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Color-Magnitude Diagrams (CMDs) are plots that compare the magni-
tudes (luminosities) of stars in different wavelengths of light (colors). High
nonlinear correlations among the mass, color, and surface temperature of
newly formed stars induce a long narrow curved point cloud in a CMD known
as the main sequence. Aging stars form new CMD groups of red giants and
white dwarfs. The physical processes that govern this evolution can be de-
scribed with mathematical models and explored using complex computer
models. These calculations are designed to predict the plotted magnitudes as
a function of parameters of scientific interest, such as stellar age, mass, and
metallicity. Here, we describe how we use the computer models as a com-
ponent of a complex likelihood function in a Bayesian analysis that requires
sophisticated computing, corrects for contamination of the data by field stars,
accounts for complications caused by unresolved binary-star systems, and
aims to compare competing physics-based computer models of stellar evolu-
tion.

1. Introduction. For most of their lives, stars are powered by thermonuclear
fusion in their cores. In this process multiple atomic particles join together to form
a heavier nucleus and energy is released as a byproduct. As this process continues
for millions or billions of years, depending on the initial mass of the star, the com-
position of the star changes. When these changes become severe enough to signif-
icantly affect the physical processes at the core, dramatic shifts in the color, spec-
trum, and density of the star occur that have long been observed by astronomers. In
the early twentieth century two astronomers, Ejnar Hertzsprung and Henry Norris
Russell, produced plots comparing the luminosity (energy radiated per unit time)
and effective surface temperature of stars. Today generalizations of these plots are
commonly called Color-Magnitude Diagrams (CMDs) and can be used to clearly
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separate out groups of stars powered by different physical processes and at differ-
ent stages of their lives. These groups include the main sequence, so named for
its dominant position in a CMD, the evolved red giants, and the even older white
dwarfs. Today the physical processes that govern stellar formation and evolution
are studied with complex computer models that can be used to predict the plotted
magnitudes on a set of CMDs as a function of stellar parameters of interest, such
as distance, stellar age, initial mass, and metallicity (a measure of the abundance of
elements heaver than helium). Luminosity is a direct measurement of the amount
of energy an astronomical object radiates per unit time, while a magnitude is a
negative logarithmic transformation of luminosity; thus, smaller magnitudes cor-
respond to brighter objects. In this paper we describe how we use these computer-
based stellar evolution models as a component in a complex likelihood function
and how we use Bayesian methods to fit the resulting statistical model. Thus, our
aim is to fit physically meaningful stellar parameters and compare stellar evolution
models by developing principled statistical methods that directly incorporate the
evolution models via state-of-the-art complex computer models.

We focus on developing methods for the analysis of CMDs of the stars in a
so-called open cluster. Stars in these clusters were all formed from the same mole-
cular cloud at roughly the same time and reside as a physical cluster in space. This
simplifies statistical analysis because we expect the stars to have nearly the same
metallicity, age, and distance; only their masses differ. Unfortunately, the data are
contaminated with stars that are in the same line of sight as the cluster but are not
part of the cluster. These stars appear to be in the same field of view and are called
field stars. Because field stars are generally of different ages, metallicities, and
distances than the cluster stars, we are unable to constrain the values of these pa-
rameters and, thus, their coordinates on the CMDs are not well predicted from the
computer models. The solution is to treat the data as a mixture of cluster stars and
field stars, in which field stars are identified by their discordance with the model
for the cluster stars. A second complication arises from multi-star systems in the
cluster. These stars are the same age and have the same metallicity as the cluster,
but we typically cannot resolve the individual stars in the system and thus observe
only the sums of their luminosities in different colors. This causes these systems
to appear systematically offset from the main sequence in a CMD. Because the
offset is informative as to the individual stellar masses, however, we can formulate
a statistical model to identify the individual masses.

Owing to the complexity of the computer-based stellar evolution models, the
posterior distribution for the parameters of scientific interest under our statistical
model is highly irregular. There are very strong and sometimes highly nonlin-
ear correlations among the parameters. Some two-dimensional marginal distribu-
tions appear to be degenerate, with their probability mass lying completely on a
one-dimensional curve. Sophisticated Markov chain Monte Carlo (MCMC) meth-
ods are required to explore these distributions. Our strategy involves dynamically
transforming the parameters with the aim of reducing correlations. We use initial
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runs of the MCMC sampler to diagnose the correlations and automatically con-
struct transformations that are used in a second run allowing the modified MCMC
sampler to explore the posterior distribution. We are also developing methods to
evaluate our statistical model and its underlying stellar evolution models with the
ultimate goal of comparing and evaluating the physics-based computer models of
stellar evolution.

Our use of principled statistical models and methods stands in contrast to the
more ad-hoc methods that are often employed. A typical strategy for arriving at
values for stellar parameters using the computer-based stellar evolution models
involves over-plotting the data with the model evaluated at a set of parameter val-
ues and manually adjusting the values in order to visually improve the correspon-
dence between the model and the data [e.g., Caputo et al. (1990); Montgomery,
Marschall and Janes (1993); Dinescu et al. (1995); Chaboyer, Demarque and Sara-
jedini (1996); Rosvick and Vandenberg (1998); Sarajedini et al. (1999); Vanden-
Berg and Stetson (2004)]. Experience leads to intuition as to which parameter
should be adjusted in what way to correct for a particular discrepancy between the
data and the model. Nonetheless, it is difficult to be sure one has found the optimal
fit or to access the statistical error in the fit. To compare competing models, some
researchers simulate data sets under each model with stellar parameters fit in this
way. The simulated data sets are then compared with the actual data by comparing
star counts in each bin of a grid superimposed on the CMD [e.g., Gallart et al.
(1999); Cignoni et al. (2006)]. Other researchers have calculated the marginal dis-
tributions of stars on both axes of the CMD, comparing observed and simulated
distributions in color and luminosity [e.g., Tosi et al. (1991, 2007)]. We are aware
of one other group [Hernandez and Valls-Gabaud (2008)] applying an approach
broadly similar to ours, though their technical approach and their scientific goals
are meaningfully different than ours; see DeGennaro et al. (2008). Compared to
the classical eyeball fitting of model to the data and compared to the statistical
techniques developed to date, we believe that our principled statistical methods
offer a more precise and reliable exploration of the parameters of stellar evolution.

The remainder of the paper is organized into five sections. We begin in Sec-
tion 2 by outlining the relevant scientific background on stellar evolution models,
their computational implementations, and the data available for fitting the mod-
els. Section 3 describes our formulation of a statistical model that incorporates the
computer models while accounting for measurement error, binary-star systems,
and field-star contamination. Statistical computation is discussed in Section 4, in-
cluding our dynamic methods for improving efficiency. Analysis of the Hyades
cluster is described in Section 5, followed by discussion in Section 6.

2. Stellar evolution.

2.1. Basic evolutionary model and color-magnitude diagrams. Stars are be-
lieved to be formed when the dense parts of a molecular cloud collapse into a ball
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of plasma. If the mass of the resulting protostar exceeds about 10% of the mass
of the Sun, M�, its core will ignite in a thermonuclear reaction that is powered by
the fusion of hydrogen into helium. This reaction at the star’s core can continue
for millions or billions of years depending on the original mass and composition
of the star. More massive stars are denser, and thus hotter, and burn their fuel more
quickly. When the hydrogen at the core has been mostly converted into helium,
the core collapses and the inner temperature of the star increases. This ignites the
same nuclear reaction higher in the star in regions surrounding the core. At the
same time, the diameter of the star increases enormously and its surface tempera-
ture cools, resulting in a red giant star. This phase in a star’s life is relatively short,
lasting about one tenth as long as the initial phase. As the newly formed helium
falls to the core, the core continues to collapse and its temperature increases. For
more massive stars, eventually the core becomes hot enough to fuse helium into
carbon, oxygen, and, if there is sufficient mass, neon, and possibly heavier ele-
ments. During this period the star undergoes mass loss due to the low gravity in
the higher altitudes of the star. This leads to the formation of a very short lived
planetary nebula (about 10,000 years); see Figures 1 and 2 of the online supple-
ment [van Dyk et al. (2009)].

In stars with initial mass less than about 8M�, the dense core eventually reaches
a new equilibrium (a degenerate electron gas) that prevents further collapse even in
the absence of a thermonuclear reaction. As the outer layers of the star blow away,
eventually only a stable core composed of helium, carbon, and oxygen remains.
These white dwarf stars are typically smaller than the Earth, are very dense (about
one ton per cubic centimeter), and cool extremely slowly. Their lifetimes are mea-
sured in gigayears. For stars with an initial mass greater than 8M�, the degenerate
electron gas does not prevent further collapse of the core. The continued collapse
leads to higher and higher temperatures and the thermonuclear synthesis of pro-
gressively heavier elements. Eventually only degenerate neutron pressure stops the
collapse, but not before the electrons of the atoms are forced into the atomic nuclei
where they combine with protons to form neutrons and thus a neutron star. Matter
falling into the newly formed neutron star sets off a shock wave that dramatically
blows off the outer layers of the star in a supernova explosion; see Figure 3 and 4
of the online supplement [van Dyk et al. (2009)]. For even more massive stars, not
even the degenerate neutron pressure can halt the collapse of the core. This leads
to indefinite collapse and the formation of a black hole.

As a star evolves, its luminosity at different wavelengths of light changes.
A Color-Magnitude Diagram (CMD) can be used to exploit this to identify stars
at different stages of their lives. The original version of these diagrams, named for
their inventors, are called Hertzsprung–Russell diagrams (HR diagram) and plot
absolute luminosity on the vertical axis and stellar surface temperature on the hor-
izontal axis. The absolute luminosity is the luminosity that the star would have if
it were 10 parsecs (32.6 light years) away as opposed to the apparent luminosity
it has when viewed from Earth. It is only possible to compute absolute luminosity
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FIG. 1. Schematic HR Diagram. The plot shows a schematic Hertzsprung–Russell (HR) diagram.
The main sequence stars, red giants, and white dwarfs are all easily recognizable. The main sequence
is broader than we would expect in a star cluster and more like we would expect to see with a star
population that includes stars of different ages and metallicities.

of objects that are a known distance from Earth. A schematic example of an HR
diagram appears in Figure 1. The stars labeled “Main Sequence” are stars in their
initial phase of life when they have a hydrogen-burning core. There is a contin-
uum of stars in this group that can be indexed by their initial masses. Stars to the
upper left are more massive, hotter, and brighter.2 These stars tend to burn their
hydrogen more quickly, are shorter lived, and are the first to migrate to the group
of stars labeled “Red Giants.” Notice that the red giants are both cooler and more
luminous. Their cooler temperatures make them appear redder while their massive
sizes increase their luminosity. Finally, after a star loses its upper layers and its

2This relationship stems from the Stefan–Boltzman law for blackbodies (i.e., perfect radiators),
which serves as a very good approximation for stellar radiation. The law says that absolute luminosity
is proportional to radius squared times temperature to the fourth power.
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thermonuclear reaction fails, it migrates to the faint “White Dwarf” group at the
bottom of the HR diagram.

HR diagrams are the oldest type of CMD, but there are many others. All CMDs
are designed to use magnitudes in different color bands or photometric magnitudes
to identify the evolutionary stages in the lives of stars. We generally simply refer
to the set of photometric magnitudes as the magnitudes of a star. Because we fo-
cus on stellar clusters which consist of stars that are all nearly the same distance
from Earth, we can use apparent luminosity in place of absolute luminosity and
avoid the tedious task of determining the distance of each star. Second, the surface
temperature of a star is highly correlated with the ratio of the star’s luminosi-
ties in (nearly any) two optical color bands. (This corresponds to a difference in
magnitudes, since magnitude is a logarithmic transformation of luminosity.) Thus,
we need not directly determine the temperature of each star. Figure 2 illustrates
the type of CMD we focus on. The data are from the Hyades cluster discussed
in Section 5 and the plot compares the difference in apparent magnitudes (rela-
tive apparent luminosity) in the B band (“blue” containing violet, indigo, and blue
light) and the V band (“visual” band containing cyan, green, and yellow light) on
the horizontal axis with the apparent luminosity in the V band on the vertical axis.
Just as in the HR diagram, the main sequence and white dwarfs are clearly visible.
There are only a few giants at the top of the diagram. This is expected because
stars spend a relatively short period of their lives as giants. Thus, the CMD has the
same utility as the HR diagram in identifying the evolutionary groups, but without
the absolute calibration.

We have seen that the initial mass of a star influences its location on the CMD.
Initial composition is also important. Metallicity is a measure of the abundance
of elements heaver than helium. These heavier elements tend to absorb light at
the blue end of the spectrum and inhibit thermal (heat) radiation. Thus, stars with
higher metallicity have a somewhat different set of colors and photometric mag-
nitudes. Similarly, stars with more helium at their cores tend to have a less effi-
cient thermonuclear reaction, simply because the hydrogen fuel is less pure. To
compensate for this, the cores of these stars tend to be somewhat smaller, denser,
and hotter. This in turn causes the stars to be more luminous and shorter lived,
and again affects their colors and magnitudes. Two other variables affect the ap-
parent magnitudes. A portion of the light from a star is absorbed by interstellar
material. The more absorption and the farther a star is away, the less luminous it
appears from Earth. Thus, six parameters, the initial mass, the metallicity, the he-
lium abundance, the distance, the absorption, and the age of the star, determine a
star’s placement on the CMD. Exactly where it lands, however, requires complex
physical calculations that are accomplished using sophisticated computer models.

2.2. Computer-based stellar evolution models. The computer-based stellar
evolution models that we use to predict a star’s placement on the CMD are a combi-
nation of several component computer models. In particular, there are a number of
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FIG. 2. The Haydes CMD. The plot shows a Color-Magnitude Diagram (CMD) of stars in the
Haydes cluster that we analyze in Section 5. Rather than artificially coloring the individual stars as
in Figure 1, we plot all but one of them in black. The one yellow star is a binary star called vB022 that
we discuss in Section 5. Each star is plotted with 95% intervals representing the measurement errors
in B − V and V . The star groups are less readily apparent than in Figure 1, largely because field
stars contaminate the diagram. The swarm of stars below and to the left of the main sequence are
field stars. These stars are mostly more distant and hence apparently fainter than the main-sequence
stars. A small number of red giants appear in the upper center of the CMD. The units on the vertical
axis are magnitudes, which are on a log scale with lower numbers indicating brighter sources. The
units of the horizontal axis are differences in magnitudes. The blue and yellow lines are the fitted
(Yale–Yonsei) main sequence and white dwarfs models.

different computational implementations of computer models for main sequence
and red giant stars. For this initial phase of stellar evolution, we use the state-
of-the-art models by Girardi et al. (2000), by the Yale–Yonsei group [Yi et al.
(2001)], and of the Dartmouth Stellar Evolution Database [Dotter et al. (2008)].
These models take the six parameters discussed in Section 2.1 as inputs and pre-
dict the placement of main sequence and red giant stars on the CMD. (Some of the
models do not depend on helium abundance and thus have only five input parame-
ters.) The main sequence/red giant models vary subtly in their implementation of
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the underlying physics and give somewhat different predictions. One of our pri-
mary goals is to compare these models empirically and to examine which, if any
of them, adequately predict the observed data.

Unfortunately, all of these models break down in the turbulent last stage of red
giants as they fuse progressively heavier elements at different shells of their inte-
rior, begin to pulsate, contracting and expanding, finally lose their outer layers in
planetary nebulae and form white dwarfs. This transition is physically very com-
plex and dominated by chaotic terms. Other computer models are used for white
dwarfs. We use the white dwarf evolution models of Wood (1992) and the white
dwarf atmosphere models of Bergeron, Wesemael and Beauchamp (1995) to con-
vert the surface luminosity and temperature into magnitudes. Finally, to bridge the
main sequence/red giant computer models with the white dwarf model, we use
an empirical mapping that links the initial mass of the main sequence star with
the mass of the resulting white dwarf [Weidemann (2000)]; this is the so-called
initial-final mass relation. The combination of these several computer models for
various stages of stellar evolution into one comprehensive stellar evolution model3

was proposed by von Hippel et al. (2006).
Thus, our stellar evolution model combines (i) the main sequence and red giant

models with (ii) the initial-final mass relation, and (iii) white dwarf cooling mod-
els, to create a model we call the stellar evolution model, as it is meant to depict
stars in all of the main phases of stellar evolution. (We ignore exotic objects such
as neutron stars and black holes and short-lived objects such as supernovae, as the
former objects do not radiate substantially in visible light and the latter objects
are too short-lived to model sensibly from the color-magnitude diagram.) Here we
avoid the details of the physics used in the computer-based stellar evolution model.
Instead we refer interested readers to the basic description given in the online sup-
plement to this paper [van Dyk et al. (2009)] and to the more detailed discussion
that can be found in the many papers cited here and in the online supplement.

2.3. Empirical exploration. Our primary goal is to develop principled statisti-
cal methods that allow us to use observed data to fit the parameters of the stellar
evolution models and to evaluate the empirical fit of these models. We focus on
data that can easily be collected simultaneously on each star in a large field, in par-
ticular, on the intensity of each star’s electromagnetic radiation in each of several
wide wavelength bands, which we refer to as the star’s magnitudes. We typically
use two or three magnitudes for each star in our analysis, but could use ten or more.

3Our use of “stellar evolution model” is somewhat different than is in common use in the astro-
nomical literature, where it generally refers to a model for the evolution of the main sequence and red
giants. We use it to refer to a more comprehensive model that includes the transition to and evolution
of white dwarfs.
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The number of stars in the data set can vary substantially, as few as 50 or as many
as 50,000 are possible.4 Currently we focus on data sets with fewer than 500 stars.

At least the brighter stars of most of the clusters we are studying are observ-
able with small 1m-class telescopes. These instruments are common, are typically
located in the desert southwest of the United States or in northern Chile, and can
be equipped with cameras that focus approximately one square degree of the sky
onto a charge coupled device (CCD) detector. The detector is sensitive to light with
wavelengths of less than about one micron (infrared light) and either the detector
or the atmosphere precludes sensitivity below about 350 nm (shortest wavelength
of visible light). CCD detectors provide no information on the wavelength of this
light, and so observations are made through filters that only allow wavelengths in a
(typically) 100–200 nm band to be observed. Taking separate images through sev-
eral filters allows us to observe several photometric magnitudes. For the faintest
stars of interest, particularly the white dwarfs, we often need to employ the same
techniques, but with 4–8 m class telescopes or with the Hubble Space Telescope.

Other types of observations are available to astronomers, but are typically more
costly. For example, the metallicity of a star can be determined by careful analysis
of a high-resolution spectrum, which is essentially thousands of photometric mag-
nitudes recorded in very narrow wavelength bands for one star. The metallicity of
a cluster can be determined by repeating this on ten or so stars in the cluster and
comparing and combining the results. This requires much higher quality data than
we are using. The results of previous analyses of this sort, however, can be used
to formulate informative prior distributions for the metallicity parameter. Another
example is the use of proper motion to determine which stars belong to a clus-
ter. Proper motion is due to the relative motion of stars and our Solar System as
they orbit the Galaxy and its measurement typically requires deep imaging that
spans at least a decade. Only two dimensions of motion can be measured this way.
Measuring an object’s velocity along the line of sight (radial velocity) requires
high-resolution spectral analysis. The electromagnetic waves from objects moving
away from Earth are elongated, causing features in the visible spectrum to move
toward the red end of the spectrum. The shift is known as the Doppler shift and
can be measured for known spectral features and used to accurately measure radial
velocity. A final example is the measure of distance using parallax. Objects that
are relatively close to the Earth appear to make small movements on the sky as
the Earth orbits the Sun. Precise knowledge of the diameter of the Earth’s orbit
along with simple geometry can be used to deduce the distance to the object. This
method has been used to measure the distance to the stars in the Hyades cluster
discussed in Section 5.

4Open clusters are groups of up to a few thousand stars inside a galaxy that are loosely bound by
gravity. Globular clusters, on the other hand, are tightly bound by gravity, composed of hundreds of
thousands of stars, and are external satellites to a galaxy. Our current work focuses on open clusters
which may have 50–500 stars cataloged in a data set.
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Although we typically observe several magnitudes for each star, the stellar evo-
lution models are highly parameterized with five or six parameters for each star.
Unfortunately, it is typically not possible to fit all of these parameters with use-
ful accuracy using only a small number of magnitudes. To simplify the parame-
ter space, we focus on stellar clusters. Not only do cluster stars possess nearly
the same age, distance, metallicity, and helium abundance, but since the stars are
moving through the galaxy as a group, their reddenings are also roughly the same.
(Interstellar absorption is wavelength dependent and tends to absorb less red light,
and hence reddens the appearance of the stars. The degree of reddening depends
on the interstellar material, and hence the amount of absorption.) Thus, only the
mass varies among the stars in a cluster and all other parameters are common to
the cluster as a whole. As we shall see, this large reduction in the dimension of the
parameter space makes it possible for us to satisfactorily fit stellar parameters.

Stellar surveys suggest that between one third and one half of all stars are actu-
ally binary or multi-star systems in orbit around their common center of mass. The
stars in the majority of these systems are not directly distinguishable. For such sys-
tems, the observed luminosities are the sum of the luminosities of the component
stars. (Magnitudes are on a log-luminosity scale and so must be transformed to
luminosities before being added.) The added luminosity of the stellar companion
tends to shift the star system up on the CMD, the larger the companion the greater
the shift. If we do not properly account for this systematic distortion of the data,
and, in particular, the location of the main sequence, it can bias the fitted stellar
parameters. The fact that magnitudes of binaries are systematically different from
nonbinaries and that the degree of this difference depends on the relative masses
of the component stars, however, enables us to identify the component masses in a
statistical model. Thus, we propose a model that accounts for unresolved multi-star
systems. (Because what appears to be a star may actually be a multi-star system,
we sometime use the words “star system” or simply “system.” When there is no
potential confusion, however, we continue to use the word “star” for these possibly
multi-star systems.)

Field stars form a second type of contamination. As viewed from Earth, these
stars are behind or in front of the stellar cluster, and thus are moving in a differ-
ent direction as they orbit the Galaxy. Although careful measurements of proper
motion and radial velocities can be used to determine if a star is moving with the
cluster and thus help to distinguish cluster stars from field stars, such calculations
have not been performed on all stars and are not always conclusive. Thus, we must
build field star contamination into our statistical model.

3. A statistical model.

3.1. Basic likelihood. For a given set of stellar parameters, the stellar evolu-
tion model predicts a set of magnitudes. The observed magnitudes, however, are
recorded with errors. Thus, we use the stellar evolution model to compute the
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TABLE 1
Stellar parameters

Astrophysical
Parameter notation Value

θage T log10 age in log10 years
θ[Fe/H] [Fe/H] Metallicity, log10 of the ratio of iron and hydrogen atomsa

θ[He/H] [He/H] Helium abundance, log10 of the ratio of helium and hydrogen
atoms

θm−MV
m − MV The difference between apparent and absolute magnitudeb

θAV
AV Absorption in the V filter in magnitudesc

Mi1 M Mass of the more massive star in binary-star system i

Mi2 M Mass of the less massive star in binary-star system i

aIron is used as a proxy for all atoms heavier than helium because it is relatively easy to identify in
spectral analysis. [Fe/H] is recentered using solar metallicity, so that a value of one means 10 time
more iron relative to hydrogen than the Sun.
bThe parameter m − MV is known as the distance modulus. Magnitude is a logarithmic measure of
brightness, with smaller numbers corresponding to brighter objects. The difference between apparent
and absolute magnitude depends on distance, which can be readily computed from the distance mod-
ulus. In particular, in the absence of absorption, θm−MV

= 5 log10(d) − 5, where d is the distance
measured in parsecs.
cThe apparent magnitude in the V filter, mV , can by computed from the absolute magnitude in the
V filter, MV , and AV via mV = MV + AV − 5 log10(d) + 5, where d is the distance in parsecs.

mean structure used in a likelihood function and the distribution of the measure-
ment error to model the variability. In particular, suppose we observe each of N

stars in each of n filters. We denote the N × n matrix of observed magnitudes
by X, with typical element xij representing the magnitude observed for star i us-
ing filter j . We assume that the measurement errors follow a Gaussian distribution,
xij ∼ N(μij , σ

2
ij ), where μij is the predicted magnitude under the stellar evolution

model and σ 2
ij is the variance of the measurement error, both for star i using filter j .

The means and variances also form N × n matrices, which we label μ and �.
While the components of � are assumed to be known from calibration of the

data collection device, the components of μ depend on the stellar parameters of
interest via the stellar evolution model. Table 1 lists the model parameters. The
first five rows in Table 1 list the stellar parameters that are common to all stars
in the cluster and we refer to them as the cluster parameters. The only parame-
ters that vary among the stars are their initial masses, M1 = (M11, . . . ,MN1)

�,
where the subscript 1 indicates that we are assuming for the moment that the
possibly multi-star systems are all unitary systems; see Section 3.2. If � =
(θage, θ[Fe/H], θ[He/H], θm−MV

, θAV
) is the vector of cluster parameters, then the ex-

pected magnitudes for star i can be expressed as

μi = G(Mi1,�),(1)
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where μi is row i of μ and G is the 1 × n vector-valued output from the stel-
lar evolution model, with Gj(Mi1,�) the expected magnitude using filter j . For
clarity, we refer to G as the stellar evolution model, and to the combination of the
likelihood function and the prior distributions as the statistical model.

We can now write a preliminary likelihood function as

Lp(M1,�|X,�) =
N∏

i=1

(
n∏

j=1

[
1√

2πσ 2
ij

exp
(
−(xij − Gj(Mi1,�))2

2σ 2
ij

)])
.(2)

This likelihood was proposed by von Hippel et al. (2006) and we refer to it as the
preliminary likelihood, using a ‘p’ in the subscript, because it does not account
for binary-star systems or field star contamination, the subjects of the next two
sections; see also DeGennaro et al. (2008). Although the Gaussian form of (2) is
simple, the complex nonlinear function G cannot be expressed in closed form and
complicates inference and computation.

One of our scientific goals is to compare and empirically evaluate individual and
competing stellar evolution models. Thus, we may swap out G with a competing
evolution model, say, μi = H(Mi1,�) in (1) and (2).

3.2. Binary stars. For unresolved binary-star systems the observed luminosi-
ties are the sums of the luminosities from the two component stars. Because the
relative masses of the component stars affect the observed magnitudes in a system-
atic way, it is possible to statistically identify both masses. Thus, we can construct
a more sophisticated likelihood function that accounts for binary systems. In prin-
ciple, the same is true of multi-star systems with more than two stars. Because
these systems are significantly rarer than binary systems, and in the interest of
parsimony, we confine our attention to binary systems.

We assume each star system has a primary and a secondary mass. The primary
mass is the mass of the more massive component star and the secondary mass is
zero if the system has only one star. Thus, let M be a N × 2 matrix with typi-
cal row Mi− = (Mi1,Mi2) representing the primary and secondary mass of star
system i, respectively. Because the observed luminosities are simply the sum of
the luminosities of the component stars, it is easy to modify the likelihood. Note,
however, that the Lp is written in terms of magnitudes, which are on an inverted
log-luminosity scale: magnitude = −2.5 log10(luminosity). Thus, we simply re-
place (1) with

μi = −2.5 log10
[
10−G(Mi1,�)/2.5 + 10−G(Mi2,�)/2.5]

(3)

and make a similar substitution in (2).
Because binary systems involving white dwarfs undergo a more complicated

evolutionary history than we are able to model, we do not allow such binary sys-
tems in our model.
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3.3. Field star contamination. Some of the stars in the observed field are not
cluster members and, thus, their magnitudes are not well predicted by G evaluated
at the cluster parameters. Each of these stars has its own value of � and we have
no statistical power to identify all of these parameters. Thus, we assume a simple
model for the magnitudes of the field stars that does not involve any parameters of
scientific interest. In particular, we propose a uniform distribution on each of the
magnitudes over a finite range that corresponds to the range of the data,

pfield(Xi ) = c for min
j

≤ xij ≤ max
j

for j = 1, . . . , n,(4)

and zero elsewhere, where Xi is row i of X and contains the observed mag-
nitudes for star i, (minj ,maxj ) is the range of values for magnitude j , and
c = [∏n

j=1(maxj −minj )]−1. Of course, a more sophisticated model could be used
for the magnitudes of the field stars. For example, we could construct a nonpara-
metric model using a wider field of stars, none of which are part of the cluster of
interest. For our purposes, however, we find that this simple model does a good job
of separating out stars that differ systematically from the cluster stars.

To construct the likelihood, we simply note that the observed data is a mixture
of cluster stars and field stars, and use a two-component finite mixture distribution.
In particular, we set Z = (Z1, . . . ,ZN), with Zi equal to one if star i is a cluster
member and zero if it is a field star. Thus, our final likelihood is

L(M,�,Z|X,�)

=
N∏

i=1

n∏
j=1

[
Zi√

2πσ 2
ij

× exp
(
−({

xij + 2.5 log10
[
10−Gj (Mi1,�)/2.5(5)

+ 10−Gj (Mi2,�)/2.5]}2)
(2σ 2

ij )
−1

)
+ (1 − Zi)pfield(Xi )

]
.

Our treatment of Z as a model parameter in the likelihood function is a departure
from the standard practice of marginalizing (5) over Z in a finite mixture distribu-
tion. In a Bayesian analysis, however, it is natural to treat all unknown quantities
in the same manner and, from a scientific point of view, we are sometimes inter-
ested in a particular star’s cluster/field classification. Thus, we proceed with Z an
argument of the likelihood function.

3.4. Prior distributions. We focus on a Bayesian analysis of this model at
least in part because it allows us to directly incorporate prior information regarding
the stellar parameters. We aim to accurately represent and quantify astronomical
knowledge of likely values for the various parameters. For example, to reflect the
fact that there are far more low mass stars than high mass stars, we use a Gaussian
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prior distribution on the base 10 logarithm of the primary masses:

p(log10(Mi1)) ∝ exp
(
−1

2

(
log(Mi1) + 1.02

0.677

)2)
,(6)

truncated to the range 0.1M� and 8M�, where the constants are from the fit
derived by Miller and Scalo (1979). (Note protostars with mass less than about
0.1M� will not initiate a thermonuclear reaction and, for the clusters that we are
interested in, stars with a mass greater than approximately 8M� would have long
ago evolved into a neutron star or a black hole, and thus would not be included in
our data.) We use a uniform prior distribution on the unit interval for the mass ratio
of the secondary mass over the primary mass. We need not truncate the secondary
mass at 0.1M� because low mass secondaries are taken as evidence for unitary
systems.

Since the stars in a stellar cluster tend to move together, we can use proper mo-
tion, radial velocities, and, for nearby stars, parallax to help distinguish between
cluster and field stars. For a well studied cluster such as the Hyades, these measure-
ments are available for many stars and can be used to formulate prior probabilities
for cluster membership; see Section 5. For less studied clusters, we may use a
common prior probability based on the expected number of cluster stars. This can
be estimated by simply comparing the number of stars per unit area in the cluster
to areas nearby the cluster.

Turning to the cluster parameters, we use a uniform prior distribution between
θage = 8.0 and θage = 9.7 for the log10 of age. This corresponds to a power law
prior distribution on the age with exponent −1. We believe this distribution ade-
quately reflects the observation that younger clusters are more common than older
clusters. The remaining cluster parameters require cluster-specific prior distribu-
tions. We generally recommend putting Gaussian prior distributions on θ[Fe/H],
θ[He/H], θm−MV

, and log(θAV
). Informative prior distributions, however, require

reasonable knowledge of the values and uncertainties of these parameters for a
given cluster prior to analyzing the color-magnitude data. In our experience, infor-
mative prior distributions are not required for the cluster parameters [von Hippel
et al. (2006); DeGennaro et al. (2008)]. Although in some cases narrow prior dis-
tributions help us better determine the likely values of the cluster parameters, we
often find they are not needed for precise results.

4. Statistical computation.

4.1. Basic MCMC strategy. To fit the statistical model, we use an MCMC
strategy. Each parameter is updated one-at-a-time in a Gibbs sampler. This is an
ambitious strategy, given that there are 3N + 5 free parameters in (M,�,Z) and
strong linear and nonlinear correlations in the posterior distribution.

Owing to the complex form of the stellar evolution model, G, none of the com-
plete conditional distributions of M or � are standard distributions or even avail-
able in closed form. Thus, each of these parameters is updated using a Metropolis
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rule with a uniform jumping rule, centered at the current value of the parameter be-
ing updated. Even this strategy is quite demanding because simply evaluating G,
and thus the target posterior distribution, is computationally very expensive.

To avoid evaluating G at every parameter update within each iteration, we use
a tabulated version of G that is constructed before the MCMC run. The table has
four dimensions corresponding to three of the dimensions of � plus initial mass;
absorption and distance modulus are handled differently. (Recall some models for
main-sequence stellar evolution only require four cluster parameters. When we use
these models the table is only three dimensional.) Each cell in the table records a
vector of length n, corresponding to the expected magnitudes in each of the ob-
served color bands. These are expected absolute magnitudes with no absorption,
but can easily be converted to expected apparent magnitudes that account for ab-
sorption using the current values of θm−MV

and θAV
. A typical table will include

eight metallicity values, 50 ages, and about 190 initial masses. The values of these
parameters are not evenly spaced and are chosen to capture the complexity of the
underlying function. In fact, the number of mass entries may vary with age and
metallicity depending on how complex the magnitudes are as a function of the
initial mass. When evaluating the likelihood in the MCMC run, we use linear in-
terpolation within the table to evaluate G.

In one case we must extrapolate beyond the table. Unfortunately, the mod-
els for stellar evolution of the main sequence do not extend to masses less than
0.13 − 0.4M�, depending on the stellar evolution model, metallicity, and age.
This is an issue only for low mass companions, which are not the focus of our
work. Moreover, for all but the smallest main sequence primary stars, a compan-
ion with mass less than 0.4M� makes little difference to the photometry of the
system. Thus, we expect the relative accuracy of the extrapolation to be of little
consequence for our overall fitted model. We do, however, want to allow for very
small secondary stars, because many stars are in fact unitary. Thus, we extrapolate
outside the tabulated model but do not trust the fitted masses or their error bars
for small secondary stars, believing many of these systems to be simple unitary
systems.

Overall, the use of a tabulated version of G substantially improves the compu-
tational performance of our sampler. One direct evaluation of G, depending on the
evolutionary state of the star, takes at least seconds on a modern desktop computer
and could take more than an hour, while interpolating in 3 or 4 dimensions takes
only a fraction of a second. With a table of high enough resolution, we gain a
substantial amount computationally without significantly affecting the results.

In addition to simply evaluating the likelihood, there are a number of challenges
in constructing the MCMC sampler so that its autocorrelations are not prohibitively
high. For example, the posterior distributions of the stellar masses are highly de-
pendent on whether a star is classified as a field star or a cluster star. In particular,
the posterior distributions of the masses are much narrower for cluster stars, mak-
ing it difficult for the sampler to change the field/cluster classifications when condi-
tioning on the masses. We are able to reduce this correlation by using an alternative
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prior distribution on the masses of the field stars. Since these are nuisance para-
meters, this change has no substantive consequences. There are a number of other
high linear and nonlinear posterior correlations among the continuous parameters.
We eliminate these using a combination of static and dynamic transformations.
These issues are discussed in the next three sections.

4.2. Correlation reduction with an alternative prior specification. As dis-
cussed in Section 3.3, because the values of the cluster parameters do not apply
to the field stars, we are unable to constrain their masses using the stellar evolu-
tion model. Inspection of (5) reveals that p(X|M,�,�,Z) does not depend on
the rows of M that correspond to stars classified as field stars. Put another way,
if we condition on Zi = 0 (i.e., star i is a field star) for some subset of stars, the
likelihood is not a function of the masses of those stars. Thus, for stars classified
as field stars, the complete conditional distribution of their masses is simply the
corresponding conditional distribution of the prior distribution. For stars classified
as cluster stars, on the other hand, the likelihood can be very informative as to
the masses and the complete conditional distribution of the masses may look very
different. Simply stated,

p(Mi1,Mi2|X,�,�,Z)

is highly dependent on Zi and equal to p(Mi1,Mi2|�,�,Z) when Zi = 0.
This dependence leads to intractable autocorrelations in the sampling chain.

When the mass of a star that is classified as a field star is updated, it is unlikely
to be valued in the range associated with cluster membership, even if the par-
ticular star has a substantial marginal posterior probability of cluster membership.
Given enough iterations, the mass may migrate to the range associated with cluster
membership, but the posterior relationship between Z and M nonetheless hampers
efficient sampling.

To solve this problem, we take advantage of the fact that astronomers are only
interested in the masses of stars that are cluster stars or, more precisely, in the con-
ditional posterior distribution of mass given cluster membership. If we condition
on cluster membership, that is, Zi = 1 for each i, the choice of prior distribution
for the masses of field stars is clearly irrelevant. Because the field star model does
not depend on any of the parameters, we can further show that none of the posterior
distributions of scientific interest are affected by the choice of p(Mi1,Mi2|Zi = 0).
Namely, neither p(�,Z|X,�), p(Mi1,Mi2,Mj1,Mj2,�|Zi = 1,Zj = 1,X,�),
nor similar posterior distributions depend on the choice of prior distribution for the
field star masses; see the appendix for details. Thus, how we sample the masses
of field stars is immaterial to the final scientific analysis. From a sampling point
of view, it would be ideal if the posterior distributions of the masses were identi-
cal regardless of the current cluster/field star classification. Since we are at liberty
to set the conditional prior distributions of the mass given field star classification
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without upsetting our scientific conclusions, our strategy is to set this prior distri-
bution so as to reduce the posterior relationship between M and Z. The joint prior
distribution can be factored via

p(M,�,Z) =
N∏

i=1

p(Mi1,Mi2|Zi)p(Z)p(�).

We continue to set the prior distributions p(Mi1,Mi2|Zi = 1) as in (6) and of p(Z)

and p(�) as described in Section 3.4. For p(Mi1,Mi2|Zj = 0), however, we use
an estimate of p(Mi1,Mi2|X,Zi = 1) based on its first two sample moments com-
puted in an initial phase of the MCMC sampler. The estimate is parameterized as
a t6-distribution. Notice that this strategy does not mean that the complete con-
ditional distributions of the components of M do not depend on Z because these
distributions also condition on �, but in our experience the dependence is weak
enough to allow stars to efficiently switch from field to cluster and back.

A side effect of this prior specification affects the Metropolis acceptance prob-
ability when updating each of the Zi . Because p(Mi1,Mi2|Zi) depends on Zi , its
values in the numerator and denominator of the acceptance probability will dif-
fer if the proposed value of Zi is different from the current value. This requires
us to properly normalize this prior distribution, which can easily be accomplished
analytically.

4.3. Correlation reduction via static and dynamic transformations. To avoid
sampling inefficiency caused by high posterior correlations among the continuous
parameters, we introduce a multivariate reparameterization. This involves both a
simple static reparameterization of the masses and a dynamic reparameterization
involving several parameters.

Since the total mass of the system is a principle determinant of the magnitudes,
we expect the primary and secondary mass of each system to be negatively corre-
lated. Preliminary analyses bore this out and suggested a static transformation that
largely eliminates the nonlinear correlation. In particular, we define Ri = Mi2/Mi1
and use the ratio of the secondary mass to the primary mass in place of the sec-
ondary mass when constructing the sampler. We emphasize that this transforma-
tion removes nonlinear correlations: Mi1 and Ri exhibit linear correlation in some
cases. Our dynamic method for removing linear correlations is discussed below.
When implementing the Metropolis update for each Ri , we reflect at the bound-
aries of the unit interval parameter space to maintain the symmetric jumping rule.

Preliminary analyses revealed a number of remaining strong linear correlations
among the parameters. To adjust for these, we introduce a parameterized linear
transformation of the parameter that is dynamically tuned to the strength of the
correlation in a sequence of initial runs of the sampler. The functional form of the
transformation is determined using a combination of astrophysics-based intuition
and observation of the behavior of the sampler. Using a sequence of initial runs, we
compute a mixture of conditional and marginal linear regressions on the sampled
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parameters. This sequence is generated in an ad hoc manner using trial and error
to construct a transformation that is tuned to characteristics of the computer-based
stellar evolution model and eliminates the large correlations in the Markov chain.
The final transformation can be expressed as

Mi1 = Ui + βR,i(Ri − R̂i) + βage,i(θage − θ̂age) + β[Fe/H],i
(
θ[Fe/H] − θ̂[Fe/H]

)
+ βm−MV ,i(θm−MV

− θ̂m−MV
),

θAV
= V + γ[Fe/H]

(
θ[Fe/H] − θ̂[Fe/H]

) + γm−MV
(θm−MV

− θ̂m−MV
),

where hats denote approximate posterior means that are calculated in an ini-
tial run for use in the transformation. The components of β and γ parameter-
ize the transformation and are also computed during a sequence of initial runs
using a sequence of simple linear marginal and conditional regressions; details
are given in Section 4.4. The transformed variables, Ui and V , are the residu-
als from these regressions. Thus, the MCMC sampler is run on the parameters
{(U1,R1), . . . , (UN,RN), θage, θ[Fe/H], θ[He/H], θm−MV

,V }, which we find signifi-
cantly improves the convergence of the chain, as illustrated in the following sec-
tion.

4.4. Dynamic MCMC methods. We begin the MCMC run with a burn-in pe-
riod that is run with the transformed masses, but with the components of β and
γ all set to zero. That is, the burn-in is run without the dynamic linear transfor-
mation. Upon completion of the burn-in, we implement a number of initial runs
that are designed to compute components of β and γ . After each of these runs, we
update the definition of the Ui or V with the updated component of β or γ . Thus,
we begin with β = 0 and U

(0)
i = Mi1 and regress U

(0)
i on (Ri − R̂i) to compute

βR,i for each i. In this and all the regressions used to compute the dynamic trans-
formations, the predictor variables are recentered at zero by subtracting off their
means. Using the newly computed value of βR,i , but with the other components
of β still set to zero, we construct an updated transformation, U

(1)
i , that is used

in place of U
(0)
i in the second initial run. We continue in this way through the

multiple initial stages that are described in Table 2. Notice that, in the first runs,
we filter out stars that appear to be field stars and force the remaining stars to be
classified as cluster stars. This results in an MCMC sampler that is more robust
to poor starting values and poor choices of β and γ , and can more easily find the
posterior region of high mass. Once we have tuned the transformation parameters,
we allow cluster-field star jumping of all stars in the data set and update all of the
components of β and γ . Some of the regressions are conditional and others are
marginal. These choices were made via trial and error, with the aim of improving
the mixing of the sampler. In some cases, when the fitted transformation parame-
ters are small and not statistically significant and/or have a sign that is at odds with
astrophysical intuition, we set the transformation parameter equal to zero. For ex-
ample, Mi1 and θage are highly correlated for white dwarfs and largely unrelated
for main-sequence stars. Thus, many of the βage,i coefficients are fixed at zero.



STATISTICAL ANALYSIS OF STELLAR EVOLUTION 135

TABLE 2
Sequence of initial runs used to compute correlation reducing transformation

In the initial burn-in period and in the first 6 initial runs each star’s cluster membership status is held
constant. That is, the Zi ’s are not updated from the starting values input by the user.

0. Burn-in period.

1. Compute each βR,i by regressing each U
(0)
i on Ri .

2. Compute each βage,i by regressing each U
(1)
i on θage. In this run θ[Fe/H], θ[He/H], θm−MV

,
and θAV

are fixed at our best estimate of their posterior means.

3. Compute each βm−MV ,i by regressing each U
(2)
i on θm−MV

. Compute γm−MV
by regressing

V (0) on θm−MV
.

4. Compute each β[Fe/H],i by regressing each U
(3)
i on θ[Fe/H]. Compute γ[Fe/H] by regressing

V (1) on θ[Fe/H].
5. Approximate the posterior mean and variance of Mi1 and Ri to construct the alternative prior

distributions on the masses for field stars.
6. Fine tune step sizes used in the Metropolis proposals to optimize acceptance rates.

In a second set of 7 initial runs, the above runs are repeated (including a second burn-in period), but
this time the cluster memberships are sampled.

Step sizes for all parameters are adjusted continuously throughout all of the initial runs.
Predictor variables are recentered at zero in all regressions.

The acceptance rates for the Metropolis jumping rules are monitored throughout
the initial runs. If the acceptance rate among the previous 200 proposals falls below
20%, the width of the uniform jumping rule is decreased. If the rate grows above
30%, the width is increased. Initial run six in Table 2 is a period when only the
acceptance rates are monitored.

The number of draws in the burn-in period and each of the initial draws can
be set by the user. Currently we use 30 thousand draws in the burn-in and 5 or
10 thousand draws in each of the initial runs. Regression analyses are run using
every fiftieth of the 5 or 10 thousand draws. This results in substantial computing
time (typically half to three quarters of the total) being devoted to the burn-in and
initial draws. As illustrated in Figure 3, however, this is a good investment. We are
able to obtain nearly uncorrelated posterior samples and reliable summaries of a
complex posterior distribution.

5. The Hyades. The Hyades is 151 light years away [Perryman et al. (1998)]
and is the nearest star cluster to our Solar System.5 The cluster is visible to the

5The group of stars known as the Ursa Major Moving group is thought to be a dispersed cluster of
stars formed from the same molecular cloud. The stars appear to have similar metallicity, age, and
are moving as a group. At only 81 light years away and with its dispersed nature, this group of stars
is scattered across a large portion of the northern sky and includes nearly all of the bright stars in the
Big Dipper. The Sun is moving toward these stars, but at ten times the age is not part of this grouping.
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FIG. 3. Improving convergence with Dynamic Transformations. The plots in the left column show
time series plots of the MCMC draws of the four cluster parameters (θage, θ[Fe/H], θm−MV

, and
θAV

, respectively) during the initial burn-in period. The plots represent a portion of the chain after
it has reached the vicinity of the posterior mode but before the dynamic transformations are imple-
mented. The right column shows time series plots of the same four parameters after the dynamic
transformations have been computed and implemented. The transformations significantly reduce the
autocorrelations of the chains.

unaided eye and forms the nose of Taurus the Bull. The distance to the Hyades
can be accurately computed using stellar parallax of its constituent stars. The age
of the cluster has also been measured and is believed to be about 625 ± 50 million
years [Perryman et al. (1998)]. This estimate is based on the fact that as a cluster
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ages its most massive stars are the first to evolve into red giants. These massive
stars are at the upper left of the main sequence, the first part of the main sequence
to disappear from a CMD. This so-called main sequence turn off can be used to
estimate the age of a cluster [e.g., Chaboyer, Demarque and Sarajedini (1996);
Montgomery, Marschall and Janes (1993); Sarajedini et al. (1999)]. Our primary
scientific goal is to compare these age estimates with age estimates determined
primarily from the colors and magnitudes of white dwarf stars. Since the cluster
stars have a common age, we expect these age estimates to be similar. Up until
now for the Hyades, however, the best age estimate based on white dwarfs [300
million years, Weidemann et al. (1992)] is about half the best estimate based on the
main sequence turn off [625 million years; Perryman et al. (1998)]. Thus, the com-
parison is an opportunity to evaluate the underlying physical models and analysis
techniques. To focus our analysis on white dwarfs, we remove both the red giants
and the stars in the main sequence turn off from our data set.

More generally, we aim to evaluate our statistical method and the underlying
computer models by comparing existing measurements with those obtained with
our likelihood-based fit of the stellar evolution model and to compare the observed
colors and magnitudes with those predicted by the stellar evolution models. This
investigation is the most sophisticated empirical test of the computer-based stellar
evolution models to date. Here we present only a sampling of our results. Detailed
simulation studies under the simplified model given in (2) appear in von Hippel
et al. (2006). More detailed comparisons of the stellar evolution models for the
main sequence and discussion of the ramifications for the differences on the fitted
stellar and cluster parameters appear in Jeffery et al. (2007) and DeGennaro et al.
(2008).

Figure 4 represents our fitted values for the log10 cluster age and cluster metal-
licity, θage and θ[Fe/H]. The two plots give 67% posterior intervals computed under
the three stellar evolution models for the main sequence and compare them with
the most reliable parameter estimates based on the main sequence turn off for
age [Perryman et al. (1998)] and based on high-resolution spectral analysis for
metallicity [Taylor and Joner (2005)]. Such best available estimates are used to
formulate prior distributions for all cluster parameters except age. Because age is
the parameter of primary scientific interest, we use a uniform prior distribution
for θage; see DeGennaro et al. (2008) for an analysis of the sensitivity to the choice
of prior distribution.

Because our goal is to estimate the age of the Hyades based on the colors and
magnitudes of the white dwarf stars and because it is known that the stellar evolu-
tion models are flawed for the faintest main sequence stars (see the discrepancy be-
tween the observed magnitudes and the fitted Yale–Yonsei main-sequence model
at the lower right of Figure 2), we repeat our analysis, leaving out stars with V

magnitudes fainter than a series of given thresholds. The horizontal axes of the
two plots in Figure 4 are the magnitude of the faintest main sequence stars used
in the analysis. It is apparent from the plots that as we include fainter stars in the
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FIG. 4. Effect of Data Depth on Fitted Age and Metallicity. The two plots show the posterior mean
and one posterior standard deviation intervals for θage and θ[Fe/H], respectively. The horizontal
axis indicates the faintest magnitude of main sequence stars included in the data; recall that higher
magnitudes correspond to fainter stars. The fit is repeated using each of the three stellar evolution
models for main sequence stars. The model compiled in the Dartmouth Stellar Evolution Database
[Dotter et al. (2008)] is represented by blue squares, the model of Girardi et al. (2000) by red circles,
and the Yale–Yonsei model by black triangles. The Yale–Yonsei model is replicated with two sets of
starting values. The black horizontal lines are the mean and one standard deviation intervals for the
most reliable external estimate of the age and metallicity of the Hyades. This estimate was used to
quantify the Gaussian prior distribution on θ[Fe/H], while a flat prior distribution was used on θage.
The plots show that the stellar evolution models break down for the faintest stars and under-represent
uncertainty in the fits.

analysis, the posterior distributions change considerably. It is also evident that the
fitted values are quite sensitive to the choice of stellar evolution model for the main
sequence stars. One of the primary aims of our study is to evaluate the reliability
of the physics-based stellar evolution models. Figure 4 makes it clear that none of
the models is reliable for the faintest stars.
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Although our primary scientific goal is to determine θage based on white dwarfs,
some main sequence stars must be included to constrain the other cluster and stel-
lar parameters. These parameters depend much more heavily on the main sequence
data and models. Thus, in the left most fit in the lower panel of Figure 4, where
only white dwarfs are included in the data set, the posterior and prior distributions
for θ[Fe/H] coincide. As we include more data, the posterior distribution for θ[Fe/H]
changes substantially and becomes more dependent on the choice of model. The
cluster age, however, is far less sensitive to the choice of model, at least for stars
of magnitude about 8.5 and brighter. Thus, despite the inaccuracies and/or approx-
imations in the stellar evolution models for the main sequence, we are able to
reliably estimate the age and for the first time produce a white-dwarf age estimate
that agrees with the most reliable age estimate based on the main sequence turn off.

The sensitivity of the fitted values both to the choice of stellar evolution model
and to the depth of data included in the analysis clearly indicate that the poste-
rior standard errors computed under any particular model are underestimates of
the actual uncertainty for the cluster parameters. This is true for θage as well as the
other parameters. Systematic errors stemming from apparent inaccuracies and/or
approximations in the stellar evolution models contribute substantially to the un-
certainty. A synthesis of the information in Figure 4 into a best estimate of cluster
parameter along with a reliable estimate of uncertainty is of particular scientific in-
terest to an astronomer. A formal statistical approach might use model averaging to
combine the perspectives of the three stellar evolution models into a single coher-
ent analysis. One might expect the resulting posterior variance to be larger under
the mixed model than under any of the individual models. A statistical analysis,
however, is only as good as the model it is predicated upon. Thus, a better long-run
strategy is to explore the differences among the stellar evolution models in light
of the observed data, with the goal of designing models that more reliably repre-
sent the underlying physical processes and are better able to predict the observed
data. For the time being, we base our final parameter estimates on main sequence
stars of magnitude 8.5 or brighter and conduct a simple ANOVA-type analysis that
combines the within-model and between-model uncertainty.

As a second evaluation of the underlying physical models, we compare the pos-
terior distribution of the primary and secondary masses of a known binary star sys-
tem called vB022 to an externally computed estimate. The posterior distribution
of the stellar masses computed using the Yale–Yonsei main-sequence evolution
model and using main sequence stars down to magnitude 8.5 appears in Figure 5.
The non-Gaussian character of the distribution is both striking and typical of many
of the low dimensional marginal distributions. This highlights an advantage of our
Bayesian approach: We are able to marginalize to the parameters of direct scien-
tific interest in a natural manner that avoids any Gaussian approximation to the
likelihood function.

To evaluate the underlying physical models, we compare the posterior distrib-
ution in Figure 5 to an external estimate of the stellar masses computed using the
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FIG. 5. The Joint Posterior Distribution for the Primary and Secondary Masses of the Star vB022
in the Hyades. The scatter plot shows the Monte Carlo sample from the posterior distribution un-
der our analysis using the Yale–Yonsei model for main sequence evolution. The star has a posterior
probability of cluster membership equal to 99.955% and the plot gives the conditional posterior dis-
tribution of the two masses given that the binary system is a member of the cluster. This is compared
with an external estimate of the two masses that is indicated by the open circle with whiskers that
correspond to 95% marginal confidence intervals. Our estimate of the primary mass is about 5%
lower than the more reliable external estimate. This difference is attributed to systematic errors in
the underlying physical models. The masses are in units of M�.

radial velocities of the two component stars in the system [Peterson and Solensky
(1988)]. These measurements are quite reliable and are independent of the data and
models that go into our estimates. Although our estimate of the secondary mass is
consistent with the external estimate, the more reliable external estimate of the
primary mass is about 5% larger than our estimate. We attribute this to systematic
errors in the underlying physical models that we use. In Figure 2, vB022 is marked
by a yellow point, and its V magnitude is 8.5. This is right at the point where the
stellar evolution models begin to diverge in their fit; see Figure 4. This divergence
grows worse lower in the main sequence; see Figures 2 and 4.

6. Discussion. We have described a Bayesian model-based approach to fitting
the stellar and cluster parameters of physics-based computer models for stellar evo-
lution. Our method constitutes the first statistical attempt to empirically evaluate
and compare these models. Although initial results point to some inadequacies in
the underlying models, their predictions do largely agree with the observed data.
Thus, our white-dwarf based estimates of the cluster parameters are the best esti-
mates available to date of their kind. That these estimates largely agree with the
main sequence turn off estimates validates both our estimates and our technique,
and, to a certain extent, the underlying computer models. In the future we hope
that our technique can be improved with an extension of our methods to include
red giants and main sequence stars at the turn off and by incorporating updated
computer models. The larger and more informative data sets should yield even
more precise estimates. Moreover, with more reliable computer models in hand,
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more sophisticated techniques, such as Bayes factors and model averaging, can be
used to evaluate and compare the underlying physical models.

APPENDIX

In this appendix we verify that the posterior distribution of scientific interest is
not affected by the choice of prior distribution for the stellar masses conditional on
a star being a field star, namely, p(Mi−|Zi = 0) for i = 1, . . . ,N , with Mi− the
pair of masses for star i. In the interest of brevity, we rewrite the likelihood given
in (5) as

L(M,�,Z|X,�) =
N∏

i=1

[Zif1(Xi ,Mi−,�) + (1 − Zi)f0(Xi)],(7)

where Xi is the vector of magnitudes observed for star i, f1 is the joint distrib-
ution of the magnitudes for a cluster star, and f0 is the joint distribution of the
magnitudes for a field star. The joint posterior distribution can then be written

p(M,�,Z|X,�) ∝
N∏

i=1

[
Zif1(Xi ,Mi−,�)p(Mi−|Zi)p(Zi)

(8)
+ (1 − Zi)f0(Xi )p(Mi−|Zi)p(Zi)

]
p(�).

Expanding the product results in 2N terms of the form

p(�)
∏
i∈I1

Zif1(Xi ,Mi−,�)p(Mi−|Zi)p(Zi)

(9)
× ∏

i∈I0

(1 − Zi)f0(Xi )p(Mi−|Zi)p(Zi),

where I0 and I1 partition {1,2, . . . ,N}. (The 2N terms correspond to the 2N

two-set partitions of {1,2, . . . ,N}.) Due to the leading factor in each product,
p(Mi−|Zi)p(Zi) is evaluated at Zi = 1 for i ∈ I1 and at Zi = 0 for i ∈ I0.

To compute the marginal posterior distribution p(�,Z|X,�), we integrate (8)
over M, which corresponds to the sum of 2N integrals over terms of the form given
in (9). Because

∫
(1 − Zi)f0(Xi )p(Mi−|Zi)p(Zi)dMi− = (1 − Zi)f0(Xi)p(Zi)

for any proper choice of p(Mi−|Zi), however, each of these integrals depends on
p(Mi−|Zi) only if i ∈ I1. Thus, p(�,Z|X,�) does not depend on the choice of
p(Mi−|Zi = 0).

Using a similar argument, we can show, for example, that p(�,Mi−,Mj−|Zi =
Zj = 1,X,�) does not depend on the choice of p(Mi−|Zi = 0) for i = 1, . . . ,N .
If we integrate (8) over the masses of a subset of the stars, the resulting distrib-
ution does not depend on p(Mi−|Zi = 0) for the marginalized stars by the same
argument as outlined above. For the remaining stars, p(Mi−|Zi = 0) again falls
out when we condition on their cluster membership, for example, Zi = Zj = 1.
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SUPPLEMENTARY MATERIAL

Statistical analysis of stellar evolution: online supplement (DOI: 10.1214/08-
AOAS219SUPP; .pdf). This supplement contains four color figures and a descrip-
tion of the physics behind the computer-based stellar evolution models. This ma-
terial was originally intended to be included in this article, but was removed for
editorial reasons. The images are visually impressive but not central to our sta-
tistical analysis. The section on the computer model provides details for readers
interested in the inner workings of the likelihood function used in this article.
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