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Comment: Bayesian Checking of the
Second Levels of Hierarchical Models
Andrew Gelman

Bayarri and Castellanos (BC) have written an inter-
esting paper discussing two forms of posterior model
check, one based on cross-validation and one based on
replication of new groups in a hierarchical model. We
think both these checks are good ideas and can become
even more effective when understood in the context of
posterior predictive checking. For the purpose of dis-
cussion, however, it is most interesting to focus on the
areas where we disagree with BC:

1. We have a different view of model checking. Rather
than setting the goal of having a fixed probability
of rejecting a true model and a high probability of
rejecting a false model, we recognize ahead of time
that our model is wrong and view model checking
as a way to explore and understand differences be-
tween model and data.

2. BC focus on p-values and scalar test statistics. We
favor graphical summaries of multivariate test sum-
maries.

3. For BC, it is important that p-values have a uni-
form distribution (i.e., that they be u-values, in our
terminology) under the assumption that the null hy-
pothesis is true. For us, it is important that p-values
be interpretable as posterior probabilities compar-
ing replicated to observed data.

4. BC recommend an “empirical Bayes prior p-value”
as being better than the posterior predictive p-value.
In fact, their empirical Bayes prior p-value is an ap-
proximation to a posterior predictive p-value which
was recommended for hierarchical models in Gel-
man, Meng and Stern (1996). BC miss this connec-
tion by not seeing the full generality of posterior
predictive checking.

In our discussion, we go through each of the above
points in turn and conclude with a comment on the po-
tential importance of theoretical work such as BC’s on
the future development of predictive model checking.
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1. THE GOAL OF MODEL CHECKING: REJECTING
FALSE MODELS, OR UNDERSTANDING WAYS IN

WHICH THE MODEL DOES NOT FIT DATA

All models are wrong, and the purpose of model
checking (as we see it) is not to reject a model but
rather to understand the ways in which it does not fit
the data. From a Bayesian point of view, the poste-
rior distribution is what is being used to summarize
inferences, so this is what we want to check. The key
questions then become: (a) what aspects of the model
should be checked; (b) what replications should we
compare the data to; (c) how to visualize the model
checks, which are typically highly multidimensional;
(d) what to make of the results?

In a wide-ranging discussion of a range of differ-
ent methods for Bayesian model checking, BC fo-
cus on the above question (d): in particular, how can
Bayesian hypothesis testing be set up so that the result-
ing p-values can used as a model-rejection rule with
specified Type I errors? This question is sometimes
framed as a desire for calibration in p-values, but ul-
timately the desire for calibration is most clearly inter-
pretable within a model-rejection framework. For ex-
ample, BC write that some methods “can result in a
severe conservatism incapable of detecting clearly in-
appropriate models.” But it is not at all clear that, just
because a model is wrong, that it is “inappropriate.” If
a model predicts replicated data that are just like the
observed data in important ways, it may very well be
appropriate for these purposes. Recall that we have al-
ready agreed that our models are wrong; we would like
to measure appropriateness in a direct way, rather than
set a rule that even a true model must be declared “in-
appropriate” 5% of the time. For example, in the model
considered by BC, we do not see the rationale for their
testing the hypothesis μ = μ0; we would rather just
perform Bayesian inference for μ.

Our concerns are thus a bit different from those of
BC: we are less concerned about the properties of our
procedures in the (relatively uninteresting) case that the
model is true, and more interested in having the ability
to address the misfit of model to data in direct terms.
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One reason, perhaps, of the popularity of our poste-
rior predictive approach, in addition to its Bayesian fla-
vor and ease of implementation, is the flexibility that
allows us to consider complicated test summaries—
including plots of the entire data set, as well as com-
binations of data and parameters and combinations of
observed and missing data—thus bringing the power of
exploratory data analysis to the checking of Bayesian
models, and conversely bringing the power of Bayesian
inference to exploratory data analysis.

Some of the difference in focus can be seen by look-
ing at the graphs in BC—histograms of the null dis-
tributions of p-values, curves of predictive densities
of unidimensional test summaries, and a single plot of
raw data (but with no comparison plots of replicated
data)— and comparing to the graphs in Gelman (2004)
and Gelman et al. (2005), which show various plots of
time series and other multidimensional test summaries.

2. THE STEPS OF BAYESIAN MODEL CHECKING

BC begin their paper with a useful characterization
of any checking method as having a diagnostic statis-
tic, a distribution for the statistic, and a way to mea-
sure conflict with the null distribution. Here we briefly
explain how our own applied model checking fits into
BC’s three-step framework.

Step 1. BC consider a diagnostic statistic T(xobs)
that depends entirely on observed data. In a Bayesian
framework, the diagnostic statistic, or test statistic, or
discrepancy measure can also depend on parameters
(Gelman, Meng and Stern, 1996) and on missing or la-
tent data (Gelman et al., 2005). It can be helpful to look
purely at observed data, but the expanded formulation
can allow us to define test variables that more directly
catch features of substantive interest.

Step 2. We compare the test variable to the predic-
tive distribution of other data sets yrep that could have
arisen from the same model. Formally introducing the
replications yrep is an important step in the mathemati-
cal formulation of Bayesian testing because it makes
explicit the joint model, p(y, yrep, θ). (Bayarri and
Castellanos use the notation x for data, but we prefer y
because we commonly work in the applied regression
framework in which y is modeled conditional on pre-
dictors, x.) Because we are doing Bayesian inference,
we simply use the posterior distribution, p(yrep|y),
which is also called the posterior predictive distribu-
tion because yrep can be viewed as predictions.

As discussed by Gelman, Meng and Stern (1996),
the prior predictive distribution is also a posterior pre-
dictive distribution but with yrep defined as arising

from new parameters, θ rep, drawn from the model. The
choice of prior or posterior distribution—or, more gen-
erally, the choice of what is to be replicated in defin-
ing yrep—depends on which aspects of the model are
being checked. In many cases, the prior distribution is
assigned based on convenience and so there is no par-
ticular interest in checking its fit to the data.

In the context of the paper at hand, which is ex-
plicitly concerned with checking the second level of
a hierarchical model, it makes sense to use an inter-
mediate replication, in which the hyperparameters η

are kept the same but the lower-level parameters θ

are replicated—that is, resampled from the group-level
model. In the notation of BC, the predictive distribution
of interest would be p(θ rep, xrep, η|x), averaging over
the posterior distribution p(η|x). This is a slight depar-
ture from BC’s recommendation to integrate θ . (Actu-
ally, we prefer the term “average over” to “integrate
out” since we perform our computations using simula-
tion.) As we discuss in Section 4 below, it turns out this
is very close to what BC call the empirical Bayes prior
predictive check.

Step 3. For a one-dimensional test summary, the
discrepancy between model and data can be summa-
rized by a p-value or, often more usefully, by a pre-
dictive confidence interval. (For example, page 366 of
Bayesian Data Analysis has an example from an analy-
sis of elections in which 12.6% of the elections in
the data switched parties, but in replicated data sets
the 95% interval for the proportion of switches was
[13.0%, 14.3%]. In this case, the model clearly did
not fit this aspect of the data, but this difference of
about one percentage point was not of practical signifi-
cance.) For higher-dimensional test summaries, graph-
ical summaries would be appropriate—up to and in-
cluding plots of the entire data set, compared with plots
of replicated data. There is some potential, we believe,
to connect classes of models with classes of graphs to
suggest natural and automatic displays of checks for
many problems (Gelman, 2003, 2004).

As we have already noted, BC focus on p-values,
which can be useful summaries but are no replacement
for graphical comparisons of observed and replicated
data that can reveal various aspects of model misfit.
We emphasize that any of the methods discussed in the
BC paper can be applied to graphical checks.

3. p-VALUES AND u-VALUES

Regarding the discussion in Section 3.5 of BC on
p-values, we refer the reader to Section 2.3 of Gelman
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(2003), which distinguishes between Bayesian p-va-
lues—most simply, posterior probability statements of
the form Pr(T (yrep) > T (y)|y)—and u-values—data
summaries with a uniform null distribution. Classical
p-values with pivotal test statistics are also u-values,
but in the presence of uncertainty about parameters it
is not generally possible for tests to have both prop-
erties at once. On the occasions that we do summa-
rize test statistics using tail-area probabilities, we pre-
fer the p-value because it can be directly interpreted
as a statement, conditional on the model, about what
might be expected in future replications. Here we dis-
agree with BC, who describe the uniform null distri-
bution as “a very desirable property, namely having
the same interpretation across problems.” It is perhaps
a matter of taste whether to prefer a posterior sum-
mary with a direct probabilistic interpretation or a less-
interpretable statistic that has a uniform distribution
under the null model. We would certainly not call our
p-values uninterpretable: for example, a p-value of 0.2
means clearly that, under the model, 20% of future
data will be at least as extreme as the observed data.
No calibration is necessary for this interpretation to be
valid.

In any case, our point here is to distinguish between
the two goals—a direct probability statement and a uni-
form null distribution—and to point out that, in gen-
eral, you cannot have both, just as, in general, posterior
means will not be unbiased estimates and posterior in-
tervals will not have classical confidence coverage for
all parameter values. Ultimately we will evaluate our
Bayesian model-checking methods based on how well
they help us understand differences between model and
data, not based on theoretical coverage properties and
not based on their rates of rejecting models which we
know are false anyway.

4. THE “EMPIRICAL BAYES PRIOR p-VALUE”

BC’s paper concludes with a statement that empiri-
cal Bayes prior p-values “have better properties [than
posterior p-values] and are easier to compute.” In fact,
these EB-prior p-values are very close to posterior
p-values, replicating θ but leaving the hyperparame-
ters (η, in BC’s notation) fixed, a strategy which Gel-
man, Meng and Stern (1996) recommend for hierar-
chical models (Figure 1c on page 739 of that paper).
The only difference between the EB-prior distribu-
tion and this posterior predictive distribution is that
the former uses point estimates of the hyperparame-
ters, which cannot in general be a good idea (con-
sider, e.g., settings where no good point estimates ex-

ist, such as the 8-schools example from Chapter 5 of
Bayesian Data Analysis). We suspect the good perfor-
mance of the EB-prior p-values comes from the ap-
propriate choice of replication for testing the second
level of a hierarchical model—the same hyperparame-
ters but new groups—not from the use of point esti-
mates.

To put it another way, take BC’s “empirical Bayes”
method, average over the hyperparameters so that it be-
comes “hierarchical Bayes” (as is appropriate given the
other parts of the paper), and you get a posterior pre-
dictive check. We suppose that BC did not notice this
because of their assumption that in posterior predic-
tive checking, all parameters had to be kept the same
in replications (as in Figure 1a on page 739 of Gel-
man, Meng and Stern, 1996). In fact, the flexibility of
predictive checking allows different aspects of the data
and parameter vectors to be preserved in replications,
and for the particular goal of BC’s paper, it makes sense
to replicate the parameters θ (as BC ended up discov-
ering in their simulations). Sinharay and Stern (2003)
discuss these issues further in the context of the hierar-
chical normal model.

5. LOOKING FORWARD

As indicated by the plethora of methods discussed by
BC, there are many ways of combining ideas of repli-
cation and cross-validation. A parallel situation arises
in the literature of the bootstrap (Efron and Tibshi-
rani, 1993), with parametric bootstraps, nonparametric
bootstraps, and special methods for spatial and time-
series data. A lot more work needs to be done. In par-
ticular, although we do find the posterior predictive
framework useful, we recognize that there is some-
thing particularly compelling about external validation
and cross-validation. At the theoretical level, there is
an opening to incorporate validation into hierarchi-
cal modeling with the possibilities of different levels
of cross-validation for individuals and groups (e.g.,
fivefold cross-validation of groups and tenfold cross-
validation of observations within groups). More prac-
tical concerns include decisions about how to set up
the tuning parameters for cross-validation and, when
comparisons are made graphically, how to visualize the
many replicated data sets. BC’s partial posterior pre-
dictive distribution could be an excellent way to unify
this area.

The BC paper focuses on p-values, but if our own
experience is any guide, we expect the most use-
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ful work to focus on graphical explorations of re-
alized and replicated data. We focused on p-values
in our 1996 paper, but in the years since, we have
found graphical checks to be more helpful, with nu-
merical summaries and p-values coming in at the
end to give some structure to our visual judgments.
The theoretical structure used by BC, of looking at
null distributions of p-values, could become help-
ful here, and also for concerns of multiple compar-
isons.
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