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GOODNESS-OF-FIT TESTS FOR HIGH-DIMENSIONAL
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Let (Y, (X;)1<i<p) be areal zero mean Gaussian vector and V be a sub-
setof {1, ..., p}. Suppose we are given n i.i.d. replications of this vector. We
propose a new test for testing that Y is independent of (X;)je(1,..., pj\v con-
ditionally to (X;);cy against the general alternative that it is not. This proce-
dure does not depend on any prior information on the covariance of X or the
variance of Y and applies in a high-dimensional setting. It straightforwardly
extends to test the neighborhood of a Gaussian graphical model. The pro-
cedure is based on a model of Gaussian regression with random Gaussian
covariates. We give nonasymptotic properties of the test and we prove that it
is rate optimal [up to a possible log(n) factor] over various classes of alter-
natives under some additional assumptions. Moreover, it allows us to derive
nonasymptotic minimax rates of testing in this random design setting. Finally,
we carry out a simulation study in order to evaluate the performance of our
procedure.

1. Introduction. We consider the following regression model:

)4
(1.1) Y=Y 6X;+e,

i=1
where 6 is an unknown vector of R”. In the sequel, we note Z := {1, ..., p}.
The vector X := (X;)1<i<p follows a real zero mean Gaussian distribution with
nonsingular covariance matrix X, and € is a real zero mean Gaussian random vari-
able independent of X. Straightforwardly, the variance of € corresponds to the
conditional variance of Y given X, var(Y|X).

The variable selection problem for this model in a high-dimensional setting
has recently attracted a lot of attention. A large number of papers are now de-
voted to the design of new algorithms and estimators which are computationally
feasible and are proven to converge (see, for instance, the works of Meinshausen
and Biihlmann [19], Candés and Tao [5], Zhao and Yu [29], Zou and Hastie [30],
Biihlmann and Kalisch [4] or Zhao and Huang [28]). A common drawback of the
previously mentioned estimation procedures is that they require restrictive condi-
tions on the covariance matrix ¥ in order to behave well. Our issue is the nat-
ural testing counterpart of this variable selection problem; we aim at defining a
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computationally feasible testing procedure that achieves an optimal rate for any
covariance matrix X.

1.1. Presentation of the main results. We are given n i.i.d. replications of the
vector (Y, X). Let us respectively note Y and X;. The vectors of the n observa-
tions of Y and X;, for any i € Z. Let V be a subset of Z, then Xy refers to the
set {X;,i € V} and Oy stands for the sequence (6;);cy. We first propose a collec-
tion of testing procedures T, of the null hypothesis “67\y = 0” against the general
alternative “67\y # 0.” These procedures are based on the ideas of Baraud et al.
[3] in a random design. Their definitions are very flexible as they require no prior
knowledge of the covariance of X, the variance of € nor the variance of Y. Note
that the property “67\y = 07 is equivalent to “Y is independent of X7y con-
ditionally to Xy.” Hence, it also permits to test conditional independences and
applies for testing the graph of Gaussian graphical model (see below). Contrary
to most approaches in this setting (e.g., Drton and Pearlman [8]), we are able to
consider the difficult case of tests in a high-dimensional setting: the number of co-
variates p is possibly much larger than the number of observations n. Such situa-
tions arise in many statistical applications like in genomics or biomedical imaging.
To our knowledge, the only testing procedures (e.g., [21]) that could handle high-
dimensional alternatives lack theoretical justifications. In this paper, we exhibit
some tests Ty that are both computationally amenable and optimal in the minimax
sense.

From a theoretical perspective, we are able to control the Family Wise Error
Rate (FWER) of our testing procedures 7,,. Moreover, we derive a general nonas-
ymptotic upper bound for their power. Contrary to the various rates of convergence
obtained in the estimation setting (e.g., [S] or [19]), our upper bound holds for any
covariance matrix X. Then we derive from it nonasymptotic minimax rates of test-
ing in the Gaussian random design framework. If the minimax rates are known for
a long time in the fixed design Gaussian regression framework (e.g., [2]), they were
unknown in our setting. For instance, if at most k components of ¢ are nonzero and
if k is much smaller than p, we prove that the minimax rates of testing is of order
% when the covariates X; are independent. If the covariates are dependent, we
derive faster minimax rates. To our knowledge, these are the first results for testing
or estimation issues that illustrate minimax rates for dependent covariates. After-
ward, we show analogous results when k is large or when the vector 6 belongs
to some ellipsoid or some collection of ellipsoids. For any of these alternatives,
we exhibit some procedure 7;, that achieves the optimal rate [at a possible log(n)
factor]. Finally, we illustrate the performance of the procedure on simulated exam-
ples.

1.2. Application to Gaussian Graphical Models (GGM). Our work was origi-
nally motivated by the following question: let (Z;) jc 7 be a random vector which



706 N. VERZELEN AND F. VILLERS

follows a zero mean Gaussian distribution whose covariance matrix ¥’ is non-
singular. We observe 7 i.i.d. replications of this vector Z and we are given a graph
G={,E)whereI'={1,...,|J]|} and E is a set of edges in [ x I". How can we
test that Z is an undirected Gaussian graphical model (GGM) with respect to the
graph G?

The random vector Z is a GGM with respect to the graph G = (", E) if for any
couple (i, j) which is not contained in the edge set E, Z; and Z; are independent,
given the remaining variables. See Lauritzen [17] for definitions and main prop-
erties of GGM. Interest in these models has grown as they allow the description
of dependence structure in high-dimensional data. As such, they are widely used
in spatial statistics [7, 20] or probabilistic expert systems [6]. More recently, they
have been applied to the analysis of microarray data. The challenge is to infer the
network regulating the expression of the genes using only a small sample of data
(see, for instance, Schifer and Strimmer [21], Kishino and Waddell [15] or Wille
et al. [26]). This issue has motivated the research for new estimation procedures to
handle GGM in a high-dimensional setting.

It is beyond the scope of this paper to give an exhaustive review of these. Many
of these graph estimation methods are based on multiple testing procedures (see,
for instance, Schifer and Strimmer [21] or Wille and Biihlmann [25]). Other meth-
ods are based on variable selection for high-dimensional data we previously men-
tioned. For instance, Meinshausen and Biihlmann [19] proposed a computationally
feasible model selection algorithm using Lasso penalization. Huang et al. [11] and
Yuan and Lin [27] extend this method to infer directly the inverse covariance ma-
trix '~ by minimizing the log-likelihood penalized by the /! norm.

While the issue of graph and covariance estimation is extensively studied, few
theoretical results are proved for the problem of hypothesis testing of GGM in a
high-dimensional setting. We believe that this issue is significant for two reasons:
first, when considering a gene regulation network, the biologists often have a previ-
ous knowledge of the graph and may want to test if the microarray data match with
their model. Second, when applying an estimation method in a high-dimensional
setting, it could be useful to test the estimated graph as some of these methods are
too conservative.

Admittedly, some of the previously mentioned estimation methods are based on
multiple testing. However, as they are constructed for an estimation purpose, most
of them do not take into account some previous knowledge about the graph. This is,
for instance, the case for the approaches of Drton and Perlman [8] and Schéfer and
Strimmer [21]. Some of the other existing procedures cannot be applied in a high-
dimensional setting (|.7| > n). Finally, most of them lack theoretical justification
in a nonasymptotic way.

In a subsequent paper [23] we define a test of graph based on the present work.
It benefits the ability of handling high-dimensional GGM and has minimax prop-
erties. Moreover, we show numerical evidence of its efficiency (see [23] for more
details). In this article, we shall only present the idea underlying our approach.
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For any j € J, we note N(j) the set of neighbors of j in the graph G. Testing
that Z is a GGM with respect to G is equivalent to testing that the random vari-
able Z; conditionally to (Z;);en(j) is independent of (Z;);e 7\ (v (j)uy;)) for any
J € J. As Z follows a Gaussian distribution, the distribution of Z; conditionally
to the other variables decomposes as follows:

Zj= Z OcZi + €,
keT\{j}

where €; is normal and independent of (Z;)re7\(j}- Then, the statement of condi-
tional independency is equivalent to 67\ (jjun(;j) = 0. This approach based on con-
ditional regression is also used for estimation by Meinshausen and Biithlmann [19].

1.3. Organization of the paper. In Section 2, we present the approach of our
procedure and connect it with the fixed design framework. Moreover, we define
the notion of minimax rates of testing in this setting and gather the main notation.
We define the testing procedures 7;, in Section 3, and we nonasymptotically char-
acterise the set of vectors 6 over which the test 7y, is powerful. In Sections 4 and 5,
we apply our procedure to define tests and study their optimality for two different
classes of alternatives. More precisely, in Section 4 we test 6 = 0 against the class
of 6 whose components equal 0, except at most k of them (k is supposed small).
We define a test which under mild conditions achieves the minimax rate of test-
ing. When the covariates are independent, it is interesting to note that the minimax
rates exhibit the same ranges in our statistical model (1.1) and in our fixed design
regression model (2.1). In Section 5, we define two procedures that achieve the si-
multaneous minimax rates of testing over large classes of ellipsoids [to sometimes
the price of a log(p) factor]. Moreover, we show that the problem of adaptation
over classes of ellipsoids is impossible without a loss in efficiency. This was pre-
viously pointed out in [22] in fixed design regression framework. The simulation
studies are presented in Section 6. Finally, Sections 7, 8 and the Appendix contain
the proofs.

2. Description of the approach.

2.1. Connection with tests in fixed design regression. Our work is directly in-
spired by the testing procedure of Baraud et al. [3] in fixed design regression frame-
work. Contrary to model (1.1), the problem of hypothesis testing in fixed design
regression has been extensively studied. This is why we will use the results in this
framework as a benchmark for the theoretical bounds in our model (1.1). Let us
define this second regression model:

@2.1) Yi=fi+oe, iefl,...,N},

where f is an unknown vector of RY, o some unknown positive number and the
€;’s a sequence of i.i.d. standard Gaussian random variables. The problem at hand
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is testing that f belongs to a linear subspace of RY against the alternative that it
does not. We refer to [3] for a short review of nonparametric tests in this frame-
work. Moreover, we are interested in the performance of the procedures from a
minimax perspective. To our knowledge, there have been no results in model (1.1).
However, there are numerous papers on this issue in the fixed design regression
model. First, we refer to the seminal work of Ingster [12-14] who gives asymp-
totic minimax rates over nonparametric alternatives. Our work is closely related
to the results of Baraud [2] where he gives nonasymptotic minimax rates of test-
ing over ellipsoids or sparse signals. Throughout the paper, we highlight the link
between the minimax rates in fixed and in random design.

2.2. Principle of our testing procedure. Let us briefly describe the idea under-
lying our testing procedure. A formal definition will follow in Section 3.1. Let m
be a subset of 7 \ V. We respectively define Sy and Sy, as the linear subspaces
of R? such that 67,y = 0, respectively 67\ (vum) = 0. We note d and D,, for the
cardinalities of V and m, and N,,, refersto N,, =n—d — D,,. If N,;, > 0, we define
the Fisher statistic ¢, by

N [Ty Y — Ty Y||2
Dm ||Y - HVUmY”%

where I1y refers to the orthogonal projection onto the space generated by the
vectors (X;);cy and || - ||, is the canonical norm in R". We define the test statistic
bm,a (Y, X) as

(23) (Y. X) = (Y. X) — Fpp! (@),

where Fp, , (4) denotes the probability for a Fisher variable with D and N de-
grees of freedom to be larger than u. Let us consider a finite collection M of
nonempty subsets of Z \ V such that for each m € M, N, > 0. Our testing pro-
cedure consists of doing a Fisher test for each m € M. We define {«;,, m € M} a
suitable collection of numbers in ]0, 1[ (which possibly depends on X). For each
m € M, we do the Fisher test ¢, of level «,,, of

(2.2) o (Y, X) :=

k]

Hp: 6 € Sy against the alternative  Hj 0 0 € Syum \ Sv,

and we decide to reject the null hypothesis if one of those Fisher tests does.

The main advantage of our procedure is that it is very flexible in the choices
of the model m € M and in the choices of the weights {w,,}. Consequently, if we
choose a suitable collection M, the test is powerful over a large class of alterna-
tives as shown in Sections 3.3, 4 and 5.

Finally, let us mention that our procedure easily extends to the case where the
expectation of the random vector (¥, X) is unknown. Let X and Y denote the pro-
jections of X and Y onto the unit vector 1. Then one only has to apply the proce-
dure to (Y — Y, X — X) and to replace d by d + 1. The properties of the test remain
unchanged and one can adapt all the proofs to the price of more technicalities.
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2.3. Minimax rates of testing. In order to examine the quality of our tests, we
will compare their performance with the minimax rates of testing. That is why we
now define precisely what we mean by the (o, §)-minimax rate of testing over a
set ®. We endow R” with the Euclidean norm,

P
(2.4 16)%:= 0t29=var<20iX,->.

i=l

As € and X are independent, we derive from the definition of || - ||? that var(Y) =
60112+ var(Y | X). Let us remark that var(Y|X) does not depend on X. If ||@|| varies,
either the quantity var(Y) or var(Y|X) has to vary. In the sequel, we suppose that
var(Y) is fixed. We briefly justify this choice in Section 4.2. Consequently, if |02
is increasing, then var(Y|X) has to decrease so that the sum remains constant.
Let o be a number in ]0; 1] and let 6 be a number in ]0; 1 — «[ (typically small).
For a given vector 8, matrix X and var(Y), we denote by Py the joint distribution
of (Y, X). For the sake of simplicity, we do not emphasize the dependence of Py
on var(Y) or . Let v, be a test of level o of the hypothesis “0 = 0 against the
hypothesis “6 € ® \ 0.” In our framework, it is natural to measure the performance
of ¥ using the quantity p (¢, ®, 8, var(Y), ) defined by

p(Vy, ®,8,var(Y), X) := inf{p >0, inf{Pg(wa =1),0 € ® and

I )
— > =16,
var(Y) — (62

where the quantity

16]%

2.5) rn®) = Y 191

appears naturally as it corresponds to the ratio 0|2/ var(Y|X) which is the quan-
tity of information brought by X (i.e., the signal) over the conditional variance
of Y (i.e., the noise). We aim at describing the quantity

(2.6) iz/lflfp(wa’ ®,8,var(Y), X) := p(0O,a, §, var(Y), X),

where the infimum is taken over all the level-« tests 1,. We call this quantity the
(at, 6)-minimax rate of testing over ®.

A dual notion of this p function is the function By. For any ® C R? and
a €]0, 1[, we denote by Bx (®) the quantity

Bx (®) :=inf sup Py, = 0],
Vo 0c®

where the infimum is taken over all level-« tests v, and where we recall that X
refers to the covariance matrix of X.
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2.4. Notation. We recall the main notation that we shall use throughout the
paper. In the sequel, n stands for the number of independent observations, and p is
the number of covariates. Moreover, Xy stands for the collection (X;);cy of the
covariates that correspond to the null hypothesis, and d is the cardinality of the
set V. The models m are subsets of Z C V, and we note D,,, their cardinality.
T, stands for our testing procedure of level «. The statistics ¢, and the test ¢y,
are respectively defined in (2.2) and (2.3). Finally, the norm | - || is introduced
in (2.4).

For x, y e R, we set

x Ay :=inf{x, y}, x Vy:=sup{x, y}.

Forany u € R, F p, N (1) denotes the probability for a Fisher variable with D and N
degrees of freedom to be larger than «. In the sequel, L, L, Lj, ... denote con-
stants that may vary from line to line. The notation L(-) specifies the dependency
on some quantities. For the sake of simplicity, we only give the orders of magni-
tude in the results and we refer to the proofs for explicit constants.

3. The testing procedure.

3.1. Description of the procedure. Let us first fix some level o €]0, I[.
Throughout this paper, we suppose that n > d 4 2. Let us consider a finite collec-
tion M of nonempty subsets of Z\ V such thatforallm e M,1 < D,, <n—d—1.
We introduce the following test of level «. We reject Hy: “6 € Sy when the sta-
tistic
3.1) Ty := sup {pw (Y. X) — Fp! \ (am(X)))

meM

is positive where the collection of weights {«,, (X), m € M} is chosen according
to one of the two following procedures:

P1: The oy, s do not depend on X and satisfy the equality
3.2) Z oy = 0.
meM

P>: For all m € M, a,,(X) = gx.«, the a-quantile of the distribution of the
random variable

I TTyum (€) — nv<e)||£/Dm)

(3.3) inf Fp, . Nm(
eM lle _HVUm(f)”%/Nm

m
conditionally to X.

Note that it is easy to compute the quantity gx . Let Z be a standard Gaussian
random vector of size n independent of X. As € is independent of X, the distribu-
tion of (3.3) conditionally to X is the same as the distribution of

- <||HVUm(Z) — HV(Z>||2/Dm)
inf FDm,Nm )
meM 1Z — Ty um(Z2)[12/ N
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conditionally to X. Hence, we can easily work out its quantile using Monte Carlo
method.

Clearly, the computational complexity of the procedure is linear with respect
to the size of the collection of models M even when using procedure P,. Conse-
quently, when we apply our procedure to high-dimensional data as in Section 6 or
in [23], we favor collections M whose size is linear with respect to the number of
covariates p.

3.2. Comparison of procedures Py and P,. 'We respectively refer to Tal and Ta2
for the tests (3.1) associated with procedure Py and P». First, we are able to control
the behavior of the test under the null hypothesis.

PROPOSITION 3.1. The test TO[1 corresponds to a Bonferroni procedure and
therefore satisfies

Po(Tu>0)< Y om<a,
meM

whereas the test Ta2 has the property to be exactly of the size o
P@(Ta > 0) =J.

The proof is given in the Appendix. Moreover, the test Tat2 is more powerful than
the corresponding test Toel defined with weights o, = /| M|.

PROPOSITION 3.2. For any parameter 0 that does not belong to Sy, the pro-
cedure TOl1 with weights o, = o /| M| and the procedure TOl2 satisfy

(3.4) P (T2(X,Y) > 0)X) > Po(T,) (X, Y) > 0|X) Xas.

Again, the proof is given in the Appendix. On the one hand, the choice of proce-
dure P; allows one to avoid the computation of the quantile gx o, and possibly per-
mits one to give a Bayesian flavor to the choice of the weights. On the other hand,
procedure P is more powerful than the corresponding test with procedure P;. We
will illustrate these considerations in Section 6. In Sections 3.3, 4 and 5 we study
the power and rates of testing of 7, with procedure P;.

3.3. Power of the test. We aim at describing a set of vectors 6 in R” over
which the test defined in Section 3 with procedure P; is powerful. Since procedure
P, is more powerful than procedure P; with o, = a/| M|, the test with procedure
P, will also be powerful on this set of 6.

Let « and § be two numbers in 0, 1[, and let {o;,, m € M} be weights such that
> mem %m < o. We define hypothesis (Hq) as follows:

(Hpq) forallm e M, oy > exp(—Ny,/10) and & >exp2(—N,/21).

For typical choices of the collections M and {«,,, m € M}, these conditions are
fulfilled as discussed in Sections 4 and 5. Let us now turn to the main result.



712 N. VERZELEN AND F. VILLERS

THEOREM 3.3. Let Ty be the test procedure defined by (3.1). We assume that
n > d + 2 and that assumption (Hay) holds. Then, Po(T, > 0) > 1 — § for all 6
belonging to the set

Fa(8) := {9 e R”.3Im e M: Var(y'f;)(a;avrf)y;xw’”) > A(m)},
where
A(m):= (L. /D,1 2 1 Din
(3.5)

+ L2<1 + 22—:) 10g<a—ia)>/(n —d).

This result is similar to Theorem 1 in [3] in fixed design regression framework
and the same comment also holds; the test T, under procedure P; has a power
comparable to the best of the tests among the family {¢,, o, m € M}. Indeed, let us
assume, for instance, that V = {0} and that the «,,, are chosen to be equal to «/| M .
The test T, defined by (3.1) is equivalent to doing several tests of 6§ = 0 against
6 € Sy, at level o, for m € M and it rejects the null hypothesis if one of those
tests does. From Theorem 3.3, we know that under hypothesis (H ) this test has a
power greater than 1 — § over the set of vectors 6 belonging to (U,,c g Fr, (8, &m)
where F,, (8, a;,) is the set of vectors & € R” such that

3.6) var(Y) — var(Y | X,,) >L(Dm,Nm)( Dmlog<i>+1og(i>>.
o8 o8

var(Y | X,,) - n

The quantity, L(D,,, N,;) behaves like a constant if the ratio D,,/N,, is bounded.
Let us compare this result with the set of 6 over which the Fisher test ¢, o at
level o has a power greater than 1 — §. Applying Theorem 3.3, we know that it
contains F,, (8, a). Moreover, the following proposition shows that it is not much
larger than F,, (8, o):

PROPOSITION 3.4. Let§€]0,1 —af. If

var(Y) — var(Y | X,;,) <L) ~ D
var(Y|X,,) - ’ n

then Py (¢m.o >0) <1 — 6.

The proof is postponed to Section 8 and is based on a lower bound of the mini-
max rate of testing.

F,, (8, a) and F,, (8, o) defined in (3.6) differ from the fact that log(1/c) is re-
placed by log(1 /). For the main applications that we will study in Sections 4-6,
the ratio log(1/a;,)/log(1/@) is of order log(n), loglogn, or klog(ep/k) where
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k is a “small” integer. Thus, for each § €]0, 1 — «[, the test based on 7, has a
power greater than 1 — § over a class of vectors which is close to |,,,c pq F7, (8, ).
It follows that for each 6 # 0 the power of this test under [Py is comparable to the
best of the tests among the family {¢,, o, m € M}.

In the next two sections, we use this theorem to establish rates of testing against
different types of alternatives. First, we give an upper bound for the rate of testing
6 = 0 against a class of 6 for which a lot of components are equal to 0. In Section 5,
we study the rates of testing and simultaneous rates of testing & = 0 against classes
of ellipsoids. For the sake of simplicity, we will only consider the case V = {0}.
Nevertheless, the procedure 7, defined in (3.1) applies in the same way when one
considers a more complex null hypothesis and the rates of testing are unchanged
except that we have to replace n by n — d and var(Y) by var(Y|Xy).

4. Detecting nonzero coordinates. Let us fix an integer k between 1 and p.
In this section, we are interested in testing 6 = (O against the class of 6 with a most
k nonzero components. This typically corresponds to the situation encountered
when considering tests of neighborhoods for large sparse graphs. As the graph is
assumed to be sparse, only a small number of neighbors are missing under the
alternative hypothesis.

For each pair of integers (k, p) with k < p, let M(k, p) be the class of all
subsets of Z = {1, ..., p} of cardinality k. The set ®[k, p] stands for the subset of
vectors 6 € R”, such that at most k coordinates of 6 are nonzero.

First, we define a test T, of the form (3.1) with procedure P;, and we derive an
upper bound for the rate of testing of 7, against the alternative 6 € ®[k, p]. Then
we show that this procedure is rate optimal when all the covariates are independent.
Finally, we study the optimality of the test when k = 1 for some examples of
covariance matrix X.

4.1. Rate of testing of T.

PROPOSITION 4.1. We consider the set of models M = M(k, p). We use the
test Ty under procedure Py, and we take the weights «,, all equal to a/|M|. Let
us suppose that n satisfies

2 ep
4.1) n zL[log(—) +klog(—>]
ad k
Let us set the quantity

klog(ep/ k)
4.2) o pn = La, S)f'

. 2
For any 0 in O[k, p], such that ﬁ > p,’(z’p’n, Po(T, >0)>1—386.
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We recall that the norm || - || is defined in (2.4) and equals var(Y) — var(Y|X).
This proposition easily follows from Theorem 3.3 and its proof is given in Sec-
tion 7. Note that the upper bound does not directly depend on the covariance
matrix of the vector X. Moreover, hypothesis (4.1) corresponds to the minimal
assumption needed for consistency and type-oracle inequalities in the estimation
setting as pointed out by Wainwright ([24], Theorem 2) and Giraud ([10], Sec-
tion 3.1). Hence, we conjecture that hypothesis (4.1) is minimal so that Proposi-
tion 4.1 holds. We will further discuss the bound (4.2) after deriving lower bounds
for the minimax rate of testing.

4.2. Minimax lower bounds for independent covariates. In the statistical
framework considered here, the problem of giving minimax rates of testing un-
der no prior knowledge of the covariance of X and of var(Y) is open. This is why
we shall only derive lower bounds when var(Y) and the covariance matrix of X
are known. In this section, we give nonasymptotic lower bounds for the («, §)-
minimax rate of testing over the set ®[k, p] when the covariance matrix of X is
the identity matrix (except Proposition 4.2). As these bounds coincide with the
upper bound obtained in Section 4.1, this will show that our test 7y, is rate optimal.

We first give a lower bound for the (¢, §)-minimax rate of detection of all p
nonzero coordinates for any covariance matrix X.

: 2
. PROPOSITION 4.2. Let us suppose that var(Y) is known. Let us set Pp.n such
that

(4.3) prn =L, 5)?.

Then for all p < pp n,

ﬂz({ee@)[p pl ¢=p2}>>8
Ph @) - 1o1P =9

where we recall that X is the covariance matrix of X.

If n > (1 4 y)p for some y > 0, Theorem 3.3 shows that the test ¢, defined
in (2.3) has power greater than § over the vectors 6 that satisfy

2
L > L()/, o, 8)@
var(Y) — (|61 n

Hence, ,/p/n is the minimax rate of testing ®[p, p] at least when the number
of observations is larger than the number of covariates. This is coherent with the
minimax rate obtained in the fixed design framework (e.g., [2]). When p becomes
larger we do not think that the lower bound given in Proposition 4.2 is still sharp.
Note that this minimax rate of testing holds for any covariance matrix X contrary
to Theorem 4.3.

We now turn to the lower bound for the (¢, §)-minimax rate of testing against
0 € Ok, p].
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THEOREM 4.3. Let us set pl%,p,n such that

k P P
2 —
(4.4) P pn = L(a, 8);10g<1 +at 2k )

We suppose that the covariance of X is the identity matrix I. Then, for all
P < Pk,p,n>

A
! " var(Y) — (0] ’

where the quantity var(Y) is known.
If ¢ 4+ 6 < 53%, then one has

k p
pkpn—2 lOg 1+k2 k2 .
This result implies the following lower bound for the minimax rate of testing:

p(OLk, pl.a, 8, var(Y), I) > o , -

The proof is given in Section 8. To the price of more technicalities, it is possible
to prove that the lower bound still holds if the variables (X;) are independent with
known variances possibly different. Theorem 4.3 recovers approximately the lower
bounds for the minimax rates of testing in signal detection framework obtained by
Baraud [2]. The main difference lies in the fact that we suppose var(Y) known
which in the signal detection framework translates in the fact that we would know
the quantity || f]|> + 2.

We are now in position to compare the results of Proposition 4.1 and Theo-
rem 4.3. We distinguish between the values of k:

e When k < pY for some y < 1/2, if n is large enough to satisfy the assumption
of Proposition 4.1, the quantities pk . and 2, , are both of the order Klog(p)
times a constant (which depends on y, o andp 8). This shows that the lower
bound given in Theorem 4.3 is sharp. Additionally, in this case, the procedure T
defined in Proposition 4.1 follows approximately the minimax rate of testing.
We recall that our procedure 7, does not depend on the knowledge of var(Y) and
corr(X). In applications, a small k typically corresponds to testing a Gaussian
graphical model with respect to a graph G when the number of nodes is large
and the graph is supposed to be sparse. When n does not satisfy the assumption
of Proposition 4.1, we believe that our lower bound is not sharp anymore.

e When ,/p <k < p, the lower bound and the upper bound do not coincide any-
more. Nevertheless, if n > (1 + y)p for some y > 0, Theorem 3.3 shows that
the test ¢7 o defined in (2.3) has power greater than § over the vectors 6 that
satisfy

1012 f
- var(r) — e =
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This upper bound and the lower bound do not depend on k. Here again, the lower
bound obtained in Theorem 4.3 is sharp and the test ¢z, defined previously is
rate optimal. The fact that the rate of testing stabilizes around ,/p/n fork > ./p
also appears in signal detection and there is a discussion of this phenomenon
in [2].

e Whenk < ./p and k is close to ,/p, the lower bound and the upper bound given
by Proposition 4.1 differ from at most a log(p) factor. For instance, if k is of or-
der ,/p/log p, the lower bound in Theorem 4.3 is of order ,/ploglog p/log p,
and the upper bound is of order ,/p. We do not know if any of this bound is
sharp or if the minimax rates of testing coincide when var(Y') is fixed and when
it is not fixed.

All in all, the minimax rates of testing exhibit the same range of rates in our
framework as in signal detection [2] when the covariates are independent. More-
over, this implies that the minimax rate of testing is slower when the (X;);c7 are
independent than for any other form of dependence. Indeed, the upper bounds ob-
tained in Proposition 4.1 and in (4.5) do not depend on the covariance of X. Then
a natural question arises: is the test statistic 7, rate optimal for other correlation
of X? We will partially answer this question when testing against the alternative
0 € O[1, pl.

4.3. Minimax rates for dependent covariates. In this section, we look for the
minimax rate of testing & = 0 against 6 € O[1, p] when the covariates X; are no
longer independent. We know that this rate is between the orders % which is the

minimax rate of testing when we know which coordinate is nonzero and log% , the
minimax rate of testing for independent covariates.

PROPOSITION 4.4. Let us suppose that there exists a positive number ¢ such
that for any i # j,

|corr(X;, X )| < ¢

and that o + 8 < 53%. We define ,olz’p’n’c as

L 1
(4.6) pf’pﬁ,c = ;(log(p) A ;)

Then for any p < p1,p.n,c»

ﬂzG96®Up]——J@i——=pﬂ)>a
Ph ) = 1612 =0

where X refers to the covariance matrix of X.
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REMARK. If the correlation between the covariates is smaller than 1/log(p),
then the minimax rate of testing is of the same order as in the independent case. If
the correlation between the covariates is larger, we show in the following proposi-
tion that under some additional assumption, the rate is faster.

PROPOSITION 4.5.  Let us suppose that the correlation between X; and X ;
is exactly ¢ > 0 for any i # j. Moreover, we assume that n satisfies the following
condition:

@.7) n> L[l + 1og<£>].
ad
. . 1y Xi
Let introduce the random variable X, = ? 2i=l oy If « < 60% and

8 < 60% the test Ty defined by

Ty = [ sup ¢>{i},a/<2p>] V Oip+iyar

I<i<p
satisfies
Po(Ty>0)<a and Po(Ty,>0)>1-34
for any 6 in O[1, p] such that

1611% L(a,5)< 1)
= logp A —).
var(Y) — |02 c

Consequently, when the correlation between X; and X ; is a positive constant c,

the minimax rate of testing is of order log(WAU/S) When the correlation coeffi-
cient ¢ is small, the minimax rate of testing coincides with the independent case
and when c is larger those rates differ. Therefore, the test T, defined in Proposi-
tion 4.1 is not rate optimal when the correlation is known and is large. Indeed, when
the correlation between the covariates is large, the test statistics ¢} «,, defining T,
are highly correlated. The choice of the weights «,, in procedure P; corresponds
to a Bonferroni procedure which is precisely known to behave badly when the tests
are positively correlated.

This example illustrates the limits of procedure P;. However, it is not very real-
istic to suppose that the covariates have a constant correlation, for instance, when
one considers a GGM. Indeed, we expect that the correlation between two covari-
ates is large if they are neighbors in the graph and smaller if they are far (w.r.t. the
graph distance). This is why we derive lower bounds of the rate of testing for other
kinds of correlation matrices often used to model stationary processes.

PROPOSITION 4.6. Let Xy,..., X, form a stationary process on the one-
dimensional torus. More precisely, the correlation between X; and X ; is a function
of li — jlp where | - |, refers to the toroidal distance defined by

i —=Jjlp:=Ui =jD AP =1i = jD.
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Y1 (w) and X5 (t), respectively, refer to the correlation matrix of X such that
corr(X;, X ;) =exp(—wli — jlp) where w > 0,

corr(X;, Xj) = (1+1i — jlp)~" where t > 0.

Let us set plz,p,n,El (w) and ,012’1,7’”722 (t) such that

) __11 { 5 1—e™V

pl,p,n,El(w)~—; Og +L(a7 )p1+€7w )
1 p—1) .
-1 14+ L(x,6)——— t>1
Llog(14+ L@ =), =1,

ot s () = l1og(1+L(oz,5) P ) ift=1,

P2 n 1+ 2log(p—1)

1
—log(1+ L(a, 8)p'27"(1 — 1)), ifo<t<l1.
n

Then for any p* < lolz,p,n,E] (w),

o] z}>
6e® la YN o2 = 8’
:821(10)<{ L1, p] var(Y) — ||9||2 P
and for any p* < Iolz,p,n,Ez @,
2 var(Y) — ||0]|? B

If the range w is larger than 1/p? or if the range ¢ is larger than y for some
y < 1, these lower bounds are of order 10%. As a consequence, for any of these
correlation models the minimax rate of testing is of the same order as the minimax
rate of testing for independent covariates. This means that our test 7, defined in
Proposition 4.1 is rate-optimal for these correlations matrices. However, if o is
smaller than 1/p or if ¢ is smaller than 1/log(p), we recover the parametric rates
1/n which is achieved by the test ¢(,41),o. This comes from the fact that the
correlation corr(X1, X;) does not converge to zero for such choices of w or 7. We
omit the details since the arguments are similar for the proof of Proposition 4.5.

To conclude, when k < p¥ (for y < 1/2), the test T, defined in Proposition 4.1
is approximately (o, §)-minimax against the alternative 6 € ®[k, p] when neither
var(Y) nor the covariance matrix of X is fixed. Indeed, the rate of testing of 7,
coincides (up to a constant) with the supremum of the minimax rates of testing on
O[k, p] over all possible covariance matrices X:

p(Olk, pl,a, ) := sup  p(O[k, pl,a,é,var(Y), X),
var(Y)>0,X>0
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where the supremum is taken over all positive var(Y) and every positive definite
matrix X. When k > ,/p and when n > (1 + y)p (for y > 0), the test defined
in (4.5) has the same behavior.

However, our procedure does not adapt to X; for some correlation matrices (as
shown, for instance, in Proposition 4.5), T, with procedure P; is not rate optimal.
Nevertheless, we believe and will illustrate in Section 6 that procedure P, slightly
improves the power of the test when the covariates are correlated.

5. Rates of testing on “ellipsoids” and adaptation. In this section, we define
tests Ty, of the form (3.1) in order to test simultaneously 6 = 0 against 6 belonging
to some classes of ellipsoids. We will study their rates and show that they are
optimal at sometimes the price of a log p factor.

For any nonincreasing sequence (a;)1<i<p+1 suchthata; = 1 and ap4 =0 and
any R > 0, we define the ellipsoid &, (R) by

p
G E(R)m {9 R Y var(Y | Xom,_) : var(Y | X ;) R var(YlX)},

i=1 a;

where m; refers to the set {1,...,i} and moy = &.

Let us explain why we call this set an ellipsoid. Assume for instance that the
(X;) are independent identically distributed with variance one. In this case, the
difference var(Y|X,,, ;) — var(Y|X,,;) equals 6; |2, and the definition of &,(R)
translates in

p
E.R) = [9 eR” >
i=1

16>
2
1

< R2var(Y|X)}.
a:

The main difference between this definition and the classical definition of an el-
lipsoid in the fixed design regression framework (as, for instance, in [2]) is the
presence of the term var(Y|X). We added this quantity in order to be able to
derive lower bounds of the minimax rate. If the X; are not i.i.d. with unit vari-
ance, it is always possible to create a sequence X; of i.i.d. standard Gaussian
variables by orthogonalizing the X; using the Gram—Schmidt process. If we call
0’ the vector in R? such that X0 = X'6’, it is straightforward to show that
var(Y| X, ) — var(Y|X,,,) = |9i/|2. We can then express &,(R) using the coor-
dinates of 0" as previously;

14 |0/|2

E(R) = {9 eRP,Y - <R? var(YlX)}.

i=1 Y
The main advantage of Definition 5.1 is that it does not directly depend on the
covariance of X. In the sequel we also consider the special case of ellipsoids with
polynomial decay,

p _
52)  E(R)= {9 eR",Y Vm(y'f"ﬁs'Vllr(;rl;()mm") < Rz},

i=1
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where s > 0 and R > 0. First, we define two test procedures of the form (3.1)
and evaluate their power respectively on the ellipsoids £,(R) and on the ellip-
soids £/(R). Then we give some lower bounds for the (e, §)-simultaneous min-
imax rates of testing. Extensions to more general [, balls with 0 < p < 2 are
possible to the price of more technicalities by adapting the results of Section 4
in Baraud [2].

These alternatives correspond to the situation where we are given an order of
relevance on the covariates that are not in the null hypothesis. This order could
either be provided by a previous knowledge of the model or by a model selection
algorithm such as LARS (least angle regression) introduced by Efron et al. [9]. We
apply this last method to build a collection of models for our testing procedure (3.1)
in [23].

5.1. Simultaneous rates of testing of Ty over classes of ellipsoids. First, we
define a procedure of the form (3.1) in order to test if & = 0 against 6 belongs to
any of the ellipsoids &, (R). For any x > 0, [x] denotes the integer part of x.

We choose the class of models M and the weights «, as follows:

e If n < 2p, we take the set M to be Ulgkg[n/z] my, and all the weights «,, are
equal to /| M.

e If n >2p, we take the set M to be J;<x<), mk. am, equals /2 and for any k
between 1 and p — 1, and «,,, is chosen to be o/ (2(p — 1)).

As previously, we bound the power of the tests 7, from a nonasymptotic point

of view.

PROPOSITION 5.1. Let us assume that

(5.3) nzL[l+log<$>].

For any ellipsoid £,(R), the test T, defined by (3.1) with procedure Py and with
the class of models given just above satisfies

Po(Ty <0) > 1 —a,
and Pg(Ty, > 0) > 1 —6 forall 6 € E,(R) such that

1612 . [2 5 fi}
5.4 — > L(a, 81 f 2 R Y
(54) vary) — oy = F@ Ologn il @i RO+
ifn<2p,or
1612 ” . s Ji] ﬁ}
5.5 —— > L(a,8)1|1 f R — )| A=
O Sawy o = He? oep, ol (e k2 + 0 )] A

ifn>2p.
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All in all, for large values of n, the rate of testing is of order sup; ;- p[aisz A

7”1(:5(”)]. We show in the next subsection that the minimax rate of testing for an

ellipsoid is of order
sup [aisz A ﬁ}
l<i<p n

Moreover, we prove in Proposition 5.6 that a loss in 4/loglog p is unavoidable if
one considers the simultaneous minimax rates of testing over a family of nested
ellipsoids. Nevertheless, we do not know if the term 4/log(p) is optimal for testing
simultaneously against all the ellipsoids &, (R) for all sequences (a;) and all R > 0.
When 7 is smaller than 2 p, we obtain comparable results except that we are unable
to consider alternatives in large dimensions in the infimum (5.5).

We now turn to define a procedure of the form (3.1) in order to test simultane-
ously that & = 0 against 6 belongs to any of the £;(R). For this, we introduce the
following collection of models M and weights o, :

e If n < 2p, we take the set M to be | Jmy; where k belongs to {2/, j > 0} N
{1,...,[n/2]}, and all the weights «,, are chosen to be o/| M].

e If n > 2p, we take the set M to be | Jmy where k belongs to ({2j,j >0} N
{1,.... pH U{p}, am, equals /2 and for any k in the model between 1 and
p — 1, ay,, is chosen to be o/ (2(| M| — 1)).

PROPOSITION 5.2. Let us assume that

(5.6) n> L[l + log<$)}

and that R* > \/Toglogn/n. For any s > 0, the test procedure T, defined by (3.1)
with procedure Py and with a class of models given just above satisfies

Po(Ty > 0) > 1 —a,
and Po(Ty > 0) > 1 — 8 for any 6 € E,(R) such that

161> L 5)[ Rz/<1+4s)(Jloglogn)‘”/“*“”

- 7 >
var(Y) — ||6]|2 — n
5.7) X)) —1é] -
F R (n)2)”% 4 208N Og”}
n
ifn<2por
1612
var(Y) — |92
5.8) x) — 1ol s
S A
> L. 5)<[R2/(1+4s)<\/10g10gp> 4 loglogp] o @)
n n n
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Again, we retrieve similar results to those of Corollary 2 in [3] in the fixed
design regression framework. For s > 1/4 and n < 2p, the rate of testing is of order
(7”()5;,110“)43 /(+45) 'We show in the next subsection that the logarithmic factor is
due to the adaptive property of the test. If s < 1/4, the rate is of order n 2. When
n > 2p, the rate is of order (—Vlognlogp)““/(H‘”) A (4), and we mention at the end
of the next subsection that it is optimal.

Here again, it is possible to define these tests with procedure P in order to
improve the power of the test (see Section 6 for numerical results).

5.2. Minimax lower bounds. We first establish the (o, §)-minimax rate of test-
ing over an ellipsoid when the variance of Y and the covariance matrix of X are
known.

PROPOSITION 5.3.  Let us set the sequence (a;)<i<p+1 and the positive num-
ber R. We introduce

(5.9 pgvn(R) ‘= sup [pzn /\aisz],

l<i<p

where pi%n is defined by (4.3); then for any nonsingular covariance matrix % we
have

& - pz (R)}) =8
var(Y) — |6 — " -

where the quantity var(Y) is fixed. If « + 6 < 47%, then

ﬂz({e € Eu(R).

i
,ogn(R) > sup [£ /\aiZRZ]
’ l<i<spl 7

This lower bound is once more analogous to the one in the fixed design regres-
sion framework. Contrary to the lower bounds obtained in the previous section,
it does not depend on the covariance of the covariates. We now look for an upper
bound of the minimax rate of testing over a given ellipsoid. First, we need to define
the quantity D* as

i
D* ::inf{l <i<pa’R*< i}
n
with the convention that inf & = p.

PROPOSITION 5.4. Let us assume that n > Llog[1 + log(ﬁ)]. IfR2 > % and
D* < n/2; the test ¢y . o defined by (2.3) satisfies

PO[¢1nD*,a =1]<a and P9[¢mD*,a =0]<$
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forall 0 € £,(R) such that

0| j
LZ > L(at,8) sup |:£ /\aizR:|.
var(Y) — [|9]| 1<ispL 1

If n > 2D, the rates of testing on an ellipsoid are analogous to the rates on an
ellipsoid in fixed design regression framework (see, for instance, [2]). If D* is large
and n is small, the bounds in Propositions 5.3 and 5.4 do not coincide. In this case,
we do not know if this comes from the fact that the test in Proposition 5.4 does
not depend on the knowledge of var(Y) or if one of the bounds in Propositions 5.3
and 5.4 is not sharp.

We are now interested in computing lower bounds for rates of testing simulta-
neously over a family of ellipsoids in order to compare them with rates obtained
in Section 5.1. First, we need a lower bound for the minimax simultaneous rate of
testing over nested linear spaces. We recall that forany D € {1, ..., p}, Sy, stands
for the linear spaces of vectors 6 such that only their D first coordinates are possi-
bly nonzero.

PROPOSITION 5.5. For D > 2, let us set

JVloglog(D + 1)~/D
- .

(5.10) P = L(ct, )
Then the following lower bound holds:
I1611% 2
(U foesen =l )
e var(Y) — 0]
if for all D between 1 and p,rp < pp p.

Using this proposition, it is possible to get a lower bound for the simultaneous
rate of testing over a family of nested ellipsoids.

PROPOSITION 5.6.  We fix a sequence (a;)1<i<p+1. For each R > 0, let us set

(5.11) Parn= sup [pp, A (R*ap)l,
1<D=<p

where pp., is given by (5.10). Then, for any non-singular covariance matrix X of
the vector X,

1> »
,BE(U {9 € &a(R), m = Pa,R,n}> > 4.

R>0
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This proposition shows that the problem of adaptation is impossible in this set-
ting: it is impossible to define a test which is simultaneously minimax over a class
of nested ellipsoids (for R > 0). This is also the case in fixed design as proved by
[22] for the case of Besov bodies. The loss of a term of the order +/loglog p/n is
unavoidable.

As a special case of Proposition 5.6, it is possible to compute a lower bound for
the simultaneous minimax rate over £, (R) where R describes the positive num-
bers. After some calculation, we find a lower bound of order

(«/loglogp)‘”/(l”s) N /ploglog p

n n

This shows that the power of the test 7, obtained in (5.8) for n > 2p is optimal
when R? > \/Toglogn/n. However, when n < 2p and s < 1/4, we do not know if
the rate n~2* is optimal or not.

To conclude, when n > 2p the test T, defined in Proposition 5.2 achieves the
simultaneous minimax rate over the classes of ellipsoids £;(R). On the other hand,
the test 7, defined in Proposition 5.1 is not rate optimal simultaneously over all
the ellipsoids £, (R) and suffers a loss of a 4/log p factor even when n > 2p.

6. Simulations studies. The purpose of this simulation study is threefold.
First, we illustrate the theoretical results established in previous sections. Second,
we show that our procedure is easy to implement for different choices of collec-
tions M and is computationally feasible even when p is large. Our third purpose
is to compare the efficiency of procedures P; and P,. Indeed, for a given col-
lection M, we know from Section 3.2 that the test (3.1) based on procedure P is
more powerful than the corresponding test based on P;. However, the computation
of the quantity gx  is possibly time consuming and we therefore want to know if
the benefit in power is worth the computational burden.

To our knowledge, when the number of covariates p is larger than the number
of observations n there is no test with which we can compare our procedure.

6.1. Simulation experiments. We consider the regression model (1.1) with
Z={1,..., p} and test the null hypothesis “6 = 0 which is equivalent to “Y
is independent of X at level @ = 5%. Let (X;)1<i<p be a collection of p
Gaussian variables with unit variance. The random variable is defined as fol-
lows: Y = le:] 0; X; + € where ¢ is a zero mean Gaussian variable with variance
1 — 162 independent of X.

We consider two simulation experiments described below:

1. First simulation experiment: The correlation between X; and X ; is a constant ¢
for any i # j. Moreover, in this experiment the parameter 6 is chosen such
that only one of its components is possibly nonzero. This corresponds to the
situation considered in Section 4. First, the number of covariates p is fixed
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equal to 30, and the number of observations # is taken equal to 10 and 15. We
choose for c three different values 0, 0.1 and 0.8, allowing thus the comparison
of the procedures for independent, weakly and highly correlated covariates. We
estimate the size of the test by taking #; = 0 and the power by taking for 8 the
values 0.8 and 0.9. Theses choices of 6 lead to a small and a large signal/noise
ratio ryy defined in (2.5) and equal in this experiment to 912 /(1 — 012). Second,
we examine the behavior of the tests when p increases and when the covariates
are highly correlated: p equals 100 and 500, n equals 10 and 15, 6; is set to 0
and 0.8, and c is chosen to be 0.8.

2. Second simulation experiment: The covariates (X;)i<;<, are independent.
The number of covariates p equals 500 and the number of observations n equals
50 and 100. We set for any i € {1, ..., p}, 8; = Ri~*. We estimate the size of
the test by taking R = 0 and the power by taking for (R, s) the value (0.2, 0.5)
which corresponds to a slow decrease of the (6;)1<;<). It was pointed out in
the beginning of Section 5 that |6; |2 equals var(Y'|X,,;, ;) — var(Y|X,,,). Thus
|6;|* represents the benefit in term of conditional variance brought by the vari-
able X;.

We use our testing procedure defined in (3.1) with different collections M and
different choices for the weights {a,,, m € M}.

The collections M: we define three classes. Let us set J, , = p A [%] where [x]
denotes the integer part of x, and let us define

M= i}, 1<i < p},

M= {mp={1,2,... kL ke {2/, j=0)N{1, ..., Ju ).

We evaluate the performance of our testing procedure with M = M! in the first
simulation experiment and M = M? and M? in the second simulation experi-
ment. The cardinality of these three collections is smaller than p, and the compu-
tational complexity of the testing procedures is at most linear in p.

The collections {o,, m € M}: We consider procedures P; and P, defined in
Section 3. When we are using the procedure Pp, the «,,s equal «/| M| where
|M] denotes the cardinality of the collection M. The quantity gx , that occurs
in the procedure P, is computed by simulation. We use 1000 simulations for the
estimation of gx 4. In the sequel we note T P;» the test (3.1), with collection M’
and procedure P;.

In the first experiment, when p is large, we also consider two other tests:

1. The first test is ¢(1),o (2.3) of the hypothesis 6; = 0 against the alternative
61 # 0. This test corresponds to the single test when we know which coordinate
is nonzero.
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2. The second test is ¢(p41),¢ Where X1 := % Zf’zl X;. Adapting the proof of
Proposition 4.5, we know that this test is approximately minimax on ®O[1, p] if
the correlation between the covariates is constant and large.

Contrary to our procedures, these two tests are based on the knowledge of var(X)
(and eventually ). We only use them as a benchmark to evaluate the performance
of our procedure. We aim at showing that our test with procedure P; is as powerful
as ¢(p+1),« and is close to the test ¢(1},q.

We estimate the size and the power of the testing procedures with 1000 simula-
tions. For each simulation, we simulate the gaussian vector (X1, ..., X,) and then
simulate the variable Y as described in the two simulation experiments.

6.2. Results of the simulation. The results of the first simulation experiment
for ¢ = 0 are given in Table 1. As expected, the power of the tests increases with
the number of observations n and with the signal/noise ratio rgy. If the signal/noise
ratio is large enough, we obtain powerful tests even if the number of covariates p
is larger than the number of observations.

In Table 2 we present results of the first simulation experiment for 6; = 0.8
when c varies.

Let us first compare the results for independent, weakly and highly correlated
covariates when using procedure P;. The size and the power of the test for weakly
correlated covariates are similar to the size and the power obtained in the inde-
pendent case. Hence, we recover the remark following Proposition 4.4: when the
correlation coefficient between the covariates is small, the minimax rate is of the
same order as in the independent case. The test for highly correlated covariates is
more powerful than the test for independent covariates, recovering thus the remark

TABLE 1
First simulation study, independent case: p =30, ¢ =0.
Percentages of rejection and value of the signal/noise ratio res,

n Taq,p, Taqrp,

Null hypothesis is true, 6 =0

10 0.043 0.045

15 0.044 0.049
Null hypothesis is false, 61 = 0.8, rg, = 1.78

10 0.48 0.48

15 0.81 0.81
Null hypothesis is false, ) = 0.9, ry, =4.26

10 0.86 0.86

15 0.99 0.99
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TABLE 2
First simulation study, independent and dependent case: p =30, c=0,0.1,0.8.
Frequencies of rejection

c=0 c=0.1 c=0.8

n Taq1, p, Taq1, p, Taq1,p, Taqr, p, Trq p, Thq, p,

Null hypothesis is true, 8; =0

10 0.043 0.045 0.042 0.04 0.018 0.045

15 0.044 0.049 0.058 0.06 0.019 0.052
Null hypothesis is false, 81 = 0.8

10 0.48 0.48 0.49 0.49 0.64 0.77

15 0.81 0.81 0.81 0.82 0.89 0.94

following Theorem 4.3: the worst case from a minimax rate perspective is the case
where the covariates are independent. Let us now compare procedures P; and P.
In the case of independent or weakly correlated covariates, they give similar re-
sults. For highly correlated covariates, the power of 7)1 p, is much larger than
the one of Ty g1 p,.

In Table 3 we present results of the multiple testing procedures and of the two
tests, ¢(1},¢ and ¢(,41),4, when ¢ = 0.8 and the number of covariates p is large.
For p =500 and n = 15, one test takes less than one second with procedure P; and
less than 30 s with procedure P,. As expected, procedure P; is too conservative
when p increases. For p = 100, the power of the test based on procedure Pj is
smaller than the power of the test ¢(,11},¢. and this difference increases when
p is larger. The test based on procedure P, is as powerful as ¢(,41),«, and its
power is close to the one of ¢y . We recall that this last test is based on the
knowledge of the nonzero component of 6 contrary to ours. Moreover, the test
®(p+1),« Was shown in Proposition 4.5 to be optimal for this particular correlation

TABLE 3
First simulation study, dependent case: ¢ = 0.8. Frequencies of rejection

p=100 p =500

n Tapp Tarp, e Pp+te Tatp, Taatp, Se  Op+i)e

Null hypothesis is true, 8; =0
10 0.01 0.056 0.051 0.045 0.009 0.044 0.040 0.040
15 0.016 0.053 0.047 0.053 0.011 0.040 0.042 0.034
Null hypothesis is false, 6] = 0.8

10 0.60 0.77 0.91 0.79 0.52 0.76 0.91 0.77
15 0.85 0.92 0.99 0.92 0.77 0.94 0.99 0.94
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TABLE 4
Second simulation study. Frequencies of rejection

n Thrqz p, Thrqz, p, Thrqs p, Trq3,p,

Null hypothesis is true, R =0

50 0.013 0.052 0.036 0.059
100 0.009 0.059 0.042 0.059
Null hypothesis is false, R =0.2,5 = 0.5
50 0.17 0.33 0.31 0.38
100 0.42 0.66 0.62 0.69

setting. Hence, procedure P, seems to achieve the optimal rate in this situation.
Thus, we advise to use in practice procedure P, if the number of covariates p is
large because procedure P; becomes too conservative, especially if the covariates
are correlated.

The results of the second simulation experiment are given in Table 4. As ex-
pected, procedure P» improves the power of the test and the test 73 p, has the

greatest power. In this setting, one should prefer the collection M3 to M?2. This
was previously pointed out in Section 5 from a theoretical point of view. Although
T3 p, 1s conservative, it is a good compromise for practical issues: it is very easy
and fast to implement, and its performances are good.

7. Proofs of Theorem 3.3, Propositions 4.1, 4.5, 5.1, 5.2 and 5.4.

PROOF OF THEOREM 3.3. In a nutshell, we shall prove that conditionally to
the design X the distribution of the test 7y is the same as the test introduced by
Baraud et al. [3]. Hence, we may apply their non asymptotic upper bound for the
power.

Distribution of ¢,,(Y, X). First, we derive the distribution of the test statistic
¢m (Y, X) under Py. The distribution of Y conditionally to the set of variables
(Xvyum) 1s of the form

(7.1) Y= > 6/9"X;+e"",
ieVUm

where the vector #YY" is constant and €¢"Y" is a zero mean Gaussian variable

independent of Xy, whose variance is var(Y|Xyu,). As a consequence, ||Y —
HVUmYH% is exactly ||H(VUm)leVU’"||ﬁ where Iy ,,)1 denotes the orthogonal
projection along the space generated by (X;)icvum-

Using the same decomposition of Y one simplifies the numerator of ¢,, (Y, X):
2
IMyun Y — Ty Y7 =

’
n

Z inum (Xl — HVXi) + HvLm(vum)fvum
ieVUm
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where ITy.iqyy,) 1s the orthogonal projection onto the intersection between
the space generated by (X;);evum and the orthogonal of the space generated

by Xi)iev-
For any i € m, let us consider the conditional distribution of X; with respect
to Xy,

V.i 1%
(7.2) X,:Zej Xi+e,
jev
where 6" are constants and eiv 18 a zero-mean normal Gaussian random variable

whose variance is var(X;|Xy) and which is independent of Xy . This enables us to
express

X; —yX; =Myiqyume;  foralliem.
Therefore, we decompose ¢, (Y, X) in
N Ty Lyyim Cien 6"l + €M7

(713 om(Y.X)=
" Dy Iy € 1

Let us define the random variable Z ,511 ) and Z,(n2 ) where Z ,511 ) refers to the numerator
of (7.3) divided by N,, and Z,S% ) to the denominator divided by D,,. We now prove

that Z,S} ) and Z,(n2 ) are independent.
The variables (6}/) jem are o (Xyuy, )-measurable as linear combinations of ele-

ments in Xy, Moreover, €Y follows a zero mean normal distribution with co-
variance matrix var(Y|Xvyum) I, and is independent of Xy;;,. As a consequence,

conditionally to Xy, Z,(n1 ) and Z,(n2 ) are independent by Cochran’s theorem as
they correspond to projections onto two sets orthogonal from each other.

As e}/ is a linear combination of the columns of Xy, Z,S} ) follows a non-
central X2 distribution conditionally to Xy y,:
|4V V2
12 em 0 " yumnvLe€; Iy D )
var(Y | Xvum) )

|49 V2
“ Zjemej mn(vum)mvlej Hn
var(Y [ Xvum)

(ZD Xy um) ~ Var(Y|XVUm)X2<

We denote by a,% Xyum) =
ter.

Power of T, conditionally to Xyyy,,. Conditionally to Xy, our test statistic
¢m (Y, X) is the same as that proposed by Baraud et al. [3] with n — d data and
ol = var(Y|Xvyum). Arguing as in their proof of Theorem 1, there exists some
quantity A,,(8) such that the procedure accepts the hypothesis with probability

not larger than §/2 if a,zn Xyvum) > A (8):

Ap(8) == 2.5\/H‘K7,%(U)\/Dm log(a4—8> (1 " ‘/%>

2Dy,

Um m

this noncentrality parame-

(7.4)
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where Uy, :=log(1/ay,), U :=10g(2/$), ks, :=2exp(4U,, / Ny,) and

| u u
K =142 | — 42k, —.
m () + N, + 2km N,
Consequently, we have

(7.5) P (Ty < O1Xyum)Haz Xyum) = Ap(8)} < 8/2.

Let us derive the distribution of the noncentral parameter a,, (Xyun, ). First, we

simplify the projection term as e}/ is a linear combination of elements of Xy yy,:

14 14 v 1%
l_I(VUm)ﬂViej = l_[VUmfj - HVGJ- = HVLGJ- .

Let us define x2 as

Vum _V
’ var(je, 07 ""€;)

" var(Y|Xvum)

K

As the variable ), 0}“’"6}/ is independent of Xy, and as almost surely the
dimension of the vector space generated by Xy is d, we get

1Y jem 6] " Ty L€} |17
var(Y | Xvum)
Hence, applying for instance Lemma 1 in [16], we get

2
[ B8V iy o] < o2

m

~ K,i)(z(l’l —d).

Let us gather (7.5) with this last bound. If

A (8)

2 / —
70 R N Ty )

then it holds that
Po(Ty < 0)
<Po(Ta <0, a5, Xyum) > Au(®)) + Polay, Xyum) < Ap(8)]
<Eg{Pol[Te <0, ap, Xyum) > A (8)Xyum])

2

m
<34.

Computation of K,%l. Let us now compute the quantity K,% in order to simplify
condition (7.6). Let us first express var(Y|Xy) in terms of var(Y | X,,uv) using the
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decomposition (7.1) of Y.

var(Y|Xy) = Var( > 0/X+ eVU’”|Xv)
jeVUm

(1.7) zvar( > ej.VUMXj|XV>+var(eVUm|XV)
jeVUm

:var( > ijuij|XV)+Var(Y|XVUm)
jeVUm
aséVUm

is independent of Xy y,,. Now using the definition of e]‘./ in (7.2), it turns
out that

Var( > H}/U’"XJ-|XV):var<ze}/uij|Xv>

jeVUm jem

(7.8) =Var<Z GJVU’"EJV|XV>

jem
Vum _V
= V&lr(Z 0; mej )

jem
as the (e}/).,-em are independent of Xy . Gathering formulae (7.7) and (7.8), we get
G2 var(Y|Xy) — var(Y[Xyum)

" var(Y | X vum)

Under assumption (Hg), Uy, < Np, /10 forallm € M and U < N, /21. Hence,

the terms U/N,,, Uy /Ny, kyy and K, (U) behave like constants and it follows
from (7.6) that A’(m) < A(m) which completes the proof. [J

(7.9)

PROOF OF PROPOSITION 4.1.  We first recall the classical upper bound for the
binomial coefficient (see, for instance, (2.9) in [18]),

log |[M(k, p)| =log (f;) < klog(%),

As a consequence, log(1/ay,) < log(l/a) + k log(%). Assumption (4.1) with
L =21 therefore implies hypothesis (H ). Hence, we are in position to apply the
second result of Theorem 3.3. Moreover, the assumption on n implies that n > 21k
and Dy, / Ny, is thus smaller than 1/20 for any model m in M(k, p). Formula (3.5)
in Theorem 3.3 then translates into

Am) < ((1 ++/0.05)L, <\/k2 log(%> +\/klog<%>)
+ 1.1L2<klog(%) +log<%>))/n,
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and it follows that Proposition 4.1 holds. [

PROOF OF PROPOSITION 4.5. We fix the constant L in hypothesis (4.7) to
be 21log(4e) Vv C,log(4) where the universal constant C, is defined later in the
proof. This choice of constants allows the procedure [sup; ;- » it/ 2p)] to sat-
isfy hypothesis (Hx). An argument similar to the proof of Proposition 4.1 allows
to show easily that there exists a universal constant C such that if we set

.10 2 Cllox(p) +log4/(@) _ € 10g<4_p>,
n n od

2
then % > piz implies that Py (7T, > 0) > 1 — §. Here, the factor 4 in the

logarithm comes from the fact that some weights «;, equal «/(2p).

Let p? and A2 be two positive numbers such that 7 = p? and let 6

A
var(Y)—
®[1, p] such that 161> = A2. As corr(X;, X;j) =c for any i # j, it follows that

var(Xp41) =c+ 1% and cov(¥, X p1+1)> = 101*[c + %12;

var(Y) —var(Y|Xpe1) e+ (1 —o)/p)a?
var(Y|Xp1)  var(Y) — (¢4 (1 —c¢)/p)r?’

We now apply Theorem 3.3 to ¢, 1},«/2 under hypothesis (H,). There exists a
universal constant C; such that Py (¢(p11},0/2 >0) > 1 -6 if

(c+(1—c)/p)r? Cy <4>
> log| — ).
od

var(Y) — (c+ (1 —¢)/p)A2 ~ n
This last condition is implied by

cA? C> ( 4 )
var(Y) —cA? — n ad

which is equivalent to

22 C, ( 4 )
> log .
var(Y) = cn + cCylog(4/(«é)) od

(7.11)

Let us assume that ¢ > log(;—a)/log(i—’(;). Asn>2Cp log(i—g) (hypothesis (4.7)
and definition of L), nc > 2C» log(o%). As a consequence, condition (7.11) is im-
plied by

2 4
(7.12) p?= 2 10g( ).

Combining (7.10) and (7.12) allows us to conclude that Py (7, > 0) > 1 —§ if

= (on(G5) ~ croe(5))
—{log| — —log{ — ) ).
p_n goaS c ga(S O
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PROOF OF PROPOSITION 5.1.  We fix the constant L to 421og(80) in hypoth-
esis (5.3). It follows that (5.3) implies

40 2
(7.13) n Z42(log<;> vlog<5)>.

First, we check that the test T, satisfies condition (H ). As the dimension of
each model is smaller than n/2, for any model m in M, N,, is larger than n/2.
Moreover, for any model m in M, «,, is larger than «/(2|M]) and | M] is smaller
than n/2. As a consequence, the first condition of (H ) is implied by the inequal-

ity
(7.14) n> 201og<ﬁ).
(07

Hypothesis (7.13) implies that n/2 > 20 log(t{—o). Moreover, for any n > 0 it holds
thatn/2 > 20 log(%). Combining these two lower bounds enables to obtain (7.14).

The second condition of (Hx,) holds if n > 42 log(%) which is a consequence of
hypothesis (7.13).
We first consider the case n < 2p and apply Theorem 3.3 under hypothesis
(Hm)to T, Pg(Ty, > 0)>1—46forall @ € RP such that 3i € {1, ..., [n/2]},
var(Y) — var(Y|X,,,)
var(Y | X,,;)

- C\/i log(2[n/2]/(a$)) + log(2[n/2]/(a$))
> " ;

(7.15)

where C is an universal constant. Let 0 be an element of £,(R) that satisfies
101> = (1 + C)(var(Y | X,,) — var(Y|X))

+ (1 4+ C)var(Y|X) “Og(”/(“(S)iJr log(n/(ad))

for some 1 <i < [n/2]. By hypothesis (5.3), it holds that
JTTogin/(@8)) + log(n/@8) _ |

n

for any i between 1 and [n/2]. It is then straightforward to check that 6 satis-
fies (7.15). As 6 belongs to the set £, (R),

var(Y|X,,;) — var(Y | X)

P var(Y|X,,, ) —var(Y|X,,.)

=al var(Y|X) > s i
it a;, var(Y|X)

< ai2+1 var(Y|X)R?.
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Hence, if 6 belongs to £, (R) and satisfies

od
then Py (T, < 0) < §. Gathering this condition for any i between 1 and [n/2] allows

us to conclude that if 6 satisfies
611>
var(Y) — 162

n

SIRIED)Y L1,
n

1612 = (1 + C)Var(Y|X)[<ai2+1R2 N

TG | Lyog(21]
n

2(1+C)[ inf (al.2+1R2+ . —

1<i<[n/2]

then Py (T, <0) <§.
Let us now turn to the case n > 2p. Let us consider 7, as the supremum of
p — 1 tests of level «/2(p — 1) and one test of level «/2. By considering the p — 1
first tests, we obtain as in the previous case that Py (T, <0) <4 if
_ e
var(Y) — [0
ilo ad 1
(a2 + ORI 1y (2)

n n od
On the other hand, using the last test statistic ¢7 /2, Po(Ty <0) <6, if

191> /PTog2/(@3)) +log(2/(@d))
var(Y) — 10117 = n '

> 1+ C)[ inf
1<i<(p—-1)

Gathering these two conditions we prove (5.5). [J

PROOF OF PROPOSITION 5.2. The approach behind this proof is similar to
the one for Proposition 5.1. We fix the constant L in assumption (5.6), as in the
previous proof. Hence, the collection of models M and the weights «,, satisfy
hypothesis (Ha4) as in the previous proof.

Let us give a sharper upper bound on | M|:

(7.16) IM| <1+41log(n/2 A p)/log(2) <log(n A2p)/log(2).

We deduce from (7.16) that there exists a constant L (¢, §) only depending on «
and § such that for all m € M,

1
log(—8> < L(a, 8)loglog(n A p).

Um

First, let us consider the case n < 2p. We apply Theorem 3.3 under assump-
tion (Ha4). As in the proof of Proposition 5.1, we obtain that Py(7, > 0) > 1 —§
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if
_ lerr
var(Y) — |62
log 1 logl
> L(a, 5)[ ~inf <R2(i D)7+ W) 4 log ogn].
ie{2/,j>0}n{L,....[n/2]} n "

It is worth noting that R%i —2% < 7”1051%" if and only if

o R2n 2/(1+4s)
>0 == .

Jloglogn
Under the assumption on R, i* is larger than one. Let us distinguish between two
cases. If there exists i’ in {2/, j > 0} N {l,...,[n/2]} such that i* <i’, one can

take i’ < 2i* and then

inf
ie(2/,j=0n{1,...,[n/2]}

2\/i/loglogn

- n

<R2i_zs 4 Vi loglogn)

n
(7.17)

< 2\/§R2/(1+4‘Y) (M)4s/(]+4s>
= : |

Else, we take i’ € {2/, j > 0} N {1,...,[n/2]} such that n/4 < i’ <n/2. Since
i’ < (i* An/2) we obtain that

n i loglogn)

inf <R2i2“
ie{2d,j=0)n{L,...,[n/2]} n

—2s
E 2R2i/—2S S 2R2(g> .

Gathering inequalities (7.17) and (7.18) we prove (5.7).

We now turn to the case n > 2p. As in the proof of Proposition 5.1, we divide
the proof into two parts: first we give an upper bound of the power for the M| — 1
first tests which define T, and then we give an upper bound for the last test ¢7 o 2.
Combining these two inequalities allows us to prove (5.8). U

(7.18)

PROOF OF PROPOSITION 5.4. We fix the constant L in the assumption as
in the two previous proofs. We first note that the assumption on R? implies that
D* > 2. As Ny, is larger than n/2, the ¢y, . test clearly satisfies condition (H ).
As a consequence, we may apply Theorem 3.3. Hence, P (7, < 0) < § for any 6
such that
var(Y) — var(Y | X ,.) VD*

> L(x, d)

(7.19) .
var(Y | X ) n
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Now, we use the same sketch as in the proof of Proposition 5.1. For any 6 € £,(R),
condition (7.19) is equivalent to

)

o> > (var(Y | Xpm ) — Var(Y|X))(1 + L(a, ) "

V' D*

n

(7.20)

+ var(Y|X)L(, 6)

Moreover, as 6 belongs to £,(R),
var(Y | Xom . ) — var(Y|X) < a%*HRZ var(Y|X) < a%* Var(Y|X)R2.
As +/ D*/n is smaller than one, condition (7.20) is implied by

101 . ¢D—>
—Var(Y) — ||0”2 2 (1 + L(a, 5)) <aD*R + n .

As alz)*R2 is smaller than —VnD* which is smaller suplsisp[% A aisz], it turns out

that Py (7,7 = 0) < § for any 6 belonging to £, (R) such that

0| '
Lz >2(1 4 L(a,8)) sup [£ A a?RQ].
var(Y) — 0] 1<i<pL n

O

8. Proofs of Theorem 4.3, Propositions 3.4, 4.2, 4.4, 4.6, 5.3, 5.5 and 5.6.

Throughout this section, we shall use the notations 1 :=2(1 —« — §) and L(n) :=
log(1+29%)
> .

PROOF OF THEOREM 4.3. This proof follows the general method for obtain-
ing lower bounds described in Section 7.1 in Baraud [2]. We first remind the reader
of the main arguments of the approach applied to our model. Let p be some posi-
tive number and 11, be some probability measure on

101 :p}
var(y) — 017~ "J’

We define P, = [Podu,(0) and @, the set of level-a tests of hypothesis
“0 =0.” Then

Br(®lk, p, p]) = %igfpa P, ¢ =0]

Ok, p. pl = {9 € 0Lk, pl,

(8.1) zl—a— sup [Py, (A)—Po(A)
A,Py(A)<a

1
>1—a— 1P, —Pollrv,

where [P, ) Po|lTv denotes the total variation norm between the probabilities
Py, and Po. If we suppose that P, | is absolutely continuous with respect to Py,
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we can upper bound the norm in total variation between these two probabilities as
follows. We define

L, (Y,X): Py, (Y, X)
Hod DT Ay T
Then we get the upper bound
1Py, = Pollry = [ 1Ly, (¥, %0 = 11dBo(Y, %)
< (BolLZ (Y, X)]—1)'/2.
Thus, we deduce from (8.1) that
B1(®lk, p. pl) = 1 — o — F(EolL2 (Y. X)]—1)"2.

If we find a number p* = p*(n) such that

8.2) log(Eo[ L}, , (Y, X)1) < L(n),
then for any p < p*,
B (®Ik, p, p)) =1 —a — g —s.

To apply this method, we first have to define a suitable prior 1, on Ok, p, p].
Let i be some random variable uniformly distributed over M (k, p) and for each
m € M(k, p), let €™ (em) jem be a sequence of 1ndependent Rademacher ran-
dom variables. We assume that for all m € M(k, p), €™ and m are independent.
Let p be given and ), be the distribution of the random variable =Y, jem AT jej
where

22 Var(Y),o2
k(1+ p?)
and where (e;) je7 is the orthonormal family of vectors of R” defined by

(ej)i=1 ifi=j and (e);=0 otherwise.

Straightforwardly, ., is supported by ®[k, p, p]. For any m in M(k, p) and
any vector (;}“) jem With values in {—1; 1}, let p,; ¢m , be the Dirac measure on
Y jem Ag;’le j- For any m in M(k, p), im,, denotes the distribution of the ran-
dom variable }_ ;c,, Mj’-”e j where (g“J’-”) is a sequence of independent Rademacher
random variables. These definitions easily imply

1
LMP(Y,X>=@ > Ly, (Y.X)
k) meM(k,p)
1

= %) > Yo Ly, (Y, X).

meM(k,p) ¢me{—1,1}k
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We aim at bounding the quantity EO(LIZLp) and obtaining an inequality of the
form (8.2). First, we work out Lum,gm,p'

Lyy on, (Y. X)

_[( ! )”/zex (_ IY1I5 22k
= L\ T =22k (var(v)) P\™ var(Y)(var(Y)—kzk)

(8.3) X))
+’\J§f (Y) var(Y) — A2k
2 (X, Xjrn )}
* ”Xe:mg & 2(var(Y) — A%k) ) |

where (-),, refers to the canonical inner product in R”.
Let us fix m and m, in M(k, p) and two vectors ¢! and ¢2, respectively, as-
sociated to m and m,. We aim at computing the quantity Eo (L, o (Y, X) x
1.

Ly, 2. (Y, X)). First, we decompose the set m| U my into four sets (Wthh pos-
my,¢
sibly are empty): m1 \ mp, my \ my, mz and my4 where m3z and m4 are defined
by
={j emi Nma|¢} =¢}),

myg:={j €m ﬂmzlf} = —4“]2}-

For the sake of simplicity, we reorder the elements of m; U my from 1 to
|m1 U ms| such that the first elements belong to m \ my, then to my \ m; and
so on. Moreover, we define the vector ¢ € R"1Y2l gyuch that ¢ i=¢ jl if j e m

and ¢; = ;12 if j € my \ my. Using this notation, we compute the expectation of
L oY X)L, 2 ,(Y,X):

EoLu, 1, X)Ly, ., (Y.X))

my,¢t,

8.4)

1 n/2 a2
:(Var(Y)(l—kzk/(var(Y)))2> AT

where | - | refers to the determinant and A is a symmetric square matrix of size
|m1 Umy| + 1 such that

var(Y) 4+ A%k e
, if j =1,
var(Y)(var(Y) — A2k)
. _&, if (j—1) emAmy,
AlLl j1:=1 var(Y) — A2k
ALj—1 .
22—, f(j—1 ,
var(Y) — 22k i =D em;
0, if (j — 1) € ma,
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where m| Amy refers to (myUmy) \ (m1Nmy). Forany i > 1 and j > 1, A satisfies

2 Gi-18j—1 o .
Yo e T G- LD e lm\mg) xmy,
Ci—18j—1 o _
M i fi—-1,j—-1De
Var(Y)—A2k+ L it (@ j—1)e@ma\m)
X (ma \ myUms),
A[l’.]] = 2 ;i—lé‘j—l . . )
_)\. — f _ 1’ _1 E ,
var(Y) — 22k if (i —1,j—1) € (ma\my) x my
2 Gi-18j—1 o .
22y e o A= 1 = D€ Iy xma]
U [m4 x ma],
0, else,

where §; ; is the indicator function of i = j.
After some linear transformation on the lines of the matrix A, it is possible to
express its determinant into

_ var(Y) + A2k
~ var(Y)(var(Y) — A2k)

where 1};,,um,)| 1s the identity matrix of size [m{ Umz|. C is a symmetric matrix of
size |m U m>| such that for any (i, j),

Cli, j1=2¢i¢; DI, jl

and D is a block symmetric matrix defined by

|A]

|I|m1UM2|+C

’

r Mk —22var(Y) —22 22 7
var2(Y)—A4k2  var2(Y)—a%%k2  var(Y)+r2k  var(Y)—A2k
—A2var(Y) Mk —A2 —A2
D= var2(Y)—A%k2  var2(Y)—a%%k2  var(Y)+r2k  var(Y)—A2k
’ -2 -2 —2)2 0
var(Y)+12k var(Y)+12k var(Y)+A12k
A2 -2 0 222
L var(Y)—A2k var(Y)—12k var(Y)—12k -

Each block corresponds to one of the four previously defined subsets of m| U m»
(i.e.,mqy\mo, my\my, m3 and my). The matrix D is of rank, at most, four. By com-
puting its nonzero eigenvalues, it is then straightforward to derive the determinant
of A,
[var(Y) — 3>(2|m3| — lm; Nma|)]*

var(Y)(var(Y) — A2%k)2
Gathering this equality with (8.4) yields

Eo(Ly, 1, Y- X)Ly, o (Y,X)

|Al =

my.glp

(8.5)

1 n
B [1 — A2Q2Jm3| — |m mmzl)/(Var(Y))] '
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Then, we take the expectation with respect to {1, {2, m1 and m,. When m and
m are fixed the expression (8.5) depends on ¢! and ¢? only toward the cardinality
of m3. As ¢! and ¢? correspond to independent Rademacher variables, the random
variable 2|m3| — |m1 N my| follows the distribution of Z, a sum of |m N my|
independent Rademacher variables and

1 n
86)  Eo(Ly,, ,(Y.X)Ly, (Y, X))ZEO[W} '

When Z is nonpositive, this expression is smaller than one. Alternatively, when
Z is nonnegative,

1 " 1

[1 - Azz/var(Y):| = exP(” 1°g<1 327 Jvar(Y) ))

AZZ/Var(Y)
1— AzZ/var(Y):|

A2Z /var(Y)
1— Azk/var(Y)]’
as log(1 4+ x) < x and as Z is smaller than k. We define an event A such that
{Z>0CcAcC{Z=>=0} and P(A) = % This is always possible as the random

variable Z is symmetric. As a consequence, on the event A°, the quantity (8.6) is
smaller or equal to one. All in all, we bound (8.6) by

<exp |:n

< exp [n

Eo(Ly,, , (Y. X)Ly, (Y. X))
1 A2Z [var(Y
(87) < E +EO|:1A6XP|:H#;I§I()Y)1|:|,

where 1 is the indicator function of the event A. We now apply Holder’s inequal-
ity with a parameter v € ]0; 1] which will be fixed later:

A2Z /var(Y)
1 — A2k /var(Y) H

22z Y v
8.8) < PA) [Eo exp(% SAED AZ/k V/ajir&) )}

1 1—v n)h2 [miNma|v
<(3) oo ]
2 v(var(Y) — A2k)

Gathering inequalities (8.7) and (8.8) yields
2
EolL2 (Y.X)]

1 NN nx2 lmyNma v
§+<§) o7 2 COSh(v(var(Y)—)@k)) '

mi ,szM(k,p)

Eo [1 A EXp [n

A
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Following the approach of Baraud [2] in Section 7.2, we note that if m| and m»
are taken uniformly and independently in M (k, p), then |m N my| is distributed
as a hypergeometric distribution with parameters p, k and k/p. Thus we derive
that

1—v 2 vT
89) Eo[L2 (Y.X)] <~ + (1) E(cosh( nh ) )
o 27 \2 v(var(Y) — A2k)

where T is a random variable distributed according to a hypergeometric distrib-
ution with parameters p, k and k/p. We know from Aldous (see [1], page 173)
that 7' has the same distribution as the random variable E(W|5B,) where W is a
binomial random variable of parameters k, k/p and B, some suitable o -algebra.
By a convexity argument, we then upper bound (8.9):

Eol L}, (Y, X)]
<3+ (3) e smm ) )
=272 O D (var(Y) — 22k
N R (e ni? Y
—TL(E) ( +E(°°S (v(var(Y)—ﬂk)) N ))

= % + (%)l_v exp[k10g<1 * §<008h<v(var(’;§2— )»zk)>v B 1))]

To get the upper bound on the total variation distance appearing in (8.1), we aim
at constraining this last expression to be smaller than 1 + 2. This is equivalent to
the following inequality:

2V exp [k log(l * %(C08h<vk(varlz;§k— 22k) )” - 1>)}

<1429

We now choose v = loﬁg(?2)) A 1. If v is strictly smaller than one, then (8.10) is

equivalent to

(8.10)

k na2k v log(1 +27°)
(8.11) klog[l + ;(COSh<vk(var(Y) — )sz)) — 1)} < — 5

It is straightforward to show that this last inequality also implies (8.10) if v equals
one. We now suppose that

n)hz 1/v 2/v
(8.12) var(t) =120 <log((1+u)"" +/(1+u)*v—1),

where u = %. Using the classical equality cosh[log(l + x + +/2x + x2)] =
1 4+ x with x = (1 +u)"/V — 1, we deduce that inequality (8.12) implies (8.11)
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because

Kl <1+k( h( n2k )U 1>)<k1 (1+k )
(0] — | COS — (0] —U
S vk(var(Y) — 22k) =R,

k2
< —u<L(n).
p

For any B > 1 and any x > 0, it holds that (1 +x)f > 1 + Bx. As 1 > 1, condi-
tion (8.12) is implied by

Ak k 1 L u + 2u
—_—— 0
var(Y) — kzk - & v
One then combines the previous inequality with the definitions of # and v to obtain
the upper bound

22k
var(Y) — A%k
k ( Ln) p(og(2) v L(n)) 2p(log(2) v L(n))
k (10g(2) A 1) log(l + = - \/ o )

For any x positive and any u between 0 and 1, log(1 + ux) > ulog(l + x). As a
consequence, the previous inequality is implied by

22k k(L p \/5
) % = Z(log(z) A 1)([£(n) vlog(2)] A 1)10g<1 +a 2

k p 2p
= ;(E(n) A 1)10g< + 2 +\/7)

To resume, if we take p? smaller than (4.4), then

Br(®lk, p, p]) = 8.

Moreover, the lower bound is strict if p? is strictly smaller than (4.4). To prove
the second part of the theorem, one has to observe that o + § < 53% implies that
O EE Rn

PROOF OF PROPOSITION 4.2. Let us first assume that the covariance ma-
trix of X is the identity. We argue as in the proof of Theorem 4.3 taking k = p
The sketch of the proof remains unchanged except that we slightly modify the last
part. Inequality (8.11) becomes

n)»zp
pvlog<COSh<vp(var(Y) — Azp))) <L),
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where we recall that v = Tog2 ('7) A 1. For all x € R, cosh(x) < exp(x2 /2). Conse-
quently, the previous 1nequahty is implied by

\/_
Var(Y) =y 2vLm)

and the result follows easily.

If we no longer assume that the covariance matrix ¥ is the identity, we orthog-
onalize the sequence X; thanks to Gram—Schmidt process. Applying the previous
argument to this new sequence of covariates completes the proof. [

PROOF OF PROPOSITION 3.4. Let us define the constant L(«, §) involved in
the condition:

L(a,8) = \/log(1 +8(1 —a — 8)2)[1 A /log(1 +8(1 —a — 8)?)/(2log2)].

‘/7 and any ¢ > O there ex-
ists some 6 € §,,, such that % =p 2 and Py (q&m,a <0) > 5 —¢. In the proof
of Theorem 3.3, we have shown in (7.3) and following equalities that the distribu-
tion of the test statistic ¢,, only depends on the quantity K,%l = %W Let
0’ be an element of S, such that K,%l = p2. The distribution of ¢,, under Py is the
same as its distribution under Py, and therefore

P@’(¢m,a SO) = 5 — S

Let us apply Proposition 4.2. For any p < L(a, )

Letting ¢ go to O completes the proof. [

PROOF OF PROPOSITION 4.4. This lower bound for dependent Gaussian co-
variates is proved through the same approach as Theorem 4.3. We define the mea-
sure /4, as in that proof. Under hypothesis (Hp), Y is independent of X. We note X
the covariance matrix of X and Eg y stands for the distribution of (Y, X) un-
der (Hp) in order to emphasize the dependence on X.

First, one has to upper bound the quantity Eo,g[Lip (Y, X)]. For the sake of
simplicity, we make the hypothesis that every covariate X ; has variance 1. If this
is not the case, we only have to rescale these variables. The quantity corr(i, j)
refers to the correlation between X; and X ;. As we only consider the case k =1,

the set of models m in M(1, p) is in correspondence with the set {1, ..., p}:
Eos(L, . (Y.X)L, , (Y.X)) —( var(¥) )n
0= 51t T W2, 8 T Var(Y) — corr(i, j)A2e 12

When i and j are fixed, we upper bound the expectation of this quantity with
respect to ¢! and ¢? by

1 var(Y) n
(8.13) Eo.x(Ly,,(Y, X)Ly, ,(Y,X)) < 2 )

(var(Y) | corr(i, j)|A2
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If i # j, | corr(i, j)| is smaller than ¢, and if i = j, corr(i, j) is exactly one. As
a consequence, taking the expectation of (8.13) with respect to i and j yields the
upper bound

Eo,5 (L}, (Y, X))

1 1 (1 ( var(Y) )” p—1 ( var(Y) )”)
e ail + .
2 2\ p\var(Y) — A2 p \var(Y) — cA?
Recall that we want to constrain this quantity (8.14) to be smaller than 1 + 7.
In particular, this holds if the two following inequalities hold:

(8.14)

1 var(Y) | )

(519 oGy 32) =57
p—1 var(Y) "op—1 )
(810 p (Var(Y) —CAZ) = p T

One then uses the inequality log(1 ) < 1= which holds for any positive x

smaller than one. Condition (8.15) holds if

(8.17) i 1 1 1+ py?),
. —_— 0
var(Y) — AZ - g P
whereas condition (8.16) is implied by
oz 1 -l (1 + )
—_— 0 —
var) —caZ —n 0% 1 7

As c is smaller than one and 1 is larger than 1, this last inequality holds if
)\2
var(Y) — A2 —

Gathering conditions (8.17) and (8.18) allows us to complete the proof and to
obtain the desired lower bound (4.6). [

1 2
(8.18) —log(l +17).

PROOF OF PROPOSITION 4.6. The sketch of the proof and the notation are
analogous to the one in Proposition 4.4. The upper bound (8.13) still holds:

var(Y) n
(Var(Y) | corr(i, j)Ikz)

Using the stationarity of the covariance function, we derive from (8.13) the fol-
lowing upper bound:

1
Eo.5 Ly, (Y. X)Ly, , (V. X)) < 7 +

11 var(Y) n
Eo.z(L,, (Y. X) < 22, Zo<var(Y) — 22| corr(0, i)|> ’
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where corr(0, i) equals corr(X7, X;+1). As previously, we want to constrain this
quantity to be smaller than 1 + 2. In particular, this is implied if for any i between
Oand p — 1,

< var(Y) )" _ 2pn?| corr(i, 0)|
var(Y) — 22| corr(i,0) ) = yP ! corr(i, 0)]

Using the inequality log(1 4 u) < u, it is straightforward to show that this previous
inequality holds if

22 2pn2|corr(0 0|
N —— )
var(Y) — A#| corr(i, 0)| ~ n|corr(i, 0)] Z” o lcorr(i, 0)]

As | corr(Z, 0)| is smaller than one for any i between 0 and p — 1, it follows that
Eo.x (Lip (Y, X)) is smaller than 1 + 52 if

- 2pn2|corr(0,i)| )
1+ .
/:\ n|corr(z 0)] g( Z,P:_ol | corr(i, 0)|

We now apply the convexity inequality log(1 + ux) > ulog(1 4+ x) which holds
for any positive x and any u between 0 and 1 to obtain the condition
2pn’? )
—1 ; :
> corr(i, 0]

It turns out we only have to upper bound the sum of | corr(Z, 0)| for the following
different types of correlation:

1
(8.19) p? < —log(l +
n

1. For corr(i, j) = exp(—w|i — j|p), the sum is clearly bounded by 1 + 2 eewu,
and condition (8.19) simplifies as

2<l]0 <1+2 2]_e_w).
pT= " g pn 1)
2. if corr(i, ]) ={+1i—jlp~ " for 1 strictly larger than one, then Zp _o |corr(i,
Ol<1+; 1 and condition (8.19) simplifies as

1 2p(t — Hn?
2<_1 (1 —>
P “n og\ 1+ t+1 ’

3. if corr(i, j) = (1 +]i — j|,)~! then ZP o lcorr(i,0)] <1+ 2log(p — 1) and
condition (8.19) simplifies as

1 2pn?
p? < —IOg(l + P );
n 14+2log(p—1)
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4. ifcorr(i, j)=(1+1i — j|p)_’ for0 <t < 1, then

p—1 1—1 1—¢
. 2 P 2 p)

5 0 <1+—(2) —1|<—=(2)
| corr(i, 0)f = +1—z[<2> :|_1—t<2

i=0
and condition (8.19) simplifies as

1 _
p? = —log(l+ p'2!7 (1 = )n’). 0
PROOF OF PROPOSITION 5.3. For each dimension D between 1 and p, we
define rlz) = ,olz),n A alz)Rz. Let us fix some D € {1,..., p}. Since rlz) < a% and

since the a;’s are nonincreasing,

D var(Y Xy, ) — var(Y|X,,,)

< Valr(Y|X)R2

2
j=1 a;
2
for all 6 € S,,,, such that % = r3. Indeed, (|02 = =2, var(Y | X, ,) —
var(Y|X,;) and var(Y) — 10]1? = var(Y|X). As a consequence,
1612 2} { 16]1% 2}
0S8y, —————=r5t C{0€&(R), ————— >r}t.
{ "0 Nar(Y) — 07 P “®: Sy — 1o =P

Since rp < pp.n, we deduce from Proposition 4.2 that
/82({6 €& (R), S ] r,g}) > 5.
var(Y) — [|6]1> ~ -
The first result of Proposition 5.3 follows by gathering these lower bounds for
all D between 1 and p.

Moreover, pi%n is defined in Proposition 4.2 as pi%n = ﬁ[./ﬁ(n) A %]#.

If o + 8§ <47%, it is straightforward to show that pl-%n > % |
PROOF OF PROPOSITION 5.5. We first need the following lemma.

LEMMA 8.1. We consider (Ij)jey a partition of L. For each j € J let
p(j) =I1;|. For any j € J, we define ©; as the set of 0 € RP such that their
support is included in I ;. For any sequence of positive weights k; such that

> kj=1,

jied

e,
ﬂ’(U{96®”var<Y)—||9||2_’f})zg’

jed
ifforall j € J,rj < pp(j)n(m//kj) where the function p,(j) n is defined by (4.3).

it holds that
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For all j > 0 such that 2/t! — 1 € 7 [i.e., for all j < J where J = log(p +
1)/log(2) — 1], let S be the linear span of the e;’s for k € (27,..., 2/t — 1}
Then dim(S;) =2/ and S; C Sp, for D=D(j) =2/ —1.1tis stralghtforward
to show that

p

J J
US rD(J) U mpyj) rD(j) U Smplrpl,

- - 2
where S;[rp()] =0 € 5. oz = ) and Suplrp] == {6 € Suy,
o1

.2
var(r)—jep? = "ot o
We choose J ={l1,...,J}. For any j € J, we define I; ={2/,2/ +1,...,
2/+1 — 1}. Applying Lemma 8.1 with k; := [(j + DR(p)]~! where R(p) :=

Y o1/ + 1), we get

! le]? )
(Ul ety e =3 =2

D=1

if for all those D = D(j),

n .

Jlog(1 +2n2/kp)\ VD
/2log?2 )

For D = D(j), this last quantity is lower bounded by

Jlog(1+2n%/kj)\ VD
/2log?2 )

2 < Jlog(1 + 2n2/k,-)<1 A

Jlog(1 + 2172/kj)<1 A

n

J1og(1 +2n%)\ 2//2
/2log?2 ) n

It remains to check that (8.20) is larger than pp(j),,. Using j + 1 =log(D +

1)/log(2) > log(D + 1), we get 2//2 > ./D/2. Thanks to the convexity inequality
log(14ux) > ulog(1+x), which holds for any x > 0 and any u € ]0, 1], we obtain

(8.20)

> Jlog(1 4+ 2n2(j + 1)R(p))(1 A

Jlog(1+2n2(j + DR(p))2//?
> /D/2(n/2R(p) A 1),/ log[1 +log(D + 1)]

> ((77«/5 )AL \/loglog(D + 1)\/1)/2

7 1 A y/log(1 4 25%))floglog(D + D/D,
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as R(p) is larger than one for any p > 1. All in all, we get the lower bound

JlIog(1 +2n?) ) 2i/2

Jlog(1+202(j + 1)2R(p))<1 N ATog2 "

1 VD
>_—— (1 Alog(1+2n%)/loglog(D + 1)~ =53 ..

Thus, if for all 1 < D < p, r} is smaller than 5 ,. it holds that

o Opesa o),
! " var(r) — 017~ ) =T 0

D=1

PROOF OF LEMMA 8.1.  Using a similar approach to the proof of Theorem 4.3,
we know that for each r; < p;(n/ \/E ) there exists some measure 4 j over

911> 2}

@j[}’j] = {9 S @j, —Var(Y) — ”9”2 =rj

such that
(8.21) Eo[L;,, (Y, X)1 < 14 n°/k;.

We now define a probability measure u = 3 ;c7kju;j over Ujes ©jlrjl. Ly;
refers to the density of P, ; with respect to Po. Thus

dpP
L,(Y)=—E(,X)=> kjL,;(Y,X)
dPy , :
jed
and
EolL2(Y.X)]= Y kjkjEolLy; (Y. X)L, (Y. X)].
j.j'ed
Using expression (8.5), it is straightforward to show that if j # j’, then
EolLy; (Y. X)L, , (Y, X)]=1.

This follows from the fact that the sets ®; and ® ;- are orthogonal with respect to
the inner product (2.4). Thus

EolL (Y, X)I =1+ Y k3 (BolLy (Y, X)] = 1) < 1+ 7%,
jeg
thanks to (8.21). Using argument (8.2) as in the proof of Theorem 4.3 completes
the proof. [J

PROOF OF PROPOSITION 5.6. First of all, we only have to consider the case
where the covariance matrix of X is the identity. If this is not the case, one only
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has to apply the Gram—Schmidt process to X and thus obtain a vector X’ and a
new basis for R” which is orthonormal. We refer to the beginning of Section 5 for
more details.

Like the previous bounds for ellipsoids, we adapt the approach of Section 6 in
Baraud [2]. We use the same notation as in proof of Proposition 5.3. Let D*(R) €
{1,..., p}, an integer which achieves the supremum of /5%) A (Rza%) = 1%. As in
proof of Proposition 5.3, for any R > 0,

16112 5 }

17 Swio iy e ="Bew

1012 , }
Cl0el(R), —————=>715H .
{ € LalB). Gy — o =

When R varies, D*(R) describes {1, ..., p}. Thus we obtain

U {ees o1 —r2}
o o g e =D
5, var(Y) — [0]

=U {9 €s e =r2 }
- Mp*(R)° _ 2 — "D*(R)
o var(Y) — ||

2
cUfpeam—ts bl

r
“ o2 ="
R0 var(Y) — [|6]|

and the result follows from Proposition 5.5. [

APPENDIX

PROOF OF PROPOSITION 3.1. The test associated with procedure P; corre-
sponds to a Bonferroni procedure. Hence we prove that its size is less than o by
the following argument: let 8 be an element of Sy (defined in Section 2.2),

Py(Ty >0) < Y Py(¢m(Y.X) = Fp! y (ctm) >0),
meM
where ¢, (Y, X) is defined in (2.2). The test is rejected if for some model m,
¢m (Y, X) is larger than Fp! \ (). As 0 belongs to Sy, MyusY — My Y =
[Myume — Mye and Y — [Iyu, Y = € — ITyyupe€. Then the quantity ¢, (Y, X) is
equal to

Ny I Tlyume — Myel|?

O (Y, X) =
" DmHG - HVUmEH%
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Because € is independent of X, the distribution of ¢,,(Y, X) conditionally to X
is a Fisher distribution with D,, and N,, degrees of freedom. As a consequence,
®Om, o, (Y, X) is a Fisher test with D,,, and N,,, degrees of freedom. It follows that

Py(Ty>0) < ) am <o
meM

The test associated with procedure P, has the property to be of size exactly «.
More precisely, for any 6 € Sy, we have that

Py(Ty > 0|X) = «, X a.s.
The result follows from the fact that gx ,, satisfies

N Ty um (€) — l'Iv(e)||2
P9<S“ { (ax, )}>OX)_a
mewmt! Dlle = yin ()2 Py @) > O

and that for any 6 € Sy, [lyu, Y — IIyY =Iyyne — Mye and Y — Myy, Y =
€ —Ilyyne. O

PROOF OF PROPOSITION 3.2.  We come back to the definitions of 7, and T2:

T,(X,Y) = SU%{%(Y X) — Fp! @/ IMD),

T;(X,Y) = sup {¢n(Y.X) = F5! v (gx.a))-
memM

Conditionally on X, the size of T, is smaller than o whereas the size T, is ex-
actly o. As a consequence, gx o > o/| M| as the statistics To[l and TOI2 differ only
through these quantities. Thus T‘f(X, Y)>T al X,Y), (X,Y) almost surely, and
the result (3.4) follows. [
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