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REGENERATIVE TREE GROWTH: BINARY SELF-SIMILAR
CONTINUUM RANDOM TREES AND POISSON–DIRICHLET

COMPOSITIONS1

BY JIM PITMAN AND MATTHIAS WINKEL

University of California, Berkeley and University of Oxford

We use a natural ordered extension of the Chinese Restaurant Process to
grow a two-parameter family of binary self-similar continuum fragmentation
trees. We provide an explicit embedding of Ford’s sequence of alpha model
trees in the continuum tree which we identified in a previous article as a
distributional scaling limit of Ford’s trees. In general, the Markov branching
trees induced by the two-parameter growth rule are not sampling consistent,
so the existence of compact limiting trees cannot be deduced from previous
work on the sampling consistent case. We develop here a new approach to
establish such limits, based on regenerative interval partitions and the urn-
model description of sampling from Dirichlet random distributions.

1. Introduction. We are interested in growth schemes for random rooted bi-
nary trees Tn with n leaves labeled by [n] = {1, . . . , n} of the following general
form.

DEFINITION 1. Let T1 be the tree with a single edge joining a root vertex and
a leaf vertex labeled 1. Let T2 be the Y-shaped tree consisting of a root and leaves
labeled 1 and 2, each connected by an edge to a unique branch point.

To create Tn+1 from Tn, select an edge of Tn, say, an → cn, directed away from
the root, replace it by three edges an → bn, bn → cn and bn → n + 1 so that two
new edges connect the two vertices an and cn to a new branch point bn and a
further edge connects bn to a new leaf labeled n + 1.

A binary tree growth process is a sequence (Tn, n ≥ 1) of random trees con-
structed in this way where at each step the edge an → cn is selected randomly
according to some selection rule, meaning a conditional distribution given Tn for
an edge of Tn. Given a selection rule, each tree Tn has a distribution on the space
T[n] of rooted binary trees with n leaves labeled [n], and the selection rule specifies
for all n ≥ 1 conditional distributions of Tn+1 given Tn.
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The uniform rule, where each of the 2n − 1 edges of Tn is selected with equal
probability, gives a known binary tree growth process [25] related to the Brownian
continuum random tree [1, 24]. Ford [10] introduced a one-parameter family of
binary tree growth processes, where the selection rule for 0 < α < 1 is as follows:

(i) Given Tn for n ≥ 2, assign a weight 1 − α to each of the n edges adjacent to a
leaf, and a weight α to each of the n − 1 other edges.

(ii) Select an edge of Tn at random with probabilities proportional to the weights
assigned by step (i).

For us, this selection rule will be the (α,1 − α)-rule. Note that α = 1/2 gives the
uniform rule.

In [18] we showed that, also for α �= 1/2, the trees Tn with leaf labels removed,
denoted T ◦

n , have a continuum fragmentation tree T α as their distributional scal-
ing limit, when considered as R-trees with unit edge lengths: n−αT ◦

n → T α in dis-
tribution for the Gromov–Hausdorff topology. However, in the main part of [18]
and in all other fragmentation literature we are aware of, the labeling of leaves
is exchangeable, while the labeling of leaves in order of appearance in the trees
Tn grown using the (α,1 − α)-rule is not. Our results in [18] applied because of
a weak sampling consistency of the (α,1 − α)-trees; cf. [10]. The subtlety with
these trees is that they are strongly sampling consistent in the sense defined in
Definition 2 only if α = 1/2; cf. [18].

DEFINITION 2. A binary tree growth process (Tn, n ≥ 1) is called weakly
sampling consistent if the distributions of the delabeled trees T ◦

n and T̂ ◦
n coin-

cide for all n ≥ 1, where T̂ ◦
n is obtained from T ◦

n+1 by removal of a leaf chosen
uniformly at random. The process is called strongly sampling consistent if the dis-
tributions of (T ◦

n , T ◦
n+1) and (T̂ ◦

n , T ◦
n+1) coincide for all n ≥ 1.

In this paper we take up the study of nonexchangeable labeling and the role of
weak sampling consistency for a two-parameter extension of the (α,1 − α)-rule;
cf. Figure 1.

DEFINITION 3. Let 0 ≤ α ≤ 1 and θ ≥ 0. We define the (α, θ)-selection rule
as follows:

(i)rec For n ≥ 2, the tree Tn branches at the branch point adjacent to the root
into two subtrees Tn,0 and Tn,1. Given these are of sizes m and n − m,
say, where Tn,1 contains the smallest label in Tn, assign weight α to the
edge connecting the root and the adjacent branch point, weights m − α and
n − m − 1 + θ , respectively, to the subtrees.

(ii)rec Select the root edge or a subtree with probabilities proportional to these
weights. If a subtree with two or more leaves was selected, recursively apply
the weighting procedure (i)rec to the selected subtree, until the root edge or
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FIG. 1. Recursive tree growth: in this scenario, the recursion consists of two steps. Weights for root
edge and subtrees are displayed for the first step. The subtree Tn,1 is selected. Within tree Tn,1, the
root edge is selected. Leaf 6 is inserted at the selected edge.

a subtree with a single leaf was selected. If a subtree with a single leaf was
selected, select the unique edge of this subtree.

A binary tree growth process (T α,θ
n , n ≥ 1) grown via the (α, θ)-rules (i)rec, (ii)rec,

for some 0 ≤ α ≤ 1 and θ ≥ 0, is called an (α, θ)-tree growth process.

For θ = 1 − α, each edge is chosen with the same probabilities as with Ford’s
rules (i) and (ii).

The boundary cases α = 0 and α = 1 are special and easy to describe (see
Section 3.2). Growth is then linear or logarithmic in height, and scaling lim-
its have a degenerate branching structure. We therefore focus on the parameter
range 0 < α < 1 and study scaling limits and asymptotics of the associated trees
Tn = T α,θ

n .
We pointed out in [18] that Ford’s (α,1 − α)-tree growth process is associated

with a Chinese Restaurant Process (CRP) as follows. The height Kn of leaf 1 in Tn

increases whenever an edge on the path connecting 1 with the root, which we call
the spine, is selected. Whenever a spinal edge is selected, the edge is replaced by
two new spinal edges and a new subtree starts growing off the spine. If we call the
subtrees off the spine tables and the leaves in subtrees customers, then the process
of table sizes follows the (α,1 − α) seating plan of a CRP in the terminology
of [24]. Similarly, we identify an (α, θ) seating plan in the two-parameter model,
meaning that the (n + 1)st customer is seated at the j th table, with nj customers
already seated, with probability proportional to nj − α and at a new table with
probability proportional to θ + kα, if k tables are occupied. See Figure 2. Note
that

the kth customer in the restaurant is labeled (k + 1) as leaf in the tree,(1)

since leaf 1 is not in a subtree off the spine.
The theory of CRPs [24] immediately gives us a.s. a limit height Lα,θ =

limn→∞ Kn/nα of leaf 1, as well as limiting proportions (P1,P2, . . .) of leaves
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FIG. 2. The (α, θ) tree growth procedure induces an ordered Chinese Restaurant Process.

in each subtree in birth order, that is, in the order of least numbered leaves of
subtrees, which can be represented as

(P1,P2, . . .) = (W1,W 1W2,W 1W 2W3, . . .),

where the Wi are independent, Wi has a beta(1−α, θ + iα) distribution on the unit
interval, and Wi := 1 − Wi . The distribution of the sequence of ranked limiting
proportions is then Poisson–Dirichlet with parameters (α, θ), for short PD(α, θ).

However, this spinal decomposition of the tree also specifies the spinal order,
that is, the order in which subtrees are encountered on the spine from the root
to leaf 1 (from left to right in Figure 2). Note that due to the leaf labeling and
the sequential growth of Tn, n ≥ 1, subtrees are identifiable and keep their order
throughout, which makes the spinal order consistent as n varies. After the insertion
of leaf n+ 1, the sizes of subtrees in birth order and in spinal order form two com-
positions of n, n ≥ 1. While the birth order is well known to be size-biased, we
show that the compositions in spinal order form a regenerative composition struc-
ture in the sense of Gnedin and Pitman [13], which is weakly sampling consistent
for all 0 ≤ α ≤ 1 and θ ≥ 0, but not strongly so unless θ = α [Proposition 6(i)
and (ii)].

It follows from [13] in the strongly sampling consistent case θ = α that the
rescaled compositions converge almost surely to the associated regenerative inter-
val partition and that the block containing leaf 2 is a size-biased pick from the
composition of n, or from the interval partition in the limit n → ∞. We obtain
almost sure limiting results for the nonstrongly sampling consistent compositions
(and discrete local times) in spinal order [Proposition 6(iii) and (iv)], and we solve
the problem of finding leaf 2 in the nonstrongly consistent case, for the spinal com-
position of n (Lemma 9) and for the limiting interval partition (Proposition 10).
The limiting interval partition arranges the limiting proportions (P1,P2, . . .) in
spinal order. We consider inverse local time L−1 as a random distribution function
on the interval [0,Lα,θ ]. Then ([0,Lα,θ ], dL−1) is an (α, θ)-string of beads in the
following sense.
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FIG. 3. A tree equipped with strings of beads; crushing a bead into a new string of beads.

DEFINITION 4. An interval (I,μ) equipped with a discrete measure μ is
called a string of beads. We refer to the weighted random interval ([0,Lα,θ ], dL−1)

associated with an (α, θ)-regenerative partition as (α, θ)-string of beads. We will
also use this term for isometric copies of weighted intervals as in Figure 3.

As a by-product of these developments (Corollary 8), we obtain a sequential
construction of the interval partition associated with the (α, θ) regenerative compo-
sition structure described in [13], Section 8. This provides a much more combina-
torial approach to the (α, θ) regenerative interval partition than was given in [13],
and solves the problem, left open in [13], of explicitly describing for general (α, θ)

how interval lengths governed by PD(α, θ) should be ordered to form an (α, θ) re-
generative interval partition of [0,1] (Corollary 7).

We formulate and prove these results in Section 2. While they are key results
for the study of the trees T α,θ

n , they are also of independent interest in a framework
of an ordered CRP. This notion will be made precise there and studied in some
detail.

In Section 3 we formally introduce leaf-labeled rooted binary trees and the
Markov branching property. We show that the delabeled trees from the (α, θ)-
tree growth rules have the Markov branching property, and that the labeled trees
have a regenerative property, which reflects the recursive nature of the growth rules
(Proposition 11). We then study sampling consistency as defined in Definition 2:

PROPOSITION 1. Let (T α,θ
n , n ≥ 1) be an (α, θ)-tree growth process for some

0 < α < 1 and θ ≥ 0, and T α,θ,◦
n , n ≥ 1, the associated delabeled trees.

(a) T α,θ
n has exchangeable leaf labels for all n ≥ 1 if and only if α = θ = 1/2.

(b) (T α,θ,◦
n , n ≥ 1) is strongly sampling consistent if and only if α = θ = 1/2.

(c) (T α,θ,◦
n , n ≥ 1) is weakly sampling consistent if and only if θ = 1 − α or θ =

2 − α.
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We actually show that the distributions of delabeled trees coincide for θ =
1 − α and θ = 2 − α, and do so only in these weakly sampling consistent cases
(Lemma 12).

The main contribution of this paper is to establish limiting continuum random
trees (CRTs) even without weak sampling consistency. For a tree Tn labeled by
[n] = {1, . . . , n}, we denote by S(Tn; [k]) the smallest subtree of Tn that contains
the root and the leaves labeled 1, . . . , k. It will be convenient to use Aldous’s for-
malism of reduced trees with edge lengths: denote by R(Tn; [k]) the tree Tk with
edges marked as follows; because of the growth procedure each vertex of Tk is also
a vertex of Tn, and we mark each edge of Tk by the graph distance in Tn of the two
vertices that the edge connects. First, we study the asymptotics of these reduced
trees.

PROPOSITION 2. Let (T α,θ
n , n ≥ 1) be an (α, θ)-tree growth process. If 0 <

α < 1 and θ ≥ 0, then

n−αR(T α,θ
n , [k]) → Rα,θ

k almost surely as n → ∞,

in the sense that the 2k − 1 edge lengths of R(T α,θ
n , [k]) scaled by nα converge

almost surely as n → ∞ to limiting edge lengths of a tree Rα,θ
k , for all k ≥ 1.

We proved this in [18], Proposition 18, for Ford’s (α,1−α)-tree growth process.
As in [18], we will also provide an explicit description of the distribution of
(Rα,θ

k , k ≥ 1). We will, in fact, prove a stronger statement for trees Rα,θ
k where

each edge has the structure of a string of beads that records limiting proportions of
leaves of subtrees as atoms on the branches (Proposition 14 and Corollary 15). We
deduce growth rules for the passage from k to k + 1 leaves for the limiting trees
equipped with strings of beads (Corollary 16). These are remarkably simple and
consist of picking a bead (using Proposition 10) and crushing the bead of size sk ,
say, into mk+1, where mk+1/sk ∼ PD(α, θ), arranging these as a new string of
beads (using Corollary 7), attaching them to the location of the bead, which now
splits an edge and the remainder of its string of beads into two, as illustrated in
Figure 3.

In the (α,1 − α) case, growth by crushing beads is closely connected to growth
rules for random recursive trees studied by Dong, Goldschmidt and Martin [6].
Specifically, we can associate with Rk a tree Vk with k vertices labeled by [k]
and infinitely many unlabeled vertices, all marked by weights; let V1 consist of a
root labeled 1 and infinitely many unlabeled children marked by the sequence m1
of masses of the string of beads on R1; to construct Vk+1 from Vk , identify the
unlabeled leaf in Vk marked by the size of the chosen bead sk , label it by k + 1
and add infinitely many children of vertex k + 1, marked by the sizes mk+1 of the
crushed bead. The limit V∞ is a recursive tree where all vertices have infinitely
many children. We show in this paper that the richer structure of (Rk,μk), that
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includes edges on which the atoms of μk are distributed, has a binary CRT as its
limit. In fact, V∞ can be constructed for general (α, θ), but the purpose of [6] was
to establish a coagulation-fragmentation duality that only works for (α,1 − α).
See also Blei, Griffiths and Jordan [5] for another application of nested Chinese
restaurant processes to define distributions on infinitely-deep, infinitely-branching
trees.

Section 4 will establish CRT limits for the general (α, θ)-tree growth process.

THEOREM 3. In the setting of Proposition 2, there exists a CRT T α,θ on the
same probability space such that we have for the delabeled trees Rα,θ,◦

k , k ≥ 1,
associated with Rα,θ

k , k ≥ 1, that

Rα,θ,◦
k → T α,θ almost surely as k → ∞, in the Gromov–Hausdorff topology.

In fact, CRTs such as T α,θ are equipped with a mass measure μ. We can con-
struct μ as the limit of the strings of beads that we constructed on Rα,θ,◦

k [see
Corollary 23], using Evans’ and Winter’s [9] weighted Gromov–Hausdorff con-
vergence that we recall in Section 4.1.

It would be nice to replace the two-step limiting procedure of Proposition 2 and
Theorem 3 for trees reduced to k leaves, letting first n → ∞ and then k → ∞, by
a single statement:

CONJECTURE 1. In the setting of Proposition 2, we have

n−αT α,θ,◦
n → T α,θ almost surely, as n → ∞,

for the Gromov–Hausdorff topology.

In [18] we used exchangeability to obtain fine tightness estimates and establish
convergence in probability for a wide class of exchangeable strongly sampling
consistent Markov branching trees. From this result we deduce a convergence in
distribution in the weakly sampling consistent cases θ = 1 − α and θ = 2 − α, but
without sampling consistency, this argument breaks down.

Our method to prove Theorem 3 uses an embedding of (T α,θ
n , n ≥ 1) and

(Rα,θ
k , k ≥ 1) in a given fragmentation CRT. For a rooted R-tree (T , ρ) and leaves

�1, . . . ,�k of T , denote by R(T ;�1, . . . ,�k) the smallest subtree of T that
contains ρ and �1, . . . ,�k . The family of binary fragmentation CRTs T is pa-
rameterized by a self-similarity parameter α > 0 and a dislocation measure ν(du),
a sigma-finite measure on [1/2,1) with

∫
[1/2,1)(1−u)ν(du) < ∞; see Section 4.1.

THEOREM 4. Let (T α,θ , ρ,μ) be a binary fragmentation CRT with root ρ and
mass distribution μ, associated with dislocation measure να,θ (du) = f ◦

α,θ (u) du,
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1/2 < u < 1, where

�(1 − α)f ◦
α,θ (u) = α

(
uθ(1 − u)−α−1 + u−α−1(1 − u)θ

)
+ θ

(
uθ−1(1 − u)−α + u−α(1 − u)θ−1)

for some 0 < α < 1 and θ ≥ 0. Then there exists, on a suitably extended prob-
ability space, a sequence (�n,n ≥ 1) of random leaves of T α,θ , such that
(R(T α,θ ;�1, . . . ,�k), k ≥ 1) has the same distribution as (Rα,θ

k , k ≥ 1).

With this embedding, the projection of the mass distribution μ of T α,θ onto
R(T α,θ ;�1, . . . ,�k) yields strings of beads with distributions as we constructed
them on Rα,θ

k . See Proposition 20.

2. An ordered Chinese Restaurant Process and regenerative composition
structures.

2.1. Regenerative compositions. We recall in this subsection some back-
ground on regenerative composition structures from [13]. A composition of n is
a sequence (n1, . . . , nk) of positive integers with sum n. A sequence of random
compositions Cn of n is called regenerative if, conditionally given that the first part
of Cn equals n1, the remaining parts of Cn define a composition of n − n1 with
the same distribution as Cn−n1 . Given any decrement matrix (q(n,m),1 ≤ m ≤ n),
there is an associated sequence Cn of regenerative random compositions of n de-
fined by specifying that q(n, ·) is the distribution of the first part of Cn. Thus, for
each composition (n1, . . . , nk) of n,

P
(
Cn = (n1, . . . , nk)

)
(2)

= q(n,n1)q(n − n1, n2) · · ·q(nk−1 + nk, nk−1)q(nk, nk).

We regard a composition of n as a distribution of identical balls in an ordered
sequence of boxes. For a sequence of compositions (Cn, n ≥ 1), let Ĉn denote the
composition of n obtained by removal of a ball chosen uniformly at random from
Cn+1, and discarding the empty box if the chosen ball is the only one in its box. We

call (Cn, n ≥ 1) weakly sampling consistent if Cn
d= Ĉn for every n, and strongly

sampling consistent if (Cn,Cn+1)
d= (Ĉn,Cn+1) for every n. A detailed theory of

the asymptotic behavior of weakly sampling consistent sequences of regenerative
compositions of n (known as composition structures) is provided in [13].

Now write

Cn = (Nn,1,Nn,2, . . . ,Nn,Kn) and let Sn,k =
k∑

j=1

Nn,j ,
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where Nn,j = 0 for j > Kn. According to Gnedin and Pitman [13], if (Cn, n ≥ 1)

is weakly sampling consistent, there is the following convergence in distribution
of random sets with respect to the Hausdorff metric on closed subsets of [0,1]:

{Sn,k/n, k ≥ 0} d−→
n→∞Z := {1 − exp(−ξt ), t ≥ 0}cl,(3)

where the left-hand side is the random discrete set of values Sn,k rescaled onto
[0,1], and the right-hand side is the closure of the range of 1 minus the exponential
of a subordinator (ξt , t ≥ 0). If (Cn, n ≥ 1) is strongly sampling consistent, then
the convergence (3) holds also with convergence in distribution replaced by almost
sure convergence. The collection of open interval components of [0,1] \ Z is then
called the regenerative interval partition associated with (Cn, n ≥ 1). In particular,
a strongly sampling consistent composition structure can be derived from Z by
uniform sampling in [0,1] using Z to separate parts.

The distribution of a subordinator (ξt , t ≥ 0) is encoded in its Laplace exponent
	 as

E(e−sξt ) = e−t	(s) where 	(s) = a + cs +
∫
(0,∞)

(1 − e−sx)
(dx),

for all s ≥ 0, t ≥ 0, and characteristics (a, c,
), where a ≥ 0, c ≥ 0 and 
 is a
measure on (0,∞) with

∫
(0,∞)(1 ∧ x)
(dx) < ∞.

2.2. An ordered Chinese Restaurant Process. We will now use an ordered ver-
sion of the CRP to construct an exchangeable random partition �α,θ of N governed
by the CRP as described in [24], jointly with a random total ordering of the blocks
(tables) of �α,θ . With a suitable encoding that we make precise, this random total
ordering is independent of �α,θ .

First recall the (α, θ) CRP for fixed 0 ≤ α ≤ 1 and θ ≥ 0. Customers labeled
by N := {1,2, . . .} seat themselves at tables labeled by N in the following way:
Customer 1 sits at table 1. Given that n customers have been seated at k different
tables, with ni customers at table i for i ∈ [k], customer n + 1

• sits at the ith occupied table with probability (ni − α)/(n + θ), for i ∈ [k];
• sits alone at table k + 1 with probability (kα + θ)/(n + θ).

The state of the system after n customers have been seated is a random partition
�n of [n]. By construction, these partitions are exchangeable, and consistent as n

varies so they induce a random partition �∞ of N whose restriction to [n] is �n.
When α = 1, �∞ consists of all singleton blocks since no customer ever sits at

an occupied table. So we assume henceforth that 0 ≤ α < 1. Basic facts are that
the block of �∞ associated with table j has an almost sure limiting frequency Pj ,
and that the Pj may be represented as

(P1,P2, . . .) = (W1,W 1W2,W 1W 2W3, . . .),(4)
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where the Wi are independent, Wi ∼ beta(1 − α, θ + iα) and Wi := 1 − Wi . Note
that the proportions (P1,P2, . . .) are in a size-biased random order, corresponding
to the fact that the table numbers label the blocks of �∞ in order of their least
elements.

Another basic fact, read from [24], is that the number Kn of occupied tables
after n customers (number of blocks of �n) has the limiting behavior

Kn/nα a.s.−→Lα,θ = �(1 − α) lim
j→∞ j (P

↓
j )α for 0 < α < 1,(5)

where (P
↓
j , j ≥ 1) is the ranked sequence of proportions (Pj , j ≥ 1), and Lα,θ is

a random variable with the tilted Mittag–Leffler distribution with moments

E(Ln
α,θ ) = �(θ + 1)

�(θ/α + 1)

�(θ/α + n + 1)

�(θ + nα + 1)
(n ≥ 0).(6)

This Lα,θ is the local time variable associated with a regenerative PD(α, θ) interval
partition of [0,1], also called its α-diversity. For α = 0, we have Kn/ log(n) → θ

almost surely.
We now put a random total order < on the tables as follows. Independently of

the process of seating of customers at tables, let the tables be ordered from left to
right according to the following scheme. Put the second table to the right of the
first with probability θ/(α + θ) and to the left with probability α/(α + θ). This
creates three possible locations for the third table: put it

• to the left of the first two tables with probability α/(2α + θ);
• between the first two tables with probability α/(2α + θ);
• to the right of the first two tables with probability θ/(2α + θ).

And so on: given any one of k! possible orderings of k tables from left to right,
there are k + 1 possible places for the (k + 1)st table to be squeezed in. The place
to the right of all k tables is assigned probability θ/(kα + θ); each of the other k

places is assigned probability α/(kα + θ).
Let σk(i) denote the location of the ith table relative to the first k tables, count-

ing from 1 for the left-most table to k for the right-most. So σk is a random permu-
tation of [k]. The sequence of permutations (σk, k ≥ 1) is consistent in the sense
that if σk(i) < σk(j) for some k ≥ i ∨ j := max{i, j}, then the same is true for all
k ≥ i ∨ j . Thus, the sequence (σk, k ≥ 1) specifies a random total order on N, call
it the table order. Given σ1, . . . , σk ,

• σk+1(k + 1) = k + 1 with probability θ/(kα + θ);
• σk+1(k + 1) = i with probability α/(kα + θ) for each i ∈ [k]
and

σk+1(j) = σk(j) + 1
(
σk+1(k + 1) ≤ σk(j)

)
for j ∈ [k].(7)
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Thus, by construction, (σk, k ≥ 1) is independent of the (unordered) random parti-
tion �∞ of N, with

P(σk = π) = (θ/α)R(π)

[θ/α]k
for each permutation π of [k], where

[x]k = x(x + 1) · · · (x + k − 1) = �(x + k)/�(x)

and

R(π) :=
k∑

i=1

1(πj > πi for all 1 ≤ i < j)

is the number of record values in the permutation π . Note that for k ≥ 2 the distri-
bution of σk is uniform iff α = θ . The formulas apply as suitable limit expressions:
if α = 0 and θ > 0, tables are ordered in order of appearance and σk is the identity
permutation (there is only one table for θ = 0); if 0 < α < 1 and θ = 0, the first
table remains right-most, and the σk is uniform on permutations with π(1) = k.
See [21, 23] for related work.

In the sequel, we will repeatedly use generalized urn scheme arguments, so let
us briefly review the main points here. See [22] and [24], Section 2.2, for ref-
erences. Recall that the distribution of a random vector � = (�1, . . . ,�m) with
�1 + · · · + �m = 1 and density

g�1,...,�m−1(x1, . . . , xm−1)

= �(γ1 + · · · + γm)

�(γ1) · · ·�(γm)
x

γ1−1
1 · · ·xγm−1−1

m−1 (1 − x1 − · · · − xm−1)
γm−1

on {(x1, . . . , xm−1) :x1, . . . , xm−1 ≥ 0, x1 + · · ·+ xm−1 ≤ 1} is called the Dirichlet
distribution with parameters γ1, . . . , γm > 0.

LEMMA 5. (i) Consider a weight vector γ = (γ1, . . . , γm) and a process
(H (n), n ≥ 0) with H(0) = 0, where H(n) = (H

(n)
1 , . . . ,H

(n)
m ) evolves according

to the updating rule to increase by 1 a component chosen with probabilities pro-
portional to current weights γ + H(n):

P
(
H(n+1) = H(n) + ei | H(1), . . . ,H (n))

= γi + H
(n)
i

γ1 + · · · + γm + n
a.s., i = 1, . . . ,m,

where ei is the ith unit vector. Then H(n)/n
a.s.−→

n→∞� ∼ Dirichlet(γ1, . . . , γm) and

P
(
H(n+1) = H(n) + ei | H(1), . . . ,H (n),�

) = �i a.s., i = 1, . . . ,m,

which means that the components of increase are conditionally independent and
identically distributed according to the limiting weight proportions �.
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(ii) A vector � ∼ Dirichlet(γ1, . . . , γm) can be represented as

(�1, . . . ,�m) = (W1,W 1W2,W 1W 2W3, . . . ,

W 1 · · ·Wm−2Wm−1,W 1 · · ·Wm−2Wm−1),

where the Wi are independent, Wi ∼ beta(γi, γi+1 + · · · + γm) and Wi := 1 − Wi .

If γ ∈ N
m, the process H arises when drawing from an urn with initially γi balls

of color i, always adding a ball of the color drawn.

2.3. The composition of table sizes in the ordered Chinese Restaurant Process.
Let �̃n denote the random ordered partition of [n] induced by ordering the blocks
of �n according to σKn , where Kn is the number of blocks of �n. Let Cn denote
the random composition of n defined by the sizes of blocks of �̃n. If C∗

n is the
sequence of sizes of blocks of �n, in order of least elements (or table label), and
Kn = k, the j th term of C∗

n is the σk(j)th term of Cn.

PROPOSITION 6. (i) For each (α, θ) with 0 < α < 1 and θ ≥ 0 the sequence of
compositions (Cn, n ≥ 1) defined as above is regenerative, with decrement matrix

qα,θ (n,m) =
(

n

m

)
nα − mα + mθ

n

[1 − α]m−1

[n − m + θ ]m (1 ≤ m ≤ n).(8)

(ii) This sequence of compositions (Cn, n ≥ 1) is weakly sampling consistent,
but strongly sampling consistent only if α = θ .

(iii) Let Sn,j be the number of the first n customers seated in the j left-most
tables. Then there is the following almost sure convergence of random sets with
respect to the Hausdorff metric on closed subsets of [0,1]:

{Sn,j /n, j ≥ 0} a.s.−→
n→∞Zα,θ := {1 − exp(−ξt ), t ≥ 0}cl,(9)

where the left-hand side is the random discrete set of values Sn,j rescaled onto
[0,1], and the right-hand side Zα,θ is by definition the closure of the range of 1
minus the exponential of the subordinator (ξt , t ≥ 0) with Laplace exponent

	α,θ (s) = s�(s + θ)�(1 − α)

�(s + θ + 1 − α)
for θ > 0 and

(10)

	α,0(s) = �(s + 1)�(1 − α)

�(s + 1 − α)
.

(iv) Also, if Ln(u) denotes the number of j ∈ {1, . . . ,Kn} with Sn,j /n ≤ u, then

lim
n→∞ sup

u∈[0,1]
|n−αLn(u) − L(u)| = 0 a.s.,(11)

where L := (L(u),u ∈ [0,1]) is a continuous local time process for Zα,θ , meaning
that the random set of points of increase of L is Zα,θ almost surely.
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NOTE. Various characterizations of L can be given in terms of Zα,θ and ξ .
See below.

PROOF OF PROPOSITION 6. (i) That (Cn) is regenerative is proved by induc-
tion on n. The case n = 1 is trivial, and if (Cm,1 ≤ m ≤ n) is regenerative, then, by
the seating rule, three scenarios can occur. Given customer n+1 sits alone at a new
first table, the remaining composition Cn is trivially distributed as Cn. Given cus-
tomer n+ 1 sits down at the existing first table of size n1, the induction hypothesis
implies that the remaining composition is distributed as Cn−n1 , as required. Given
customer n+1 sits neither at a new first nor at the existing first table of size n1, the
seating rules are such that he chooses his seat in the remaining composition as if
he were customer n− n1 + 1 for composition Cn−n1 , and the induction hypothesis
allows to conclude that the resulting composition of n − n1 + 1 is distributed as
Cn−n1+1, as required.

Denote by q(n,m) the probability that the first block in Cn is of size m. Then,
the seating rules imply that

q(n + 1,m) = q(n,m − 1)
m − 1 − α

n + θ
+ q(n,m)

n + θ − m

n + θ
(12)

+ α

n + θ
1{m=1}, 1 ≤ m ≤ n + 1,

where q(n,m) = 0 for m > n or m ≤ 0. It is enough to check that the matrix given
in (8) solves (12) for m ≥ 2, that is to show(

n + 1
m

)
nα + α − mα + mθ

n + 1

[1 − α]m−1

[n + 1 − m + θ ]m
=

(
n

m − 1

)
nα − mα + α + mθ − θ

n

[1 − α]m−2

[n − m + 1 + θ ]m−1

m − 1 − α

n + θ

+
(

n

m

)
nα − mα + mθ

n

[1 − α]m−1

[n − m + θ ]m
n + θ − m

n + θ
.

Obvious cancellations reduce this to

n(nα + α − mα + mθ) = m(nα − mα + α + mθ − θ)

+ (n + 1 − m)(nα − mα + mθ),

which is easily verified. The decrement matrix (8) was derived in [13], Section 8, as
that associated with the unique regenerative composition structure whose interval
partition of [0,1] has ranked lengths distributed according to the Poisson–Dirichlet
distribution with parameters (α, θ). Thus, formula (8) gives the decrement matrix
of a weakly sampling consistent family of regenerative compositions.

(ii) Weak sampling consistency was a by-product of the proof of (i). Let us show
that (Cn, n ≥ 1) is strongly sampling consistent if and only if α = θ . It is known
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that the compositions induced by independent uniform variables separated by the
zero-set of a (2−2α)-dimensional Bessel bridge have the dynamics of the Chinese
Restaurant Process with seating plan (α,α) and a uniform block order. Also, this
construction using a Bessel bridge generates a strongly sampling consistent com-
position structure. On the other hand, the ordered version of the Chinese Restau-
rant Process also induces a uniform block order for α = θ . Conversely, calculate
the following probabilities:

P
(
C2 = (1,1)

) = α + θ

1 + θ
, P

(
C2 = (2)

) = 1 − α

1 + θ
,

P
(
C3 = (2,1)

) = (α + 2θ)(1 − α)

(1 + θ)(2 + θ)
,

and note that strong sampling consistency requires

(1 − α)θ

(1 + θ)(2 + θ)
= P

(
C2 = (2),C3 = (2,1)

) = (α + 2θ)(1 − α)

(1 + θ)(2 + θ)

1

3

⇐⇒ α = θ.

(iii) Now (3) yields convergence in distribution in (9), and (10) was derived
in [13], formula (41). To get the almost sure convergence in (9), observe that for
each i ≥ 1, the proportion P

(n)
i of customers at the ith table in order of appearance

corresponds to the size of a gap in {Sn,j /n, j ≥ 1} and converges to Pi almost

surely as n → ∞. As for the gap (G
(n)
i ,D

(n)
i ) itself, where D

(n)
i = G

(n)
i + P

(n)
i ,

a simple argument allows to also deduce almost sure convergence as n → ∞,

G
(n)
i = Sn,σKn(i)−1

n
=

∞∑
j=1

P
(n)
j 1{σj∨i (j)<σj∨i (i)}

→
∞∑

j=1

Pj 1{σj∨i (j)<σj∨i (i)} =: Gi,

and, hence, D
(n)
i → Gi + Pi =: Di , using the consistent construction of the se-

quence (σk, k ≥ 1) and the almost sure convergence of frequencies of all classes
of �∞.

In particular, on a set of probability one, the following holds. For each ε > 0 the
locations of all gaps of length Pi > ε converge, and a simple argument shows that
we can find n0 ≥ 1 such that, for all n ≥ n0,

B({Sn,j /n, j ≥ 1}, ε) ⊃ {Gi,Di, i ≥ 1} and

B({Gi,Di, i ≥ 1}, ε) ⊃ {Sn,j /n, j ≥ 1},
where B(S, ε) = {x ∈ [0,1] : |x − y| ≤ ε for some y ∈ S} for any Borel set S ⊂
[0,1]. We deduce the almost sure Hausdorff convergence of (9). Cf. the arXiv
version [11] of [12] for a similar argument.
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(iv) As for convergence of local time processes, the convergence (5) of
Ln(1)/nα = Kn/nα to L(1) equal to the α-diversity of the limiting PD(α, θ) is
established in [24]. Look next at a time u in the random interval (G1,D1) associ-
ated with the first table. The dynamics of the table ordering imply that the numbers
of tables to the left of the first table develop according to the urn scheme associated
with sampling from a beta(1, θ/α) variable β1,θ/α which is independent of L(1).
It follows that for u in (G1,D1) there is almost sure convergence of Ln(u)/nα to
β1,θ/αL(1). Similarly, if we look at the first k tables, and count how numbers of
following tables fall in the k + 1 gaps they create, we see the dynamics associated
with sampling from a Dirichlet distribution with its first k parameters equal to 1
and the last equal to θ/α; cf. Lemma 5. As k → ∞, the associated cumulative
Dirichlet fractions are almost surely dense in [0,1]. It follows that we get a.s. con-
vergence in (11) for all u in the random set of times

⋃
j≥1(Gj ,Dj ), and that the

countable random set of a.s. distinct limit values from these intervals is a.s. dense
in [0,L(1)]. The conclusion then follows by a standard argument; cf. [15]. �

It is worth recording some consequences of this argument.

COROLLARY 7. The collection of intervals⋃
j≥1

(Gj ,Dj )

for (Gj ,Dj , j ≥ 1) created from the size-biased frequencies (Pj , j ≥ 1) and the
independent sequence of random permutations (σk, k ≥ 1) specified in (7) provides
an explicit construction of a regenerative (α, θ) interval partition of [0,1].

COROLLARY 8. Construct a random interval partition of [0,1] as follows. Let
(G1,D1) be such that the joint law of (G1,D1 − G1,1 − D1) is Dirichlet(α,1 −
α, θ) for some 0 < α < 1 and θ ≥ 0. Given (G1,D1), let this be one interval com-
ponent, let the interval components within [0,G1] be obtained by linear scaling of
a regenerative (α,α) partition, and let the interval components within [D1,1] be
obtained by linear scaling of a regenerative (α, θ) partition. Then the result is a
regenerative (α, θ) partition.

PROOF. It is clear by construction that the split of table sizes into those to the
left of table 1, table 1, and those to the right of table 1 is a Dirichlet(α,1 − α, θ)

split (cf. Lemma 5), and that given this split the dynamics of the composition to
the left of table 1 and the composition to the right of table 1 produce limits as
indicated. The conclusion now follows from the proposition. �

The particular cases θ = α and θ = 0 of Corollary 8 are known [23], Propo-
sition 15. If θ = 0, then (G1,D1) = (G1,1) is the last component interval of
[0,1] \Zα,0 where Zα,0 can be constructed as the restriction to [0,1] of the closed
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range of a stable subordinator of index α. It is well known that the distribution of
G1 is then beta(1 − α,α), and that the restriction of Zα,0 to [0,G1] is a scaled
copy of Zα,α which can be defined by conditioning Zα,0 on 1 ∈ Zα,0. Otherwise
put, Zα,0 and Zα,α can be constructed as the zero sets of a Bessel process and
standard Bessel bridge of dimension 2 − 2α. In the bridge case, (G1,D1) can be
represented as the interval covering a uniform random point independent of Zα,α ,
and (G1,D1) splits Zα,α into rescalings to [0,G1] and [D1,1] of two independent
copies of itself.

As indicated above, the local time process (L(u),0 ≤ u ≤ 1) can be described
directly in terms of ξ or Zα,θ : in the setting of Proposition 6, we have

L
(
1 − exp(−ξt )

) = �(1 − α)

∫ t

0
exp(−αξs) ds;(13)

cf. [14], Section 5. The right-continuous inverse of L satisfies

L−1(�) = 1 − exp(−ξT�
) where T� = �(1 − α)

∫ �

0

dh

(1 − L−1(h))α
.(14)

In fact, (1 − L−1(�),0 ≤ � ≤ L(1)) is a self-similar Markov process killed when
reaching zero, so (13) and (14) are Lamperti’s formulas [20] relating self-similar
Markov processes and Lévy processes. This observation will tie in nicely with
well-known properties of self-similar fragmentations that we introduce in Sec-
tion 4.1. Furthermore, we will use the Stieltjes measure dL−1 as a discrete measure
on [0,L(1)] to turn this interval into a string of beads in the sense of Definition 4.

2.4. Finding the first table in the composition of table sizes. Let (�̃n) be the
sequence of random ordered partitions of n induced by the ordered CRP, and Cn the
regenerative composition structure of block sizes of �̃n studied in Proposition 6.
According to (2), for each particular composition (n1, . . . , n�) of n,

P
(
Cn = (n1, . . . , n�)

) = pα,θ (n1, . . . , n�)
(15)

:=
�∏

j=1

qα,θ (Nj , nj ) with Nj :=
�∑

i=j

ni

for qα,θ as in (8). Now, for each 1 ≤ k ≤ �, we wish to describe the conditional
probability given this event that the first customer sits at the kth of these tables,
which has size nk .

LEMMA 9. In the random ordered partition �̃n of [n], given that the left-most
block in this ordered partition is of size n1, the probability that it contains 1 is

n1θ

n1θ + N2α
(N2 := n − n1).(16)
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Given that the composition Cn of block sizes of �̃n is (n1, . . . , n�), for 1 ≤ k ≤ �

the conditional probability that 1 falls in the kth block of size nk is

p
(n)
k

k−1∏
j=1

(
1 − p

(n)
j

)
for p

(n)
j = njθ

nj θ + Nj+1α
with Nj+1 :=

�∑
i=j+1

ni.(17)

In particular, if θ = α, then �̃n is exchangeable, and the size of the block contain-
ing 1 is a size-biased pick from the composition Cn of block sizes.

PROOF. It is enough to describe the conditional probability, given that the
first block has size n1, that this block contains 1. For given that this block does
not contain 1, the dynamics of the ordered CRP are such that the remainder of the
ordered partition �̃n, after order-preserving bijective relabeling (keeping label 1
fixed), makes a copy of �̃n−n1 . The probability that the first block has size n1 is
found from (8) to be

qα,θ (n,n1) =
(

n − 1
N2

) [1 − α]n1−1

[θ + N2]n1

(n1θ + N2α)

n1
(N2 := n − n1)(18)

for 1 ≤ n1 ≤ n. In particular, for n1 = n, the probability that there is just one
block, [n], is [1 − α]n−1/[1 + θ ]n−1. This can also be seen directly from the se-
quential construction of the Chinese Restaurant. The denominator is the product
of all weights for n − 1 choices, and the numerator is the product of weights for
each new customer sitting at the same table as all previous ones. The same direct
argument shows that the probability that 1 ends up in the left-most block along
with n1 − 1 other integers is(

n − 1
N2

) [1 − α]n1−1[θ ]N2

[1 + θ ]n−1
,(19)

where the first factor is the number of ways to choose which of the n − 1 integers
besides 1 are not in the first block, and, whatever this choice, the factors [1−α]n1−1
and [θ ]N2 provide the product of weights of relevant remaining choices, and the
denominator is the product of total weights. Look at the ratio of (19) and (18) to
conclude. �

The case θ = 0 deserves special mention. The probability of creating a new
table to the right of the first k tables is always zero. The effect of this is that 1
always remains in the right-most block of the ordered partition. Formula (16) in
this case must be interpreted by continuity at θ = 0, to give 0 for 1 ≤ n1 ≤ n − 1
and 1 for n1 = n. This case is exceptional in that the size of the right-most table of
the ordered restaurant has a strictly positive limiting proportion of all customers,
with beta(1 − α,α) distribution. This can be read, for example, from (4).

In all other cases the proportion at the right-most table converges almost surely
to zero, as a consequence of (3). If α > 0, the fraction in the left-most table tends
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to 0. If α = 0 and θ > 0, the fraction in the left-most table has a limiting beta(1, θ)

distribution.
As n tends to infinity, the rescaled compositions Cn become a limiting interval

partition Zα,θ . Let us now study which interval of Zα,θ is the limit of the block
containing 1.

PROPOSITION 10. Let θ > 0. Given Zα,θ = {1 − exp(−ξt ), t ≥ 0}cl, the con-
ditional probability for the interval (1 − exp(−ξt−),1 − exp(−ξt )) to be the limit
of the block containing 1 is

p(e−�ξt )
∏
s<t

(
1 − p(e−�ξs )

)
with p(x) = (1 − x)θ

(1 − x)θ + xα

for all t ≥ 0 with �ξt := ξt − ξt− > 0.

PROOF. For the random ordered partition �̃n = (�̃n(1), . . . , �̃n(Ln(1))) and
u ∈ (0,1), we deduce from Lemma 9, in the notation of Proposition 6, that

P
(
1 ∈ �̃n(Ln(u))|Zn

α,θ

) = p
(n)
Ln(u)

Ln(u)−1∏
j=1

(
1 − p

(n)
j

)
a.s.,

where Zn
α,θ := {Sn,j /n, j ≥ 0} → Zα,θ = [0,1] \ ⋃

i∈I (gi, di) almost surely, with
respect to the Hausdorff metric on closed subsets of [0,1]. We will refer to intervals
Ii = (gi, di) as parts of Zα,θ . Denote gn(v) = sup{w ≤ v :w ∈ Zn

α,θ } and dn(v) =
inf{w > v :w ∈ Zn

α,θ } for v ∈ (0,1), similarly, g(v) and d(v) for Zα,θ . For each
fixed v ∈ (0,1), we have

p
(n)
Ln(v) = (dn(v) − gn(v))θ

(dn(v) − gn(v))θ + (1 − dn(v))α

→ (d(v) − g(v))θ

(d(v) − g(v))θ + (1 − d(v))α
=: pg(v) a.s.

Now fix ε > 0, then there is M so that there are (“big”) parts I1, . . . , IM of Zα,θ

that leave less than θε/8R uncovered, where R = (1 − d(u))α. Using the a.s.
convergence of left and right end points, a standard argument now shows that there
is N0 ≥ 0 such that, for all n ≥ N0,∣∣∣∣∣log

(
p

(n)
Ln(u)

) +
Ln(u)−1∑

j=1

log
(
1 − p

(n)
j

)

− log
(
pg(u)

) − ∑
i∈I:gi<g(u)

log(1 − pgi
)

∣∣∣∣∣ < ε,

since∣∣∣∣log
(

(1 − d(v))α

(d(v) − g(v))θ + (1 − d(v))α

)∣∣∣∣ ≤ (d(v) − g(v))θ

(1 − d(v))α
≤ (d(v) − g(v))θ

(1 − d(u))α
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allows to jointly bound the sums of all small parts. Therefore,

P
(
1 ∈ �̃n(Ln(u))|Zn

α,θ

) = p
(n)
Ln(u)

Ln(u)−1∏
j=1

(
1 − p

(n)
j

)

→ pg(u)

∏
i∈I:gi<g(u)

(1 − pgi
) a.s.

Now we use dominated convergence to deduce for any bounded continuous func-
tion f on the space of closed subsets of [0,1] (equipped with the Hausdorff metric)
that

E
(
f (Zn

α,θ )P
(
1 ∈ �̃n(Ln(u))|Zn

α,θ

)) → E

(
f (Zα,θ )pg(u)

∏
i∈I:gi<g(u)

(1 − pgi
)

)
.

However, we also have

E
(
f (Zn

α,θ )1{1∈�̃n(Ln(u))}
) → E

(
f (Zα,θ )1{u∈(G1,D1)}

)
= E

(
f (Zα,θ )P

(
u ∈ (G1,D1)|Zα,θ

))
,

since the distributions of G1 and D1 are continuous or degenerate (G1 = 0 or
D1 = 1) by Corollary 8. We identify

pg(u)

∏
i∈I:gi<g(u)

(1 − pgi
)(20)

as a version of the conditional probability P(u ∈ (G1,D1)|Zα,θ ) for all u ∈ (0,1).
Finally, conditionally given Zα,θ , each of the countable number of times t such

that ξt− < ξt is associated with an interval (1 − exp(−ξt−),1 − exp(−ξt )) of
u-values to which (20) applies, so the conditional distribution of (G1,D1) given
Zα,θ is as claimed. �

The limiting interval in Zα,θ of the block containing 1 corresponds to a jump of
the (for θ = 0 killed by an infinite jump at an exponential time e) subordinator ξ .
Denote the time of this jump by τ . It can now be checked directly that the boundary
points (1 − exp(−ξτ−),1 − exp(−ξτ )) describe a Dirichlet(α,1 − α, θ) split of
[0,1] as shown in Corollary 8. Standard thinning arguments for the Poisson point

process (�ξt , t ≥ 0) show that ξτ− d= ξ0
τ , where ξ0 is a subordinator independent

of τ with Lévy measure (1 − p(e−x))
α,θ (dx) and Laplace exponent

	0(s) =
∫ ∞

0
(1 − e−sx)

(
1 − p(e−x)

)

α,θ (dx)

so that

E(e−sξτ−) =
∫ ∞

0
e−t	0(s)λe−λt dt = λ

	0(s) + λ
,
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where λ = �(1−α)�(θ +1)/�(θ +1−α) is the rate of the exponential variable τ .
For simplicity, let θ > 0. The case θ = 0 is similar, taking into account the

killing at the infinite jump. We find the Lévy measure 
α,θ (dx) of ξ from
	α,θ (s) = ∫

(0,∞)(1 − e−sx)
α,θ (dx) with 	α,θ given in (10) (cf. also [13], for-
mula (41)) and change variables u = e−x to get

	0(s) = 	α,θ (s) − θ

∫ 1

0
(1 − us)uθ−1(1 − u)−α du

= sB(s + θ,1 − α) − θ
(
B(θ,1 − α) − B(s + θ,1 − α)

)
= (s + θ)B(θ + s,1 − α) − λ, where B(a, b) = �(a)�(b)/�(a + b),

and, hence,

E(e−sξτ−) = θ

θ + s

�(θ)�(s + θ + 1 − α)

�(θ + 1 − α)�(s + θ)
.

These are the moments of a beta(α, θ + 1 − α) distribution in accordance with
Corollary 8. Similarly, �ξτ has distribution

1

λ
p(e−x)
α,θ (dx)

and so the interval size exp(−ξτ−)(1 − exp(−�ξτ )) relative to the remaining pro-
portion exp(−ξτ−) can be seen to be independent of exp(−ξτ−) and to have a
beta(1 − α, θ) distribution. By Lemma 5(b), this establishes the Dirichlet(α,1 −
α, θ) distribution of Corollary 8.

3. Markov branching models and weighted discrete R-trees with edge
lengths.

3.1. Markov branching models. Our formalism for combinatorial trees fol-
lows [18], Section 2. For n = 1,2, . . . , let T ◦

n denote a random unlabeled rooted
binary tree with n leaves. The sequence (T ◦

n , n ≥ 1) is said to have the Markov
branching property [2, 10] if conditionally given that the first split of T ◦

n is into
tree components whose numbers of leaves are m and n−m, these components are
like independent copies of T ◦

m and T ◦
n−m, respectively. The distributions of the first

splits of T ◦
n , n ≥ 1, are denoted by (q◦(m,n − m),1 ≤ m ≤ n/2) and referred to

as the splitting rule of (T ◦
n , n ≥ 1).

For a finite set B , let TB be the set of binary trees with leaves labeled by B .
For Tn ∈ T[n] and B ⊂ [n], let Tn,B ∈ TB be the reduced subtree of Tn spanned by
leaves in B , and let T̃n,B ∈ T[#B] be the image of Tn,B after relabeling of leaves by
the increasing bijection from B to [#B]. It will be convenient to label each branch
point of Tn by the set of leaf labels in the subtree above the branch point. A tree
Tn ∈ T[n] is then uniquely represented by a collection of subsets of [n]. Such a tree
has the natural interpretation as a fragmentation tree, where blocks (i.e. labels of
branch points, [n] for the first branch point) fragment as one passes from one level
to the next. We will write B ∈ Tn if Tn has a vertex with label B .
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PROPOSITION 11. Let (T α,θ
n , n ≥ 1) for some 0 ≤ α ≤ 1 and θ ≥ 0 be an

(α, θ)-tree growth process as defined in Definition 3. Then:

(a) the delabeled process (T α,θ,◦
n , n ≥ 1) has the Markov branching property

with splitting rule

q◦(m,n − m) = qα,θ (n − 1,m) + qα,θ (n − 1, n − m), 1 ≤ m < n/2,

q◦(n/2, n/2) = qα,θ (n − 1, n/2), if n is even,

where qα,θ (n,m) is given in (8);
(b) the labeled process (T α,θ

n , n ≥ 1) is regenerative in the sense that for each
n ≥ 1, conditionally given that the first split of T α,θ

n is by a partition {B, [n] \B} of
[n] with #B = m, the relabeled subtrees T̃

α,θ
n,B and T̃

α,θ
n,[n]\B are independent copies

of T α,θ
m and T

α,θ
n−m, respectively.

PROOF. For notational convenience, we drop superscripts α, θ . Recall from
the Introduction the identification (1) of leaf k + 1 of (Tn, n ≥ 1) and customer
k of the regenerative composition structure (Cn, n ≥ 1) of the ordered Chinese
Restaurant Process described in Proposition 6, for all k ≥ 1. This identifies Cn−1
as the composition of subtree sizes growing off the spine from the root to leaf 1.
In particular, we see that for each n ≥ 2 the distribution q◦ stated here applies as
splitting rule at the first branch point of Tn and indeed on the spine of Tn.

To establish the Markov branching property, proceed by induction. T ◦
1 , T ◦

2 and
T ◦

3 trivially have the Markov branching property. Assume that the property is true
for T ◦

1 , . . . , T ◦
n for some n ≥ 3. Then, by the growth procedure, two scenarios can

occur. Given n+ 1 attaches to the trunk, the subtrees of T ◦
n+1 are T ◦

n and the deter-
ministic tree with single leaf n+1, they are trivially conditionally independent and,
by the induction hypothesis, have distributions as required. Given n + 1 attaches
in one or the other subtree of T ◦

n of sizes m and n − m, the induction hypoth-
esis yields the conditional independence and Markov branching distributions for
these subtrees, and also yields that the insertion of a new leaf into one of these trees
gives the corresponding Markov branching distribution of size m+1 or n−m+1,
respectively, by the recursive nature of the growth procedure.

This proves (a). The induction is easily adapted to also prove (b). Just note that
the (α, θ)-tree growth rules are invariant under increasing bijections from B to
[#B]. �

3.2. Sampling consistency and the proof of Proposition 1. Recall that a se-
quence of trees (T ◦

n , n ≥ 1) is weakly sampling consistent if uniform random re-
moval of a leaf of T ◦

n+1 yields a reduced tree with the same distribution as T ◦
n , for

each n ≥ 1.
For (T α,θ

n , n ≥ 1) with splitting rules q◦(m,n−m) as before (with m ≤ n−m),
to match notation with Ford [10], Proposition 41, introduce the split probability
functions
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• qbias(x, y) defined so that qbias(m,n−m) = qα,θ (n−1,m) [see (8)] is the prob-
ability that [n] is first split into pieces of size m and n − m, for 1 ≤ m ≤ n − 1,
where we are supposing that the piece of size m does not contain label 1; so
qbias(x, y) = qα,θ (x + y − 1, x);

• qsym(x, y) = 1
2qbias(x, y) + 1

2qbias(y, x) for the symmetrization of qbias. Then
we have qsym(x, y) = 1

2q◦(x, y) for all x < y and qsym(x, x) = q◦(x, x) =
qbias(x, x) for all x ≥ 1.

Ford uses symmetrized splitting rules to grow unlabeled planar trees. For us they
are useful for a weak sampling consistency criterion: let

dsym(x, y) := qsym(x, y)

(
1 − qsym(1, x + y) + qsym(x + y,1)

x + y + 1

)

− qsym(x + 1, y)
x + 1

x + y + 1
− qsym(x, y + 1)

y + 1

x + y + 1
.

Ford [10], Proposition 41, showed that (T ◦
n ) is weakly sampling consistent if and

only if dsym(x, y) = 0 for all positive integers x and y. He verified this property
for the (α,1 − α)-trees.

PROOF OF PROPOSITION 1(c). For the (α, θ) splitting rules we obtain

dsym(1,1) = dsym(1,2) = 0,

but

dsym(1,3) = (1 − α)(1 − α − θ)(2 − α − θ)(3 − α + θ)(α + θ)

10(1 + θ)2(2 + θ)2(3 + θ)
,(21)

which shows that a necessary condition for (T ◦
n ) to be weakly sampling consistent

is that θ equals either 1−α or 2−α. Ford showed that θ = 1−α produces weakly
sampling consistent trees. The proof of part (c) of Proposition 1 is completed by
the following lemma. �

LEMMA 12. For θ = 1 − α and θ = 2 − α, the symmetrized splitting rules
are the same. Therefore, the (α,2 − α) tree growth process is weakly sampling
consistent.

PROOF. For convenience of notation in this proof, denote the nonsymmetric
splitting rules, for Ford’s case θ = 1 − α by

qF
n (m,n − m) =

(
n − 1

m

)
m + (n − 1 − 2m)α

n − 1

�(m − α)�(n − m − α)

�(1 − α)�(n − α)

[see (8)], and for θ = 2 − α by

qX(m,n − m) =
(

n − 1
m

)
2m + (n − 1 − 2m)α

n − 1

�(m − α)�(n − m + 1 − α)

�(1 − α)�(n + 1 − α)
.
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Now the claim is that
1
2qX(m,n − m) + 1

2qX(n − m,m) = 1
2qF (m,n − m) + 1

2qF (n − m,m),

which after the obvious cancellations is equivalent to

(n − m)
(
2m + (n − 1 − 2m)α

)
(n − m − α)

+ m
(
2n − 2m + (2m − n − 1)α

)
(m − α)

= (n − m)
(
m + (n − 1 − 2m)α

)
(n − α)

+ m
(
n − m + (2m − n − 1)α

)
(n − α),

and this is easily checked. �

The nonsymmetrized rules are equal only if α = 1, trivially, since this is the
deterministic comb model, where all leaves connect to a single spine. In fact, it
can be shown that these coincidences of symmetrized splitting rules are the only
such coincidences, in particular, for fixed α, the splitting rules as a path in the
space of splitting rules, parameterized by θ ≥ 0, have precisely one loop.

Let us turn to strong sampling consistency and exchangeability.

PROOF OF PROPOSITION 1(a)–(b). Assume that (Tn, n ≥ 1) is strongly sam-
pling consistent for some θ ∈ {1−α,2−α}, then it is not hard to show that also the
regenerative composition structure (Cn, n ≥ 1) generated by the associated ordered
Chinese Restaurant Process is strongly sampling consistent. By Proposition 6, this
implies θ = α and, hence, θ = α = 1/2. On the other hand, it is well known that
this case is strongly sampling consistent. This establishes part (b) of Proposition 1.

Part (a) of Proposition 1 is easily checked for n = 3. The shape T ◦
3 is determin-

istic, as there is only one rooted binary tree with three leaves. This tree has one
leaf at height 2 and two leaves at height 3. Denote the label of the leaf at height 2
by M . Then exchangeability requires

1

3
= P(M = 2) = θ

1 + θ
⇒ θ = 1

2

and for θ = 1/2,

1

3
= P(M = 3) = α

1 + θ
= 2α

3
⇒ α = 1

2
,

using the growth rules. This completes the proof of Proposition 1. �

We conclude this subsection by a study of boundary cases. For α = 1, we have
a comb model (all leaves directly attached to a single spine) with nonuniform la-
beling (for θ = 1, leaves 2,3, . . . are exchangeable, and for θ = 0, leaves 3,4, . . .

are exchangeable), but strongly sampling consistent as the delabeled trees are de-
terministic. The trees grow linearly in height.
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For α = 0, we get a tree growth model that one might call internal boundary
aggregation on the complete binary tree in a beta(1, θ) random environment. In-
formally, attach n + 1 to Tn at the terminal state of a walker climbing the tree by
flipping the beta(1, θ) coin corresponding to each branch point until he reaches a
leaf of Tn. Insert n + 1 by replacing the leaf by a new branch point connected to
the leaf and n + 1.

More formally, let X = ⋃
n≥0{0,1}n be the complete rooted binary tree, where

{0,1}0 = ∅ is the empty word and elements of {0,1}n are identified as binary
words of length n. Mark all vertices of X by independent beta(1, θ) random vari-
ables Wx , x ∈ X. Consider the binary tree growth process with edge selection rule
as follows:

(i)W Let a walker start from Z0 = [n], with X0 = ∅ (for k = 0), with steps as in
(ii)W .

(ii)W Given Tn and a word Xk , let Xk+1 ∼ Bernoulli(WXk
). If Xk+1 = 1 and Zk

has children B and Zk \ B , where B contains the smallest label of Zk , set
Zk+1 = B , otherwise Zk+1 = Zk \ B . If #Zk+1 ≥ 2, repeat (ii)W . Otherwise
select edge Zk+1 = {Ln+1}.

In our formalism where Tn is a collection of subsets of [n], the growth step can be
made explicit as Tn+1 = {B ∪ {n + 1} :Ln+1 ∈ B ∈ Tn} ∪ {B :Ln+1 /∈ B ∈ Tn} ∪
{{Ln+1}, {n + 1}}.

PROPOSITION 13. (a) The family (Tn)n≥1 grown via (i)W –(ii)W is a (0, θ)-
tree growth process.

(b) The labeling of Tn, n ≥ 3 is not exchangeable for any θ ≥ 0; the trees are
weakly sampling consistent if and only if θ = 0 or θ = 1 or θ = 2; the trees grow
logarithmically (except for θ = 0, when the model is the comb model and growth
is linear).

PROOF. (a) This follows directly from the growth rules of the (0, θ)-tree
growth process, since internal edges are never selected for insertions. The first
branch point separates 1 and 2. At this branch point, and inductively every other
branch point, an urn scheme governs the selection procedure, with initial weight
1 for the subtree of the larger label, θ for the subtree of the smaller label, so a
beta(1, θ) limiting proportion of insertions will take place in the subtree of the
larger label; cf. Lemma 5.

(b) The exchangeability claim follows easily from the growth procedures. Weak
sampling consistency can be read from (21), which also holds for α = 0. Log-
arithmic growth follows from the following considerations. Just as we argued
for 0 < α < 1 in the Introduction, also for α = 0, the height Kn of leaf 1 in Tn

has the same dynamics as the number of tables in a Chinese Restaurant Process
with (0, θ) seating plan. In this case Kn is known to grow logarithmically, with
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Kn/ log(n) → θ if θ > 0. It is easy to see that also the rescaled height of leaf k

converges to θ . �

Note that the height of the branch point between any two leaves j and k is
constant, hence converges to zero when rescaled by log(n). Therefore, in a loga-
rithmically scaled limit tree all leaves would be adjacent to the root with no further
branching structure.

3.3. Weighted discrete R-trees with edge lengths. A pointed compact metric
space (T , d, ρ) is called a compact R-tree with root ρ ∈ T if it is complete sepa-
rable path-connected and has the tree property:

• for any σ,σ ′ ∈ T there is a unique isometry gσ,σ ′ : [0, d(σ, σ ′)] → T such that
gσ,σ ′(0) = σ and gσ,σ ′(d(σ, σ ′)) = σ ′; denote [[σ,σ ′]] = gσ,σ ′([0, d(σ, σ ′)]);
furthermore, any simple path from σ to σ ′ has range [[σ,σ ′]].

In this section we restrict our attention to R-tree representatives of discrete trees
with edge lengths such as Tn ∈ T[n] with edge lengths eB ∈ (0,∞), B ∈ Tn, where
eB refers to the parent edge below B , so e[n] is the length of the root edge. For
B ∈ Tn with ancestors [n] = B0 ⊃ B1 ⊃ · · · ⊃ Bk = B in Tn, we denote its birth
time by lB = eB0 + · · · + eBk−1 and its death time by rB = lB + eB . Recall, for
example, from [7] that we can associate a real tree as a subset of Tn × [0,∞) as

T = {([n],0)} ∪ {(B, s) :B ∈ Tn, s ∈ (lB, rB]},(22)

in canonical form, so that EB := B × (lB, rB] represents the edge below B of
Euclidean length eB = rB − lB ; cf. Figure 4. We refer to Tn as the shape of T . We
define the root ρ = ([n],0) and a metric d on T that extends the natural Euclidean
metric on the edges and that connects the edges to a tree. If σ = (B, s) ∈ T , then
we set d(ρ,σ ) = s. Let σ ′ = (B ′, s′) ∈ T \ {ρ}. We define d(σ,σ ′) by

d(σ,σ ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(ρ,σ ) + d(ρ,σ ′) − 2rB∨B ′,
if B ∨ B ′ := ⋂

B ′′∈Tn:B∪B ′⊂B ′′
B ′′ /∈ {B,B ′};

|d(ρ,σ ) − d(ρ,σ ′)|,
otherwise, that is, if B ⊆ B ′ or B ′ ⊆ B;

FIG. 4. Canonical representation of a tree T5 with edge lengths eB , B ∈ T5.
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here the first case is when B ∩ B ′ = ∅, that is, there is a branch point, the last
common ancestor B ∨ B ′, for which B is in one subtree and B ′ in the other.

A weighted R-tree is equipped with a probability measure μ on the Borel sets of
(T , d). As a relevant example consider an interval partition Z ⊂ [0,1] with local
time (L(u),0 ≤ u ≤ 1). We can associate a real tree consisting of a single branch
[0,L(1)] and specify μ by its distribution function L−1, that is, μ([0,L(u)]) = u.
We visualize the atoms of different sizes lined up on [0,L(1)] (particularly if they
are dense, but also if they are not dense) as a string of beads and use this term to
refer to the weighted interval; cf. Figure 3 in the Introduction for a tree composed
of strings of beads. In this specific single-branch context we have a natural notion
of convergence, namely, weak convergence of Stieltjes measures dL−1 as mea-
sures on [0,∞), where the interval [0,L(1)] is determined by the supremum of
the support of the measure. In this sense, Proposition 6 easily yields the following
convergence of strings of beads:([0, n−αLn(1)], d(n−αLn)

−1) → ([0,L(1)], dL−1)
weakly a.s.(23)

In general, R-trees can have features such as a dense set of branch points (σ ∈ T
such that T \ {σ } has three or more connected components) and allow diffuse
weight measures on an uncountable set of leaves (σ ∈ T such that T \ {σ } is con-
nected). We will introduce a suitable space of R-trees and the weighted Gromov–
Hausdorff notion of convergence in Section 4.1, self-similar fragmentation trees
will be introduced as relevant examples.

3.4. Convergence of reduced trees and the proof of Proposition 2. Recall from
the Introduction our notation R(Tn; [k]) for the reduced tree, the subtree of Tn

spanned by leaves labeled [k] and equipped with the graph distances in Tn as edge
lengths. We now associate an R-tree via (22). Proposition 2 claims that the (α, θ)-
tree growth process (Tn, n ≥ 1) has the asymptotics

n−αR(Tn, [k]) → Rk in the Gromov–Hausdorff sense as n → ∞
for some limiting discrete R-tree Rk with random edge lengths and precisely k

leaves labeled by [k]. To describe the distribution recursively, we will use notation
SB

k = {(B, lB)} ∪ {(A, s) ∈ Rk :A ⊂ B} for the subtree of Rk above B . In the
following Proposition 14 we prove a refinement of Proposition 2 that includes a
mass measure μk on the branches of Rk .

DEFINITION 5. Let (S, dk|S,μk|S) be a closed connected subset of (Rk, dk,

μk) with mass m = μk(S) > 0 and root (B, s0) given by B = ⋃
(A,s)∈S A,

s0 = min{s : (A, s) ∈ S}. Then we associate the relabeled, scaled and shifted tree
(S̃, d̃, μ̃) as the canonical form (22) of the tree S with edge lengths multiplied by
m−α , labels changed by the increasing bijection from B to [#B], mass measure
pushed forward via these operations and then multiplied by m−1.
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Once we have embedded Rk as a subtree of a CRT (T , ρ,μ), the atoms of the
mass measure μk will correspond to the μ-masses of the connected components
of T \ Rk projected onto Rk . More formally, for any two R-trees R ⊂ T with
common root ρ ∈ R, there is a natural projection

πR :T → R, u �→ gρ,σ

(
sup{t ≥ 0 :gρ,σ (t) ∈ R}),

where gρ,σ : [0, d(ρ, σ )] → T is the unique isometry with gρ,σ (0) = ρ and
gρ,u(d(ρ, σ )) = σ . For a measure μ on T , we denote the push-forward via πR

by

πR∗ μ(C) = (πR)−1(C), C ∈ B(R) := {D ⊂ R :D Borel measurable}.
Denote by νn the empirical (probability) measure on the leaves of the R-tree rep-
resentation of Tn with unit edge lengths. We refer to νn as mass measure of Tn.

PROPOSITION 14. Denote by (Tn, n ≥ 1) an (α, θ)-growth process as defined
in Definition 3.

(a) Let 0 < α < 1, θ ≥ 0 and k ≥ 1. We have, as n → ∞, that(
n−αR(Tn, [k]),πR(Tn,[k])∗ νn

) → (Rk,μk) weakly a.s.(24)

in the sense that for all 2k − 1 edges the strings of beads converge a.s. as in (23).
(b) Let 0 < α < 1 and θ > 0. The distribution of (Rk,μk) is determined re-

cursively as follows. (R1,μ1) = (E{1},μ1) is an (α, θ)-string of beads. For k ≥ 2,
(Rk,μk) has shape Tk and the first branch point splits (Rk,μk) into three com-
ponents: a trunk and two subtrees. Conditionally given that Tk first branches into
{B, [k] \B} with 1 ∈ [k] \B and #B = m, the following four random variables are
independent:

• (H1,H2,H3) = (μk(E[k]),μk(S
B
k ),μk(S

[k]\B
k )) ∼ Dirichlet(α,m − α, k − m −

1 + θ);
• the scaled and shifted trunk (Ẽ[k], μ̃

E[k]
k ) is an (α,α)-string of beads;

• the relabeled, scaled and shifted subtree (S̃B
k , μ̃B

k ) is distributed as (Rm,

μm),
• the relabeled, scaled and shifted subtree (S̃

[k]\B
k , μ̃

[k]\B
k ) as (Rk−m,μk−m).

PROOF. The proof is an extension of the proof of [18], Proposition 18. The
case k = 1 was established in (23). Now fix k ≥ 2 and Tk . Assume, inductively,
that the proposition is proved up to tree size k − 1. For n ≥ k, the reduced trees
(R(Tn, [k]),πR(Tn,[k])∗ νn) all have the same shape as Tk . In the transition from n to
n+ 1, mass increases by 1, and there may be no change of the reduced tree, or one
of the edge lengths may increase by 1.

Let us first just distinguish the weights of the trunk below the first branch point
and the two subtrees above, of sizes m and k−m, say. We can associate three colors
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with the three components. It is easy to see that the mass allocation behaves like
an urn model. The (α, θ)-tree growth rules specify initial urn weights of α, m − α

and k − m − 1 + θ . Hence, these are the parameters of the Dirichlet distribution of
limiting urn weights (H1,H2,H3); cf. Lemma 5.

Now we can treat separately the evolution of the three components, condition-
ally given (H1,H2,H3). See the proof of [18], Proposition 18, for details of this
argument, which gives us the claimed independence.

The trunk follows the dynamics of an (α,α) ordered CRP (when restricted to
the proportion H1 of leaves added in this part of the tree) whose limiting behavior
was studied in Proposition 6 and (23). By the recursive nature of the growth proce-
dure, the two subtrees have the same dynamics as (R(Tn, [m]),πR(Tn,[m])∗ νn) and
(R(Tn, [k − m]),πR(Tn,[k−m])∗ νn), respectively, (when restricted to the proportions
H2 and H3 of leaves added to these parts), and the induction hypothesis establishes
their limiting behavior. �

PROOF OF PROPOSITION 2. Joint convergence with mass measures in Propo-
sition 14(a) implies convergence of the trees without mass measures, so the proof
of Proposition 2 is complete. �

The result in (b) is still true for θ = 0, if interpreted appropriately. In fact, leaf
edges with zero edge weight disappear in the limit of (a). It is now implicit in the
above description that the limits of the associated leaves are on branches of the
limiting tree. They are not leaves themselves. In particular, the first split is not
necessarily at the first (topological) branch point of (Rk,μk), but (for m = k − 1)
may be leaf 1 on the branch leading to the first (topological) branch point. If so, it
is this splitting the recursive description describes, with zero mass proportion for
the degenerate subtree containing 1 (zero third parameter for the Dirichlet distrib-
ution).

3.5. Growth of (Rk,μk) by bead crushing. The recursion can be partially
solved to give the distribution of (Rk,μk) more explicitly. Specifically, standard
Dirichlet calculations [e.g., using Lemma 5(b)] show that the mass splits intro-
duced by the branch points on the spine from the root to 1 lead to Dirichlet mass
splits with parameter θ for the edge adjacent to 1, parameter α for all other spinal
edges and parameter m − α for every subtree with m leaves. When applying the
recursion in a subtree off the spine with m leaves, we have m−α = m−1+θ only
if θ = 1 − α, so only in the (α,1 − α) case, the overall mass split edge by edge
is Dirichlet distributed, Dirichlet(α, . . . , α,1 − α, . . . ,1 − α) with α for the n − 1
inner branches and 1 − α for the n leaf edges. For θ �= 1 − α, we get a mass split
edge by edge that is best described recursively. Regarding the mass distribution on
edges, we note:
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COROLLARY 15. In the setting of Proposition 14, conditionally given Tk and
an edge-by-edge split

(μk(EB),B ∈ Tk) = (hB,B ∈ Tk),

the components (EB,μk|EB
) are independent and such that (ẼB, d̃

EB

k , μ̃
EB

k ) is an
(α,α)-string of beads for #B ≥ 2 and an (α, θ)-strings of beads for #B = 1.

Since the Dirichlet mass proportions induced by the split at the first branch
point are independent from the three rescaled components in Proposition 14(b),
the (α, θ)-tree growth rules can be formulated conditionally given the Dirichlet
limit variables as independent sampling from the limit proportions (cf. Lemma 5).
Furthermore, we can deduce edge selection rules for (Rk,μk) that are analogous
to (i)rec and (ii)rec and indeed (i) and (ii), for general (α, θ).

COROLLARY 16. Let θ > 0. Then ((Rk,μk), k ≥ 1) is an inhomogeneous
Markov chain starting from an (α, θ)-string of beads (R1,μ1) = (E{1},μ1), with
transition rules, as follows:

(i)R Given (Rk,μk), assign weight μk(EB) to the edge in (Rk,μk) labeled B ,
B ∈ Tk .

(ii)R Select Bk ∈ Tk at random with probabilities proportional to the weights.
Select a bead (Jk,mk), where Jk = (Bk, sk) ∈ EBk

and mk = μk({Jk}) as
in Proposition 10 using (α, θ)-selection if #Bk = 1 and (α,α)-selection if
#Bk ≥ 2 on the string of beads (ẼB, μ̃

EB

k ) associated to (EB,μk|EB
) by

shifting and scaling.

To create Rk+1 from Rk , remove from Rk bead (Jk,mk) and attach in Jk the mk-
scaled and sk-shifted image (Ik+1,μ

Ik+1) of an independent (α, θ)-string of beads
(Ĩk+1, μ̃

Ik+1). Relabel to include k + 1 so as to obtain Rk+1 in canonical form
(22):

Rk+1 = {
(A ∪ {k + 1}, s) : (A, s) ∈ Rk, s ≤ sk,Bk ⊂ A

}
∪ Ik+1 ∪ {(A, s) ∈ Rk : s > sk or Bk �⊂ A}

μk+1(C) = μk

({
(A, s) ∈ Rk \ {Jk} : (A ∪ {k + 1}, s) ∈ C

})
+ μIk+1(C ∩ Ik+1) + μk

({C ∩ (Rk \ {Jk})).
PROOF. ((Rk,μk), k ≥ 1) is an inhomogeneous Markov chain because

(Rk+1,μk+1) fully determines (Rk,μk), . . . , (R1,μ1). To identify the transition
rules, fix k ≥ 1. The proof is by induction on the steps in the recursive growth
rules. The induction step consists of proving the recursive version of the growth
rules (i)R and (ii)R:
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(i)Rrec Given (Rk,μk) with first split {B, [k] \ B}, with 1 ∈ [k] \ B and #B =
m, assign weights (μk(E[k]),μk(S

B
k ),μk(S

[k]\B
k )) to the three components,

that is, the trunk and the two subtrees above the first branch point.
(ii)Rrec Select a component at random with probabilities proportional to the

weights. If a subtree with two or more leaves was selected, recursively
apply the weighting procedure (i)Rrec to the selected subtree. Otherwise, de-
noting the selected edge or the unique edge in the selected subtree by EBk

,
select a bead (Jk,mk), where Jk = (Bk, sk) ∈ EBk

and mk = μk({Jk}) as
in Proposition 10 using (α, θ)-selection if #Bk = 1 and (α,α)-selection if

#Bk ≥ 2 on the string of beads (ẼBk
, μ̃

EBk

k ) associated with (EBk
,μk|EBk

)

by shifting and scaling.

To prove that this recursive scheme produces the same distributions as the limiting
procedure in Proposition 14(a) that defines (Rk,Rk+1), we study the indepen-
dence properties in the proof of Proposition 14. The urn scheme(

α + H
(n)
1 ,m − α + H

(n)
2 , k − m − 1 + θ + H

(n)
3

)
, n ≥ k

starting from H(k) = (H
(k)
1 ,H

(k)
2 ,H

(k)
3 ) = (0,0,0) interacts with the growth of

edges and mass measures on the subtrees only by setting the number of steps,
so that by stage n, this growth will have exhibited H

(n)
1 steps according to the

rules of ordered CRP and H
(n)
2 and H

(n)
3 steps, respectively, according to the

recursive growth rules for the subtrees, irrespective of (H (i), k ≤ i < n). As
n → ∞, we obtain independence of three components C1,C2,C3, the (α,α)-

string of beads C1 = (Ẽ[k], μ̃
E[k]
k ) and the relabeled, scaled and shifted subtrees

C2 = (S̃B
k , μ̃B

k ) and C3 = (S̃
[k]\B
k , μ̃

[k]\B
k ) from the sigma-algebra H generated by

((H
(n)
1 ,H

(n)
2 ,H

(n)
3 ), n ≥ k).

On the other hand, if H
(k+1)
j = 1, then leaf k + 1 is inserted in the j th com-

ponent, j = 1,2,3, so this selection is H -measurable and hence independent of
(C1,C2,C3). Standard results on urn schemes (Lemma 5) yield that

P
(
H

(k+1)
j = 1|(Rk,μk)

) = P
(
H

(k+1)
j = 1|(H1,H2,H3)

) = Hj a.s.

Inductively, this argument shows that the conditional probability given (Rk,μk) of
inserting k + 1 at edge EB of Rk is μk(EB) a.s. and that, conditionally given this
edge selection, the growth on that edge follows a CRP, when restricted to insertions
to that edge. In particular, the bead selection is done according to Proposition 10,
with parameters (α, θ) if #B = 1 and (α,α) if #B ≥ 2; cf. Corollary 15. The inser-
tion rule creates E{k+1} with distribution as identified in Corollary 15. �

If EBk
is an internal edge, the PD(α,α) composition structure is strongly sam-

pling consistent and, in fact, we select a new junction point Jk with weights pro-
portional to μk restricted to EBk

.
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For θ = 0, the discussion before Proposition 10 shows that the bead selection in
an (α,0)-string of beads always selects the last bead at the leaf. Crushing this bead
creates a new string of beads but does not split the string the bead was selected from
hence creating a degenerate subtree, which should contain the leaf edge leading to
the smallest label, say, 1, for simplicity noting that this occurs recursively for all
other labels also, but this edge has zero length and, in particular, no more beads. If
we use the canonical representation (22), there will be no point ({1}, s), s ≥ 0, in
Rk , k ≥ 2, and the “leaf” 1 is actually equal to J1, a pseudo-branch point whose
removal creates only two connected components. Below this point, 1 is in the label
set, above it, 1 is removed from the label set.

3.6. Moment calculations for lengths and masses. Focusing particularly on
the case k = 2 and θ = 1 − α, denote by J1 = ({1,2}, r{1,2}) the branch point and
by �i = ({i}, r{i}), i = 1,2, the leaves. Then the joint distribution of lengths

d2(ρ, J1), d2(J1,�1), d2(J1,�2)(25)

was described already in [18], Proposition 18. These are dictated by the asymptot-
ics of urn schemes embedded in the (α,1−α)-tree growth process. In the previous
subsection, we described these branch lengths jointly with the masses

μ2([[ρ,J1]]), μ2([[J1,�1]]), μ2([[J1,�2]])(26)

and the restrictions of μ2 to the three branches. In the (α,1 − α) case, Proposi-
tion 14(b) identifies the joint distribution of the sextuple (25) and (26) in terms of
the Dirichlet(α,1 − α,1 − α) distribution of masses (26), and

d2(ρ, J1) = μ2([[ρ,J1]])αS0; d2(J1,�1) = μ2([[J1,�1]])αS1;
(27)

d2(J1,�2) = μ2([[J1,�2]])αS2;
where the S0, S1 and S2 are independent α-diversities (or local times) associated
with (α, θ) interval partitions with parameters θ = α, θ = 1 − α and θ = 1 − α,
respectively. It could be checked by a joint moment computation that this is con-
sistent with the alternative description of the lengths without the masses which was
provided in [18], Proposition 18:

d2(ρ, J1) = D0λ(R2); d2(J1,�1) = D1λ(R2);
(28)

d2(J1,�2) = D2λ(R2);
where λ(R2) denotes the total length of R2 and (D0,D1,D2) has a Dirichlet(1,

(1 − α)/α, (1 − α)/α) distribution, independent of λ(R2) is distributed as the
α-diversity of an (α,2 − α) interval partition. To illustrate, the first description
(27) gives

E(d2(ρ, J1)
s) = B(α + αs,2 − 2α)

B(α,2 − 2α)

�(α + 1)�(s + 2)

�(2)�(α + sα + 1)
= �(s + 1)�(2 − α)

�(2 + sα − α)
,
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whereas the second description (28) gives

E(d2(ρ, J1)
s) = B(1 + s,2/α − 2)

B(1,2/α − 2)

�(3 − α)�(2/α + s)

�(2/α)�(3 + sα − α)
= �(s + 1)�(2 − α)

�(2 + sα − α)
.

The above discussion, together with the location of masses along the arms ac-
cording to appropriate regenerative PD(α, θ) distributions, with masses located at
local times, fully determines the law of (R2,μ2). What remains to be seen is how
(R2,μ2) can be embedded in the CRT.

4. Embedding in continuum fragmentation trees. Throughout this section
we assume 0 < α < 1, since there are no CRTs (in the sense of the next subsection)
associated with α = 0 and α = 1 (cf. the discussion at the end of Section 3.2).

4.1. Continuum fragmentation trees. We defined weighted R-trees in Sec-
tion 3.3. Let us follow Evans and Winter [9] to introduce a notion of convergence
on the space T

wt of weight-preserving isometry classes of weighted R-trees. Here,
two weighted R-trees (R, ν) and (T ,μ) are called weight-preserving isometric if
there exists an isometry i :R → T with i∗ν = μ the push-forward of measure ν

under the isometry. Informally, the notion of convergence consists of weak con-
vergence of probability measures and Gromov–Hausdorff convergence of the un-
derlying tree spaces. See also Evans et al. [8] for Gromov–Hausdorff convergence
of unweighted R-trees and Greven, Pfaffelhuber and Winter [16] for an alternative
type of convergence for weighted R-trees.

More specifically, it is shown in [9] that the distance function

�GHwt((R, ν), (T ,μ))

= inf{ε > 0 :∃f ∈Fε
R,T ,g∈Fε

T ,R
dP (f∗ν,μ) ≤ ε and dP (ν, g∗μ) ≤ ε}

gives rise to a Polish topology on T
wt (although �GHwt is not itself a metric), where

Fε
R,T =

{
f :R → T : sup

x,x′∈R
|dR(x, x′) − dT (f (x), f (x′))| ≤ ε

}
set of ε-isometries,

dP (μ,μ′) = inf
{
ε :∀C⊂T closed μ(C) ≤ μ′({x ∈ T :d(x,C) ≤ ε}) + ε

}
Prohorov distance.

Note that convergence of the form (23) for strings of beads and, based on this,
(24) for sequences of weighted discrete trees with edge lengths and constant com-
binatorial shape imply convergence in the sense defined here. However, this notion
of convergence also allows convergence to trees with more complicated branching
structure such as continuum fragmentation trees.

We will further use this notion of convergence to establish projective limits of
subsets of a CRT, where the measures on the subsets are just projections of the
CRT mass measure. The following elementary lemma will be useful.
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LEMMA 17. Let R ⊂ T be two R-trees, μ a measure on T and ν = π∗μ the
push-forward under the projection map π :T → R. Then

�GHwt((R, ν), (T ,μ)) ≤ dHaus(T )(R,T )

for the Hausdorff distance dHaus(T ) on compact subsets of T .

PROOF. Just consider the projection map g = π and the inclusion map
f :R → T , then for ε = dHaus(T )(R,T ), we have f ∈ Fε

R,T , g ∈ Fε
T ,R,

dP (ν, g∗μ) = 0 and dP (f∗ν,μ) = dP (ν,μ) ≤ ε. �

A random weighted rooted binary R-tree (T , d, ρ,μ) is called a binary frag-
mentation CRT of index γ > 0, if

• μ is nonatomic a.s. assigning positive weight to the subtrees Tσ = {σ ′ ∈ T :σ ∈
[[ρ,σ ′]]} for all nonleaf σ ∈ T , and zero weight to all branches [[ρ,σ ]], for all
σ ∈ T , and

• for all t ≥ 0 the connected components (T t
i , i ≥ 1) of {σ ∈ T :d(ρ,σ ) > t},

completed by a root vertex ρi , are such that given (μ(T t
i ), i ≥ 1) = (mi, i ≥ 1)

for some m1 ≥ m2 ≥ · · · ≥ 0, the trees

(T t
i ,m

−γ
i d|T t

i
, ρi,m

−1
i μ|T t

i
), i ≥ 1,

are like independent identically distributed isometric copies of (T , d, ρ,μ).

Haas and Miermont [17] and Bertoin [3] observed the following. Given (T , d,μ),
let �∗ be a random point in T chosen according to μ, and define the mass of the
tagged subtree above t as

S∗
t =

{
μ(T t

i ), if �∗ ∈ T t
i for some i ≥ 1,

0, otherwise.

Then (S∗
t , t ≥ 0) is a decreasing self-similar Markov process in [0,1] starting from

S∗
0 = 1 and attaining S∗

t = 0 in finite time, which can be expressed as

S∗
t = exp

{−ξ∗
T (t)

}
where T (t) = inf

{
u ≥ 0 :

∫ u

0
exp{−γ ξ∗

r }dr > t

}

and ξ∗ is a subordinator, called the spinal subordinator, with Laplace exponent

	(s) =
∫
(0,∞)

(1 − e−sx)
∗(dx)

for some Lévy measure 
∗ on (0,∞) with
∫
(0,∞)(1 ∧ x)
∗(dx) < ∞ that char-

acterizes the distribution of the binary fragmentation CRT. A jump �ξ∗
T (t) = x

corresponds to a change of mass S∗
t = S∗

t−e−x by a factor of e−x at height t , so
consider the push-forward 
̃∗(du) of 
∗ via the transformation u = e−x . It will
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be assumed in the following discussion that 
∗(dx) = λ∗(x) dx for some den-
sity function λ∗(x), so that 
̃∗(du) = uf ∗(u) du for some density function f ∗ on
(0,1) which is related to λ∗ by

f ∗(u) = u−2λ∗(− logu) (0 < u < 1).(29)

The introduction of the size-biasing factor u is done since the normal parameteri-
zation of fragmentation trees is by their dislocation measure

ν(du) = 1{u≥1/2}f ∗(u) du.

The size-biasing factor u then arises because in our context of binary fragmenta-
tions, f ∗ is necessarily symmetric, meaning f ∗(u) = f ∗(1 − u), and given a mass
split (u,1−u) with u < 1−u, the mass of the randomly tagged fragment is multi-
plied by u with probability u and by 1−u with probability 1−u, but then the total
rate for a ranked split (u,1−u) with u ≥ 1/2 is again uf ∗(u)+(1−u)f ∗(1−u) =
f ∗(u).

Because ξ∗ is a subordinator, {1 − exp(−ξ∗
t ), t ≥ 0}cl is a regenerative interval

partition in the sense of Section 2.1.

PROPOSITION 18 (Spinal decomposition [4, 19]). Consider a fragmentation
CRT (T , d,μ) and a random leaf �∗ ∈ T whose distribution given (T , d,μ) is μ.
Then the spinal decomposition theorem holds for the spine [[ρ,�∗]] in the follow-
ing sense. Consider the connected components (Ti , i ∈ I ) of T \ [[ρ,�∗]], each
completed by a root vertex ρi . Denote by μ∗ the random discrete distribution on
[[ρ,�∗]] obtained by assigning mass mi = μ(Ti ) to the branch point base point
of Ti on [[ρ,�∗]]. Then given the string of beads ([[ρ,�∗]],μ∗), the trees

(Ti ,m
−γ
i d|Ti

, ρi,m
−1
i μ|Ti

), i ∈ I,

are independent identically distributed isometric copies of (T , d,μ).

4.2. (α, θ)-dislocation measures and switching probabilities. From Proposi-
tion 14 we have (α, θ)-trees (Rk,μk) which are based on weakly sampling con-
sistent regenerative Poisson–Dirichlet compositions. We can compare this with
sampling k leaves �∗

1 , . . . ,�∗
k according to μ in a CRT (T ,μ) giving rise to re-

duced fragmentation trees

R∗
k =

k⋃
j=1

[[ρ,�∗
j ]], μ∗

k = π
R∗

k∗ μ,

which can be thought of as being based on strongly sampling consistent regenera-
tive compositions that are not of Poisson–Dirichlet type [by Proposition 6(ii), the
unique regenerative Poisson–Dirichlet interval partition is not strongly sampling
consistent unless α = θ = 1/2].
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Let us first compute the appropriate dislocation measure for (T ,μ). We have
a (spinal-to-be) subordinator ξ with Laplace exponent c	α,θ given by (10), with
Lévy measure


α,θ (dx) = λα,θ (x) dx,

where λα,θ (x) = cα(1 − e−x)−α−1e−(θ+1)x + cθe−θx(1 − e−x)−α . Here, c is a
constant that was irrelevant in the context of Section 2, but that we will choose
appropriately here. In analogy with (29), we can compute the intensity ufα,θ (u) of
(e−�ξt ) as

fα,θ (u) = u−2λα,θ (− log(u)) = cα(1 − u)−α−1uθ−1 + cθuθ−2(1 − u)−α,

which is nonsymmetric and, for a split (u,1 − u) with u ≥ 1/2, gives a rate of

f ◦
α,θ (u) = ufα,θ (u) + (1 − u)fα,θ (1 − u)

= cα
(
uθ(1 − u)−α−1 + (1 − u)θu−α−1)

+ cθ
(
uθ−1(1 − u)−α + (1 − u)θ−1u−α)

.

We now check that the choice c = 1/�(1 − α) is such that

να,θ ([1/2,1 − ε]) :=
∫ 1−ε

1/2
f ◦

α,θ (u) du ∼ ε−α

�(1 − α)
,

which is the condition established in [18] to obtain the associated CRT as limit
in discrete approximations scaled by nα as in Proposition 14, but in the weakly
sampling consistent case.

We can now compare subordinators ξ with Lévy measure 
α,θ and the spinal
subordinator ξ∗ in a CRT (T ,μ) with dislocation density f ◦

α,θ . Recall also [14,
18] that the regenerative interval partition associated with the spinal subordinator
ξ∗ admits a natural local time process as in (13) and (14), which is such that the
spinal string of beads ([[ρ,�∗]],μ∗) is of the form

d(ρ,�∗) = L∗(1) and
(30)

μ∗({
gρ,�∗

(
L∗(1 − e−ξ∗

t )
)}) = e−ξt−∗ − e−ξ∗

t = −�e−ξ∗
t .

In particular, we can identify the height L∗(1 − e−ξ∗
τ ) in the tree of an atom of μ∗

that corresponds to a jump of ξ∗ at time τ .
For the proof of Theorem 4, we will embed (Rk,μk), k ≥ 1, in the CRT (T ,μ)

of index α and with dislocation density f ◦
α,θ . This involves solving several prob-

lems:

• How do we embed (R1,μ1) in (T ,μ)? Can we make leaf �1 of R1 close to
leaf �∗

1 of R∗
1 by having their spines coincide initially? Part of the problem is

then to identify the point where the spines separate.
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• Can we iterate the procedure by following the exchangeable leaf with the small-
est label �∗

ni,1
off the spine of R∗

1, and pass to a limit i → ∞ to identify R1 as
a subset of T ?

• Once we have (R1,μ1), how do we find the point where the spine of leaf �2
leaves the spine of leaf �1?

• Can we iterate this to embed all (Rk,μk) in (T ,μ)?

Outside a CRT, we solved the third bullet point in Proposition 10 and obtained
a coin-tossing representation in the sense that we climb up the spine tossing a coin
for each of the (infinite number of subtree) masses and stopping the first time we
see heads. The heads probability depends on the relative remaining mass u after
a split and can be given as a switching probability (away from relative size u to
relative size 1 − u)

p(u) = (1 − u)θ

(1 − u)θ + uα
where u = exp(−�ξt).

See also Corollary 16 for the iteration for k ≥ 2. Although we endeavor to embed
(R1,μ1) in (T ,μ), it is instructive to first try to embed (R∗

1,μ
∗
1) in (Rn,μn).

Assuming for a moment that Rn ⊂ T and μn = π
Rn∗ μ, then �∗

1 as a pick from μ

is projected onto �∗
1,n = πRn(�∗

1), a pick from μn.

LEMMA 19. (a) Given (R1,μ1), a pick �∗
1,1 from μ1 is obtained by switching

probabilities p∗(u) = 1−u: given (R1,μ1) is associated with a spinal subordina-
tor ξ , the conditional probability that �∗

1,1 falls into the block (1−e−ξt−,1−e−ξt )

of the associated interval partition is

p∗(e−�ξt )
∏
s<t

(
1 − p∗(e−�ξs )

)
.

(b) Let θ > 0. Denote the switching time in (a) by τ . Given (R∗
1,μ

∗
1) and

a measurable switching probability function (p̂(u),0 ≤ u ≤ 1) with associated
switching time τ̂ , we obtain

(ξt ,0 ≤ t < τ)
d= (ξ∗

t ,0 ≤ t < τ̂ )(31)

if and only if

p̂(u) = (1 − u)fα,θ (1 − u)

f ∗
α,θ (u)

for almost all 0 ≤ u ≤ 1.(32)

PROOF. For (a) just note that

(1 − e−ξt ) − (1 − e−ξt−) = e−ξt−(1 − e−�ξt ) = (1 − e−�ξt )
∏
s<t

e−�ξs .

For (b), note that the killed subordinator (ξt ,0 ≤ t < τ) can be described in terms
of two independent Poisson point processes of points e−�ξt with tails coin toss at
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intensity measure (1 − p∗(u))ufα,θ (u) du and jumps with heads coin toss at total
intensity

∫
(0,1) p

∗(u)ufα,θ (u) du.
Similarly, the killed subordinator (ξ∗

t ,0 ≤ t < τ̂ ) has the same descrip-
tion with tails intensity measure (1 − p̂(u))uf ∗

α,θ (u) du and heads intensity∫
(0,1) p̂(u)uf ∗

α,θ (u) du. It is an elementary computation to show that the tails in-
tensity measures are equal if and only if p̂(u) satisfies (32) and that then also the
heads intensities coincide. �

For θ = 0, the subordinator ξ with Laplace exponent (10) has an infinite jump
�ξe = ∞ at an exponential time e with parameter 1/�(1 − α), while ξ∗ does not.
The calculation in the proof is still true, except that the possibility of an infinite
jump was ignored. Consequently, for (31) to hold, τ̂ must be replaced by τ̂ ∧ e for
an independent exponential time e with parameter 1/�(1 − α), that is,

(ξt ,0 ≤ t < τ)
d= (ξ∗

t ,0 ≤ t < τ̂ ∧ e).(33)

Note that e is not a jump time of ξ∗.

4.3. Embedding (Rk,μk) and the proof of Theorem 4. We now carry out the
program outlined in the previous subsection and iterate the embedding started in
Lemma 19 to construct an unkilled Poisson point process (Ft , t ≥ 0) and then
(R1,μ1):

• Let (T , d, ρ,μ) be an α-self-similar fragmentation CRT with dislocation den-
sity f ◦

α,θ .
• Define (T (1), d(1), ρ(1),μ(1)) := (T , d, ρ,μ) and consider the spinal subordi-

nator ξ∗(1) of a random point �
∗(1)
1 sampled from μ(1) in T (1). Perform the

construction of Lemma 19(b) and denote by τ (1) the associated switching time,
also put τ (0) = 0. Define

Ft = exp
(−�ξ

∗(1)
t

)
for 0 ≤ t < τ (1), Fτ(1) = 1 − exp

(−�ξ
∗(1)

τ (1)

)
.

For θ = 0, when τ (1) = τ̂ ∧ e in (33), terminate the construction if τ (1) = e.
• For i ≥ 1, denote by (L∗(i)(u),0 ≤ u ≤ 1) the local time process associated with

the interval partition {1 − e−ξ
∗(i)
t , t ≥ 0}cl and by

ρ(i+1) = gρ(i),�∗(i)

(
1 − L∗(i)(exp

(−ξ
∗(i)

τ (i)

)))
the junction point; cf. (30). Define

T (i+1) = {
σ ∈ T (i) :

[[
ρ(i), σ

]] ∩ [[
ρ(i),�

∗(i)
1

]] = [[
ρ(i), ρ(i+1)]]},

d(i+1) = (
1 − exp

(−ξ
∗(i)

τ (i)−τ (i−1)

))−α
d(i)

∣∣
T (i+1) ,

μ(i+1) = (
1 − exp

(−ξ
∗(i)

τ (i)−τ (i−1)

))−1
μ(i)

∣∣
T (i+1) .
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Then consider the spinal subordinator ξ∗(i+1) of �
∗(i+1)
1 ∼ μ(i+1) in T (i+1).

Perform the construction of Lemma 19(b) and denote by τ (i+1) the associated
switching time. Define

Fτ(i)+t = exp
(−�ξ

∗(i+1)
t

)
for 0 ≤ t < τ (i+1) − τ (i),

Fτ(i+1) = 1 − exp
(−�ξ

∗(i+1)

τ (i+1)−τ (i)

)
.

PROPOSITION 20. (a) For θ > 0, the process (Ft , t ≥ 0) is a Poisson
point process with intensity measure ufα,θ (u) (and cemetery state 1). The
subspace [[ρ,�1[[ := ⋃

i≥1[[ρ,ρ(i)]] is such that �1 ∈ T is a leaf a.s., and

([[ρ,�1]], π [[ρ,�1]]∗ μ) is a weight-preserving isometric copy of (R1,μ1). Fur-
thermore, the spinal decomposition theorem holds for the spine [[ρ,�1]] and the
connected components (Ti , i ∈ I ) of T \ [[ρ,�1]]; cf. Proposition 18.

(b) For θ = 0, the process (Ft ,0 ≤ t < e) is a Poisson point process
with intensity measure ufα,θ (u) killed at an independent exponential time e
with parameter 1/�(1 − α). Denote I such that τ (I) = e. Then the subspace
[[ρ,�1]] := [[ρ,ρ(I)]] is such that �1 is not a leaf a.s. The weighted space
([[ρ,�1]], π [[ρ,�1]]∗ μ) is an isometric copy of (R1,μ1). The spinal decomposi-
tion theorem holds for the spine [[ρ,�1]].

PROOF. By Lemma 19, (Ft ,0 ≤ t < τ (1)) is a Poisson point process with in-
tensity measure u2fα,θ (u) du killed at an independent exponential time with pa-
rameter κ = ∫

(0,1)(1 − u)ufα,θ (u) du, and Fτ(1) has distribution κ−1p̂(1 − u)(1 −
u)f ∗

α,θ (1 − u) = κ−1(1 − u)ufα,θ (u) du.
For i ≥ 1, denote by Gi = σ((ξ∗(1), τ (1)), . . . , (ξ∗(i), τ (i))) the σ -algebra gen-

erated by the first i spinal subordinators and their switching times. It follows
easily from the definition that T (i+1) \ {ρ(i+1)} is a connected component of
T (i) \ [[ρ(i),�

∗(i)
1 ]]. By Proposition 18, the tree (T (i+1), d(i+1), ρ(i+1),μ(i+1))

is a copy of (T (i), d(i), ρ(i),μ(i)) that is independent of Gi .
By induction and standard superposition results for Poisson point processes, the

process (Ft , t ≥ 0) is a Poisson point process with intensity measure

u2fα,θ (u) du + (1 − u)ufα,θ (u) du = ufα,θ (u) du,

as claimed. In particular, the associated mass process e−ξt = ∏
s≤t Fs has the same

distribution as the process associated with (R1,μ1).
For θ > 0, completeness of T implies �1 ∈ T and e−ξ∞ = 0 yields that �1 is

a leaf, since μ would otherwise assign positive mass to the subtree T�1 above �1.
For θ = 0, note that �1 ∈ Tρ(I) \ {ρ(I)}.

The spinal decomposition theorem follows by a simple induction, from a ver-
sion of Proposition 18 where �∗ is replaced by ρ(2). That result is proved like
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Proposition 18 using partition-valued fragmentation processes and stopping lines;
see [4, 19]. �

The interval [[ρ,�1]] has length

d(ρ,�1) = �(1 − α)

∫ ∞
0

exp(−αξt ) dt = L(1),(34)

whereas the interval [[ρ,�∗
1 ]] has length

d(ρ,�∗
1) = �(1 − α)

∫ ∞
0

exp
(−αξ

∗(1)
t

)
dt = L∗(1)(1).(35)

We have joined these two intervals at a junction point J1,1∗ = ρ(2) at distance

d(ρ, J1,1∗) = �(1 − α)

∫ τ (1)

0
exp(−αξt ) dt

(36)

= �(1 − α)

∫ τ (1)

0
exp

(−αξ
∗(1)
t

)
dt,

where τ (1) is the switching time for the two coupled subordinators. Now the points
�1,�

∗
1 , J1,1∗ have been embedded in the CRT (T ,μ).

So R1 and R∗
1 are both embedded as paths in (T ,μ). Moreover, if we consider

the strings of beads (R1,μ1) and (R1,μ
∗
1) associated via (30), the measures μ1

and μ∗
1 are the projections onto R1 and R∗

1 of the mass measure μ in the CRT
(T ,μ). We can now check that, for θ = 1 −α, the random length d(ρ,�1) in (34)
has the same distribution as the length S1 described in [18], Proposition 18. From
previous discussions, the ranked masses of μ1 have PD(α, θ) distribution. The
interval partition of [0,1] obtained by putting these masses in the order they appear
along R1 = [[ρ,�1]] is that associated with an (α, θ) regenerative composition of
[0,1].

Turning to k = 2, we identified switching probabilities in Proposition 10 that
identify the branch point for R2 in R1. As R1 has been embedded in T , we iden-
tify the branch point in T . Since the spinal decomposition theorem holds for the
spine [[ρ,�1]], to embed �2, we repeat in the subtree thus identified the procedure
we used to embed �1 in T . In particular, this procedure also constructs the mass
measure μ2 as the projection onto R2 of the mass measure μ on the CRT.

An inductive step from (Rk,μk) to (Rk+1,μk+1) now completes the embedding
and hence the proof of Theorem 4. The inductive assumption will be that (Rk,μk)

has been embedded in the CRT with μk the projection of the mass measure μ of T ,
along with a description of μk as in Proposition 14.

This establishes the following corollary to Proposition 20.

COROLLARY 21. Given (Rk,μk) embedded in (T ,μ), proceed as in Corol-
lary 16: first pick an edge according to the allocation of mass to edges by μk . If
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the edge is an inner edge, pick Jk from μk conditioned on that edge. If the edge
is a leaf edge, pick Jk instead from the atoms of μk on this edge according to the
scheme used to pick J1 from R1, using the obvious bijection. In either case, dis-
tribute the mass μk({Jk}) onto a new edge [[Jk,�k+1]] according to a scaled copy
of the construction of R1 in Proposition 20. Then the tree (Rk ∪[[Jk,�k+1]]) with
measure as described is a copy of (Rk+1,μk+1).

PROOF OF THEOREM 4. The embedding of (R1,μ1) into (T ,μ) was given
in Proposition 20. An induction based on Corollary 21 completes the embedding
of (Rk,μk), k ≥ 1. �

4.4. Convergence of Markov branching trees and the proof of Theorem 3. An
attractive feature of the above construction is that by a fairly obvious extension
we can construct an Rk spanned by a root and �1, . . . ,�k governed by the (α, θ)-
rules, and a leaf exchangeable R∗

k spanned by a root and �∗
1 , . . . ,�∗

k , all embedded
in the same CRT (T ,μ). Specifically, �∗

k+1 and �k+1 will by construction project
onto the same edge of Rk .

PROPOSITION 22. In the above construction, d(�k,�
∗
k ) → 0 almost surely.

PROOF. We work conditionally given (T ,μ). Let θ > 0. Let us show that, for
all ε > 0, there a.s. exists k1 ≥ 1 such that all edges of Rk1 have length less than
ε/3 and all connected components of T \ Rk1 have diameter less than ε/3.

First, to fix a subtree of diameter ε/3, consider the connected components of{
σ ∈ T : {σ ′ ∈ Tσ :d(σ,σ ′) ≥ ε/3} = ∅

}
,

each completed by their root on the branches of T . Since T is compact, at
most finitely many components T1, . . . ,TN actually attain height ε/3. Fix sub-
tree Tj with root Rj , and denote its mass by mj . Note that the interval parti-

tions Zσ , σ ∈ Tj \ {Rj }, induced by ([[ρ,σ ]], π [[ρ,σ ]]∗ μ) coincide on [0,1 − mj ],
and denote the components of the restricted interval partition [0,1 − mj ] \ Zσ =⋃

i∈Ij : gi≤1−mj
(gi, di). Now, in the notation of the proof of Proposition 10,

qk := P
(
Tj ∩ (Rk \ Rk−1) �= ∅|Rk−1

) ≥ mj

∏
i∈Ij : gi≤1−mj

(1 − pgi
) a.s.

is bounded below uniformly in k. Therefore, the step when Tj ∩ Rk �= ∅ is
bounded by a geometric random variable, and no subtrees of height ε/3 can persist
outside Rk forever, so there a.s. exists k0 ≥ 1 such that T \ Rk0 has no connected
components of diameter exceeding ε/3.

Second, fix an edge of Rk0 of length exceeding ε/3. There are at most 2k0 − 1
such edges. The projected mass is an (α,α) or (α, θ)-string of beads, dense on the
edge. The dynamics of the growth process in Corollary 21 are such that cut points
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on inner edges are selected according to the mass distribution. On leaf edges, an
argument as for subtrees applies. Note also that all edges added in the growth
procedure after step k0 are part of a subtree of diameter less than ε/3 and hence
shorter than ε/3. Therefore, there a.s. exists k1 ≥ k0 such that all edges in Rk are
shorter than ε/3 for all k ≥ k1.

In particular, for all k ≥ k1, we deduce d(�k+1,�
∗
k+1) < ε a.s., as required.

For θ = 0, the arguments still apply, but some details are different. Specifically,
the first time a leaf edge is picked, the atom at its top is selected and spread over
a new edge, the original edge then being an internal edge and the above argument
applies. Similarly, the lower bound given for qn will vanish if Rj is an interior
point of a leaf edge of Rk−1; but we can then proceed in two steps. Specifically,
we first pick this leaf edge after a geometric time, when the mass at its leaf is
spread over a new edge, the original edge then being an internal edge and Tj is
then attained after a further geometric time with parameter mj . �

PROOF OF THEOREM 3. The argument given in the proof of Proposition 22
also shows that Rk converges to T a.s. in the Hausdorff sense, which implies con-
vergence of their isometry classes in the Gromov–Hausdorff sense. This proves the
statement of Theorem 3 for the trees Rk constructed in Theorem 4, which assumes
the existence of a CRT (T ,μ) on the given probability space and sufficient extra
randomness to sample repeatedly from μ as needed for the construction of Rk .

If Rk , k ≥ 1, are constructed from an (α, θ)-tree growth process as in Proposi-
tion 2, then we use the fact that the whole sequence (Rk, k ≥ 1) has the same distri-
bution as if it was constructed as above. Almost sure convergence in the Gromov–
Hausdorff sense is a property of the distribution on T

N, where T denotes the space
of isometry classes of compact real trees. We can define the limiting R-tree T as
the metric completion of

⋃
k≥1 Rk , using the completeness of T. �

Another consequence is that the uniform measure on leaves of Rk is closely
coupled to the uniform measure on leaves of R∗

k , and hence to the mass measure
μ in the CRT.

COROLLARY 23. In the setting of Proposition 2, there exists a CRT (T ,μ) on
the same probability space, such that following convergences hold:

(Rk,μk) → (T ,μ) in the weighted Gromov–Hausdorff sense,

where μk is the measure identified in Proposition 14(a), and

(Rk, νk) → (T ,μ) in the weighted Gromov–Hausdorff sense,

where νk is the empirical measure on the k leaves of Rk .
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PROOF. We prove this for the embedded versions of Theorem 4. Since μk is
the projection of μ onto Rk ⊂ T , the first convergence is a direct consequence of
Lemma 17 and the proof of Theorem 3.

For the second convergence fix ε > 0. Let k1 ≥ 1 such that T \ Rk has no
subtrees of diameter exceeding ε/9 and, hence, d(�k,�

∗
k ) < ε/3 for k ≥ k1. Let

k2 ≥ 3k1/ε and k3 ≥ k2 such that dHaus(T )(Rk,T ) < ε for k ≥ k3. Then the trian-
gular inequality for the Prohorov distance shows for g = πRk and f :Rk → T the
inclusion map that

dP (f∗νk,μ) = dP (νk,μ) ≤ dP (νk,μk) + dP (μk,μ) ≤ ε

and

dP (νk, g∗μ) ≤ dP (νk,μk) + dP (μk,μ) + dP (μ,g∗μ) < ε

for all k ≥ k2. This completes the proof. �
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