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Abstract. We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the
microstate free entropy adapted to projections in the case of two projections.

Résumé. Nous prouvons un genre d’inégalité de Sobolev logarithmique qui montre que l’information de Fisher libre domine
l’entropie de micro-états libre adaptée aux projections dans le cas de deux projections.
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Introduction

The aim of this paper is to add a new result to Voiculescu’s liberation theory initiated in [20]. The mutual free Fisher
information ϕ∗ and the mutual free information i∗ were introduced there for subalgebras unlike those quantities in
[19] for random variables. More precisely, what we will prove is the inequality

−χproj(p, q) ≤ ϕ∗(
Cp + C(1 − p) : Cq + C(1 − q)

)
(0.1)

for projections p,q in a tracial W ∗-probability space under a natural assumption. Here, χproj denotes the microstate
definition of free entropy adapted to projections, which was proposed by Voiculescu [20], Section 14.2, and naturally
appeared as the rate function in the large deviation principle for a pair of random projection matrices in [8]. One
should remember that the original microstate free entropy χ is meaningless for projections as χ always takes −∞
for them. Our subsequent paper [10] will provide several basic properties of χproj similar to those of the original χ

developed in [16–18].
At least to the best of our knowledge, no further work on the liberation theory has been made after the appearance

of [20]. Our present result may add a new insight to what Voiculescu discussed in [20], Sections 14.1 and 14.2, though
the situation we deal with is very restricted. In fact, our proof suggests that the inequality (0.1) should be regarded as
a kind of logarithmic Sobolev inequality, whose original form is an inequality giving an upper bound of the (relative)
entropy by the (relative) Fisher information (or Dirichlet form) up to a constant (see, e.g. [15], Section 9.2) and whose
free analogs were obtained in [3,9,12]. From this point of view our result suggests a possible relation between −χproj
and i∗ at least for pairs of projections.
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1. Preliminaries

1.1. Free entropy for projections

For N ∈ N let U(N) be the N × N unitary group. Let G(N,k) denote the set of all N × N orthogonal projection
matrices of rank k, that is, G(N,k) is identified with the Grassmannian manifold consisting of k-dimensional sub-
spaces in C

N , and it is also identified with the homogeneous space U(N)/(U(k) ⊕ U(N − k)). The unitarily invariant
probability measure γG(N,k) on G(N,k) corresponds to the measure on U(N)/(U(k) ⊕ U(N − k)) induced from the
Haar probability measure on U(N).

Let (p1, . . . , pn) be an n-tuple of projections in a tracial W ∗-probability space (M, τ ) with αi := τ(pi), 1 ≤ i ≤ n.
Following Voiculescu’s proposal in [20], Section 14.2, we define the free entropy χproj(p1, . . . , pn) of (p1, . . . , pn)

as follows: Choose k(N, i) ∈ {0,1, . . . ,N} for each N ∈ N and 1 ≤ i ≤ n in such a way that k(N, i)/N → αi as
N → ∞ for 1 ≤ i ≤ n. For each m ∈ N and ε > 0, Γproj(p1, . . . , pn; k(N,1), . . . , k(N,n);N,m,ε) denotes the
set of (P1, . . . ,Pn) ∈ ∏n

i=1 G(N,k(N, i)) satisfying |trN(Pi1 · · ·Pir ) − τ(pi1 · · ·pir )| < ε for all 1 ≤ i1, . . . , ir ≤ n,
1 ≤ r ≤ m, where trN stands for the normalized trace on the N × N matrices. Then χproj(p1, . . . , pn) is defined to
be

inf
m∈N, ε>0

lim sup
N→∞

1

N2
log

(
n⊗

i=1

γG(N,k(N,i))

)(
Γ

(
p1, . . . , pn; k(N,1), . . . , k(N,n);N,m,ε

))
,

which is known to be independent of the choices of k(N, i) with k(N, i)/N → αi , 1 ≤ i ≤ n (see [10], Proposi-
tion 1.1).

In this paper we are concerned with the case of two projections. Let (p, q) be a pair of projections in (M, τ ) with
α := τ(p) and β := τ(q). Set

E11 := p ∧ q, E10 := p ∧ q⊥, E01 := p⊥ ∧ q, E00 := p⊥ ∧ q⊥,

E := 1 − (E00 + E01 + E10 + E11)

and αij := τ(Eij ) for i, j = 0,1. Then E and Eij are in the center of N := {p,q}′′ and (EN E,τ |EN E) is isomorphic
to L∞((0,1), ν;M2(C)), the L∞-algebra of M2(C)-valued functions, where ν is a measure on (0,1) with ν((0,1)) =
1 − ∑1

i,j=0 αij . Here EpE and EqE correspond to

t ∈ (0,1) �→
[

1 0
0 0

]
and

[
t

√
t (1 − t)√

t (1 − t) 1 − t

]
,

respectively, and τ |EN E is represented as

τ(a) =
∫ 1

0
tr2

(
a(t)

)
dν(t)

for a ∈ EN E corresponding to a(·) ∈ L∞((0,1), ν;M2(C)). In this way, the mixed moments of (p, q) with respect to
τ are determined by the data (ν, {αij }1

i,j=0). Although ν is not necessarily a probability measure, we denote �(ν) :=∫ 1
0

∫ 1
0 log |x − y|dν(x)dν(y) in the same fashion as in [16]. Furthermore we set

ρ := min{α,β,1 − α,1 − β} = 1

2

(
1 −

1∑
i,j=0

αij

)
, (1.1)

C := ρ2B

( |α − β|
ρ

,
|α + β − 1|

ρ

)
(1.2)

(meant zero if ρ = 0), where the function B(s, t) in s, t ≥ 0 was given in [8], Proposition 2.1. The following expression
was obtained in [8] as a consequence of the large deviation principle for an independent pair of random projection
matrices.
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Lemma 1.1 ([8], Theorem 3.2, Proposition 3.3). If α00α11 = α01α10 = 0, then

χproj(p, q) = 1

4
�(ν) + α01 + α10

2

∫ 1

0
logx dν(x) + α00 + α11

2

∫ 1

0
log(1 − x)dν(x) − C,

and otherwise χproj(p, q) = −∞.

Note that the condition α00α11 = α01α10 = 0 is equivalent to{
α11 = max{α + β − 1,0}, α10 = max{α − β,0},
α00 = max{1 − α − β,0}, α01 = max{β − α,0}, (1.3)

and in this case, α01 + α10 = |α − β| and α00 + α11 = |α + β − 1|.

1.2. Mutual free Fisher information

Let A and B be two unital ∗-subalgebras in (M, τ ), which are assumed to be algebraically free. Let A ∨ B and
W ∗(A ∪ B) denote the subalgebra and the von Neumann subalgebra, respectively, generated by A ∪ B. Let δA : B be
the derivation from A ∨ B into the A ∨ B-bimodule (A ∨ B)⊗(A ∨ B) uniquely determined by δA : B(a) = a⊗1−1⊗a

for a ∈ A and δA : B(b) = 0 for b ∈ B. If there is an element ξ ∈ L1(W ∗(A ∪ B)) such that τ(ξx) = (τ ⊗ τ)(δA : B(x))

for x ∈ A ∨ B, then ξ is called the liberation gradient of (A, B) and denoted by j (A : B). Voiculescu [20] introduced
the mutual free Fisher information of A relative to B by ϕ∗(A : B) := ‖j (A : B)‖2

2 (‖ · ‖2 stands for the L2-norm with
respect to τ ) if j (A : B) exists in L2(W ∗(A ∪ B)); otherwise ϕ∗(A : B) := +∞. See [20] for more about the mutual
free Fisher information.

Let (p, q) be a pair of projections in (M, τ ) and set A := Cp+C(1−p), B := Cq +C(1−q). Then the liberation
gradient j (A : B) and the mutual free Fisher information ϕ∗(A : B) were computed in [20]. Here, recall that the Hilbert
transform of a function f with f (x)/(1 + |x|) ∈ L1(R,dx) is defined to be

(Hf )(x) := lim
ε↘0

(Hεf )(x) with (Hεf )(x) :=
∫

|x−t |>ε

f (t)

x − t
dt

whenever the limit exists almost everywhere. We need the following a-bit-improved version of [20], Proposition 12.7,
because the original version is not applicable, in particular, to the free case when τ(p) = τ(q) = 1/2 due to the
L3-assumption with respect to dx rather than 1(0,1)(x)x(1 − x)dx.

Lemma 1.2. With the same notations as in Section 1.1 assume that α00α11 = α01α10 = 0, ν has the density f :=
dν/dx ∈ L3((0,1), x(1 − x)dx) and moreover∫ 1

0

(
α01 + α10

x
+ α11 + α00

1 − x

)
f (x)dx < +∞. (1.4)

Define X := pqp + (1 − p)(1 − q)(1 − p) and

φ(x) := (Hf )(x) + α01 + α10

x
− α00 + α11

1 − x
, 0 < x < 1.

Then

j (A : B) = [q,p]φ(EXE) ∈ L2(M, τ )

and hence

ϕ∗(A : B) =
∫ 1

0
φ(x)2f (x)x(1 − x)dx < +∞.
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The assumption (1.4) can be reduced when α = β or α+β = 1. In fact, (1.4) is nothing when α = β = 1/2; it means∫ 1
0 x−1f (x)dx < +∞ when α +β = 1 but α �= β . All the assumptions of Lemma 1.2 are satisfied, in particular, when

p and q are free (see [21], Example 3.6.7). Note ([20], Propositions 5.17 and 9.3.c) that j (A : B) = 0 (or equivalently
ϕ∗(A : B) = 0) if and only if p and q are free.

In [20], Section 12, the support of ν was assumed to be an infinite set to guarantee that A and B are algebraically
free. As long as ν �= 0, that is automatically satisfied from the assumption of ν having the density. In the case where
ν = 0 so that ρ = 0 by (1.1), it follows that p ∈ {0,1} or q ∈ {0,1}; hence Lemma 1.2 trivially holds.

Proof of Lemma 1.2. Since
∫ 1

0 (x(1 − x))−1/2 dx < +∞, the weighted version of M. Riesz’s theorem for Hilbert
transform ([11], Theorem 8) shows that there is a constant Cw > 0 depending only on the weight function w(x) :=
1(0,1)(x)x(1 − x) such that for every function g (whose Hg can be defined)

‖Hg‖w,3 ≤ Cw‖g‖w,3 (1.5)

with the weighted norm ‖g‖w,p := (
∫ 1

0 |g(x)|px(1−x)dx)1/p for 1 ≤ p < ∞, and moreover ‖Hεg −Hg‖w,3 → 0 as
ε ↘ 0 whenever ‖g‖w,3 < +∞. In what follows we use the same symbols as in [20], Section 12, with small exception;
p,q , A, B and x, x1, x2 are used instead of P,Q, A,B and t, t1, t2, respectively. By the facts mentioned above one
easily has∫ 1

0

∫ 1

0

(
xn+1

1 − xn+1
2

x1 − x2
− xn

1 − xn
2

x1 − x2

)
dν(x1)dν(x2)

= − lim
ε↘0

∫
|x1−x2|>ε

(
xn−1

1 x1(1 − x1)
f (x2)

x1 − x2
f (x1) + xn−1

2 x2(1 − x2)
f (x1)

x2 − x1
f (x2)

)
dx1 dx2

= −2 lim
ε↘0

∫ 1

0
xn−1(Hεf )(x)f (x)x(1 − x)dx

= −2
∫ 1

0
xn−1(Hf )(x)f (x)x(1 − x)dx.

Hence the assertion of [20], Lemma 12.6, can be changed to

(τ ⊗ τ) ◦ δB:A
(
(pq)n

) = − 1

2

∫ 1

0
xn−1(Hf )(x)f (x)x(1 − x)dx

+ 1 − α

2

∫ 1

0
xn−1(x − 1)dν(x) + α00 + α11

2

∫ 1

0
xn−1 dν(x) (1.6)

under the assumptions of Lemma 1.2. The rest of the proof goes along the same line as [20], Proposition 12.7, with
replacing [20], Lemma 12.6, by (1.6). �

2. Main result

For simplicity we hereafter write ϕ∗(p :q) for the mutual free Fisher information ϕ∗(Cp +C(1−p) : Cq +C(1−q))

(see Section 1.2).

Theorem 2.1. The inequality −χproj(p, q) ≤ ϕ∗(p :q) holds under the same assumptions as in Lemma 1.2.

The main idea of the proof is a random matrix approximation procedure based on the large deviation shown in
[8]. In fact, we apply Bakry and Emery’s logarithmic Sobolev inequality in [1] to random projection matrix pairs (or
probability measures on the product of two Grassmannian manifolds) and pass to the scaling limit as the matrix size
goes to ∞. Thus our inequality can be regarded as a kind of free probability counterpart of the logarithmic Sobolev
inequality.
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In the proof, we have to examine Bakry and Emery’s Γ2-criterion, which involves the Ricci curvature tensor. We
thus need to compute the Ricci curvature tensor Ric(G(N,k)) of G(N,k). Let u(N) be the Lie algebra of U(N) and
regard h(N, k) := u(k) ⊕ u(N − k) as a Lie subalgebra of u(N). The tangent space TP G(N,k) at each P ∈ G(N,k)

can be identified with g(N, k) := h(N, k)⊥, the orthocomplement of h(N, k) in u(N) with respect to the Riemannian
metric 〈X,Y 〉 := Re TrN(XY ∗), where TrN is the usual trace on N × N matrices. Choose the following complete
orthonormal system of g(N, k):

Eij := 1√
2
(eij − eji), Fij :=

√−1√
2

(eij + eji) (2.1)

with 1 ≤ i ≤ k, k + 1 ≤ j ≤ N . According to well-known facts on compact matrix groups and O’Neill’s formula
(see [6], Proposition 3.17 and Theorem 3.61, for example), the Ricci curvature tensor of G(N,k) with respect to the
above-mentioned Riemannian metric is computed as follows:

Ric
(
G(N,k)

)
P
(X,X) =

∑
1≤i≤k, k+1≤j≤N

(∥∥[X,Eij ]
∥∥2

HS
+ ∥∥[X,Fij ]

∥∥2
HS

)
, X ∈ g(N, k).

A simple direct computation shows that the above right-hand side is N‖X‖2
HS so that

Ric
(
G(N,k)

) = NI2k(N−k). (2.2)

Proof of Theorem 2.1. Let α, β and (ν, {αij }1
i,j=0) be as in Section 1.1 for the given pair (p, q). Since the inequality

trivially holds if ν = 0, assume ν �= 0 and let ν1 := ν(1)−1ν, the normalization of ν. In addition to the assumptions of
Lemma 1.2 we first assume the following (A) and (B):

(A) ν is supported in [δ,1 − δ] for a sufficiently small δ > 0 and it has the continuous density dν/dx.
(B) The function Qν1(x) := 2

∫ 1
0 log |x − y|dν1(y) is a well-defined C1-function on [0,1].

Choose C1-functions h0(x) and h1(x) on [0,1] such that

h0(x)

{= logx (δ ≤ x ≤ 1),
≥ logx (0 ≤ x ≤ δ),

h1(x)

{= log(1 − x) (0 ≤ x ≤ 1 − δ),
≥ log(1 − x) (1 − δ ≤ x ≤ 1).

For each N ∈ N choose k(N), l(N) ∈ {1, . . . ,N − 1} such that k(N)/N → α and l(N)/N → β as N → ∞, and set

n0(N) := N − min
{
k(N), l(N)

}
,

n1(N) := max
{
k(N) + l(N) − N,0

}
,

n(N) := min
{
k(N), l(N),N − k(N),N − l(N)

} = N − n0(N) − n1(N).

Letting

ψN(x) := n(N)

N
Qν1(x) + |k(N) − l(N)|

N
h0(x) + |k(N) + l(N) − N |

N
h1(x), 0 ≤ x ≤ 1,

we define a probability measure (regarded as a pair of N × N random projection matrices) λ
ψN

N on G(N,k(N)) ×
G(N, l(N)) by

dλ
ψN

N (P,Q) := 1

Z
ψN

N

exp
(−NTrN

(
ψN(PQP)

))
dλ0

N(P,Q) (2.3)

with the normalization constant Z
ψN

N and the reference measure λ0
N := γG(N,k(N)) ⊗ γG(N,l(N)). When (P,Q) ∈

G(N,k(N)) × G(N, l(N)) is distributed under λ0
N , the joint eigenvalue distribution of PQP is known due to

Ol’shanskij [13] (see also [5]). In the formulation of [8], Eq. (2.1), the eigenvalues of PQP are

0, . . . ,0︸ ︷︷ ︸
n0(N) times

, 1, . . . ,1︸ ︷︷ ︸
n1(N) times

, x1, . . . , xn(N) (2.4)
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and the joint distribution of (x1, . . . , xn(N)) ∈ [0,1]n(N) is

dλ̃0
N(x1, . . . , xn(N)) := 1

Z̃0
N

n(N)∏
i=1

x
|k(N)−l(N)|
i (1 − xi)

|k(N)+l(N)−N | ∏
1≤i<j≤n(N)

(xi − xj )
2

n(N)∏
i=1

dxi (2.5)

with the normalization constant Z̃0
N . Hence it turns out that when (P,Q) ∈ G(N,k(N)) × G(N, l(N)) is distributed

under λ
ψN

N , the eigenvalues of PQP are listed as in (2.4) but the joint distribution of (x1, . . . , xn(N)) ∈ [0,1]n(N) is
changed to

λ̃
ψN

N (x1, . . . , xn(N)) := 1

Z̃
ψN

N

exp
(−ψ̃N(x1, . . . , xn(N))

) ∏
1≤i<j≤n(N)

(xi − xj )
2

n(N)∏
i=1

dxi (2.6)

with the new normalization constant Z̃
ψN

N , where

ψ̃N (x1, . . . , xn(N)) :=
n(N)∑
i=1

{
n(N)Qν1(xi) + ∣∣k(N) − l(N)

∣∣(h0(xi) − logxi

)
+ ∣∣k(N) + l(N) − N

∣∣(h1(xi) − log(1 − xi)
)}

.

Similarly to [8], Proposition 2.1 and [7], Section 5.5, we have:

(a) The limit C′ := limN→∞ 1
N2 log Z̃

ψN

N exists as well as C = limN→∞ 1
N2 log Z̃0

N (see (1.2)).

(b) When (x1, . . . , xn(N)) is distributed under λ̃
ψN

N , the empirical measure 1
n(N)

∑n(N)
i=1 δxi

satisfies the large deviation

principle in the scale 1/N2 with the rate function

I (μ) := −ρ2�(μ) + ρ2
∫ 1

0
F(x)dμ(x) + C′ for μ ∈ M

([0,1]),
where M([0,1]) is the set of probability measures on [0,1], ρ is given in (1.1) and

F(x) := Qν1(x) + |α − β|
ρ

(
h0(x) − logx

) + |α + β − 1|
ρ

(
h1(x) − log(1 − x)

)
for 0 ≤ x ≤ 1.

(c) ν1 is a unique minimizer of I with I (ν1) = 0.

The last assertion follows from [14], Theorems I.1.3 and I.3.1, because by the construction of h0 and h1 we get

Qν1(x)

{= F(x) if x ∈ [δ,1 − δ] ⊃ suppν1,
≤ F(x) for x ∈ [0,1].

Furthermore the above large deviation yields:

(d) The mean eigenvalue distribution λ̂
ψN

N := ∫
[0,1]n(N)

1
n(N)

∑n(N)
i=1 δxi

dλ̃
ψN

N (x1, . . . , xn(N)) weakly converges to ν1 as
N → ∞.

Since the Riemannian manifold G(N,k(N)) × G(N, l(N)) has the volume measure λ0
N and its Ricci curvature

tensor is NI2k(N−k)+2l(N−l) by (2.2), the classical logarithmic Sobolev inequality due to Bakry and Emery [1] implies
that

S
(
λ

ψN

N ,λ0
N

) ≤ 1

2N

∫
G(N,k(N))×G(N,l(N))

∥∥∥∥∇ log
dλ

ψN

N

dλ0
N

∥∥∥∥2

HS

dλ
ψN

N , (2.7)
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where the left-hand side is the relative entropy of λ
ψN

N with respect to λ0
N and the gradient

∇ log(dλ
ψN

N /dλ0
N)(P,Q) is considered in g(N, k(N))⊕g(N, l(N)) via the natural identification T(P,Q)G(N,k(N))×

G(N, l(N)) = g(N, k(N)) ⊕ g(N, l(N)). By (2.5) and (2.6) notice that

dλ
ψN

N

dλ0
N

(P,Q) = 1

Z
ψN

N

exp
(−NTrN

(
ψN(PQP)

)) = Z̃0
N

Z̃
ψN

N

exp

(
−N

n(N)∑
i=1

ψN(xi)

)

for (P,Q) ∈ G(N,k(N)) × G(N, l(N)) and for the eigenvalues (x1, . . . , xn(N)) of PQP except n0(N) zeros and
n1(N) ones (see (2.4)). Hence we get

S
(
λ

ψN

N ,λ0
N

) =
∫

G(N,k(N))×G(N,l(N))

log
dλ

ψN

N

dλ0
N

(P,Q)dλ
ψN

N (P,Q)

= log Z̃0
N − log Z̃

ψN

N − Nn(N)

∫ 1

0
ψN(x)dλ̂

ψN

N (x).

Since ψN(x) converges to ρQν1(x) + |α − β|h0(x) + |α + β − 1|h1(x) uniformly on [0,1], it follows from (a) and
(d) above that

lim
N→∞

1

N2
S
(
λ

ψN

N ,λ0
N

) = C − C′ − ρ

∫ 1

0

(
ρQν1(x) + |α − β|h0(x) + |α + β − 1|h1(x)

)
dν1(x).

Since (c) gives

−C′ = −ρ2�(ν1) + ρ2
∫ 1

0
F(x)dν1(x) = −ρ2�(ν1) + ρ2

∫ 1

0
Qν1(x)dν1(x),

we have

lim
N→∞

1

N2
S
(
λ

ψN

N ,λ0
N

) = −χproj(p, q) (2.8)

thanks to Lemma 1.1 and (1.3) together with ν1 = (2ρ)−1ν (see [8], Eq. (3.4)).
On the other hand, since ∇ log(dλ

ψN

N /dλ0
N)(P,Q) = −N∇(TrN(ψN(PQP))), one can compute

∥∥∥∥∇ log
dλ

ψN

N

dλ0
N

(P,Q)

∥∥∥∥2

HS

= 4N2TrN
((

ψ ′
N(PQP)

)2
PQP(I − PQP)

)
,

whose proof will be given as Lemma 2.2 below for completeness. Therefore,

∫
G(N,k(N))×G(N,l(N))

∥∥∥∥∇ log
dλ

ψN

N

dλ0
N

(P,Q)

∥∥∥∥2

HS

dλ
ψN

N (P,Q)

= 4N2
∫

[0,1]n(N)

n(N)∑
i=1

(
ψ ′

N(xi)
)2

xi(1 − xi)dλ̃
ψN

N (x1, . . . , xn(N))

= 4N2n(N)

∫ 1

0

(
ψ ′

N(x)
)2

x(1 − x)dλ̂
ψN

N (x)

= 4n(N)

∫ 1

0

(
n(N)Q′

ν1
(x) + ∣∣k(N) − l(N)

∣∣h′
0(x) + ∣∣k(N) + l(N) − 1

∣∣h′
1(x)

)2
x(1 − x)dλ̂

ψN

N (x),
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and thus by (d) we have

lim
N→∞

1

2N3

∫
G(N,k(N))×G(N,l(N))

∥∥∥∥∇ log
dλ

ψN

N

dλ0
N

∥∥∥∥2

HS

dλ
ψN

N

= 2ρ

∫ 1

0

(
ρQ′

ν1
(x) + |α − β|h′

0(x) + |α + β − 1|h′
1(x)

)2
x(1 − x)dν1(x)

=
∫ 1

0

(
ρQ′

ν1
(x) + |α − β|

x
− |α + β − 1|

1 − x

)2

x(1 − x)dν(x)

= ϕ∗(p :q) (2.9)

by Lemma 1.2, since ν1 = (2ρ)−1ν so that ρQ′
ν1

(x) = (Hf )(x) with f := dν/dx. Combining (2.7)–(2.9) yields the
desired inequality under (A) and (B).

Next let us remove (A) and (B). First suppose that (A) is still satisfied but (B) is not. For each ε > 0 choose
a non-negative C∞-function ψε supported in [−ε, ε] with

∫
ψε(x)dx = 1. Let fε := f ∗ ψε for f := dν/dx and

define dνε(x) := fε(x)dx; then νε is a measure supported in a closed proper subinterval of (0,1) with νε((0,1)) =
1 − ∑1

i,j=0 αij whenever ε is small enough. Let (pε, qε) be a pair of projections in some (M, τ ) corresponding to

the representing data (νε, {αij }1
i,j=0). (Such a pair can be constructed via the GNS representation associated with

the tracial state determined by (νε, {αij }1
i,j=0); see [8], Section 3.) Since (A) and (B) are satisfied for νε , we get

−χproj(pε, qε) ≤ ϕ∗(pε :qε). Since ‖fε −f ‖w,3 → 0 and ‖Hfε −Hf ‖w,3 → 0 as ε ↘ 0 (see the proof of Lemma 1.2
for the weighted norm ‖ · ‖w,3), the Hölder inequality together with (1.5) implies that∫ 1

0

(
(Hfε)(x)

)2
fε(x)x(1 − x)dx −→

∫ 1

0

(
(Hf )(x)

)2
f (x)x(1 − x)dx (2.10)

and hence limε↘0 ϕ∗(pε :qε) = ϕ∗(p :q). Since �(μ) is weakly upper semicontinuous in μ (see, e.g. [7], Proposi-
tion 5.3.2), we also have −χproj(p, q) ≤ lim infε↘0(−χproj(pε, qε)) so that −χproj(p, q) ≤ ϕ∗(p :q).

Finally suppose only the assumptions stated in Lemma 1.2. For δ > 0 set

dνδ(s) := 1 − ∑1
i,j=0 αij

ν([δ,1 − δ]) 1[δ,1−δ](x)dν(x)

and let (pδ, qδ) be a pair of projections corresponding to (νδ, {αij }1
i,j=0). Let us denote the density of νδ by fδ ; then

it is immediate to see that ‖fδ − f ‖w,3 → 0. To show that ϕ∗(pδ :qδ) → ϕ∗(p :q) as δ ↘ 0, it suffices to prove the
following convergences as δ ↘ 0:∫ 1

0

(
(Hfδ)(x)

)2
fδ(x)x(1 − x)dx −→

∫ 1

0

(
(Hf )(x)

)2
f (x)x(1 − x)dx, (2.11)∫ 1

0
(Hfδ)(x)x−1fδ(x) x(1 − x)dx −→

∫ 1

0
(Hf )(x)x−1f (x)x(1 − x)dx, (2.12)∫ 1

0
(Hfδ)(x)(1 − x)−1fδ(x) x(1 − x)dx −→

∫ 1

0
(Hf )(x)(1 − x)−1f (x)x(1 − x)dx, (2.13)∫ 1

0
x−2fδ(x) x(1 − x)dx −→

∫ 1

0
x−2f (x)x(1 − x)dx, (2.14)∫ 1

0
(1 − x)−2fδ(x) x(1 − x)dx −→

∫ 1

0
(1 − x)−2f (x)x(1 − x)dx. (2.15)

Remark here that (2.12) and (2.14) are unnecessary when α01 + α10 = |α − β| = 0, and so are (2.13) and (2.15) when
α11 + α00 = |α + β − 1| = 0. The convergence (2.11) is verified as (2.10) above. Also, (2.14) and (2.15) immediately
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follow from the hypothesis (1.4). Since (2.12) and (2.13) are similarly shown, let us prove only the former here. Thus
we should assume α �= β , and (1.4) means

∫ 1
0 x−1f (x)dx < +∞. By the Hölder inequality together with (1.5) one

can estimate∥∥(Hfδ)x
−1fδ − (Hf )x−1f

∥∥
w,1 ≤ Cw‖fδ − f ‖w,3 · ∥∥x−1f

1/2
δ

∥∥
w,2 · ‖fδ‖1/2

w,3

+ Cw‖f ‖w,3 · ∥∥x−1|fδ − f |1/2
∥∥

w,2 · ‖fδ − f ‖1/2
w,3.

Note that∥∥x−1f
1/2
δ

∥∥2
w,2 ≤

∫ 1

0
x−1fδ(x)dx −→

∫ 1

0
x−1f (x)dx,

∥∥x−1|fδ − f |1/2
∥∥2

w,2 ≤
∫ 1

0
x−1

∣∣fδ(x) − f (x)
∣∣dx −→ 0

as δ ↘ 0, since
∫ 1

0 x−1f (x)dx < +∞. These apparently imply (2.12) thanks to f ∈ L3((0,1), x(1 − x)dx) and
‖fδ − f ‖w,3 −→ 0.

Moreover, since − logx < x−1 near 0 and − log(1 − x) < (1 − x)−1 near 1, the hypothesis (1.4) implies that∫ 1

0
(− logx)fδ(x)dx −→

∫ 1

0
(− logx)f (x)dx < +∞,

∫ 1

0

(− log(1 − x)
)
fδ(x)dx −→

∫ 1

0

(− log(1 − x)
)
f (x)dx < +∞

as δ ↘ 0 (whenever those are needed) so that −χproj(p, q) ≤ lim infδ↘0(−χproj(pδ, qδ)). Hence the proof is com-
pleted. �

Lemma 2.2. Let ψ be a C1-function on [0,1] and define Ψ (P,Q) := TrN(ψ(PQP)) for (P,Q) ∈ G(N,k) ×
G(N, l). Then∥∥∇Ψ (P,Q)

∥∥2
HS

= 4TrN
((

ψ ′(PQP)
)2

PQP(I − PQP)
)

holds for every (P,Q) ∈ G(N,k) × G(N, l).

Proof. Write (Xr)
2k(N−k)
r=1 for the orthonormal basis of g(N, k) given in (2.1) and also (Ys)

2l(N−l)
s=1 for that of g(N, l).

For each (P,Q) = (UPN(k)U∗,V PN(l)V ∗) in G(N,k) × G(N, l), a local normal coordinate at (P,Q) is given by
the mapping

(X,Y ) ∈ g(N, k) ⊕ g(N, l) �→ (
UeXPN(k)e−XU∗,V eY PN(l)e−Y V ∗) ∈ G(N,k) × G(N, l).

By a direct computation using this coordinate, one can compute

∇Ψ (P,Q) =
∑

r

〈
U∗QPf ′(PQP)PU − U∗Pf ′(PQP)PQU,Xr

〉
Xr

+
∑

s

〈
V ∗Pf ′(PQP)PQV − V ∗QPf ′(PQP)PV,Ys

〉
Ys

so that∥∥∇Ψ (P,Q)
∥∥2

HS
= 2

∥∥Pk(N)U∗Pf ′(PQP)PQU
(
I − Pk(N)

)∥∥2
HS

+ 2
∥∥Pl(N)V ∗QPf ′(PQP)PV

(
I − Pl(N)

)∥∥2
HS

= 4TrN
((

f ′(PQP)
)2

PQP(I − PQP)
)
. �
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3. Remarks

3.1. Classical vs. free probabilistic mutual information

The classical mutual information of two random variables, say X,Y , is usually formulated to be

I (X;Y) := S(μ(X,Y ),μX ⊗ μY ) =
∫

X ×X
log

dμ(X,Y )

d(μX ⊗ μY )
(x, y)dμ(X,Y )(x, y),

where μX,μY are the distribution measures of X,Y on the phase space X and μ(X,Y ) the joint distribution of (X,Y )

on X × X . The mutual information is in turn written as I (X;Y) = H(X) + H(Y) − H(X,Y ) as long as all the
Shannon–Gibbs entropies H(X), H(Y) and H(X,Y ) are finite. This is nothing but what Voiculescu mentioned in
[20] as an initial motivation of his introduction of the liberation theory. Let us now apply the definition of I (X;Y) to
our random matrix model (P (N),Q(N)) of a given pair (p, q) of projections, and then the proof of Theorem 2.1 (see
(2.8)) shows that

−χproj(p, q) = lim
N→∞

1

N2
S
(
λ

ψN

N ,λ0
N

) = lim
N→∞

1

N2
I
(
P(N);Q(N)

)
.

3.2. −χproj = i∗ for two projections

We simply write i∗(p : q) for the free mutual information i∗(Cp + C(1 − p) : Cq + C(1 − q)) introduced in [20],
and its “heuristic definition” should be “χproj(p)+χproj(q)−χproj(p, q)” on the analogy of classical theory. However
the actual definition is completely different based on the so-called liberation process so that in view of χproj(p) =
χproj(q) = 0 it may be particularly interesting to examine whether i∗(p : q) coincides with −χproj(p, q) or not. In fact,
the inequality in Theorem 2.1 is a kind of logarithmic Sobolev inequality and its right-hand side (the Dirichlet form
part) is a “derivative” of i∗(p : q), which also gives us a strong reason for that question. The equality −χproj(p, q) =
i∗(p : q) is technically similar to χ(X) = χ∗(X) in the single variable case shown in [19], though the former is
much more involved. (Here it should be noted that χ ≤ χ∗ holds in general [4].) At the moment we can give only a
heuristic argument for the question. Let (νt , {αij (t)}1

i,j=0) be the representing data of the liberation process (p(t) :=
u(t)pu(t)∗, q) started at (p, q) with a free unitary Brownian motion {u(t)}t≥0 (see [2]) freely independent of (p, q).
Remark that the αij (t)’s are constant in t due to [20], Lemma 12.5. Assume that νt satisfies the same properties as in
Lemma 1.2 for every t ≥ 0. By [20], Corollary 5.7, one has

τ
((

p(t + ε)qp(t + ε)
)m) = τ

((
p(t)qp(t)

)m) + mε

2
τ
([

Jt ,p(t)
](

qp(t)q
)m−1) + O

(
ε2)

with the liberation gradient Jt := j (Cp(t) + C(1 − p(t)) : Cq + C(1 − q)), and hence letting dνt (x) = ft (x)dx one
can derive

∂

∂t
ft (x) = − ∂

∂x

[
x(1 − x)ft (x)

(
(Hft )(x) + α01 + α10

x
− α00 + α11

1 − x

)]
(3.1)

under the additional assumption that ft (x) is smooth in (t, x). The differential formula d
dt

χproj(p(t), q) = ϕ∗(p(t) : q)

shows up after a rather heuristic computation by using (3.1). Then one can show limt→∞ χproj(p(t), q) = 0 by using
Theorem 2.1 and [20], Proposition 10.11.c, so that the desired −χproj(p, q) = i∗(p : q) follows. The insufficient points
in the derivation outlined above are: (i) we need to prove that all νt , t > 0, automatically satisfy the same properties
as in Lemma 1.2 whenever ν0 is assumed to satisfy; (ii) we need to prove that ft (x) is smooth in (t, x); and finally
(iii) we have to give a rigorous derivation of d

dt
χproj(p(t), q) = ϕ∗(p(t) : q) from (3.1).
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