1−1/α

, if c < 0,

E(Z2) = �

(
1 − 2

α

)
,

E(Z3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
1 − 3

α

)(
cα

1 + cα

)1−3/α

, if c > 0,

−�

(
1 − 3

α

)(
(−c)α

1 + (−c)α

)1−3/α

, if c < 0,

and

E(Z4) = �

(
1 − 4

α

)
.

The skewness and the kurtosis of Z can be calculated by using (6) and (7), re-
spectively. Figure 4 shows the flexibility of (9) over (8) in terms of skewness and
kurtosis.
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Figure 4 Skewness and kurtosis of the skewed inverse reflected Weibull distribution (given by equa-
tion (9)) versus α for c = 0,1,3,5.

4.4 Maximum likelihood estimation

Suppose {z1, z2, . . . , zn} is a random sample from (9). Then the maximum likeli-
hood estimators of c and α are the simultaneous solutions of the equations

n∑
i=1

sgn(czi) log |czi |e−1/|czi |α

|czi |α[1 + sgn(czi)e−1/|czi |α ] =
n∑

i=1

log |zi |(1 − |zi |−α) − n

α

and
n∑

i=1

zi |czi |−α−1e−1/|czi |α

[1 + sgn(czi)e−1/|czi |α ] = 0.

The Fisher information matrix is given by the elements

E

(
−∂2 logL

∂α2

)
= nα−2 + nE[|Z|−α(log |Z|)2] − nI1 + nI2,

E

(
−∂2 logL

∂α ∂c

)
= −nI3 + nI4
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and

E

(
−∂2 logL

∂c2

)
= −nI5 + nI6,

where

I1 = E

[
sgn(cZ)

(log |cZ|)2|cZ|−2αe−1/|cZ|α {1 − |cZ|α}
1 + sgn(cZ)e−1/|cZ|α

]
,

I2 = E

[
(log |cZ|)2|cZ|−2αe−2/|cZ|α

{1 + sgn(cZ)e−1/|cZ|α }2

]
,

I3 = E

[
Z|cZ|−α−1e−1/|cZ|α {1 − α + α|cZ|−α log |cZ|}

1 + sgn(cZ)e−1/|cZ|α
]
,

I4 = αE

[
sgn(cZ)

Z log |cZ||cZ|−2α−1e−2/|cZ|α

{1 + sgn(cZ)e−1/|cZ|α }2

]
,

I5 = αE

[
sgn

Z2(cZ)|cZ|−α−2e−1/|cZ|α {−1 − α + α|cZ|−α}
1 + sgn(cZ)e−1/|cZ|α

]

and

I6 = α2E

[
Z2|cZ|−2α−2e−2/|cZ|α

{1 + sgn(cZ)e−1/|cZ|α }2

]
.

The method of moments estimators can be obtained as the simultaneous solutions
of E(Z; c) = (1/n)

∑n
i=1 zi and E(Z2; c) = (1/n)

∑n
i=1 z2

i if c > 0 and those of
−E(Z;−c) = (1/n)

∑n
i=1 zi and E(Z2;−c) = (1/n)

∑n
i=1 z2

i if c < 0.

5 Skewed inverse reflected Pareto distribution

If a random variable X follows a beta distribution with parameter (α,α) then Y =
(1−X)/X follows the inverse reflected Pareto distribution. The PDF of an inverse
reflected Pareto random variable is

g(y) = 1

2B(α,α)
|y|α−1(1 + |y|)−2α (10)

for y ∈ R1 and α > 0. Using formulas 8.391 and 8.392 in Gradshteyn and Ryzhik
(1965), the corresponding CDF can be obtained as

G(y) = 1

2
+ 1

2
sgn(y)

[
1 − I1/(1+|y|)(α,α)

]
,

where Ix(a, b) = Bx(a,b)
B(a,b)

and Bx(a, b) is an incomplete beta function. Using
formula 2.19 in Oberhettinger (1974), the corresponding kth moment of Y
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is

E(Y k) = 1 + (−1)k

2

�(α + k)�(α − k)

�2(α)

for α > k.

5.1 PDF and CDF

By Fact 1(d), we can define the skewed inverse reflected Pareto distribution by the
PDF

f (z; c) = 1

2B(α,α)
|z|α−1(1 + |z|)−2α[

1 + sgn(cz)
(
1 − I1/(1+|cz|)(α,α)

)]
(11)

for z ∈ R1 and c ∈ R1. The corresponding CDF can be expressed as

F(z; c) = G(z) − 2I (z; c), (12)

where

I (z; c) = 1

4αB(α,α)

zα

(1 + z)2α 2F1

(
1,2α;α + 1; z

1 + z

)

− 1

4αB2(α,α)

∞∑
i=0

(α)i(1 − α)i

i!(α + 1)i
Ji(z;a, c)

for z > 0 and c > 0, where (a)i ≡ a(a + 1)(a + 2) · · · (a + i − 1), (a)0 ≡ 1 and

Ji(z;a, c) =
∫ ∞
z

tα−1

(1 + t)2α(1 + ct)α+i
dt.

From formula 2.29 in Oberhettinger (1974), since sum of the powers in denomi-
nator is greater than that in the numerator, the integral Ji(z;a, c) converges.

5.2 Shape

Figure 5 illustrates possible shapes of (11). Note that the shapes are multimodal.
The modes are the solutions of the equation

|c| sgn(cz)|cz|α−1

1 + sgn(cz)I|cz|/(1+|cz|)(α,α)
= B(α,α)(1 + |cz|)2α

(
2α

1 + |z| − α − 1

|z|
)
.

Note that if c > 0 then f (z) ∼ |z|−α−1/B(α,α) as z → ∞ and f (z) ∼ |z|−2α−1/

{2αB2(α,α)|c|α} as z → −∞. If c < 0 then f (z) ∼ |z|−2α−1/{2αB2(α,α)|c|α} as
z → ∞ and f (z) ∼ |z|−α−1/B(α,α) as z → −∞. Also f (z) ∼ |z|α−1/{2B(α,α)}
as z → 0.
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Figure 5 The pdf of the skewed inverse reflected Pareto distribution (given by equation (11)) for
c = 0,1,3,5 and α = 1.

5.3 Moments

Using formulas 2.19 and 2.29 in Oberhettinger (1974), formula 8.391 in Grad-
shteyn and Ryzhik (1965) and the representation

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k! ,

the kth moment of Z corresponding to (11) can be obtained as

E(Zk; c) = 3 − (−1)k

2

�(α + k)�(α − k)

�2(α)
+ (−1)k − 1

αB2(α,α)
I

for α > k and c > 0, where I is given by

I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
i=0

(α)i(1 − α)i

i!(α + 1)i
B(k + α,2α + i − k)

× 2F1(−α − i, α + k;3α + i;1 − c), if 0 < c < 1,
∞∑
i=0

(α)i(1 − α)i

i!(α + 1)i
c−k−1B(α + k,2α + i − k)

× 2F1

(
−2α, k + α;3α + i;1 − 1

c

)
, if c > 1.
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If c is negative, then the kth moment can be evaluated using the fact E(Zk; c) =
(−1)kE(Zk;−c). The first four moments of Z are

E(Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2α

α − 1
− 2

αB2(α,α)
I (c), if c > 0,

− 2α

α − 1
+ 2

αB2(α,α)
I (−c), if c < 0,

E(Z2) = α(α + 1)

(α − 1)(α − 2)
,

E(Z3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2α(α + 1)(α + 2)

(α − 1)(α − 2)(α − 3)
− 2

αB2(α,α)
I (c), if c > 0,

− 2α(α + 1)(α + 2)

(α − 1)(α − 2)(α − 3)
+ 2

αB2(α,α)
I (−c), if c < 0,

and

E(Z4) = α(α + 1)(α + 2)(α + 3)

(α − 1)(α − 2)(α − 3)(α − 4)
.

The skewness and the kurtosis of Z can be calculated by using (6) and (7), respec-
tively. Figure 6 shows the flexibility of (11) over (10) in terms of skewness and
kurtosis.

5.4 Maximum likelihood estimation

Suppose {z1, z2, . . . , zn} is a random sample from (11). Then the maximum likeli-
hood estimators of c and α are the simultaneous solutions of the equations

n∑
i=1

sgn(czi)
∂
∂α

I|czi |/(1+|czi |)(α,α)

1 + sgn(czi)I|czi |/(1+|czi |)(α,α)

= 2nψ(α) − 2nψ(2α) −
n∑

i=1

log |zi | + 2
n∑

i=1

log(1 + |zi |)

and
n∑

i=1

zi |czi |α−1

B(α,α)(1 + |czi |)2α[1 + sgn(czi)I|czi |/(1+|czi |)(α,α)] = 0.

The Fisher information matrix is given by the elements

E

(
−∂2 logL

∂α2

)
= 2nψ ′(α) − 4nψ ′(2α) − nI1 + nI2,

E

(
−∂2 logL

∂α ∂c

)
= −nI3 + nI4
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Figure 6 Skewness and kurtosis of the skewed inverse reflected Pareto distribution (given by equa-
tion (11)) versus α for c = 0,1,3,5.

and

E

(
−∂2 logL

∂c2

)
= −nI5 + nI6,

where

I1 = E

[
sgn(cZ)

∂2

∂α2 I|cZ|/(1+|cZ|)(α,α)

1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)

]
,

I2 = E

[ { ∂
∂α

I|cZ|/(1+|cZ|)(α,α)}2

{1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)}2

]
,

I3 = E

[
sgn(cZ)

(∂/∂α){B−1(α,α)Z|cZ|α−1(1 + |cZ|)−2α}
1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)

]
,

I4 = E

[
sgn(cZ)

Z|cZ|α−1(1 + |cZ|)−2α ∂
∂α

I|cZ|/(1+|cZ|)(α,α)

B(α,α){1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)}2

]
,
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I5 = E

[
sgn(cZ)

Z2|cZ|α−2(1 + |cZ|)−2α−1{(α − 1)(1 + |cZ|) − 2α|cZ|}
B(α,α){1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)}

]

and

I6 = E

[
Z2|cZ|2α−2(1 + |cZ|)−4α

B2(α,α){1 + sgn(cZ)I|cZ|/(1+|cZ|)(α,α)}2

]
.

The partial derivatives of Iz(a, b) can be calculated by using the facts

∂Iz(a, b)

∂a
= {log z − ψ(a) + ψ(a + b)}Iz(a, b)

− �(a)�(a + b)

�(b)
za

3F2(a, a,1 − b;a + 1;a + 1; z),
∂Iz(a, b)

∂b
= �(b)�(a + b)

�(a)
(1 − z)b3F2(b, b,1 − a;b + 1;b + 1;1 − z)

+ {ψ(b) − ψ(a + b) − log(1 − z)}I1−z(b, a),

∂2Iz(a, b)

∂a2 = 2�(a)�(a + b)

�(b)

× za[�(a)4F3(a, a, a,1 − b;a + 1, a + 1, a + 1; z)
− {log z − ψ(a) + ψ(a + b)}

× 3F2(a, a,1 − b;a + 1, a + 1; z)]
+ Iz(a, b)[log2 z + 2ψ(a + b) log z + ψ2(a) + ψ2(a + b)

− 2ψ(a){log z + ψ(a + b)} − ψ ′(a) + ψ ′(a + b)]
and

∂2Iz(a, b)

∂b2 = 2�(b)�(a + b)

�(a)(1 − z)−b

× [{log(1 − z) − ψ(b) + ψ(a + b)}
× 3F2(b, b,1 − a;b + 1, b + 1;1 − z)

− �(b)4F3(b, b, b,1 − a;b + 1, b + 1, b + 1;1 − z)]
− I1−z(b, a)[log2(1 − z) + 2ψ(a + b) log(1 − z)

+ ψ2(b) + ψ2(a + b)

− 2ψ(b){log(1 − z) + ψ(a + b)}
− ψ ′(b) + ψ ′(a + b)],

where 3F2(a, b, c;d, e; z) and 4F3(a, b, c, d; e, f, g; z) denote hypergeometric
functions. The method of moments estimators can be obtained as the simultaneous
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solutions of E(Z; c) = (1/n)
∑n

i=1 zi and E(Z2; c) = (1/n)
∑n

i=1 z2
i if c > 0 and

those of −E(Z;−c) = (1/n)
∑n

i=1 zi and E(Z2;−c) = (1/n)
∑n

i=1 z2
i if c < 0.

6 Application

As mentioned in Section 1, the most well known of the skewed symmetric distri-
butions is the skewed normal distribution in (2) due to Azzalini (1985). The aim
here is to illustrate the usefulness of the skewed symmetric distributions proposed
in Sections 3 to 5 over the skewed normal distribution. We use the following real
data: the eruption times in minutes for the Old Faithful Geyser in Yellowstone
National Park, Wyoming, USA. This data has been studied by many authors; see
Azzalini and Bowman (1990), for instance. It is known to be bimodal.

The skewed symmetric distributions in this paper are defined over the entire real
line. So, to have them as possible models for the data, we define the standardized
eruption time = (eruption time − m)/s, where m and s are the observed mean and
standard deviation, respectively.

We fitted scale variations of (2), (5), (9) and (11) to the standardized erup-
tion time data. The maximum likelihood procedures described in Sections 3.4,
4.4 and 5.4 were used. The results were that each of (5), (9) and (11) provided a
significantly better fit than (2). We give some details comparing (2) with (11).

Our first comparison is based on the negative log likelihoods for (2) and (11):
408.8 and 385.5, respectively. These two models, with the former having one less
parameter, are not nested. However, the log likelihood values can be compared by
using Akaike’s information criteria. Since the difference, 2 × (408.8 − 385.5), is
so large it follows that (11) provides a significantly better fit.

Our second comparison is based on probability plots. A probability plot con-
sists of plots of the observed probabilities against the probabilities predicted
by the fitted model. In case of the skewed inverse reflected Pareto distribu-
tion, for example, this amounts to plotting F(x(i)) computed using (12) versus
(i − 0.375)/(n + 0.25), i = 1,2, . . . , n [as recommended by Blom (1958) and
Chambers et al. (1983)], where x(i) are the sorted values of the standardized erup-
tion times in the ascending order and n is the number of observations. The prob-
ability plot comparing (2) with (11) is shown in Figure 7. The closeness of the
plotted points to the 45 degree line is a measure of the goodness of fit of the model.
A numerical measure of closeness is the sum of the absolute differences between
the observed and expected probabilities. The values of this numerical measure for
(2) and (11) are 24.5 and 18.7, respectively. This supports the conclusions of our
first method, that is, the skewed inverse reflected Pareto distribution gives a better
fit than the skewed normal distribution.

Our third and final method for comparison is based on density plots. A density
plot simply compares the fitted estimates of (2) and (11) with the histogram of the
standardized eruption time data; see Figure 8. The closeness of the fitted densities
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Figure 7 Probability plots of the skewed normal distribution (
) and the skewed inverse reflected
Pareto distribution (+) for the Old Faithful geyser data.

to the histogram is a measure of the goodness of fit of the model. A visual inspec-
tion of the closeness suggests that the conclusions from our first two methods are
supported.

7 Conclusions

We have introduced three skew symmetric distributions, referred to as the the
skewed reflected gamma distribution, skewed reflected Weibull distribution and
the skewed reflected Pareto distribution. We have derived their mathematical prop-
erties (PDF, CDF, moments and shape), provided estimation procedures along with
the Fisher information matrices, shown evidence of their flexibility and provided
an illustration using real data. Some of the attractive properties are the multimodal-
ity and polynomials tails (lower and upper). None of the existing skew symmetric
distributions have both multimodality and polynomials tails.
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Figure 8 Fitted densities of the skewed normal distribution (solid curve) and the skewed inverse
reflected Pareto distribution (broken curve) for the Old Faithful geyser data.
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