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ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET
MEDIAN REGRESSION

BY LAWRENCE D. BROWN, T. TONY CAI1 AND HARRISON H. ZHOU2

University of Pennsylvania, University of Pennsylvania and Yale University

In this paper we develop a nonparametric regression method that is si-
multaneously adaptive over a wide range of function classes for the regres-
sion function and robust over a large collection of error distributions, includ-
ing those that are heavy-tailed, and may not even possess variances or means.
Our approach is to first use local medians to turn the problem of nonpara-
metric regression with unknown noise distribution into a standard Gaussian
regression problem and then apply a wavelet block thresholding procedure to
construct an estimator of the regression function. It is shown that the estima-
tor simultaneously attains the optimal rate of convergence over a wide range
of the Besov classes, without prior knowledge of the smoothness of the un-
derlying functions or prior knowledge of the error distribution. The estimator
also automatically adapts to the local smoothness of the underlying function,
and attains the local adaptive minimax rate for estimating functions at a point.

A key technical result in our development is a quantile coupling theo-
rem which gives a tight bound for the quantile coupling between the sample
medians and a normal variable. This median coupling inequality may be of
independent interest.

1. Introduction. A standard nonparametric regression model involves obser-
vation of {xi, Yi} where

Yi = f (xi) + ξi, i = 1, . . . , n.(1)

Most of the theory that has so far been developed for such a model involves an
assumption that the errors ξi are independent and identically-distributed (i.i.d.)
normal variables. These assumptions are suitable for a wide range of applications
of the model. In the Gaussian noise setting many smoothing techniques includ-
ing wavelet thresholding methods have been developed and shown to be highly
adaptive. However, when the noise ξi has a heavy-tailed distribution, these tech-
niques are not readily applicable. For example, in Cauchy regression where ξi has
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a Cauchy distribution, typical realizations of ξi contain a few extremely large ob-
servations of order n since

P(max{ξi} ≥ n) =
(

1

π
arctan(n) + 1

2

)n

→ exp
(
− 1

π

)
.

In contrast, the largest observation of the noise ξi in Gaussian regression is of
order

√
logn. It is thus clear that the classical denoising methods designed for

Gaussian noise would fail if they are applied directly to the sample {Yi} when the
noise in fact has a Cauchy distribution. Standard wavelet thresholding procedures
would also fail in such a heavy-tailed noise setting. See Section 3.2 for further
discussions.

In the usual nonparametric regression case the regression function f is often
alternatively described as the conditional expectation f (xi) = E(Yi |xi). However,
if the error distributions fail to have a mean, then this conditional expectation will
not exist. Even when the conditional expectation exists, estimating the conditional
expectation may be a very non-robust goal, and not suitable for particular appli-
cations. For error distributions that may be heavy tailed it seems more suitable to
estimate the conditional median of Yi . Hence, in the sequel we assume (1) holds
with

ξi i.i.d. and median(ξi) = 0.(2)

There are practical situations for which the normality assumption is not satis-
factory. See, for example, Stuck and Kleiner (1974), Stuck (2000) and references
therein. It is necessary to develop methods to be used in such cases, and to es-
tablish the theoretical properties of these methods. In this paper we develop an
estimation method that is simultaneously adaptive over a wide range of function
classes for f and robust over a large collection of error distributions for ξi , in-
cluding those that are heavy-tailed, and may not even possess variances or means.
In brief, our method may be summarized as a blockwise wavelet thresholding im-
plementation built from the medians of suitably binned data. We first divide the
interval [0,1] into a number of equal-length subintervals, then take the median of
the observations in each subinterval, and finally apply the BlockJS wavelet thresh-
olding procedure developed in Cai (1999) to the local medians together with a bias
correction to obtain an estimator of the regression function f .

Unlike most wavelet methods, the performance of the algorithm here is not sen-
sitive to the tail behavior of the distribution of ξi , and hence can be shown to have
the necessary robustness property. We show that the estimator enjoys a high degree
of adaptivity and robustness. It is shown that the estimator simultaneously attains
the exact optimal rate of convergence over a wide range of the Besov classes, with-
out prior knowledge of the smoothness of the underlying function or prior knowl-
edge of the error distribution. The estimator also automatically adapts to the local
smoothness of the underlying function, and attains the local adaptive minimax rate
for estimating functions at a point.
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Donoho and Yu (2000) considered this model for α-stable noise, but the risk
properties of their proposal are unclear. In the wavelet regression setting, Hall and
Patil (1996) studied nonparametric location models and achieved the optimal min-
imax rate up to a logarithmic term, but under an assumption that ξi has a finite
fourth moment. As we noted, our results do not need the existence of the mean for
the noise or prior knowledge of the error distribution. Most closely related to our
work is Averkamp and Houdré (2003, 2005) where the optimal minimax rate of
global risk is studied. But their noise is assumed to be known, and their results are
not adaptive.

The key technical result in our development is a quantile coupling theorem that
is used to connect our problem with a more familiar Gaussian setting. The the-
orem gives a tight bound for the quantile coupling between the medians of i.i.d.
random variables and a normal variable. The result enables us to treat the medians
of the observations in the subintervals as if they were normal random variables.
The coupling theorem may be of independent interest, since analogous coupling
theorems for means have proved to be an important general tool in many contexts.
See Section 2 for this result and for further discussion and citations to the literature
on quantile coupling.

The paper is organized as follows. In Section 2 we derive a quantile coupling
inequality for medians and obtain a moderate large deviation result. This coupling
inequality is needed for the proof of the asymptotic properties of our estimation
procedure, and may be of independent interest for other statistical applications.
Our procedure is defined in Section 3.2 and its asymptotic properties are described
in Section 4. Section 5 contains further discussion of our results, and formal proofs
are contained in Section 6. The reader interested only in the definition of our
wavelet regression procedure and a description of its properties can skip Section 2
and proceed directly to Section 3.

2. Quantile coupling for median. We begin with a brief introduction to
quantile coupling. Let X be a random variable with distribution G and Y with
a continuous distribution F . Define

X̃ = G−1(F (Y )),(3)

where G−1(x) = inf{u :G(u) ≥ x}, then L(X̃) = L(X) [cf. Pollard (2001), page
41]. Note that X̃ and Y are now defined on the same probability space. This makes
it possible to give a pointwise bound between X̃ and Y . The first tight bound
of quantile coupling between the sum of i.i.d. random variables with a normal
random variable was given in Komlós, Major and Tusnády (1975). A bound for the
coupling of a Binomial random variable with a normal random variable is given as
follows. For X ∼ Binomial(n,1/2) and Y ∼ N(n/2, n/4), let X̃(Y ) be defined as
in equation (3). Then for some constant C > 0 and ε > 0, when |X̃| ≤ εn,

|X̃ − Y | ≤ C + C
|X̃|2
n

.(4)
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This result plays a key role in the KMT/Hungarian construction to couple the em-
pirical distribution with a Brownian bridge. A detailed proof of the result can be
found in Mason (2001) and Bretagnolle and Massart (1989). A general theory for
improving the classical quantile coupling bound was given in Zhou (2005).

Standard coupling inequalities are mostly focused on the coupling of the mean
of i.i.d. random variables with a normal variable. In this section we study the cou-
pling of a median statistic with a normal variable. We derive a moderate deviation
result for the median statistic and obtain a quantile coupling inequality similar to
the classical KMT bound for the mean. This coupling result plays a crucial role in
this paper. It is the main tool for reducing the problem of robust estimation with
unknown noise to a well studied problem of Gaussian regression with unknown
variance. The result here may be of independent interest because of the fundamen-
tal role played by the median in statistics.

Let X1, . . . ,Xn be i.i.d. random variables with density function h. Denote the
sample median by Xmed. We will construct a new random variable X̃med by using
quantile coupling in (3) such that L(X̃med) = L(Xmed) and show that X̃med can
be well approximated by a normal random variable as equation (4). We need the
following assumptions on the density function h(x) to derive the quantile coupling
inequality.

ASSUMPTION (A1).
∫ 0
−∞ h(x) = 1

2 , h(0) > 0, and h(x) is Lipschitz at x = 0.

Here the Lipschitz condition at 0 means that there is a constant C > 0 such that
|h(x) − h(0)| ≤ C|x| in an open neighborhood of 0. This condition implies that
h is continuous at 0. We assume h(0) > 0 so that the median of the distribution
is unique and the distribution of the sample median is asymptotically normal [cf.
Casella and Berger (2002), page 483]. The Lipschitz condition is assumed so that
a moderate large deviation result for the distribution of sample median can be
obtained to derive a quantile coupling inequality as in equation (4).

THEOREM 1. Let Z be a standard normal random variable and let X1, . . . ,Xn

be i.i.d. with density function h where n = 2k + 1 for some integer k ≥ 1. Let As-
sumption (A1) hold. Then for every n there is a mapping X̃med(Z) : R �→ R such
that L(X̃med(Z)) = L(Xmed) and∣∣√4nh(0)X̃med − Z

∣∣ ≤ C√
n

+ C√
n

∣∣√4nh(0)X̃med
∣∣2 when |X̃med| ≤ ε(5)

where C, ε > 0 depend on h but not on n.

The quantile coupling bound here is similar to the classical KMT bound (4)
for the sample mean. This result has close connection to strong approximation of
quantile process in Csörgő and Révész (1978). The condition of Theorem 1 here
is weaker. Only a Lipschitz condition at x = 0 is assumed here to establish the
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non-uniform bound given in (5). As shown in Zhou (2005), the classical quan-
tile coupling bound for the mean can be improved when the distribution of Xi is
symmetric. Similarly, if we assume h′(0) = 0, the bound in Theorem 1 can be im-
proved from the rate 1/

√
n to the rate 1/n. See section 4 for more details. The

bound in Theorem 1 can also be expressed in terms of Z, as follows.

COROLLARY 1. Under the assumption of Theorem 1, the mapping X̃med(Z)

in Theorem 1 satisfies

|√4nh(0)X̃med − Z| ≤ C√
n
(1 + |Z|2) when |Z| ≤ ε

√
n(6)

where C, ε > 0 do not depend on n.

REMARK 1. When n = 2k is even, the sample median Xmed is usually taken
to be (X(k) + X(k+1))/2. Similar quantile coupling inequalities as (5) and (6) can
be obtained. For each i, let X−i,med be the median of the original sample with
Xi removed. Then Xmed = 1

n

∑n
i=1 X−i,med. Let Gn−1 be the distribution of the

median of n−1 i.i.d. observations with density h and define (Zi)1≤i≤n ∼ L(�−1 ◦
Gn−1(X−i,med),1 ≤ i ≤ n). Let X̃−i,med = G−1

n−1�(Zi). Then L(X̃−i,med,1 ≤ i ≤
n) = L(X−i,med,1 ≤ i ≤ n). Now a direct application of Theorem 1 gives

|X̃med − Z| ≤ C√
n

(
1 + ∣∣√4nh(0)

(∣∣X̃(k)

∣∣ + ∣∣X̃(k+1)

∣∣)∣∣2)
when |X̃(k)|+ |X̃(k+1)| ≤ ε, and Z = 1

n

∑n
i=1 Zi . So in Sections 3 and 5 we assume

the number of observations in each bin is odd without loss of generality.

The coupling result given in Theorem 1 in fact holds uniformly over a rich
collection of distributions. For 0 < ε1 < 1 and ε2 > 0 define

Hε1,ε2 =
{
h :

∫ 0

−∞
h(x) = 1

2
, ε1 ≤ h(0) ≤ 1

ε1
,

(7)

|h(x) − h(0)| ≤ |x|
ε1

for all |x| < ε2

}
.

It can be shown that Theorem 1 holds uniformly for the whole family of h ∈ Hε1,ε2 .

THEOREM 2. Let X1, . . . ,Xn be i.i.d. with density h ∈ Hε1,ε2 . For every
n = 2k + 1 with integer k ≥ 1, there is a mapping X̃med(Z) : R �→ R such that
L(X̃med(Z)) = L(Xmed) and for two constants Cε1,ε2 , εε1,ε2 > 0 depending only
on ε1 and ε2

|√4nh(0)X̃med − Z| ≤ Cε1,ε2√
n

+ Cε1,ε2√
n

|√4nh(0)X̃med|2

uniformly over all h ∈ Hε1,ε2 .
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REMARK 2. The quantile coupling inequalities in Corollary 1 and Remark 1
also hold uniformly over Hε1,ε2 by replacing C and ε there with two constants
depending ε1 and ε2.

3. Methodology for robust wavelet regression. We now define our robust
nonparametric regression estimator. Then we apply the median quantile coupling
results developed in the previous section to establish its asymptotic properties.

As we have mentioned, the first key step in our approach is to bin the data
according to the values of the independent variable. The sample median is then
computed within each bin. This leads to a new data situation in which the bin
centers are treated as the independent variables in a nonparametric regression, with
the bin medians being the dependent variables. This new situation can then be
satisfactorily viewed as if it were a Gaussian regression problem. It is important
that the number of bins be chosen in a suitable range. For the applications in our
paper it turns out to be appropriate to choose the number of bins to be T � n3/4,
where n is the original sample size. It appears that such a choice of T would also
be suitable for use with many other Gaussian nonparametric regression methods.

Proceeding in this way one should expect as a heuristic principle that the re-
sulting nonparametric procedure will inherit the asymptotic optimality properties
of the Gaussian nonparametric regression technique that is employed. Of course,
this heuristic principle needs to be established in particular cases. The difficulty of
doing so will depend on the nature of the Gaussian technique and the generality of
the asymptotic assumptions.

In the present treatment we choose to employ a Gaussian wavelet method in-
volving a block James–Stein wavelet estimator. Implementation of the procedure
is straightforward since the number of bins can be chosen as a power of 2, as is
especially convenient for wavelet implementation. This estimator enjoys excellent
asymptotic adaptivity properties in the Gaussian setting. We show that the cur-
rent binned-median version has analogous properties over nearly the same range
of Besov balls as does the original Gaussian procedure. The precise statement of
asymptotic properties is contained in Theorems 3 and 4. The full strength of the
asymptotic properties of our wavelet procedure in a Gaussian setting depends on
detailed moderate-deviation properties of the Gaussian distribution. For this reason
our proof of asymptotic properties of the binned median version requires careful
treatment of moderate-deviation properties of the binned medians, as in the cou-
pling results established in Section 2.

We shall focus on the case where the design points {xi}, are equally spaced
on the interval [0,1]. The more general case will be discussed at the end of Sec-
tion 4. The procedure, which will be described in detail in the next section, can
be briefly summarized as follows. Let the sample {Yi, i = 1, . . . , n} be given as
in (1) where xi = i

n
and the noise variables ξi are i.i.d. with an unknown den-

sity h. Let J = 
log2 n3/4�. Set T = 2J and m = n/T . We divide the interval
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[0,1] into T equal-length subintervals. Note that T � n3/4. For 1 ≤ j ≤ T , let
Ij = {Yi :xi ∈ (

j−1
T

,
j
T
]} be the j th bin and let Xj be the median of the obser-

vations in Ij . We treat Xj as if it were a normal random variable with mean
f (

j
T
) + bm and variance 1/(4mh2(0)) (see Theorem 1), where

bm = E{median(ξ1, . . . , ξm)}.(9)

Then apply a nonparametric Gaussian regression procedure. In this paper, we apply
the BlockJS wavelet thresholding procedure developed in Cai (1999) to construct
an estimator of f . The final estimator f̂ is given in equations (16) and (18).

We begin in Section 3.1 with a brief introduction to wavelet block threshold-
ing in the Gaussian regression setting and then give a detailed description of our
wavelet procedure for robust estimation in Section 3.2.

3.1. Wavelet block thresholding for Gaussian regression. Let {φ,ψ} be a pair
of father and mother wavelets. The functions φ and ψ are assumed to be compactly
supported and

∫
φ = 1. Dilation and translation of φ and ψ generates an orthonor-

mal wavelet basis. For simplicity in exposition, in the present paper we work with
periodized wavelet bases on [0,1]. Let

φ
p
j,k(t) =

∞∑
l=−∞

φj,k(t − l), ψ
p
j,k(t) =

∞∑
l=−∞

ψj,k(t − l) for t ∈ [0,1]

where φj,k(t) = 2j/2φ(2j t − k) and ψj,k(t) = 2j/2ψ(2j t − k). The collection
{φ

p
j0,k

, k = 1, . . . ,2j0;ψp
j,k, j ≥ j0 ≥ 0, k = 1, . . . ,2j } is then an orthonormal ba-

sis of L2[0,1], provided the primary resolution level j0 is large enough to en-
sure that the support of the scaling functions and wavelets at level j0 is not the
whole of [0,1]. The superscript “p” will be suppressed from the notation for con-
venience. An orthonormal wavelet basis has an associated orthogonal Discrete
Wavelet Transform (DWT) which transforms sampled data into the wavelet co-
efficients. See Daubechies (1992) and Strang (1992) for further details about the
wavelets and discrete wavelet transform. A square-integrable function f on [0,1]
can be expanded into a wavelet series:

f (t) =
2j0∑
k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(t)(10)

where θ̃j,k = 〈f,φj,k〉, θj,k = 〈f,ψj,k〉 are the wavelet coefficients of f .
The BlockJS procedure was proposed in Cai (1999) for Gaussian nonparametric

regression and was shown to achieve simultaneously three objectives: adaptivity,
spatial adaptivity, and computational efficiency. The procedure can be most easily
explained in the sequence space setting. Suppose we observe the wavelet sequence
data:

yj,k = θj,k + σzj,k, j ≥ j0, k = 1,2, . . . ,2j(11)
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where zj,k are i.i.d. N(0,1) and the noise level σ is known. The mean vector θ

is the object of interest. The BlockJS procedure is as follows. Let J = [log2 n].
Divide each resolution level j0 ≤ j < J into nonoverlapping blocks of length
L = [logn] (or L = 2
log2(logn)� ≈ logn). Let Bi

j denote the set of indices of the co-

efficients in the i-th block at level j , that is, Bi
j = {(j, k) : (i − 1)L+ 1 ≤ k ≤ iL}.

Let S2
j,i ≡ ∑

(j,k)∈Bi
j
y2
j,k denote the sum of squared empirical wavelet coefficients

in block Bi
j . A James–Stein type shrinkage rule is then applied to each block Bi

j .

For (j, k) ∈ Bi
j ,

θ̂j,k =
⎧⎪⎨⎪⎩

(
1 − λ∗Lσ 2

S2
j,i

)
+

yj,k, for (j, k) ∈ Bi
j , j0 ≤ j < J,

0, for j ≥ J ,

(12)

where λ∗ = 4.50524 is a constant satisfying λ∗ − logλ∗ = 3. The threshold
λ∗ = 4.50524 is selected according to a block thresholding oracle inequality and a
minimax criterion. See Cai (1999) for further details.

3.2. Wavelet procedure for robust regression. Now we are ready to give a de-
tailed description of our procedure for robust estimation. Hereafter we shall set
g(t) = f (t) + bm where bm is given as in (9).

Apply the discrete wavelet transform to the binned medians X = (X1, . . . ,XT ),
and let U = T −1/2WX be the empirical wavelet coefficients, where W is the dis-
crete wavelet transformation matrix. Write

U = (ỹj0,1, . . . , ỹj0,2j0 , yj0,1, . . . , yj0,2j0 , . . . , yJ−1,1, . . . , yJ−1,2J−1)
′.(13)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k

(j = j0, . . . , J − 1, k = 1, . . . ,2j ) are empirical wavelet coefficients at level j

which represent fine structure at scale 2j . The empirical wavelet coefficients can
be written as

yj,k = θj,k + εj,k + 1

2h(0)
√

n
zj,k + ξj,k,(14)

where θj,k are the true wavelet coefficients of g = f + bm, εj,k are “small” de-
terministic approximation errors, zj,k are i.i.d. N(0,1), and ξj,k are some “small”
stochastic errors. The theoretical calculations given in Section 6 will show that
both the approximation errors εj,k and the stochastic errors ξj,k are negligible in
certain sense. If these negligible errors are ignored then we have

yj,k ≈ θj,k + 1

2h(0)
√

n
zj,k,(15)

which is the same as the idealized sequence model (11) with noise level σ =
1/(2h(0)

√
n).
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The BlockJS procedure is then applied to the empirical coefficients yj,k as if
they are distributed as in (15). More specifically, at each resolution level j , the em-
pirical wavelet coefficients yj,k are grouped into nonoverlapping blocks of length
L. As in the sequence estimation setting let Bi

j = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL}
and let S2

j,i ≡ ∑
(j,k)∈Bi

j
y2
j,k . Let ĥ2(0) be an estimator of h2(0) [see equation (38)

for an estimator]. A modified James–Stein shrinkage rule is then applied to each
block Bi

j , that is,

θ̂j,k =
(

1 − λ∗L
4ĥ2(0)nS2

j,i

)
+

yj,k for (j, k) ∈ Bi
j ,(16)

where λ∗ = 4.50524 is the solution to the equation λ∗ − logλ∗ = 3 and 4ĥ2(0)n

in the shrinkage factor of (16) is due to the fact that the noise level in (15) is
σ = 1/(2h(0)

√
n). For the gross structure terms at the lowest resolution level

j0, we set ˆ̃
θj0,k = ỹj0,k . The estimate of g at the equally spaced sample points

{ i
T

: i = 1, . . . , T } is then obtained by applying the inverse discrete wavelet trans-
form (IDWT) to the denoised wavelet coefficients. That is, {g( i

T
) : i = 1, . . . , T } is

estimated by ĝ = {̂
g( i

T
) : i = 1, . . . , T } with ĝ = T 1/2W−1 · θ̂ . The estimate of the

whole function g = f + bm is given by

ĝ(t) =
2j0∑
k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).

To get an estimator of f we need to also estimate bm. This is done as follows.
Divide each bin Ij into two sub-bins with the first bin of the size 
m

2 �. Let X∗
j be

the median of observations in the first sub-bin. We set

b̂m = 1

T

∑
j

(X∗
j − Xj)(17)

and define

f̂n(t) = ĝn(t) − b̂m =
2j0∑
k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t) − b̂m.(18)

REMARK 3. The quantity bm is the systematic bias due to the expectation of
the median of the noise ξi in each bin. Lemma 5 in Section 6 shows that bm =
− h′(0)

8h3(0)
m−1 + O(m−2). Hence this systematic bias can possibly be dominant if

it is ignored. The estimate b̂m serves as “bias correction.” Lemma 5 shows that
the estimation error of b̂m is negligible relative to the minimax risk of f̂n when
m = O(n1/4).
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4. Adaptivity and robustness of the procedure. We study the theoretical
properties of our procedure over the Besov spaces that are by now standard for
the analysis of wavelet regression methods. Besov spaces are a very rich class of
function spaces and contain as special cases many traditional smoothness spaces
such as Hölder and Sobolev spaces. Roughly speaking, the Besov space Bα

p,q con-
tains functions having α bounded derivatives in Lp norm, the third parameter q

gives a finer gradation of smoothness. Full details of Besov spaces are given, for
example, in Triebel (1992) and DeVore and Popov (1988). For a given r-regular
mother wavelet ψ with r > α and a fixed primary resolution level j0, the Besov
sequence norm ‖ · ‖bα

p,q
of the wavelet coefficients of a function f is then defined

by

‖f ‖bα
p,q

= ‖ξ
j0

‖p +
( ∞∑

j=j0

(2js‖θj‖p)q

)1/q

(19)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution

level j0, θj is the vector of the wavelet coefficients at level j , and s = α + 1
2 −

1
p

> 0. Note that the Besov function norm of index (α,p, q) of a function f is
equivalent to the sequence norm (19) of the wavelet coefficients of the function.
See Meyer (1992). We define

Bα
p,q(M) = {f ; ‖f ‖bα

p,q
≤ M}.(20)

In the case of Gaussian noise Donoho and Johnstone (1998) show that the minimax
risk of estimating f over the Besov body Bα

p,q(M),

R∗(Bα
p,q(M)) = inf

f̂
sup

f ∈Bα
p,q(M)

E‖f̂ − f ‖2
2,(21)

converges to 0 at the rate of n−2α/(1+2α) as n → ∞.
In addition to Assumption (A1) in Section 2, we need the following weak con-

dition on the density h of ξi .

ASSUMPTION (A2).
∫ |x|ε3h(x) dx < ∞ for some ε3 > 0.

This assumption guarantees that the moments of the median of the binned data
are well approximated by those of the normal random variable. Note that Assump-
tion (A2) is satisfied by Cauchy distribution for any 0 < ε3 < 1. For 0 < ε1 < 1,
εi > 0, i = 2,3,4, define H = H(ε1, ε2, ε3, ε4) by

H =
{
h :h ∈ Hε1,ε2, |h(3)(x)| ≤ ε4 for |x| ≤ ε3 and

∫
|x|ε3h(x) dx < ε4

}
.(22)

The following theorem shows that our estimator achieves optimal global adap-
tation for a wide range of Besov balls Bα

p,q(M) defined in (20) and uniformly over
the family of noise distributions given in (22).
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THEOREM 3. Suppose the wavelet ψ is r-regular. Then the estimator f̂n de-

fined in (18) satisfies, for p ≥ 2, α ≤ r and 2α2−α/3
1+2α

> 1
p

,

sup
h∈H

sup
f ∈Bα

p,q(M)

E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α),

and for 1 ≤ p < 2, α ≤ r and 2α2−α/3
1+2α

> 1
p

,

sup
h∈H

sup
f ∈Bα

p,q(M)

E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).

Theorem 3 shows that the estimator simultaneously attains the optimal rate of
convergence over a wide range of the Besov classes for f and a large collection
of the unknown error distributions for ξi . In this sense, the estimator enjoys a high
degree of adaptivity and robustness.

For functions of spatial inhomogeneity, the local smoothness of the functions
varies significantly from point to point and global risk given in Theorem 3 cannot
wholly reflect the performance of estimators at a point. The local risk measure

R(f̂ (t0), f (t0)) = E(f̂ (t0) − f (t0))
2(23)

is used for spatial adaptivity.
The local smoothness of a function can be measured by its local Hölder smooth-

ness index. For a fixed point t0 ∈ (0,1) and 0 < α ≤ 1, define the local Hölder class

α(M, t0, δ) as follows:


α(M, t0, δ) = {f : |f (t) − f (t0)| ≤ M|t − t0|α, for t ∈ (t0 − δ, t0 + δ)}.
If α > 1, then


α(M, t0, δ) = {f :
∣∣f (
α�)(t) − f (
α�)(t0)

∣∣ ≤ M |t − t0|α′
for t ∈ (t0 − δ, t0 + δ)}

where 
α� is the largest integer less than α and α′ = α − 
α�.
In Gaussian nonparametric regression setting, it is a well-known fact that for

estimation at a point, one must pay a price for adaptation. The optimal rate of
convergence for estimating f (t0) over function class 
α(M, t0, δ) with α com-
pletely known is n−2α/(1+2α). Lepski (1990) and Brown and Low (1996a, 1996b)
showed that one has to pay a price for adaptation of at least a logarithmic factor. It
is shown that the local adaptive minimax rate over the Hölder class 
α(M, t0, δ)

is (logn/n)2α/(1+2α).
The following theorem shows that our estimator achieves optimal local adapta-

tion with the minimal cost uniformly over the family of noise distributions defined
in (22).

THEOREM 4. Suppose the wavelet ψ is r-regular with r ≥ α > 1/6. Let t0 ∈
(0,1) be fixed. Then the estimator f̂n defined in (18) satisfies

sup
h∈H

sup
f ∈
α(M,t0,δ)

E
(
f̂n(t0) − f (t0)

)2 ≤ C ·
(

logn

n

)2α/(1+2α)

.(24)
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Theorem 4 shows that the estimator automatically attains the local adaptive
minimax rate for estimating functions at a point, without prior knowledge of the
smoothness of the underlying functions or prior knowledge of the error distribu-
tion.

REMARK 4. After binning and taking the medians, in principle any standard
wavelet thresholding estimators could then be used. For example, the VisuShrink
procedure of Donoho and Johnstone (1994) with threshold λ = σ

√
2 logn can be

applied. In this case the resulting estimator satisfies

sup
h∈H

sup
f ∈Bα

p,q(M)

E‖f̂n − f ‖2
2 ≤ C

(
logn

n

)2α/(1+2α)

for 1 ≤ p ≤ ∞, α ≤ r and 2α2−α/3
1+2α

> 1
p

and

sup
h∈H

sup
f ∈
α(M,t0,δ)

E
(
f̂n(t0) − f (t0)

)2 ≤ C ·
(

logn

n

)2α/(1+2α)

(25)

for r ≥ α > 1/6.

We have so far focused on the equally spaced design case. When the design is
not equally spaced, one can either group the sample using equal-length subinter-
vals as in Section 3.2 or bin the sample so that each bin contains the same number
of observations, and then take the median of each bin. The first method produces
equally spaced medians that are heteroskedastic with the variances depending on
the number of observations in the bins. In this case a wavelet procedure for het-
eroskedastic Gaussian noise can then be applied to the medians to obtain an esti-
mator of f . The second method produces unequally spaced medians that are ho-
moskedastic since the number of observations in the bins are the same. A wavelet
procedure for unequally spaced observations with homoskedastic Gaussian noise
can then be used to get an estimator of f . For wavelet procedures for heteroskedas-
tic Gaussian noise or unequally spaced samples, see, for example, Cai and Brown
(1998), Kovac and Silverman (2000) and Antoniadis and Fan (2001).

5. Further discussion. Theorem 1 gives a general quantile coupling inequal-
ity between the median of i.i.d. random variables X1, . . . ,Xn and a normal random
variable. The collection of the distributions of the i.i.d. random variables includes
the Cauchy and Gaussian distributions as special cases. Note that for both Cauchy
and Gaussian distributions, h′(0) = 0, which suggests we may have a tighter quan-
tile coupling bound as in Zhou (2005). Let us further assume that h′(0) = 0, and
h′′(0) exists. We can derive a sharper moderate large deviation result for the me-
dian and then obtain a tighter quantile coupling inequality which improves the
classical quantile coupling bounds with a rate 1/

√
n under certain smoothness
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conditions for the distribution function. For every n, we can show that there is a
mapping X̃med(Z) : R �→ R such that the random variable X̃med(Z) has the same
distribution as the median Xmed of X1, . . . ,Xn and∣∣√4nh(0)X̃med − Z

∣∣ ≤ C
1

n
(1 + |Z|3) when |Z| ≤ ε

√
n

where C, ε > 0 do not depend on n. We can even establish an asymptotic equiva-
lence result in Le Cam’s sense. Assume that

f ∈ F = {f : |f (y) − f (x)| ≤ M|x − y|d}
with d > 3/4. In the current setting, we modify the procedure with T = n2/3/ logn.
Then m = n/T = n1/3 logn. Recall that Xj is the median of the observations on
each bin Ij with 1 ≤ j ≤ T . Let ηj be the median of corresponding noise, then

min
(j−1)m+1≤i≤jm

f

(
i

n

)
≤ Xj − ηj ≤ max

(j−1)m+1≤i≤jm
f

(
i

n

)
.

We need to give an asymptotic justification that it is fine treating Xj as if it were
a normal random variable with mean f (j/T ) and variance 1

4mh2(0)
. We can show

that observing {Xj } is asymptotically equivalent to observing

X
†
j = f

(
j

T

)
+ Zj , Zj

i.i.d.∼ N

(
0,

1

4mh2(0)

)
, 1 ≤ j ≤ T

in Le Cam’s sense by showing that the total variation distance between the distri-
butions of Xj ’s and X

†
j ’s tends to 0, that is,

|L({Xj }) − L({X†
j })|TV → 0.

The result shows that asymptotically there is no difference between observing Xj ’s
and observing X

†
j ’s. That means all optimal statistical procedures for the Gaussian

model can be carried over to nonparametric robust estimation for bounded losses.
For instance, the asymptotic equivalence here implies that adaptive procedures
including SureShrink of Donoho and Johnstone (1995), the empirical Bayes es-
timation of Zhang (2005) and SureBlock of Cai and Zhou (2006) can be car-
ried over from the Gaussian regression to the Cauchy regression or more gen-
eral regression. The details of our results will be reported elsewhere. Readers may
find recent developments in the asymptotic equivalence theory in Brown and Low
(1996a, 1996b), Nussbaum (1996), Grama and Nussbaum (1998) and Golubev,
Nussbaum and Zhou (2005).

6. Proofs. We shall prove the main results in the order of Theorem 3, Theo-
rem 4 and then Theorems 1 and 2. In this section C denotes a positive constant not
depending on n that may vary from place to place and we set d ≡ min(α − 1

p
,1).

For simplicity we shall assume that n is divisible by T in the proof. We first collect
necessary tools that are needed for the proofs of Theorems 3 and 4.
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6.1. Preparatory results. In our procedure, there are two steps: (1) binning the
data and taking the median in each bin; (2) applying wavelet transform to the me-
dians and using BlockJS to construct an estimator of f . In this section, we give two
results associated with these two steps. Recall that we denote by Xj the median
of each bin Ij in step 1 and treat Xj as if it were a normal random variable with
mean f (j/T ) − bm and variance 1/(4mh2(0)). The coupling inequality and the
fact that a Besov ball Bα

p,q(M) can be embedded into a Hölder ball with smooth-

ness d = min(α − 1
p
,1) > 0 [cf. Meyer (1992)] enable us to precisely control the

difference between Xj and that normal variable. Proposition 1 gives the bounds
for both the deterministic and stochastic errors. In Proposition 2 we obtain two
risk bounds for the BlockJS procedure used in step 2. These two bounds are used
to study global and local adaptation in the following sections.

PROPOSITION 1. Let Xj be given as in our procedure and let f ∈ Bα
p,q(M).

Then Xj can be written as

√
mXj = √

mf

(
j

T

)
+ √

mbm + 1

2
Zj + εj + ζj(26)

where:

(i) Zj
i.i.d.∼ N(0, 1

h2(0)
);

(ii) εj are constants satisfying |εj | ≤ C
√

mT −d and so 1
n

∑T
i=1 ε2

j ≤ CT −2d;
(iii) ζj are independent and “stochastically small” random variables satisfying

with Eζj = 0, for any l > 0

E|ζj |l ≤ Clm
−l/2 + Clm

l/2T −dl(27)

and for any a > 0

P(|ζj | > a) ≤ Cl(a
2m)−l/2 + Cl(a

2T 2d/m)−l/2(28)

where Cl > 0 is a constant depending on l only.

PROOF. Let ηj = median({ξi : (j − 1)m + 1 ≤ i ≤ jm}). We define Zj =
1

h(0)
�−1(G(ηj )) where G is the distribution of ηj . It follows from Theorem 1

that
√

4mηj is well approximated by Zj whose distribution is N(0, 1
h2(0)

). Set

εj = √
mEXj − √

mf

(
j

T

)
− √

mbm

= E

{√
mXj − √

mf

(
j

T

)
− √

mηj

}
.
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This is the deterministic component of the approximation error due to binning. It
is easy to see that

min
(j−1)m+1≤i≤jm

[
f

(
i

n

)
− f

(
j

T

)]
(29)

≤ Xj − ηj − f

(
j

T

)
≤ max

(j−1)m+1≤i≤jm

[
f

(
i

n

)
− f

(
j

T

)]
.

Since f is in a Hölder ball with smoothness d = min(α − 1
p
,1), then equation (29)

implies

|εj | ≤ √
mE

∣∣∣∣Xj − f

(
j

T

)
− ηj

∣∣∣∣
(30)

≤ √
m max

(j−1)m+1≤i≤jm

∣∣∣∣f (
i

n

)
− f

(
j

T

)∣∣∣∣ ≤ C
√

mT −d .

Set

ζj = √
mXj − √

mf

(
j

T

)
− √

mbm − εj − 1

2
Zj .

Then Eζj = 0 and
√

mXj = √
mf (j/T ) + εj + 1

2Zj + ζj . The random error ζj

is the sum of two terms, ζ1j = √
mXj − √

mf (j/T ) − √
mηj − εj and ζ2j =√

mηj − 1
2Zj , where ζ1j is the random component of the approximation error due

to binning, and ζ2j is the error of approximating the median by the Gaussian
variable. From equation (29) we have|ζ1j | ≤ C

√
mT −d and so

E|ζ1j |l ≤ Clm
l/2T −dl.(31)

A bound for the approximation error ζ2j is given in Corollary 1,

|ζ2j | ≤ C

m1/2 (1 + |Zj |2) when |Zj | ≤ ε
√

m(32)

for some ε > 0, and the probability of |Zj | > ε
√

m is exponentially small. Hence
for any finite integer l ≥ 1 (here l is fixed and m = nγ → ∞),

E|ζ2j |l = E|ζ2j |l{|Zj | ≤ ε
√

m
} + E|ζ2j |l{|Zj | > ε

√
m

}
≤ Clm

−l/2 + (E|ζ2j |2l)1/2[
P

{|Zj | > ε
√

m
}]1/2

for some constant Cl > 0, where

P {|Z| > ε
√

m} ≤ 1

2
exp

(
−ε2

2
m

)
by Mill’s ratio inequality

ϕ(x)

1 − �(x)
> max

{
x,

2√
2π

}
≥ 1

2

(
x + 2√

2π

)
for x > 0(33)
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and

E
∣∣√mηj

∣∣2l ≤ mlE|ηj |2l ≤ Dlm
l(34)

for some constant Dl > 0 because of Assumption (A2), so we have

E|ζ2j |l ≤ Clm
−l/2.(35)

Details for equation (34) are as follows. Assumption (A2) implies

P(|ξi | ≥ |x|) ≤ C

|x|ε3
.

For m = 2v + 1 i.i.d. ξi , from equation (65) the density of the sample median is

g(x) =
√

8v√
2π

[
4H(x)

(
1 − H(x)

)]v
h(x) exp

(
O

(
1

v

))

≤
√

8v√
2π

[
4C

|x|ε3

]v

h(x) exp
(
O

(
1

v

))

=
√

8v√
2π

[
4C

|x|ε3/2

]v 1

|x|vε3/2 h(x) exp
(
O

(
1

v

))
.

When |x|ε3/2 ≥ 8C, we have
√

8v√
2π

[
4C

|x|ε3/2

]v

≤
√

8v√
2π2v

which is bounded for all v. This implies as v → ∞ (m ∼ nγ in our procedure) the
median has any finite moments.

Thus we have

E|ζj |l ≤ 2l−1(E|ζ1j |l + E|ζ2j |l) ≤ Clm
−l/2 + Clm

l/2T −dl

from equations (31) and (35). Equation (28) then follows from Chebyshev’s in-
equality. �

REMARK 5. In the proof of Proposition 2, we will see that the noise ζj has
negligible contribution to the risk of our procedure comparing with the Gaussian
noise 1

2Zj , when the tail bound P(|ζj | > a) decays faster than any polynomial
of n. For m = nγ we have T 2d/m = n2d−γ (2d+1). Then from equation (28) it is
enough to require 0 < γ < 2d

2d+1 , that is,

d = min
(
α − 1

p
,1

)
>

γ

2(1 − γ )
(36)

which is satisfied under our assumption (see also Remark 7).
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REMARK 6. In the proofs of Theorems 3 and 4, we shall assume without loss
of generality that h(0) is known and equal to 1 since it can be estimated accurately
in the sense that there is an estimator ĥ(0) such that

P {|ĥ−2(0) − h−2(0)| > n−δ} ≤ cln
−l(37)

for some δ > 0 and all l ≥ 1. For instance, we may estimate h−2(0) by

ĥ−2(0) = 8m

T

∑
(X2k−1 − X2k)

2.(38)

Note that E m
T/2

∑
(X2k−1 − X2k)

2 = 1
4h−2(0) + O(

√
mT −d), and it is easy to

show

E

∣∣∣∣8m

T

∑
(X2k−1 − X2k)

2 − h−2(0)

∣∣∣∣l ≤ Cl

(√
mT −d)l

where
√

mT −d = n−δ with δ > 0 in our assumption. Then equation (37) holds by
Chebyshev inequality. It is very important to see that the asymptotic risk properties
of our estimator (16) does not change when replacing λ∗ by λ∗(1 + O(n−δ)),
thus in the rest of our analysis we may just assume that h(0) = 1 without loss of
generality.

We now consider the wavelet transform of the medians of the binned data. From
Proposition 1 we may write

1√
T

Xi = g(i/T )√
T

+ εi√
n

+ Zi

2
√

n
+ ζi√

n
.

Let (yj,k) = T −1/2W · X be the discrete wavelet transform of the binned data.
Then one may write

yj,k = θ ′
j,k + εj,k + 1

2
√

n
zj,k + ξj,k(39)

where θ ′
j,k are the discrete wavelet transform of (g( i

T
))1≤i≤T which are approx-

imately equal to the true wavelet coefficients of g, zj,k are the transform of the
Zi’s and so are i.i.d. N(0,1) and εj,k and ξj,k are respectively the transforms of
( εi√

n
) and (

ζi√
n
). The following proposition studies the risk of BlockJS procedure in

Step 2. For each single block the risk bounds here for BlockJS are similar to results
in Cai (1999) where Gaussian noise was considered. But in the current setting the
error terms εj,k and ξj,k make the problem more complicated.

PROPOSITION 2. Let the empirical wavelet coefficients yj,k = θ ′
j,k + εj,k +

1
2
√

n
zj,k + ξj,k be given as in (39) and let the block thresholding estimator θ̂j,k be

defined as in (16). Then:
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(i) for some constant C > 0

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ ′
j,k)

2 ≤ min

{
4

∑
(j,k)∈Bi

j

(θ ′
j,k)

2,8λ∗Ln−1

}
(40)

+ 6
∑

(j,k)∈Bi
j

ε2
j,k + CLn−2;

(ii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such
that for all (j, k) ∈ Bi

j

E(θ̂j,k − θ ′
j,k)

2 ≤ Cτ · min
{

max
(j,k)∈Bi

j

{(θ ′
j,k + εj,k)

2},Ln−1
}

+ n−2+τ .(41)

We need the following lemmas to prove Proposition 2. These three lemmas are
from Brown et al. (2006). See also Cai (1999).

LEMMA 1. Let X1, . . . ,Xn be independent random variables with E(Xi) = 0
for i = 1, . . . , n. Suppose that E|Xi |k < Mk for all i and all k > 0 with Mk > 0
some constant not depending on n. Let Y = WX be an orthogonal transform of
X = (X1, . . . ,Xn)

′. Then there exist constants M ′
k not depending on n such that

E|Yi |k < M ′
k for all i = 1, . . . , n and all k > 0.

LEMMA 2. Suppose yi = θi + zi, i = 1, . . . ,L, where θi are constants and zi

are random variables. Let S2 = ∑L
i=1 y2

i and let θ̂i = (1 − λL
S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E[‖z‖2
2I (‖z‖2

2 > λL)].(42)

LEMMA 3. Let X ∼ χ2
L and λ > 1. Then

P(X ≥ λL) ≤ e−(L/2)(λ−logλ−1) and
(43)

EXI (X ≥ λL) ≤ λLe−(L/2)(λ−logλ−1).

PROOF OF PROPOSITION 2. We only give the proof for (i). From Proposi-
tion 1, we have |εj | ≤ C

√
mT −d and εj,k = ∑

i
εi√
n

∫
φJ,iψj,k . Hence

|εj,k| ≤ sup
x

∑
i

∣∣∣∣ εi√
n
φJ,i(x)

∣∣∣∣ · ∫
|ψj,k(x)|dx ≤ CT −d2−j/2.(44)

This, as well as Proposition 1, yields that∑
j

∑
k

ε2
j,k = 1

n

∑
i

ε2
i ≤ CT −2d .(45)
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It is easy to see from Lemma 1 and Proposition 1 that

E|ξj,k|l ≤ C′
l (mn)−l/2 + C′

l (T
2dn/m)−l/2(46)

and for any a > 0

P(|ξj,k| > a) ≤ C′
l (a

2mn)−l/2 + C′
l (a

2T 2dn/m)−l/2.(47)

It follows from Lemma 2 that

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ ′
j,k)

2

≤ 2E
∑

(j,k)∈Bi
j

[θ̂j,k − (θ ′
j,k + εj,k)]2 + 2

∑
(j,k)∈Bi

j

ε2
j,k

≤ 2 min

{ ∑
(j,k)∈Bi

j

(θ ′
j,k + εj,k)

2,4λ∗Ln−1

}
+ 2

∑
(j,k)∈Bi

j

ε2
j,k

+ 8E
∑

(j,k)∈Bi
j

(
1

2
√

n
zj,k + ξj,k

)2

I

( ∑
(j,k)∈Bi

j

(
1

2
√

n
zj,k + ξj,k

)2

>
λ∗L
4n

)

≤ min

{
4

∑
(j,k)∈Bi

j

(θ ′
j,k)

2,8λ∗Ln−1

}
+ 6

∑
(j,k)∈Bi

j

ε2
j,k

+ 2n−1E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

( ∑
(j,k)∈Bi

j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)
.

Denote by A the event that all |ξj,k| are bounded by 1
2
√

nL
, that is

A = {∣∣2√
nξj,k

∣∣ ≤ L−1 for all (j, k) ∈ Bi
j

}
.

Then it follows from (47) that for any l ≥ 1

P(Ac) ≤ ∑
(j,k)∈Bi

j

P
(∣∣2√

nξj,k

∣∣ > L−1)
(48)

≤ C′
l (L

−2m)−l/2 + C′
l (L

−2T d/m)−l/2.

Hence

D = E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

( ∑
(j,k)∈Bi

j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)
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= E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

(
A ∩ ∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)

+ E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

(
Ac ∩ ∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)

= D1 + D2.

Note that for any L > 1, (x + y)2 ≤ L
L−1x2 + Ly2 for all x and y. It then follows

from Lemma 3 and Hölder’s inequality that

D1 = E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

(
A ∩ ∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)

≤ 2E
∑

(j,k)∈Bi
j

z2
j,kI

( ∑
(j,k)∈Bi

j

z2
j,k > λ∗L − λ∗ − 1

)

+ 8nE
∑

(j,k)∈Bi
j

ξ2
j,kI

( ∑
(j,k)∈Bi

j

z2
j,k > λ∗L − λ∗ − 1

)

≤ 2(λ∗L − λ∗ − 1)e−L/2(λ∗−(λ∗+1)L−1−log(λ∗−(λ∗+1)L−1)−1)

+ 8n
∑

(j,k)∈Bi
j

(Eξ
2p
j,k)

1/p

(
P

( ∑
(j,k)∈Bi

j

z2
j,k > λ∗L − λ∗ − 1

))1/q

,

where p,q > 1 and 1
p

+ 1
q

= 1. For m = nε we take 1
q

= 1 − ε. Then it follows
from Lemma 3 and (46) that

D1 ≤ λ∗e(λ∗+1)/2Ln−1 + CLm−1n−1−ε = CLn−1.

On the other hand, it follows from (46) and (48) (by taking l sufficiently large) that

D2 = E
∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
I

(
Ac ∩ ∑

(j,k)∈Bi
j

(
zj,k + 2

√
nξj,k

)2
> λ∗L

)

≤ E
∑

(j,k)∈Bi
j

(2z2
j,k + 8nξ2

j,k)I (Ac)

≤ ∑
(j,k)∈Bi

j

[2(Ez4
j,k)

1/2 + 8n(Eξ4
j,k)

1/2] · (P (Ac))1/2

≤ n−1.



ROBUST NONPARAMETRIC ESTIMATION 2075

Hence, D = D1 + D2 ≤ CLn−1 and consequently

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ ′
j,k)

2 ≤ min

{
4

∑
(j,k)∈Bi

j

(θ ′
j,k)

2,8λ∗Ln−1

}

+ 6
∑

(j,k)∈Bi
j

ε2
j,k + CLn−2

for some constant C > 0. �

Recall that θ ′
j,k’s are the discrete wavelet transform of (f ( i

T
))1≤i≤T and θj,k’s

are true wavelet coefficients of f . The following lemma will be used to bound the
difference of θ ′

j,k’s and θj,k’s. The proof is straightforward and is thus omitted.

LEMMA 4. Let T = 2J and let fJ (x) = ∑T
k=1

1√
T
f ( k

T
)φJ,k(x). Then

sup
f ∈Bα

p,q (M)

‖fJ − f ‖2
2 ≤ CT −2d where d = min(α − 1/p,1).

Also, |θ ′
j,k − θj,k| ≤ CT −d2−j/2 and consequently

∑J−1
j=j0

∑
k(θ

′
j,k − θj,k)

2 ≤
CT −2d .

LEMMA 5. Let bm and b̂m be defined as in (9) and (17), respectively. Then

sup
h∈H

∣∣∣∣bm + h′(0)

8h3(0)m

∣∣∣∣ ≤ Cm−2,(49)

sup
h∈H

sup
f ∈Bα

p,q(M)

E(b̂m − bm)2 ≤ C · max{T −2d,m−4}.(50)

PROOF. It suffices to consider the case that m = 2v + 1 with v ∈ N (cf. Re-
mark 1), then

Eξmed =
∫

x
(2v + 1)!

(v!)2 Hv(x)
(
1 − H(x)

)v
dH(x),

where H is the distribution function of ξ1. For any δ > 0, set Aδ = {x : |H(x) −
1
2 | ≤ δ}. It follows from the definition of H that there exists a constant δ > 0 such
that for some ε > 0 we have

|h(3)(x)| ≤ 1/ε and ε ≤ h(x) ≤ 1/ε(51)

uniformly over all h ∈ H for all x ∈ Aδ . This property implies H−1(x) is well
defined and differentiable up to the fourth order for x ∈ Aδ . Decompose the expec-
tation of the median into two parts:

Eξmed =
(∫

Aδ

+
∫
Ac

δ

)
x

(2v + 1)!
(v!)2 Hv(x)

(
1 − H(x)

)v
dH(x) ≡ Q1 + Q2.
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Since the median has finite moments from equation (34), it is easy to see Q2 decays
to 0 exponentially fast as v = O(n1/4) → ∞ by the Cauchy–Schwarz inequality
and tail probability equations (63) and (64). We now turn to Q1. Note that

Q1 =
∫ 1/2+δ

1/2−δ

(
H−1(x) − H−1

(
1

2

))
(2v + 1)!

(v!)2 xv(1 − x)v dx

=
∫ 1/2+δ

1/2−δ

[
1

2
(H−1)′′

(
1

2

)(
x − 1

2

)2

+ (H−1)(4)(ς)

24

(
x − 1

2

)4]

× (2v + 1)!
(v!)2 xv(1 − x)v dx

since xv(1 − x)v is symmetric around x = 1
2 . Note that (2v+1)!

(v!)2 xv(1 − x)v is the

density function of Beta(v + 1, v + 1), and equation (51) implies that (H−1)(4)(ς)

is uniformly bounded over all h ∈ H , then

Q1 = 1

2
(H−1)′′

(
1

2

)
(v + 1)2

(2v + 2)2(2v + 3)
+ O

(
1

m2

)
= − h′(0)

8h3(0)m
+ O

(
1

m2

)
and (49) is established.

Note that for m = 2v + 1, 
m
2 � = v. From Proposition 1 we have

Xj = f

(
j

T

)
+ bm + 1

2
√

m
Zj + 1√

m
εj + 1√

m
ζj .

Similarly we may write

X∗
j = f

(
j − 1/2

T

)
+ bv + 1

2
√

v
Z∗

j + 1√
v
ε∗
j + 1√

v
ζ ∗
j

with Z∗
j , ε∗

j and ζ ∗
j satisfying properties (i), (ii), (iii) of Proposition 1, respectively.

Then b̂m − bm = 1
T

∑
j (X

∗
j − Xj) − bm can be written as a sum of five terms as

follows:

b̂m − bm = 1

T

∑
j

(
f

(
j − 1/2

T

)
− f

(
j

T

))
+ (bv − 2bm)

+
[

1√
v

1

T

∑
j

ε∗
j − 1√

m

1

T

∑
j

εj

]

+
[

1

2
√

v

1

T

∑
j

Z∗
j − 1

2
√

m

1

T

∑
j

Zj

]

+
[

1√
v

1

T

∑
j

ζ ∗
j − 1√

m

1

T

∑
j

ζj

]

≡ R1 + R2 + R3 + R4 + R5.
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It is easy to see that supf ∈Bα
p,q(M) R

2
1 ≤ CT −2d and suph∈H R2

2 ≤ Cm−4. Proposi-

tion 1 yields suph∈H ,f ∈Bα
p,q (M) R

2
3 ≤ CT −2d . Note that Z∗

j − Zj are independent

for j = 1, . . . , T . So ER2
4 ≤ 1

h2(0)
( 1
v

+ 1
m

) 1
T

≤ Cn−1. Similarly, ζ ∗
j − ζj are inde-

pendent and it then follows from Proposition 1 that ER2
5 = o(n−1). Hence,

sup
h∈H ,f ∈Bα

p,q(M)

E(b̂m − bm)2 ≤ 5R2
1 + 5R2

2 + 5R2
3 + 5ER2

4 + 5ER2
5

≤ C max{T −2d,m−4}. �

6.2. Global adaptation: Proof of Theorem 3. Let f̂n be given as in (18). Note
that

E‖f̂n − f ‖2
2 ≤ 2E‖ĝn − g‖2

2 + 2E(b̂m − bm)2.

Lemma 5 yields that E(b̂m − bm)2 = o(n−2α/(2α+1)) and so we need only to focus
on bounding E‖ĝn − g‖2

2. Note that the functions f and g differ only by a con-
stant bm and so the wavelet coefficients coincide, that is, θj,k = ∫

f ψj,k = ∫
gψj,k .

Decompose E‖ĝn − g‖2
2 into three terms as follows:

E‖ĝn − g‖2
2 = ∑

k

E(
ˆ̃
θj0,k − θ̃j,k)

2 +
J−1∑
j=j0

∑
k

E(θ̂j,k − θj,k)
2 +

∞∑
j=J

∑
k

θ2
j,k

(52)
≡ S1 + S2 + S3.

It is easy to see that the first term S1 and the third term S3 are small:

S1 = 2j0n−1ε2 = o
(
n−2α/(1+2α)).(53)

Note that for x ∈ Rm and 0 < p1 ≤ p2 ≤ ∞
‖x‖p2 ≤ ‖x‖p1 ≤ m1/p1−1/p2‖x‖p2 .(54)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θj,k|p)1/p ≤ M . Now (54) yields that

S3 =
∞∑

j=J

∑
k

θ2
j,k ≤ C2−2J (α∧(α+1/2−1/p)).(55)

Proposition 2, Lemma 4 and equation (45) yield that

S2 ≤ 2
J−1∑
j=j0

∑
k

E(θ̂j,k − θ ′
j,k)

2 + 2
J−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J−1∑
j=j0

2j /L∑
i=1

min

{
8

∑
(j,k)∈Bi

j

θ2
j,k,8λ∗Ln−1

}
+ 6

J−1∑
j=j0

∑
k

ε2
j,k(56)
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+ Cn−1 + 10
J−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J−1∑
j=j0

2j /L∑
i=1

min

{
8

∑
(j,k)∈Bi

j

θ2
j,k,8λ∗Ln−1

}
+ Cn−1 + CT −2d .

We now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α

×
log2 n]. So, 2J1 ≈ n1/(1+2α). Then (56) and (54) yield

S2 ≤ 8λ∗
J1−1∑
j=j0

2j /L∑
i=1

Ln−1 + 8
J−1∑
j=J1

∑
k

θ2
j,k + Cn−1 + CT −2d ≤ Cn−2α/(1+2α).

By combining this with (53) and (55), we have E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α) for

p ≥ 2.
Now let us consider the case p < 2. First we state the following lemma without

proof.

LEMMA 6. Let 0 < p < 1 and S = {x ∈ I Rk :
∑k

i=1 x
p
i ≤ B,xi ≥ 0, i =

1, . . . , k}. Then for A > 0, supx∈S

∑k
i=1(xi ∧ A) ≤ B · A1−p.

Let J2 be an integer satisfying 2J2 � n1/(1+2α)(logn)(2−p)/p(1+2α). Note that

2j /L∑
i=1

( ∑
(j,k)∈Bi

j

θ2
j,k

)p/2

≤
2j∑

k=1

(θ2
j,k)

p/2 ≤ M2−jsp.

It then follows from Lemma 6 that

J−1∑
j=J2

2j /L∑
i=1

min

{
8

∑
(j,k)∈Bi

j

θ2
j,k,8λ∗Ln−1

}
(57)

≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).

On the other hand,

J2−1∑
j=j0

2j /L∑
i=1

min

{
8

∑
(j,k)∈Bi

j

θ2
j,k,8λ∗Ln−1

}
(58)

≤
J2−1∑
j=j0

∑
b

8λ∗Ln−1 ≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).
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We finish the proof for the case p < 2 by putting (53), (55), (57) and (58) to-
gether:

E‖f̂n − f ‖2
2 ≤ Cn−2α(1+2α)(logn)(2−p)/(p(1+2α)).

REMARK 7. To make the risk of b̂m negligible we need to have m−4 =
o(n−2α/(1+2α)) (see Lemma 5), and to make the approximation error ‖fJ − f ‖2

2
negligible, we need to have T −2((α−1/p)∧1) = O(n−2α/(1+2α)) (see Lemma 4).
These constraints lead to our choice of m = n1/4 and T = n3/4. Then we need
3
2(α − 1

p
) > 2α

1+2α
or equivalently 2α2−α/3

1+2α
> 1

p
. This last condition is purely due to

approximation error over Besov spaces.

6.3. Local adaptation: Proof of Theorem 4. For simplicity, we give the proof
for Hölder classes 
α(M) instead of local Hölder classes 
α(M, t0, δ). Note that
for all f ∈ 
α(M), |θj,k| = |〈f,ψj,k〉| ≤ C2−j (1/2+α) for some constant C > 0
not depending on f . Note also that for any random variables Xi , i = 1, . . . , n,
E(

∑n
i=1 Xi)

2 ≤ (
∑n

i=1(EX2
i )

1/2)2. It then follows that

E
(
f̂n(t0) − f (t0)

)2

= E

[ 2j0∑
k=1

(
ˆ̃
θj0,k − θ̃j0,k)φj0,k(t0) +

∞∑
j=j0

2j∑
k=1

(θ̂j,k − θj,k)ψj,k(t0)

− (b̂m − bm)

]2

≤
[(

E(b̂m − bm)2)1/2 +
2j0∑
k=1

(E(
ˆ̃
θj0,k − θ̃j0,k)

2φ2
j0,k

(t0))
1/2

+
J−1∑
j=j0

2j∑
k=1

(
E(θ̂j,k − θj,k)

2ψ2
j,k(t0)

)1/2 +
∞∑

j=J

2j∑
k=1

|θj,kψj,k(t0)|
]2

≡ (Q1 + Q2 + Q3 + Q4)
2.

Lemma 5 yields that

Q1 = (
E(b̂m − bm)2)1/2 = o

(
n−α/(2α+1)).(59)

Since the wavelet ψ is compactly supported, so there are at most N basis functions
ψj,k at each resolution level j that are nonvanishing at t0, where N is the length
of the support of ψ . Denote K(t0, j) = {k :ψj,k(t0) �= 0}. Then |K(t0, j)| ≤ N. It
is easy to see that both Q2 and Q4 are small:

Q2 =
2j0∑
k=1

(
E(

ˆ̃
θj0,k − θ̃j0,k)

2)1/2|φj0,k(t0)| = O(n−1)(60)
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and

Q4 =
∞∑

j=J

2j∑
k=1

|θj,k||ψj,k(t0)| ≤
∞∑

j=J

N‖ψ‖∞2j/2C2−j (1/2+α) ≤ CT −α.(61)

We now consider the third term Q3. Applying the bound (41) in Proposition 2 with
τ < 1/(1 + 2α) together with Lemma 4 and the bound for εj,k given in (44), we
have

Q3 ≤
J−1∑
j=j0

∑
k∈K(t0,j)

2j/2‖ψ‖∞
(
E(θ̂j,k − θj,k)

2)1/2

≤ C

J−1∑
j=j0

2j/2[
min

(
2−j (1+2α) + T −2(α∧1)2−j ,Ln−1) + n−2+τ ] 1

2(62)

≤ C

(
logn

n

)α/(1+2α)

.

Combining equations (59)–(63) we have

E
(
f̂n(t0) − f (t0)

)2 ≤ C(logn/n)2α/(1+2α).

6.4. Proofs of Theorems 1 and 2. Let G(x) be the cumulative distribution
function of Xmed and let ϕ(z) and �(z) denote respectively the density and cumu-
lative distribution function of a standard normal random variable. Using similar
arguments in the proof of Theorem 3 in Zhou (2005) or a sketch in Section 6 of
Komlós, Major and Tusnády (1975), we need only to show

G(x) = �
(√

8kx
)

exp
(
O(k|x|3 + |x| + k−1/2)

)
for − ε ≤ x ≤ 0(63)

and

1 − G(x) = (
1 − �

(√
8kx

))
exp

(
O(k|x|3 + |x| + k−1/2)

)
(64)

for 0 ≤ x ≤ ε,

where O(x) means a value between −Cx and Cx uniformly for some constant
C > 0. Related asymptotic expansions for the distribution of median can be found
in current literature, for instance, Burnashev (1996), but the major theorems there
are not sufficient to establish the median coupling inequality.

Let H(x) be distribution function of X1. The density of the median X(k+1) is

g(x) = (2k + 1)!
(k!)2 Hk(x)

(
1 − H(x)

)k
h(x).
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Stirling’s formula, j ! = √
2πjj+1/2 exp(−j + εj ) with εj = O(1/j), gives

g(x) = (2k + 1)!
4k(k!)2

[
4H(x)

(
1 − H(x)

)]k
h(x)

= 2
√

2k + 1

e
√

2π

(
2k + 1

2k

)2k+1[
4H(x)

(
1 − H(x)

)]k
h(x) exp

(
O

(
1

k

))
.

It is easy to see |√2k + 1/
√

2k − 1| ≤ k−1, and(
2k + 1

2k

)2k+1

= exp
(
−(2k + 1) log

(
1 − 1

2k + 1

))
= exp

(
1 + O

(
1

k

))
.

Then we have, when 0 < H(x) < 1,

g(x) =
√

8k√
2π

[
4H(x)

(
1 − H(x)

)]k
h(x) exp

(
O

(
1

k

))
.(65)

From the Lipschitz assumption in the theorem, Taylor’s expansion gives

4H(x)
(
1 − H(x)

) = 1 − 4
(
H(x) − H(0)

)2

= 1 − 4
[∫ x

0

(
h(t) − h(0)

)
dt + h(0)x

]2

= 1 − 4
(
h(0)x + O(x2)

)2

for 0 ≤ |x| ≤ ε, that is, log(4H(x)(1−H(x))) = −4h2(0)x2 +O(|x|3) when |x| ≤
2ε for some ε > 0. Here ε is chosen small enough such that h(x) > 0 for |x| ≤
2ε. The Lipschitz assumption in the theorem also implies h(x)

h(0)
= 1 + O(|x|) =

exp(O(|x|)) for |x| ≤ 2ε. Thus

g(x) =
√

8kh(0)√
2π

exp
(−8kh2(0)x2/2 + O(k|x|3 + |x| + k−1)

)
for |x| ≤ 2ε.

Now we approximate the distribution function of Xmed by the distribution function
of normal random variable. Without loss of generality we assume h(0) = 1. We
write

g(x) =
√

8k√
2π

exp
(−8kx2/2 + O(k|x|3 + |x| + k−1)

)
for |x| ≤ 2ε.

Now we use this approximation of density functions to give the desired approxi-
mation of distribution functions. Specifically we shall show

G(x) =
∫ x

−∞
g(t) dt ≤ �

(√
8kx

)
exp(Ck|x|3 + C|x| + Ck−1)(66)

and

G(x) ≥ �
(√

8kx
)

exp(−Ck|x|3 − C|x| − Ck−1)(67)
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for all −ε ≤ x ≤ 0 and some C > 0. The proof for 0 ≤ x ≤ ε is similar. Now we
give the proof for inequality (66). Note that(

�
(√

8kx
)

exp(−Ckx3 − Cx + Ck−1)
)′

= √
8kϕ

(√
8kx

)
exp(−Ckx3 − Cx + Ck−1)(68)

− �
(√

8kx
)
(3Ckx2 − C) exp(−Ckx3 − Cx + Ck−1).

From Mill’s ratio, inequality (33), we have �(
√

8kx)(−√
8kx) < ϕ(

√
8kx) and

hence

−�
(√

8kx
)
(3Ckx2) exp(−Ckx3 − Cx + Ck−1)

≥ √
8kϕ

(√
8kx

)(3C

8
x

)
exp(−Ckx3 − Cx + Ck−1).

This and (68) yield(
�

(√
8kx

)
exp(−Ckx3 − Cx + Ck−1)

)′
≥ √

8kϕ
(√

8kx
)(

1 + 3C

8
x

)
exp(−Ckx3 − Cx + Ck−1)

≥ √
8kϕ

(√
8kx

)
exp(Cx/2) exp(−Ckx3 − Cx + Ck−1)

≥ √
8kϕ

(√
8kx

)
exp

(
−C

2
kx3 − C

2
x + Ck−1

)
.

Here in the second inequality we apply (1 + C3x/8) ≥ exp(Cx/2) when |Cx| ≤
C(2ε) < 1/2. Thus we have(

�
(√

8kx
)

exp(−Ckx3 − Cx + Ck−1)
)′

≥ √
8kϕ

(√
8kx

)
exp

(
O(k|x|3 + |x| + k−1)

)
for C sufficiently large and for −2ε ≤ x ≤ 0, then∫ x

−2ε
g(t) dt ≤

∫ x

−2ε

(
�

(√
8kt

)
exp(−Ckt3 − Ct + Ck−1)

)′
=

[
�

(√
8kx

)
exp(−Ckx3 − Cx + Ck−1)

−�
(√

8k · (2ε)
)

exp
(
C

(
k(2ε)3 + k−1)) ]

≤ �
(√

8kx
)

exp(−Ckx3 − Cx + Ck−1).

In (65) we see∫ −2ε

−∞
g(t) dt =

∫ −2ε

−∞
(2k + 1)!

(k!)2 Hk(t)
(
1 − H(t)

)k
h(t) dt

=
∫ H(−2ε)

0

(2k + 1)!
(k!)2 uk(1 − u)k du
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= o(k−1)

∫ H(−ε)

H(−3ε/2)

(2k + 1)!
(k!)2 uk(1 − u)k du

≤ o(k−1)

∫ H(x)

H(−2ε)

(2k + 1)!
(k!)2 uk(1 − u)k du

= o(k−1)

∫ x

−2ε
g(t) dt,

where the third equality is from the fact that uk
1(1 − u1)

k = o(k−1)uk
2(1 − u2)

k

uniformly for u1 ∈ [0,H(−2ε)] and u2 ∈ [H(−3ε/2),H(−ε)]. Thus we have

G(x) ≤ �
(√

8kx
)

exp(−Ckx3 − Cx + Ck−1),

which is equation (66). Equation (67) can be established in a similar way.

REMARK. Note that in the proof of Theorem 1 it can be seen easily that con-
stants C and ε in equation (5) depend only on the ranges of h(0) and the bound
of Lipschitz constants of h at a fixed open neighborhood of 0. Theorem 2 then
follows from the proof of Theorem 1 together with this observation.
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