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RANDOM WALK IN MARKOVIAN ENVIRONMENT
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We prove a quenched central limit theorem for random walks with
bounded increments in a randomly evolving environment on Z

d . We assume
that the transition probabilities of the walk depend not too strongly on the en-
vironment and that the evolution of the environment is Markovian with strong
spatial and temporal mixing properties.

1. Introduction. The study of random walks in random environment encom-
passes a considerable range of possibilities that have been addressed in an exten-
sive body of literature. We refer to [25, 26] for recent reviews of the field. Here,
we consider a situation in which the environment is not static, but has an evolu-
tion with strong mixing properties and the transition probabilities of the random
walk have a weak dependence on the environment. Note, however, that we have an
explicit bound on how strong the dependence on the environment may be. In this
case the situation is simpler than in the case of static environment; indeed, we will
see that the phenomena known as Sinai traps [23] cannot take place.

Random walks in dynamical environment have been intensively studied under
various assumptions (see, e.g., [1–7, 10, 14, 17, 20, 22–24]). In fact, [7] considers
quite general statical environments and even though it does not formally cover
dynamical environments, there seems no conceptual difficulty in doing so. Here,
we will consider a finite-range walk in Z

d with the environment being a (rather
general) space–time mixing Markov chain. This generalizes the case, well studied
in the literature [1–4], in which the Markov chain has a product structure; that is, at
each site of the lattice a time-mixing Markov chain acts independently on the other
sites. In the latter situation, it has been proven that the random walk satisfies an
almost sure quenched (i.e., where the histories of the environment are held fixed)
CLT for each d ≥ 3; see [1, 4]. Here, we prove the same result for each d ≥ 1 and
for more general classes of environments.
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The general strategy of the proof follows the well-established path of consider-
ing the process as seen from the particle and studying such a process via a mar-
tingale approximation [11, 16, 18, 19]. In particular, we use the work of [19] in
the spirit of [8, 9, 20]. Yet, as we do not discuss the invariance principle and only
consider finite-range walks, our arguments are a bit simpler and more direct than
those in [20].

A pleasant feature of our approach is that by making heavier use of dynamical
arguments, we are able to employ the same methods to establish the mixing prop-
erties of the environment and to prove the quenched CLT. In fact, we first prove a
CLT under some abstract conditions, then introduce the class of environments and
proceed to prove that the above conditions are satisfied.

The paper is organized as follows. In Section 2, we first describe a model in
which the process of the environment satisfies a certain number of abstract condi-
tions, and we prove the quenched CLT (Theorem 1), provided a certain correlation
decay estimate, (2.21), can be verified. Then, in Section 2.4, we describe a class
of models that are claimed (Theorem 2) to satisfy the above abstract conditions. In
Section 3, we first show that the inequality (2.21) is equivalent to an estimate for
two independent random walks evolving in the same environment (see [5]). The
rest of the section is devoted to proving such an estimate. In Section 4, we show
that the abstract condition under which the almost sure quenched CLT has been
proven before are in fact satisfied by the aforementioned large class of Markov
environments, provided the dependence on the environment is sufficiently weak.
This proves Theorem 2. Finally, in Appendix, we recall some facts from [19] and
slightly generalize some estimates from that paper that we need for our proofs.

CONVENTION. In this paper, we will use C to designate a generic constant
depending only on the quantities appearing in the Assumptions (A0)–(A8) below.
We will use Ca,b,c,... for constants also depending on parameters a, b, c, . . . . Con-
sequently, the actual numerical value of such constants may vary from one occur-
rence to the next. On the contrary, we will use C0,C1, . . . , to designate constants
whose value is held fixed through the paper.

2. Model and results.

2.1. The random walk in random environment. Let I be a compact Polish
space (including the possibility of being finite or countable) and θ = (θq)q∈Zd ∈
� := IZ

d
be an environment on Z

d . We equip � with the product topology and
the Borel σ -algebra. We assume that the environment has a Markovian time evo-
lution. Let (θt )t∈N be such a Markov process so that θt , with values in �, is the
environment at time t ∈ N.

We will use the notation (θt )q , q ∈ Z
d , with values in I , to designate the space

components of θt at position q . As usual, we will often use the same notation for
the random variable and its values since it creates no confusion.
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In other words, we have a Markov process with transition probabilities, for each
measurable set A⊂�,

P({θt+1 ∈A} | θt )= p(θt ,A).(2.1)

We require the process to be Feller and translation invariant, that is, p(θ,A) =
p(τzθ, τ zA) for each θ, z,A, where (τ zθ)q = θq+z ∈ I . We will call P

e
ν the mea-

sure on the set � := �N of environment histories generated by the process (2.1)
started with the initial measure ν on �, while we use P

e
θ if the process is started

in the configuration θ ∈�. We will use EPeν
for the expectation with respect to P

e
ν .

Note that the translation invariance of the kernel p implies translation equivari-
ance of the measures P

e
θ , namely P

e
τ zθ (τ

zA) = P
e
θ (A) for A ⊆ � and where τ z

acts on � by pure space translation.
We then consider a random walk Xt started at X0 = 0 in such an environment.

More precisely, let � := {z ∈ Z
d :‖z‖ ≤ C1} and 	t+1 :=Xt+1 −Xt (here, and in

the following, ‖v‖ means supi |vi |). The process (Xt , θt )t∈N is then defined by the
transition probabilities

P({	t+1 = z, θt+1 ∈A} |Xt, θt )= πz(τXt θt )p(θt ,A),(2.2)

where πz ≡ 0 for z /∈ �, and πz(θ) depends on θ only through (θq)q∈� and is
continuous as a function of these variables.

The basic space on which all processes studied in this paper can be defined is
� ×�N, with elements ((θt )t∈N, (	t)t∈N). The probability measures Peν on this
space we are interested in are skew product measures with ‘base’ P

e
ν on � and the

transition kernel P(θt ), which is the distribution of the increments of the walk on a
given space–time environment (θt )t∈N.

It is well known that to study the properties of Xt , it is convenient to study the
process of the environment as seen from the particle. In fact, such a process can be
considered in several ways, two of which will be relevant in the sequel.

2.2. The process of the environment as seen from the particle. We look at the
environment history (θs)s∈N, not from the origin of the lattice, but from the random
position of the particle, and use the letter ω to denote it. Formally, ω is also an
element of �, but the interpretation is different. On �, we define the space–time
translations τ a,b :�→�, namely if ω = (θqt )t∈N,q∈Zd and (θ̃qt )t∈N,q∈Zd := τa,bω,

then θ̃ qt = θq+bt+a .
Let us call � := �N the set of all possible paths of space–time histories.

� and � are equipped with the obvious product topologies and the correspond-
ing Borel σ -algebras. As I is separable, these Borel σ -algebras are at the same
time product σ -algebras, so, for example, the Borel σ -algebra on � is the product
of the one on �. In order to describe the process of the environment as seen from
the particle, we define the measurable map � :�×�N → �,

�((θt )t∈N, (	t)t∈N)= (ωn)n∈N with ω0 = (θt )t∈N,ωn = τn,Xnω0.(2.3)
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It transforms a measure Peν into the measure Pν := Peν ◦�−1 on �. This is the dis-
tribution of the process (ωn)n∈N of space–time histories, as seen from the particle
under the basic probability measure Peν . The map � is an almost sure bijection
between the probability spaces (� × �N,Peν) and (�,Pν), provided the set of
τ 0,b-invariant space–time histories (θt )t∈N has Peν-measure zero for all b. Hence,
it is simply a matter of convenience on which basic space we interpret our random
variables. For convenience, we also introduce the random variables ωt = (ωt )0 for
each t ∈ N. Observe that ωt = τXt θt are elements of �.

In the following lemma, we collect some properties of the processes (ωt )t∈N

and (ωt )t∈N. The proof is by simple direct computation.
Here, and in the following, we will use C0 to denote the space of continuous

functions and C0
loc for the continuous functions depending only on finitely many

variables.

LEMMA 2.1. Let ν be any initial measure on � and let Pν be the measure
on � constructed from it as described above (i.e., via the intermediate steps P

e
ν

and Peν).

(1) (ωt )t∈N is a Markov process with transition probabilities

Pν({ωt+1 ∈A}|ωt)=
∑
z∈�

πz(ωt )p(ωt , τ
−zA)(2.4)

and Feller Markov operator S :C0(�)→ C0(�) defined by

Sf (ω) := ∑
z∈�

∫
�
f (τ zω′)πz(ω)p(ω,dω′)= EPν

(
f (ωt+1)|ωt = ω)

.(2.5)

(2) (ωt )t∈N is a Markov process with transition probabilities

Pν({ωt+1 ∈A}|ωt )=
∑
z∈�

πz((ωt )0)1A(τ
1,zωt )(2.6)

and Feller Markov operator 
 :C0(�)→ C0(�) defined by


f (ω) := ∑
z∈�

πz(θ0)f (τ
1,zω),(2.7)

with the notation ω = (θt )t∈N explained above.

To successfully use both types of processes, the original one and the one seen
from the particle, it will be necessary to have initial measures which result in er-
godic stationary processes. More precisely, we assume the following.

ASSUMPTION (A0) (Mixing). There exist unique measures μe and μ on �
such that the processes (2.1) and (2.4), started with the initial distribution μe andμ,
respectively, are stationary, ergodic and mixing. In addition, μe is not supported
on the translation invariant configurations.
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ASSUMPTION (A1) (Absolute continuity). The measures μ and μe are equiv-
alent.

In particular, the measure μ is uniquely characterized by the stationarity condi-
tion Eμ(Sf )= Eμ(f ) for all f ∈ C0(�).

Both measures μe and μ from Assumption (A0) can be used as starting mea-
sures for the process (θt )t∈N of the environment, thus giving rise to measures P

e
μe

and P
e
μ on �.

Clearly, P
e
μe

is stationary, and the corresponding measure Peμe on �×�N, de-
fined in Section 2.1, is our basic reference probability that we will denote simply
by Pe. In contrast, the measure P

e
μ is not stationary in general, but if we use it to

define the measure Peμ on�×�N, then the corresponding measure P := Peμ ◦�−1

on � is stationary; in other words, the process (ωt )t∈N has the stationary distrib-
ution P under the probability Peμ. Indeed, a direct computation which uses the
translation equivariance of the probability kernel p shows the following.

LEMMA 2.2. Under Assumption (A0), EPeμ
(
h) = EPeμ

(h) for each h ∈
C0(�). As 
 does not increase the supremum-norm, it follows, in particular, that

 is an L2(�,Peμ)-contraction.

REMARK 2.3. As the measures μe and μ on � are equivalent, the Markov
measures P

e
μe

and P
e
μ on � and the measures Pe = Peμe and Peμ on � ×�N are

also equivalent. It follows that the same is true for the corresponding measures
Pe ◦ �−1 and P = Peμ ◦ �−1 on �. Therefore, all statements concerning almost
sure behavior of our processes have the same meaning, regardless of the measure
we are referring to. Observe, however, that this does not mean that the obvious
projections of P and Pe to � are equivalent.

2.3. A general quenched CLT. We assume the following.

ASSUMPTION (A2) (Time-mixing of the environment as seen from the particle).
There exists η < 1 such that for each ϕ ∈ C0

loc(�) depending on M variables and
for each n ∈ N,

‖Snϕ − Eμ(ϕ)‖∞ ≤ CMηn‖ϕ‖∞.

ASSUMPTION (A3) (Space-mixing of the environment). There exists ξ > 4
such that if ψ ∈ C0(�), ϕ ∈ C0

loc(�) and the supports of ϕ and ψ are at a dis-
tance L, then

|μe(ϕψ)−μe(ϕ)μe(ψ)| ≤ CϕL−ξ‖ϕ‖∞‖ψ‖∞.
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ASSUMPTION (A4) (Locality of environment dynamics). There exist ξ > 4
and ξ̃ > 0 such that for all M,L, s ∈ N and A,B ⊂ Z

d with diameter at most
M and distance d(A,B) > L, for all f,g :�→ R such that f depends only on
variables in A{0,...,s} and g only on variables in B{0,...,s}, and for each θ ∈�, the
following inequality holds:

|EP
e
θ
(f (θ1, . . . , θs)g(θ1, . . . , θs))− EP

e
θ
(f )EP

e
θ
(g)| ≤ CMsξ̃L−ξ‖f ‖∞‖g‖∞.

ASSUMPTION (A5) (Ellipticity). There exist γz ≥ 0, c > 0 with
∑
z∈� γz = 1

and |∑z∈� γzei〈l,z〉|< 1 for any l ∈ Z
d \ {0}, such that πz(θ)≥ cγz for P

e
μe

-almost
every θ . In the following, we will set γ = c inf{γz �= 0}> 0.

LEMMA 2.4. Assumptions (A0), (A1) and (A3) imply that the translation in-
variant environment configurations have zero P

e
μ-measure.

PROOF. Let d be a metric on I . Next, given b ∈ Z
d , let AM,δ := {θ ∈

� :d((τ bθ)q, (θ)q)≤ δ ∀‖q‖ ≤M}, A := {θ ∈� : τbθ = θ}. Then, for each n ∈ N

and ε > 0,

μe(AM,δ)− ε ≤ μe(A)= μe(1Aτnb1A)≤ μe(1AM,δ τ nb1AM,δ ),
provided δ is small enough and M large enough. Choosing n sufficiently large
Assumption (A3) implies

μe(A)≤ μe(A)2 +CM,δ‖bn‖−ξ +Cε.
By the arbitrary nature of n and ε, it follows that μe(A) ∈ {0,1}, but μe(A) = 1
is ruled out by Assumption (A0), hence, we must have μe(A) = 0 and P

e
μe
({θt ∈

A})= μe(A)= 0 for each t ∈ N. The claim then follows by Assumption (A1). �

REMARK 2.5. Lemma 2.4 implies that the map � :�×�N → � is indeed
an almost sure bijection. Therefore, the σ -algebra Ft := σ {ω0, . . . ,ωt } and the
σ -algebra σ {	1, . . . ,	t , (θs)s∈N} coincide P-almost surely. Similarly, 	t+1 is
σ(ωt ,ωt+1)-measurable.

As (ωt ) is a Markov process under P, conditional expectations of the form
E(G|Ft ) can be written as functions of ωt alone if G is σ(ωt ,ωt+1, . . .)-
measurable. This applies, in particular, to 	t+1. Hence,

E(	t+1|Ft )=
∑
z∈�

zπz(τ
Xt θt )= E(	t+1|σ(	1, . . . ,	t , θ0, . . . , θt )),(2.8)

so both conditional expectations coincide and as τXt θt = ωt , they are functions of
ωt = (ωt )0.

REMARK 2.6. Condition (A5) is slightly weaker than the corresponding con-
ditions in [3, 22]. It is indeed equivalent to requiring that the set of points z ∈ �
with γz > 0 is not contained in any affine hyperplane of R.
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LEMMA 2.7. Under Assumptions (A0), (A1) and (A5), the stationary Markov
process (ωt ) with distribution P is ergodic.

PROOF. It suffices to prove that
h= h implies h is P
e
μ-a.e. constant for each

indicator function h. Consider a measurable set C ⊂� such that
1C = 1C . Then,
for each ω = (θt )t∈N,

1C(ω)= (
1C)(ω)=
∑
z∈�

πz(θ0)1C(τ
1,zω),

which means that for each z ∈ � such that γz �= 0, (τ 1,z)−1C ⊂ C holds P
e
μ-a.e.

Then, by Assumption (A1), τ 1,zC = C = (τ 1,z)−1C P
e
μe

-a.e. since P
e
μe

is invariant
under space–time translations. In addition, we will see shortly that the ellipticity
Assumption (A5) implies that there exists s ∈ N \ {0} such that

τ s,0C =C, P
e
μe

-a.s.(2.9)

The lemma thus follows by the ergodicity of P
e
μe

with respect to time translations
which are multiples of s, which, in turn, follows from the mixing of the associated
Markov process stated in Assumption (A0).

The proof of (2.9) is obvious if γ0 �= 0. To study the case γ0 = 0, first notice that
Assumption (A5) implies that the vectors in the set V := {(1, z) ∈ R × � :γz �=
0} ⊂ R

d+1 must span R
d+1. Otherwise, there would exist a vector (a, l) ∈ Z × Z

d

such that 〈(a, l), (1, z)〉 = 0 for each z ∈ V0 = {(z ∈ � :γz �= 0} ⊂ R
d . But this

means 〈l, z〉 = −a for each z ∈ V0, which would contradict Assumption (A5).
Next, let {z̄i}d+1

i=1 ⊂ V be a basis of R
d+1. Accordingly, for each s ∈ Z, we can

solve the equation
∑d+1
i=1 αiz̄i = s(1,0). In turn, this can be written in terms of a

(d+ 1)× (d+ 1) invertible matrix with integer coefficients and a vector α ∈ R
d+1

as Zα = s(1,0). We choose s �= 0 such that α = sZ−1(1,0) ∈ Z
d+1. If we let

A+ = {i :αi > 0}, then τ
∑
j=A+ αj (1,zj )C = τ−∑

j /∈A+ αj (1,zj )C P
e
μe

-a.s., which im-
plies (2.9) since for each a ≥ b and each set A, (τ b,ζ )−1τ a,ηA⊃ τ a−b,η−ζA. �

Our first main result is a quenched CLT, that is, a CLT under the law P(θt ), the
measure P conditioned on the history (θt )t∈N of the environment.

THEOREM 1. Under Assumptions (A0)–(A5), there exists a vector v ∈ R
d and

a d × d matrix �2 > 0 such that for P
e
μe

-a.e. environment history (θt ) ∈�,

lim
N→∞

1

N
XN = v, P(θt )-almost surely(2.10)

and, letting X̂N :=XN −Nv,

X̂N√
N

⇒ N (0,�2) under P(θt ).(2.11)
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PROOF. Recall Remarks 2.3 and 2.5 which allow us to interpret the random
walk (Xt)t∈N and all other random variables of interest as being defined on the
probability space (�,P), and denote by E expectations with respect to P. Consider
the filtration

F 0
t := σ {	1, . . . ,	t , θ0, . . . , θt }.

Let g(ωt)= E(	t+1|F 0
t ). It is easy to see that this is a continuous local function

of the process of the environment as seen from the particle (recall Section 2.2). We
write

	t+1 =	t+1 − E(	t+1 | F 0
t )+ E(	t+1 | F 0

t )
(2.12)

= [	t+1 − E(	t+1 | F 0
t )] + g(ωt ).

Note that the first term is a martingale. Setting v := Eμ(g) and g0 := g − v, we
define

	̂t+1 :=	t+1 − v =	t+1 − E(	t+1 | F 0
t )+ g0(ωt ).(2.13)

Then, E(	̂t+1) = Eμ(g0) = 0 and as ωt = (ωt )0,
∑N−1
t=0 	̂t+1 is the sum of a

martingale and an additive functional of the stationary ergodic process (ωt ) under
the law P (see Lemma 2.7). Hence, (2.10) follows from

lim
N→∞N

−1(XN −Nv)= lim
N→∞

1

N

N−1∑
t=0

(
	t+1 − E(	t+1 | F 0

t )+ g0((ωt )0)
)

= 0, P-a.s.

Observe that “P(θt )-almost surely for P
e
μ-a.e. environment history (θt ) ∈�” is the

same as “P-almost surely.”
Of course, there is no such simple Fubini-type argument to pass from an uncon-

ditioned CLT (also known as an annealed CLT) to a conditional CLT. Nevertheless,
we will first prove the unconditioned CLT since its proof is closely linked with a
useful exponential estimate.

We wish to solve the equation h−Sh= g0 that, thanks to Assumption (A2), has
the bounded solution h= ∑∞

k=0 S
ng0. We can thus write (observing that X0 = 0)

X̂N =
N−1∑
t=0

	̂t+1

=
N−1∑
t=0

{	t+1 − E(	t+1 | F 0
t )+ h(ωt+1)− Sh(ωt )}

(2.14)
+ h(ω0)− h(ωN)

=
N−1∑
t=0

	t+1 + h(ω0)− h(ωN),
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where 	t := 	t − E(	t | F 0
t−1) = h(ωt )− Sh(ωt−1). If we let Mn := ∑n

t=1	t ,
then Mn is an F 0

n -martingale. Moreover, the 	t are uniformly bounded random
variables and they are almost surely functions of ωt and ωt+1, so they are functions
of ωt (see Remark 2.5). Therefore, (	t+1	

T
t+1)t is a stationary and ergodic process

and N−1 ∑N−1
t=0 	t+1	

T
t+1 converges almost surely to a symmetric matrix �2 ≥ 0.

We note that this immediately implies the usual CLT

XN −Nv√
N

⇒ N (0,�2) under P(2.15)

(see, e.g., [13], Theorem 3.2).
In addition, by a variant of Hoeffding’s inequality for martingales (see,

e.g., [12]), for sufficiently small ε > 0 and L ∈ [0,N], the following holds:

P
{∣∣∣∣ X̂N+L√

(N +L) − X̂N√
N

∣∣∣∣ ≥ ε
}

≤ Ce−Cε2(N/L).(2.16)

This is easily seen, as follows. For sufficiently large N , we have, for each of the d
components separately,

P
{∣∣∣∣ X̂N+L√

(N +L) − X̂N√
N

∣∣∣∣ ≥ ε
}

≤ P
{ |MN+L −MN |√

(N +L) ≥ ε

4

}

+ P
{
|MN |

∣∣∣∣ 1√
(N +L) − 1√

N

∣∣∣∣ ≥ ε

4

}
and both terms can be estimated using Hoeffding’s inequality, the first by
exp(−Cε2N

L
) and the second by exp(−Cε2N2

L2 ).

Next, we check that �2 > 0. Indeed, if there exists w ∈ R
d , ‖w‖ = 1, such that

〈w,�2w〉 = 0, then

0 = E
(〈w,	t+1 − E(	t+1 | F t

0 )+ h(ωt+1)− Sh(ωt )〉2)
,

which implies, for each t ∈ N, 〈w,	̂t+1〉 = 〈w,h(ωt )− h(ωt+1)〉, hence

−〈w,h(ωN)〉 =
N−1∑
t=0

〈w, 	̂t+1〉 + 〈w,h(ω0)〉.(2.17)

This is in contradiction with the boundedness of h. In fact, on the one hand, (2.17)
implies |∑N−1

t=0 〈w, 	̂t+1〉| ≤ 2‖h‖∞. On the other hand, by Assumption (A5),
there exists a probability larger than γN to have |∑N−1

t=0 〈w,	t+1 − v〉| ≥ CwN .
To obtain more refined information, it is convenient to consider the finer filtra-

tion

Ft := σ {	1, . . . ,	t , (θs)s∈N}
and the decomposition

	̂t+1 = (
	̂t+1 − E(	̂t+1 | Ft )) + E(	̂t+1 | Ft ).(2.18)
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Clearly, Zt := ∑t
s=1 	̂s − E(	̂s | Fs−1) is a martingale with respect to the filtra-

tion Ft . Let

g̃(θ) := ∑
z∈�

zπz(θ0)− v,

so g̃ is a continuous local function on �. Then,

E(	̂t+1 | Ft )=
∑
z∈�

zπz(τ
Xt θt )− v = g̃(τXt θt )= g̃(ωt ).(2.19)

Recall that ω = (ωs)s∈N. Define G(ω) := g̃(ω0). By Lemma 2.1, Remark 2.3 and
Section 2.2 on the environment as seen from the particle, we have

E(	̂t+1 | Ft )= g̃(ωt )=G(ωt ),
(2.20)

E(	̂t+1 | F0)=
tG(ω0)= E(G(ωt )|σ(ω0)),

where (ωt ) is the Markov process defined in Section 2.2. Thus, the remainder in
(2.18) is an additive functional of this Markov process.

The next idea, following [20], is to use [19], Theorem 1, to conclude. To be
precise, [20] uses [19] in conjunction with the theory of fractional coboundaries
developed in [8]. In fact, since we are discussing random walks with bounded in-
crements, the use of [8] is not really necessary and a slightly more quantitative ver-
sion of [19] allows us to conclude by a simple Borel–Cantelli argument; see [21]
for a similar strategy. For the reader’s convenience we present the needed modi-
fications of the arguments from [19, 21] in the Appendix. Indeed, Theorem A.2
shows the following. Given any w ∈ R

d and ρ ≥ 0, if

∞∑
n=1

n−3/2(lnn)ρ
∥∥∥∥∥
n−1∑
k=0

〈w,
kG〉
∥∥∥∥∥
L2(�,Peμ)

<∞,(2.21)

then
∑t
s=0G(ωs) can be decomposed, under the stationary law P of (ωt )t∈N,

as M̃t + Rt , where M̃t is an L2(�,P) martingale with respect to the fil-
tration Ft = σ {ω0, . . . ,ωt } (see Remark 2.3) and limN→∞N−1/2RN = 0 in
L2(�,P). In addition, M̃t − M̃t−1 is σ {ωt−1,ωt }-measurable and it can be
written as H(ωt−1,ωt ) for some R

d -valued function H ∈ L2(�2,P2), where
P2 is the two dimensional marginal of P. That is,

∫
�2 f (ω,ω′)P2(dω, dω

′) :=∑
z∈�

∫
�2 πz(ω)f (ω,τ

1,zω)Peμ(dω). We thus have that

X̂t =
t∑
s=1

	̂s = Zt + M̃t−1 +Rt−1 = Zt + M̃t + R̃t ,

where Zt + M̃t is an Ft -martingale and R̃t = Rt−1 − H(ωt−1,ωt ) is of order
O(t1/2(ln t)−ρ) in L2(�,P); see Theorem A.2. Define the R

d×d -valued function
F ∈ L1(�,Peμ) by

F(ωs) := E
(
(Zs+1 + M̃s+1 −Zs − M̃s)(Zs+1 + M̃s+1 −Zs − M̃s)T|Fs)



1686 D. DOLGOPYAT, G. KELLER AND C. LIVERANI

(observe that F depends only on ωs , due to Remark 2.3). Then, the average (con-
ditional) quadratic variation of the R

d -valued martingale Zt + M̃t , for P
e
μ-a.e. en-

vironment history (θt )t∈N, is given by

lim
t→∞

1

t

t−1∑
s=0

E
(
(Zs+1 + M̃s+1 −Zs − M̃s)(Zs+1 + M̃s+1 −Zs − M̃s)T|Fs)

= lim
t→∞

1

t

t−1∑
s=0

F(ωs)= EPeμ
(F ),

where we have used Birkhoff’s theorem and the ergodicity of the process (ωt ) un-
der P (see Lemma 2.7). Hence, for P

e
μ-a.e. (θt ), we have convergence t−1/2(Zt +

M̃t )⇒ N (0,EPeμ
(F )), by standard martingale CLT convergence theorems.

Indeed, one may apply [13], Theorem 3.2, to the conditional martingales
“Zt + M̃t given (θt ).” To do this, one needs to check that for P

e
μ-a.e. (θt ), this

conditional martingale satisfies a conditional Lindeberg condition which, in turn,
is implied by the slightly stronger requirement that limt→∞ 1

t

∑t−1
s=0 E(fsε2(ωs,

ωs+1)|Fs) = 0 P-almost surely for each ε > 0, where fu(ωs,ωs+1) = 〈ξs+1,

ξs+1〉1{〈ξs+1,ξs+1〉>u} and ξs+1 = Zs+1 + M̃s+1 −Zs − M̃s . But, for each u > 0,

lim
t→∞

1

t

t−1∑
s=0

E(fsε2(ωs,ωs+1)|Fs) ≤ lim
t→∞

1

t

t−1∑
s=0

E(fu(ωs,ωs+1)|Fs)

= E(fu)= E
(〈ξs+1, ξs+1〉1{〈ξs+1,ξs+1〉>u}

)
P-almost surely by Birkhoff’s theorem and the observation that (ωt ) is a Markov
process, and this value tends to zero as u→ ∞.

Note also that

EPeμ
(F )= lim

N→∞N
−1

E
(
(ZN + M̃N)2) = lim

N→∞N
−1

E(X̂2
N)=�2,(2.22)

in particular, EPeμ
(F )=�2 > 0.

The last task is to prove that the remainder t−1/2R̃t converges to zero almost
surely. Given the available estimates, we first prove it only for the subsequence
t ∈ Ta := {[1 + jk−a]2k}k∈N,0≤j<ka , where a > 1 is such that 2ρ > 1 + a. Here,
we assume that ρ > 1, for which (2.21) holds. Indeed, by Theorem A.2 and Cheby-
shev’s inequality, it follows that∑

t∈Ta
P({|t−1/2R̃t | ≥ ε})≤ Cε−2

∑
t∈Ta

(ln t)−2ρ ≤ Cε−2
∑
k∈N

ka−2ρ <∞.

By Borel–Cantelli, it follows that t−1/2R̃t converges to zero almost surely along
the subsequence Ta . Accordingly, along the subsequence Ta , conditioned on
P
e
μ-almost every environment history, the random variables N−1/2X̂N converge
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weakly to a Gaussian with variance �2. To conclude, we use the fact, quantified
in (2.16), that N−1/2X̂N changes very slowly. Given any n ∈ N, let nTa ∈ Ta be the
element of Ta closest to n. Then, (2.16) implies∑
n∈N

P
({∣∣∣∣ X̂n√

n
− X̂nTa√

nTa

∣∣∣∣ ≥ ε
})

≤ ∑
n∈N

Ce−Cε2n/|n−nTa | ≤ ∑
k∈N

C2ke−Cε2ka <∞,

provided a > 1. Hence, again by Borel–Cantelli, the sequence ( X̂n√
n

− X̂nTa√
nTa
) con-

verges to zero P
e
μ-almost surely, which implies the claimed result.

The theorem is thus proved, provided (2.21) holds with ρ > 1. In Section 3.2,
we will see, following [5], that such an estimate is equivalent to estimating the
number of times two independent walks in the same environment come close. We
will then show that (2.21) is indeed satisfied under Assumptions (A0)–(A5). �

2.4. A concrete model: weakly coupled Markov chains. We have seen that un-
der some assumptions, it is possible to prove a quenched CLT theorem for the
random walk. It is now time to present a concrete class of examples in which such
assumptions are satisfied.

Let K(θ, dy) be a transition kernel that specifies the transition probability from
θ0 ∈ I to y ∈ I given the rest of the configuration θ �=0 := (θp)p �=0. Clearly,∫
I K(θ, dy)= 1. We further require that for each u ∈ C0(I ) and q ∈ Z

d , the func-
tion ũ defined by ũ(θ) := ∫

I u(y)K(θ, dy) belongs to C0(�). So, we can define a
Feller Markov operator K :C0(�)→ C0(�),

(Kf )(θ) :=
∫
�

∏
q∈Zd

K(τqθ, dyq)f (y).(2.23)

In fact, K is clearly well defined on C0
loc(�) and it extends, by continuity, to all of

C0(�).

ASSUMPTION (A6) (Local mixing). For each θ, θ̃ ∈� such that θq = θ̃ q for
all q �= 0, we assume

|K(θ, dy)−K(θ̃, dy)| ≤ 2d0,

where the norm refers to the total variation of measures.

ASSUMPTION (A7) (Weak coupling). For each p �= 0 and θ, θ̃ ∈� such that
θq = θ̃ q for each q �= p, we assume

|K(θ, dy)−K(θ̃, dy)| ≤ dq.
ASSUMPTION (A8) (Long range bound). There exists ξ ′ > max{4 + d,2d}

such that for all L> 0, ∑
‖q‖≥L

dq ≤ CL−ξ ′
.
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ASSUMPTION (A9) (Dobrushin-like conditions). Write the transition proba-
bilities of the random walk in the form πz(θ) = az + π̂z(θ), where az ∈ [0,1],∑
z∈� az = 1 and π̂z depends only on θp , p ∈�. Then, settingD := ∑

z∈� ‖π̂z‖∞,
consider the following hierarchy of conditions:

(a) η0 := ∑
q∈Zd dq < 1;

(b) η1 := (1 + (1 + 2|�|)D)η0 < 1;
(c) η1 < 1; D < 1; η0 < (1 −D)(ξ ′(1+d))/(ξ ′−d).

REMARK 2.8. In the case of finite-range interactions (dq = 0 for ‖q‖ larger
than some R > 0), a polynomial decay of time correlations suffices to prove the
CLT. One can then use the strategy employed at the end of Section 4.5 to obtain the
result under a weaker smallness condition than the one stated in Assumption (A9).

In Section 4, we will prove the following theorem.

THEOREM 2. (i) Each Markov environment satisfying Assumptions (A6), (A7)
and (A9)(a) enjoys property (A0), although only relative to μe.

(ii) If (A9)(b) is also satisfied, then (A0) also holds for μ.
(iii) If, in addition, it satisfies property (A8), then it also satisfies Assumptions

(A2), (A3) and (A4).
(iv) Finally, if Assumptions (A9)(c) is also satisfied, then Assumptions (A1)

holds.

REMARK 2.9. The above assumptions are very similar to (although much
more general than the ones used in [1, 3]. In fact, in [1, 3], the Markov chains
are independent at each site, this corresponding to dq = 0 for each q �= 0 so that
η0 = d0 in Assumption (A9). Also, the random walk is a nearest neighbor walk
and the transition probabilities depend only on the site presently visited. This cor-
responds to having πz depending only on θ0 in the present setting, which would
imply that the constant (1 + 2|�|) in Assumption (A9) can be replaced by 3. In
the situation described above, one can compare our results with the previous ones
(keeping in mind that [3] holds only for d ≥ 3, while [1] only for d > 7). For
example, let us compare with [1], which presents sharper results in its realm of
applicability.

The assumptions of [1] are in terms of the two parameters κ and ε, where 1 − κ
gives a bound for the rate of mixing and thus corresponds to our η0. The parame-
ter ε is the best constant such that πz ≥ εaz. The equivalent of Assumption (A9)
(the only relevant condition here) in [1] reads κ + ε2 > 1, that is, κ = 1 − εγ for
some γ > 2. This is sufficient for the annealed CLT in [1], but γ > 6 is assumed
for the quenched CLT (indeed, not only CLTs but Donsker-type invariance prin-
ciples are proved in [1]). To see the relation with our conditions, let us consider
the simple case in which |π̂z| ≤ (1 − ε)az. [In fact, the following holds more gen-
erally, as can be seen by using the decomposition (4.15).] Then, D = 1 − ε and
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Assumption (A9)(b), in the language of [1], reads (1 + 3(1 − ε))(1 − κ) < 1, that
is, κ+ (4−3ε)−1 > 1. One can easily verify that the above condition is better than
κ + ε2 > 1, provided ε ≤ 0.75. Furthermore, if κ = 1 − εγ for some γ ≥ 3, then
κ + (4 − 3ε)−1 > 1 for all 0 ≤ ε < 1. As for the condition Assumption (A9)(c),
a direct computation along the lines of Section 4.5 yields that it can be replaced,
in this case, by η0 +D < 1, that is, κ + ε > 1, which is always weaker than the
above. The reason is that all truncated operators in the proof of Lemma 4.8 coin-
cide in this case with the untruncated ones so that the estimates in (4.21) and (4.27)
can be replaced by equalities. As a result, the estimate in Lemma 4.8 is uniform
in n. In other words, our conditions are weaker than the condition under which the
quenched invariance principle is proved in [1].

3. Proofs: CLT under Assumptions (A0)–(A5). In this section, we prove
Theorem 1.

3.1. Equivalence of (2.21) with a two-walks estimate. As discussed in Sec-
tion 2.3, it suffices to prove (2.21). Recalling (2.20), for each w ∈ R

d , ‖w‖ ≤ 1,∥∥∥∥∥
N−1∑
t=0

〈w,
tG〉
∥∥∥∥∥

2

2

=
N∑

t,s=1

E(E(〈w,	̂t 〉|F0)E(〈w,	̂s〉 | F0)).

The above formula has a very interesting interpretation: consider two indepen-
dent random walks Xn,Yn, both starting from zero and evolving in the same
environment (θt ) described by the transition probabilities (2.1). That is, setting
	̂Xt+1 :=Xt+1 −Xt − v, 	̂Yt+1 := Yt+1 − Yt − v, we have

P
({(	̂Xt+1, 	̂

Y
t+1)= (z, z′), θt+1 ∈A} |Xt,Yt , θt )

= πz(τXt θt )πz′(τYt θt )p(θt ,A).
Let us call P

2
ν the law of such a process when the environment is started with

the measure ν and denote by E
2
ν the corresponding expectation. Then,∥∥∥∥∥

N−1∑
t=0

〈w,
tG〉
∥∥∥∥∥

2

2

=
N∑

t,s=1

E
2
μ(〈w, 	̂Xt 〉〈w,	̂Ys 〉).(3.1)

REMARK 3.1. Note that if the process (Xn,Yn) satisfies the CLT (which is,
in fact, a consequence of what we will prove later on), then (3.1) corresponds to
the off-diagonal part of the covariance of such a process. From this point of view,
condition (2.21) says that the two walks are asymptotically independent.
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3.2. The two-walks estimate: off-diagonal variance. Let LN := A lnN , for
some fixed A> 0 to be chosen later [see (3.10) and (3.12)].

LEMMA 3.2. There exists δ > 0 such that

E
2
μ(Card{t ≤N :‖Xt − Yt‖ ≤LN })≤ CN1−δ (N ∈ N).(3.2)

This lemma is proved in Section 3.3. We now complete the proof of (2.21) using
the lemma.

Let us introduce the filtrations

F 0,XY
t := σ {X0, . . . ,Xt , Y0, . . . , Yt , θ0, . . . , θt },
F XY
t := σ {X0, . . . ,Xt , Y0, . . . , Yt , (θs)s∈N}

and the filtrations F 0,X
t and F 0,Y

t , which are just the ‘X- and Y -versions’ of the
previously introduced F 0

t . To estimate (3.1), we start by considering the case t < s.
As 	̂Xt and 	̂Ys are conditionally independent given F 0,XY

t , we have

E
2
μ(〈w, 	̂Xt 〉〈w,	̂Ys 〉)= E

2
μ(E

2
μ(〈w, 	̂Xt 〉 | F 0,XY

t )E2
μ(〈w, 	̂Ys 〉 | F 0,XY

t ))

= E
2
μ(〈w,E2

μ(	̂
X
t | F 0,X

t )〉〈w,E2
μ(	̂

Y
s | F 0,Y

t )〉).
Calling ωY the environment as seen from Y , we have

E
2
μ(	̂

Y
s | F 0,Y

t )= Ss−t−1g(ωYt ).

Assumption (A2) then implies

|E2
μ(〈w, 	̂Xt 〉〈w,	̂Ys 〉)| ≤ Cηs−t−1.

Hence, for each a > ξ
2 , setting b= 2(ρ+a)

lnη−1 and defining TN := b ln(lnN), we have∑
|t−s|≥TN
1≤t,s≤N

|E2
μ(〈w, 	̂Xt 〉〈w,	̂Ys 〉)| ≤ CaN(lnN)−2(ρ+a),

(3.3)
≤ CaN(lnN)−2ρ−ξ .

Since the roles of t and s are interchangeable, it remains to consider the cases
for which s ≥ t ≥ TN and s − t ≤ TN . Let us write 	̂Xw,t = 〈w, 	̂Xt 〉 and 	̂Yw,t =
〈w, 	̂Yt 〉. We can then write

|E2
μ(〈w, 	̂Xt 〉〈w,	̂Ys 〉)| ≤ ∣∣E2

μ

(
1{‖Xt−TN−Yt−TN ‖≥LN }	̂Xw,t 	̂Yw,s

)∣∣
(3.4)

+CP
2
μ({‖Xt−TN − Yt−TN ‖<LN }).
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Let us set AN,t := {‖Xt−TN − Yt−TN ‖ ≥ LN }. Using the fact that 	̂Xw,t and 	̂Yw,s
are conditionally independent given F XY

t−TN , we can write

|E2
μ(1AN,tE

2
μ(	̂

X
w,t 	̂

Y
w,s | F 0,XY

t−TN ))|
= |E2

μ(1AN,tE
2
μ[E2

μ(	̂
X
w,t | F XY

t−TN )E
2
μ(	̂

Y
w,s | F XY

t−TN ) | F 0,XY
t−TN ])|.

We want to estimate the conditional expectation with respect to F 0,XY
t−TN . To this end,

we fix θ0, . . . , θt−TN , X0, . . . ,Xt−TN and Y0, . . . , Yt−TN . Then, E
2
μ(	̂

X
w,t | F XY

t−TN )
and E

2
μ(	̂

Y
w,s | F XY

t−TN ) are functions of two subsets of the spatial coordinates of the
TN + s − t ≤ 2TN variables θt−TN+1, . . . , θs and these subsets are separated by a
distance LN −CTN ≥ LN/2. Since E

2
μ(f (θt−TN , . . . , θs) | F 0,XY

t−TN )= EP
e
θt−TN

(f ),

we can apply Assumption (A4) and estimate the first term on the right-hand side
of (3.4) by

|E2
μ(1AN,tE

2
μ(	̂

X
w,t 	̂

Y
w,s | F 0,XY

t−TN ))|
≤ |E2

μ(1AN,tE
2
μ(	̂

X
w,t | F 0,XY

t−TN )E
2
μ(	̂

Y
w,s | F 0,XY

t−TN ))| +CL
−ξ
N T

ξ̃
N

(3.5)
≤ E

(|STN g(ωXt−TN )| · |Ss−t+TN g(ωYt−TN )|) +CL−ξ
N T

ξ̃
N

≤ C(ηTN +L−ξ
N T

ξ̃
N).

Hence, if ξ > 2ρ, then∑
|t−s|≤b ln(lnN)

1≤t,s≤N

|E2
μ(〈w, 	̂Xt 〉〈w,	̂Yl 〉)|

(3.6)

≤ CA,bN(ln lnN)ξ̃+1

(lnN)ξ
+ TN

N−1∑
t=TN

P
2
μ(A

c
N,t )+ T 2

N.

Combining (3.3) and (3.6), proves (2.21), provided that ξ > 2ρ + 2. [Note that
because ξ > 4 in Assumption (A4), we may choose ρ > 1, as required at the end
of Section 2.3.]

3.3. Estimating the number of close encounters. We first reduce (3.2) to a
simpler inequality.

LEMMA 3.3. There exist β ∈ (0,1),C0 > 0 such that for any θ ∈� and any
a, b such that ‖a − b‖>LN , we have

P
2
θ (‖Xj − Yj‖>LN for j = 1,2, . . . ,N |X0 = a,Y0 = b)≥ C0

Nβ
.(3.7)

[Here, P
2
θ is the underlying probability for the process (θt ,Xt , Yt ) started at

θ0 = θ .]
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PROOF OF LEMMA 3.2. We start by noticing that Assumption (A5) implies,
for each a, b ∈ Z

d , ‖a − b‖ ≤ LN , that

P
2
θ

({
sup

0≤i≤LN
‖Xi − Yi‖ ≥ LN

} ∣∣∣X0 = a,Y0 = b
)

≥ γ LN ,(3.8)

the latter being the probability of one fixed path in which Xi,Yi get further and
further apart at each step. Accordingly, for each � < 1 − β , we have

P
2
θ

({
sup

0≤i≤N�
‖Xi − Yi‖ ≤LN

}∣∣∣X0 = a,Y0 = b
)

≤
N�L−1

N∏
j=1

(1 − γ LN )(3.9)

≤ e−γ LN L−1
N N

� ≤ e−N�−2A lnγ−1 ≤ e−N�/2,
where we have chosen A such that

� > 4A lnγ−1.(3.10)

Next, consider the sets B−
R := {(x, y) :‖x−y‖ ≤R}, B+

R := {‖x−y‖>R} and
the stopping times, for k > 0,

s0 := inf{j ∈ N : (Xj ,Yj ) ∈ B−
LN
, (Xj+1, Yj+1) ∈ B+

LN
},

s2k := inf{j ∈ N : j > s2k−2, (Xj ,Yj ) ∈ B−
LN
, (Xj+1, Yj+1) ∈ B+

LN
},

s1 := inf{j ∈ N : j > s0, (Xj ,Yj ) ∈ B+
LN
, (Xj+1, Yj+1) ∈ B−

LN
},

s2k+1 := inf{j ∈ N : j > s2k−1, (Xj ,Yj ) ∈ B+
LN
, (Xj+1, Yj+1) ∈ B−

LN
}.

Clearly, s2k < s2k+1 < s2k+2 and sk > k. As X0 = Y0, these stopping times are
adapted to the filtration F 0,XY

t . With this notation, (3.9) implies

P
2
θ

({
sup
i≤N
(s2i − s2i−1) > N

�

})
≤N sup

i≤N
P

2
θ ({s2i − s2i−1 >N

�})≤Ne−N�/2 .

Let us set J := inf{k ∈ N : s2k+1 ≥N} + 1. Obviously, J ≤N/2 + 1. Clearly, J is
the number of intervals in which the two walks are closer than LN before time N .
Since the above estimate tells us that such intervals are shorter than N�, with
overwhelming probability, we have

E
2
θ (Card{n <N :‖Xn − Yn‖ ≤ LN })≤N2e−N�/2 +N�E2

θ (J ).(3.11)

It remains to investigate the lengths of the intervals of time in which the two walks
are closer than LN or (which is the same) the ones in which they are further apart
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than LN . Let Sn := {supk≤n(s2k+1 −s2k) < N} and denote by F 0,XY
s2k

the σ -algebra

associated to the filtration F 0,XY
t and the stopping time s2k . Then,

P
2
θ ({J > n+ 1})= P

2
θ ({s2k+1 <N ∀k ≤ n})

≤ P
2
θ ({s2k+1 − s2k < N ∀k ≤ n})= E

2
θ (1Sn).

Thus, by (3.7),

P
2
θ ({J > n+ 1}) ≤ E

2
θ (1Sn)= E

2
θ

(
1Sn−1P

2
θ ({s2n+1 − s2n < N} | Sn−1)

)
= E

2
θ

(
1Sn−1P

2
θ ({s2n+1 − s2n < N} | F 0,XY

s2n
)
)

≤
(

1 − C0

Nβ

)
E

2
θ (1Sn−1)≤ · · · ≤

(
1 − C0

Nβ

)n
.

Thus, letting 1 − � > α > β , it follows that

P
2
θ ({J >Nα})≤ Ce−C0N

α−β
,

which means that E
2
θ (J )≤Nα +NP

2
θ ({J > Nα})≤ CNα . In view of (3.11), this

proves (3.2), provided we have chosen δ sufficiently small that �+ α < 1 − δ. �

Our program is thus completed once we prove (3.7). To this end, an intermediate
result is needed.

LEMMA 3.4. Given R > 0, take two points aR and bR such that ‖aR − bR‖ =
R. For each ε ∈ (0,1], consider two walks starting at aR and bR , respectively, and
define the stopping time τε,R as the first time n such that

‖Xn − Yn‖ ≤ Rε

2
or ‖Xn − Yn‖ ≥ 2R.

There then exist Rε ∈ R+ and C2 > 0 such that for each R ≥Rε and each θ ∈�,

P
2
θ ({‖Xτε,R − Yτε,R‖ ≥ 2R})≥ 1

2 −C2ε,

P
2
θ ({‖Xτ1,R − Yτ1,R‖ ≥ 2R})≥ 1

4 .

PROOF. Of course, the estimate in the statement is essentially sharp only in
one dimension. If d > 1, then the probability is actually close to one. Yet the
above estimate suffices for our purposes. So, in the higher-dimensional case, we
will control only one coordinate, whereby we obtain the same estimate as in one
dimension.

We decompose (X̂n, Ŷn) in the same way as we decomposed X̂n in (2.14). Ob-
serve that E(	̂Xt+1|F 0,X

t )= E(	̂Xt+1|F 0,XY
t ). Define

MXY
n := (X̂n, Ŷn)− (h(ωX0 ), h(ωY0 ))+ (h(ωXn ), h(ωYn )).
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As before,MXY
n is a bounded martingale with respect to the filtration F 0,XY

n , while
the remainder is a bounded boundary term. Since ‖aR − bR‖ = R, it follows that
there exists a unit vector vR such that 〈vR,X0 − Y0〉 = R. If we now define a new
stopping time τ ∗

R as the first time n for which

〈vR,Xn − Yn〉 ≤ εR

2
or 〈vR,Xn − Yn〉 ≥ 2R,

it then follows that

p := P
2
θ ({〈vR,Xτ∗

R
− Yτ∗

R
〉 ≥ 2R})≤ P

2
θ ({‖XτR − YτR‖ ≥ 2R}).

Note that E
2
θ (τ

∗
R) < ∞. Indeed, by the ellipticity Assumption (A5),

infθ,n P
2
θ ({sup0≤i≤2R |〈vR,Xn+i − Yn+i〉| ≥ 2R}) ≥ β > 0. Hence, it follows that

P
2
θ ({τ ∗

R ≥ n})≤C(1 − β)n/(2R). Thus,

E
2
θ (〈vR,Xτ∗

R
− Yτ∗

R
〉)= E

2
θ

(〈(vR,−vR),MXY
τ∗
R

〉) + O(1)

= E
2
θ

(〈(vR,−vR),MXY
0 〉) + O(1)=R+ O(1),

while, on the other hand,

E
2
θ (〈vR,Xτ∗

R
− Yτ∗

R
〉)≤ 2Rp+ εR

2
(1 − p).

The above two equations readily imply p ≥ 1
2 − ε

4 − CR−1, which is what we
wanted. The second inequality follows similarly. �

We can conclude by proving (3.7).

PROOF OF LEMMA 3.3. Let X0 = a and Y0 = b, with ‖a − b‖ ≥ LN and
κ ∈ (1

2 ,1). Using the ellipticity Assumption (A5) for the first LN steps, the second
estimate of Lemma 3.4 for the next ln2 ε

−1 steps and, finally, the first estimate of
that lemma for another log2N

κ steps, we obtain

P
2
θ (‖Xj − Yj‖ reaches NκLN before LN)

≥ γ LN ε−2(1
2 −C2ε

)log2N
κ ≥ ε−2N−κ−C3ε−A lnγ−1

.

In other words, there is a polynomially small probability of making an excursion
of size NκLN before returning to a distance LN . On the other hand, once we have
such a big excursion, Hoeffding’s inequality (see, e.g., [12]) implies that it will
take more than N steps to come back, indeed

P
2
θ

({
inf

1≤j≤N ‖Xj − Yj‖ ≤ LN
} ∣∣∣ ‖X0 − Y0‖ ≥NκLN

)

≤ 2 sup
θ

Pθ

({
sup

1≤j≤N
‖X̂j‖>NκLN/3

} ∣∣∣ X̂0 = 0
)

≤ CNe−CN2κ−1
.
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The last two inequalities imply (3.7) with β = κ+C3ε+A lnγ−1 and C0 =Cε−2,
provided we choose A> 0 and ε > 0 sufficiently small that

κ +C3ε +A lnγ−1 < 1.(3.12)

This proves Lemma 3.3. �

4. Proofs: the environment. In this section, we prove Theorem 2.

REMARK 4.1. The reader is alerted to the fact that the following arguments
are more of a functional analytic than of a probabilistic nature. In particular, we
will work with the Banach space M(�) of complex-valued measures, rather than
just with probability measures.

4.1. The environment: time mixing. Following [15], we will lift the dynamics
to a rather abstract space and prove that such a lift enjoys a spectral gap. This will
imply the desired results.

In fact, we want to lift the dynamics to the space B := C ⊗ ⊗
p∈Zd Mp(�)

‖·‖
,

where Mp(�) := {μ ∈ M(�) :μ(ϕ) = 0 ∀ϕ ∈ C0(�) that do not depend on θp}
and the closure is taken with respect to the norm

‖μ̄‖ := sup{|cμ|, |μp| :p ∈ Z
d}.

Here, we use the notational convention that an element μ̄ ∈ B has components
cμ ∈ C and μ̄ := (μp)p with μp ∈ Mp(�) and, for each complex-valued measure
μ ∈ M(�), |μ| is the total variation of μ. For example, if νp, ν′

p (p ∈ Z
d) are prob-

ability measures on � such that νp = ν′
p for all p �= q and we set ν := ⊗

p∈Zd νp ,
ν′ := ⊗

p∈Zd ν
′
p , then ν − ν′ ∈ Mq(�).

To define such a lift, we first need to define a map � :M(�)→ B and a pro-
jection Pr :B → M(�) that allow us to transfer objects between the two settings.

The choice of the first map is quite arbitrary; we will fix a convenient one.
Consider a strict total ordering ≺ of Z

d such that 0 ≺ p for each p ∈ Z
d \ {0},

and the set {q :q ≺ p} contains the box (centered at zero) of size C4‖p‖ and is
contained in the box of size C5‖p‖. For example, one can start from zero and
spiral out on larger and larger cubical shells. Let q+ be the successor of q (i.e.,
q ≺ q+ and there are no q ′ ∈ Z

d such that q ≺ q ′ ≺ q+).
Let m be an arbitrary probability measure on�, fixed once and for all. For each

q ∈ Z
d , we can then consider the σ -algebra Fq determined by all the variables

ωq
′

with q ′ ≺ q , hence F0 is the trivial σ -algebra. Call x≺p and x�p the set of
coordinates with indices smaller (resp. larger) than p.

Next, for each q ∈ Z
d , define the operator Jq :C0(�)→ C0(�) and its dual

J ′
q :M(�)→ M(�) by

Jqf :=mq(f )−mq+(f ), J ′
qμ(f ) := μ(Jqf ),(4.1)
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where mq is the marginal of m on the Fq variables. In other words, given a local
function f ∈ C0(�) and a point q ∈ Z

d , mq(f ) depends only on x�q variables,
namely

mq(f )(x�q)=
∫
�
f (y≺q, x�q)m(dy≺q, dy�q).

For each local function f , we have

f =m(f )+ ∑
q∈Zd

Jq(f ).

Note that as f is local, there exists a box �⊂� such that f depends only on the
variables {ωq :q ∈�}, but this means that the sum consists of only finitely many
terms. Accordingly, for each μ ∈ M(�), we define μ̂ := μ−μ(1)m and for each
f ∈ C0 and q ∈ Z

d , we consider J ′
qμ̂(f )= μ̂(Jqf ). Then, J ′

qμ̂ ∈ Mq(�) and we
can define the lift

�(μ) := (μ(1), (J ′
qμ̂)q) ∈ B.

REMARK 4.2. If one chooses m := ⊗
q∈Zd m∗, that is, a product measure,

where m∗ is an arbitrary probability measure on I , then a direct computation us-
ing definition (4.1) yields Jqf = Em(f | F c

q ) − Em(f | F c
q+), where F c

q is the
σ -algebra determined by the ωp with p � q and Em is the expectation with re-
spect to m. Moreover, J ′

qm = 0 for all q ∈ Z
d , hence J ′

qμ̂ = J ′
qμ. The reason to

allow nonproduct measures in spite of the slightly more complex definitions is
their usefulness in Section 4.5.

On the other hand, for each μ̄ = (cμ, (μp)p) ∈ B and local function f , we can
define

Pr μ̄(f ) := cμm(f )+
∑
p∈Zd

μp(f ).(4.2)

REMARK 4.3. Although Pr μ̄(f ) is well defined on each local function,
Pr μ̄ is not necessarily a measure. Yet, Pr�μ = μ for all μ ∈ M(�) since for
each local function f , m(

∑
q Jqf )=m(f −m(f ))= 0. There thus exists a sub-

set Bm ⊂ B containing �(M(�)) such that each element of PrBm gives rise to a
bounded linear functional on the space of local functions, hence uniquely identifies
a measure. In other words, for each μ̄ = (cμ, (μp)p) ∈ Bm, cμm+∑

p∈Zd μp con-
verges weakly to a measure that we call Pr μ̄. (Note that here the order of the series
may matter; we tacitly assume that the order is the one given by the relation ≺.)

Now that we know how to lift measures, we must describe how to lift the dy-
namics. For each local function f and p ∈ Z

d , we decompose

Kf = Kpf + ∑
q∈Zd\{p}

Kp,qf(4.3)
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with operators Kp and Kp,q defined as follows: for each q ∈ Z
d , setting q ′ ≺p

q :⇐⇒ q ′ − p ≺ q − p,

(Kp,qf )(ω) :=
∫
�
K(τpω,dyp)

∏
0≺pq ′≺pq

K
(
τq

′
ω(p), dy

q ′)
× [
K(τqω,dyq)−K(

τqω(p), dy
q)]

(4.4)
× ∏
q ′�pq

K(τq
′
ω,dyq

′
)f (y),

(Kpf )(ω) :=
∫
�
K(τpω,dyp)

∏
q ′∈Zd\{p}

K
(
τq

′
ω(p), dy

q ′)
f (y),

where ωq
′
(p) = ωq

′
for each q ′ �= p, while ωp(p) = a for some fixed a ∈ I . It is easy

to see that the series in (4.3) converges due to Assumptions (A7) and (A9)(a). The
fundamental fact of the above decomposition is that if f does not depend on ωq ,
then Kp,qf = 0. Accordingly, for each μ ∈ M(�), K ′

p,qμ ∈ Mq(�). In addition,
if μ ∈ Mp(�), then K ′

pμ ∈ Mp(�) since if f (y) does not depend on yp , then
Kpf also does not. Define ᾱ = (1, ᾱ)= (1, (αp)p) by

ᾱ :=�(K ′m).(4.5)

Also, let

K ′μp = ∑
q∈Zd\{p}

K ′
p,qμp + K ′

pμp.(4.6)

Finally, (4.6) suggests that we define the operator K :B → B by

Kμ̄ := (cμ, cμᾱ+Aμ̄) :=
(
cμ,

(
cμαq + K ′

qμq + ∑
p∈Zd\{q}

K ′
p,qμp

)
q

)
.

(4.7)
For all μ ∈ M(�), local functions f and n ∈ N, we have

PrK
n
�μ(f )= μ(Knf ).

Thus, K(Bm)⊆ Bm and the dynamics of K covers the original one.

LEMMA 4.4. The hypotheses (A6), (A7) and (A9)(a) on the Markov process
imply ‖A‖ ≤ ∑

q dq = η0 < 1.

PROOF. Let ν ∈ Mq(�) and f ∈ C0. Define f̃ by Kqf (ω) = ∫
K(τqω,

dyq)f̃ (yq,ω). Then, |f̃ |∞ ≤ |f |∞ and f̃ does not depend on ωq . Now, by As-
sumption (A6), it follows that, varying ωq ,

∫
K(τqω,dyq)f̃ (yq,ω) changes by

at most 2d0. Hence, for each (ωp)p �=q , there must exist a′, a′′ ∈ I and t ∈ [0,1]
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such that defining ω′ and ω′′ as those configurations which are obtained from a
configuration ω replacing ω0 by a′ or a′′, respectively, and defining K̃(ω, ·) =
tK(ω′, ·)+ (1 − t)K(ω′′, ·), the following holds:∣∣∣∣∫ K(τqω,dyq)f̃ (yq,ω)− ∫

K̃(τ qω, dyq)f̃ (yq,ω)

∣∣∣∣ ≤ d0|f |∞.
Thus,

|ν(Kqf )| =
∣∣∣∣ν(∫

K(τqω,dyq)f̃ (yq,ω)−
∫
K̃

(
τqω(q), dy

q)f̃ (yq,ω))∣∣∣∣
≤ d0|ν||f |∞.

While, by Assumption (A7), for all p �= q and all μ̄, we have |K ′
p,qμp| ≤

dp−q |μp|. �

Hence, the fixed point equation K(1, μ̄) = (1, μ̄) has the unique solution
(1, (1−A)−1ᾱ), which can easily be seen to project down to a stationary probabil-
ity measure μe on�. Indeed, given any probability measure ν, the set {Kn′ν} will
have weak accumulation points. On the other hand, calling (1, ν̄) the lift of ν, we
have that K

n
(1, ν̄)= (1,Anν̄+∑n−1

k=0A
kᾱ) is a lift of Kn′ν. Hence, the measures

Kn′ν must agree, on local functions, with the projections of the K
n
(1, ν̄) and it

follows that

μ̄ := lim
n→∞K

n
(1, ν̄)= (

1, (1 −A)−1ᾱ
)

(4.8)

projects to a unique invariant probability measure μe which is the weak limit of
the sequence (Kn′ν).

Finally, the operator K has a spectral gap, which implies exponential time-
mixing of this invariant measure, that is, the analogue of property (A2) for the
Markov evolution of the environment and the measure μe. In particular, we have
proven Assumption (A0) relative to μe. [The fact that μe cannot be supported
on the translation invariant configurations is a direct consequence of Assump-
tion (A6); see also Lemma 4.4.]

REMARK 4.5. Note that the above argument would hold verbatim for more
general, site-dependent, kernels Kq(τqθ, dyq) [instead of K(τqθ, dyq)], the only
difference being the loss of the translation invariance of μe.

4.2. The environment: space mixing. For property (A3), we need an extra ar-
gument. Given a function ϕ ∈ C0(�), let us call �(ϕ)⊂ Z

d the set of variables on
which ϕ depends. That is,�(ϕ) is the smallest subset of Z

d such that ϕ(x)= ϕ(y)
whenever x, y ∈ � with xp = yp for all p ∈ �(ϕ). Also, let us call C0

loc the set
of continuous local functions [i.e., is functions for which �(ϕ) is a finite set]. Fi-
nally, for any two functions ϕ,ψ ∈ C0(�), let ρϕ,ψ := inf{‖x− y‖ :x ∈�(ϕ), y ∈
�(ψ)}, the distance between the sets of dependence.
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For each ϕ ∈ C0
loc and ψ ∈ C0 such that ρϕψ = L and �(ϕ) is contained in a

box of size l, we want to estimate μe(ϕψ)−μe(ϕ)μe(ψ). Let us define�L(ϕ) :=
{q ∈ Z

d : infp∈�(ϕ) ‖p− q‖<L}. Clearly, �L(ϕ)∩�(ψ)= ∅. Moreover, �L(ϕ)
contains at most (l + L)d sites. Next, for each n ∈ N, let r := L/2n. Our main
idea is to modify the kernels so as to define a new process with coupling range less
than r in �L(ϕ). To do so, we define, for each q ∈�L(ϕ), the cutoff kernels

Kr,q(ω, dy) :=
{
K(ω(r,q), dy), if q ∈�L(ϕ),
K

(
ω̃(r,q), dy

)
, if q /∈�L(ϕ),

where, for some fixed b ∈ I ,

ω
p
(r,q) =

{
ωp, if ‖p− q‖< r ,
b, if ‖p− q‖ ≥ r ,

ω̃
p
(r,q) =

{
ωp, if ‖p− q‖< r or p /∈�L(ϕ),
b, if ‖p− q‖ ≥ r and p ∈�L(ϕ).

We can then use the above kernels to define the operator rK as in formula (2.23)
(see also Remark 4.5). Note that such an operator is close to the original one;
indeed, for each φ ∈ C0(�),

‖Kφ − rKφ‖∞ ≤ ∑
q∈�L(ϕ)

∑
‖z‖≥r

dz‖φ‖∞ + ∑
q /∈�L(ϕ)

∑
p∈�L(ϕ)
‖p−q‖≥r

dp−q‖φ‖∞

(4.9)
≤ C(l +L)dr−ξ ′‖φ‖∞,

by the long-range Assumption (A8). We can thus write

μe(ϕψ)= μe(Kn(ϕψ))

= μe(rKn(ϕψ))+ O
(
n(l +L)dr−ξ ′‖ϕψ‖∞

)
(4.10)

= μe((rKnϕ)(rKn ψ))+ O
(
n(l +L)dr−ξ ′‖ϕψ‖∞

)
.

At this point, it is natural to define measures νn,r (φ) := μe(φ
rKnψ). Note that

the lift of such a measure to the space B is given by �(νn,r )= (μe(rKnψ), ν̄n,r )

with ‖�(νn,r )‖ ≤ 4‖ψ‖∞. By the results of the previous section (and Remark 4.5)
applied to the operator rK , it follows that there exists a measure μr such that
rK ′μr = μr and, in addition,

|νn,r (rKnϕ)−μr(ϕ)μe(rKnψ)| ≤ Cσnld‖ϕ‖∞‖ψ‖∞.

Observe that due to the constructive nature of the proof in the preceding section,
the constants C and σ do not depend on r .

The above estimates applied to the case ψ = 1 (i.e., to νn,r = μe) imply

|μe(ϕ)−μr(ϕ)| ≤ Cσnld‖ϕ‖∞ +Cn(l +L)dr−ξ ′‖ϕ‖∞.
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Choosing n proportional to lnL, the two last facts and (4.10) together yield, for
l ≤ L,

|μe(ϕψ)−μe(ϕ)μe(ψ)|

≤ |νn,r (rKnϕ)−μe(ϕ)μe(ψ)| +Cn(l +L)
d

rξ
′ ‖ϕψ‖∞

≤ |μe(ϕ)||μe(rKnψ)−μe(ψ)|(4.11)

+C(nLdr−ξ ′ + σnld)‖ϕ‖∞‖ψ‖∞
≤ C(

L−ξ ′+d(lnL)ξ ′+1‖ϕ‖∞‖ψ‖∞
)
.

Clearly, (4.11) implies the space-mixing property (A3), provided ξ ′ > ξ + d .

4.3. The environment as seen from the particle. The above construction can
also be used to achieve our other goal—the study of the dynamics as seen from the
particle. That is, we wish to study the operator [see (2.5)]

Sf (ω)= ∑
z∈�

πz(ω)K(τ
zf )(ω).(4.12)

We will use the same space as in the previous section, the only new difficulty
being to define the covering dynamics. To this end, let us define Bz :B → B by
Bzμ̄ := (cμ, ((Bzμ̄)q)q), where (Bzμ̄)q(f ) := μq+z(πzτ zf ). We have (Bzμ̄)q ∈
Mq(�), provided q /∈ �, but we have no control of this kind for q ∈ �. Thus,
although the operator

∑
z∈�KBz would cover S′, it does not respect the struc-

ture of the space for the components in �. On the other hand, (Azμ̄)q(f ) :=
μq+z(azτ zf ) ∈ Mq(�) for each q ∈ Z

d . Accordingly, for each q ∈ �, we must
deal only with the remainders (R̂zμ̄)q(f ) := μq+z(π̂zτ zf ). We can again use our
decomposition operators to write (R̂zμ̄)q(f )= ∑

q ′∈Zd (R̂zμ̄)q(Jq ′f ) and then re-
distribute the various terms to the appropriate components of the vector; indeed,
J ′
q ′(R̂zμ̄)q ∈ Mq ′(�). Finally, defining, in analogy with the previous case, ζ̄ by

�(S′μe)= (1, ζ̄ ), we can define the covering dynamics S(cν, ν̄) := (cν, cν ζ̄+Sν̄),
where

(Sν̄)q :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
z∈�

[
(KBz(0, ν̄))q + ∑

q ′∈�
J ′
q(KR̂z(0, ν̄))q ′

]
, if q /∈�,

∑
z∈�

[
(KAz(0, ν̄))q + ∑

q ′∈�
J ′
q(KR̂z(0, ν̄))q ′

]
, if q ∈�.

(4.13)

Once more, one can easily check that for each ν ∈ M(�), the following holds:

Pr[Sn�ν](f )= ν(Snf ) for all n ∈ N,
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that is, we have a proper covering of the original dynamics. Moreover, by (A9)(b),

‖S‖ ≤ ‖K‖
(

1 + (1 + 2|�|)∑
z∈�

|π̂z|∞
)

(4.14)
≤ η0

(
1 + (1 + 2|�|)D) = η1 < 1.

This proves properties (A0) for μ and (A2) by exactly the same arguments used in
Section 4.1.

4.4. Locality. The idea for the verification of condition (A4) is, again, to ap-
proximate the true dynamics with one in which the interactions are cut off at a
proper scale. More precisely, let A′,B ′ be two L/2-neighborhoods of A,B , re-
spectively. Similarly to what we did in the previous section, we can kill all interac-
tions in A′ ∪B ′ at a distance larger than L/2s. If we call P

0
θ the distribution of the

resulting Markov process started from the configuration θ , then Assumption (A8)
implies

|Peθ (f (θ1, . . . , θs)g(θ1, . . . , θs))− P
0
θ (f (θ1, . . . , θs)g(θ1, . . . , θs))|

≤Cs(M +L)dsξ ′
L−ξ ′‖fg‖∞ ≤ CML−(ξ ′−d)sξ ′+1‖fg‖∞

with ξ ′ > d + 2. As P
0
θ (f (θ1, . . . , θs)g(θ1, . . . , θs)) = P

0
θ (f (θ1, . . . , θs))P

0
θ (g(θ1,

. . . , θs)), by construction, condition (A4) follows, provided we choose ξ = ξ ′ −
d > 4 and ξ̃ > ξ ′ + 1.

4.5. Absolute continuity. Since we aim to prove that μ is absolutely continu-
ous with respect to μe, it is natural to work in the smaller space Me of measures on
� which are absolutely continuous with respect to μe. In addition, we now have a
natural reference measure, so we want to choose the measure m, in the construc-
tion of the lift � defined at the beginning of Section 4.1, to be μe. This implies
�(μe)= (1,0) ∈ B. Clearly, all the results of the previous section apply with this
choice of m.

First, note that the above is consistent.

LEMMA 4.6. Both K ′ and S′ are well defined as operators from Me to itself.

PROOF. First consider the case of a measure ν ∈ Me such that f := dν
dμe

∈
L∞(�,μe). Then,

K ′(ν)(ϕ)=
∫
f · Kϕ dμe ≤ ‖f ‖∞ ·

∫
K|ϕ|dμe = ‖f ‖∞ ·μe(|ϕ|)

for each bounded measurable ϕ :�→ R. Now, for each ν ∈ Me, again calling f
the density, by monotone convergence,

K ′(ν)(ϕ)= sup
n

K ′((f ∧ n)μe)(ϕ)≤ sup
n
nμe(ϕ)
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for each such ϕ. In particular, this holds for ϕ = 1A being the indicator function of
any μe-null set. Hence, K ′(ν)(A) = 0 if μe(A) = 0. Similar arguments hold for
S′ by using the translation invariance of μe. �

On the other hand, in the present generality, it is not guaranteed that Jq maps
Me into itself, so we cannot check directly that the covering dynamics S :B → B
preserves absolute continuity of the components.

The above considerations show that it may not be very convenient to work with
the decomposition (4.13) to treat the problem of absolute continuity. Furthermore,
the second sum on the left-hand side of (4.13) is of a highly nonlocal nature, which
makes it very hard to control the sum of the components of the resulting vector.
To overcome these difficulties, it is useful to decompose the operator S into a
convex combination of two operators—one representing a random walk with fixed
transition probabilities and the other (small) one keeping the dependence on the
environment. To do so, it suffices to write

πz = (1 − κ)cz + κπ̃z,(4.15)

where cz := (1−κ)−1 max{0, az−‖π̂z‖∞}, π̃z := κ−1(πz−max{0, az−‖π̂z‖∞})
and κ := 1 −∑

z∈�max{0, az−‖π̂z‖∞} ≤D is small by Assumption (A9)(c). Let
us set S0f := ∑

z czτ
zKf and S1 := ∑

z π̃zτ
zKf . Clearly S = (1 − κ)S0 + κS1

and cz, π̃z ≥ 0,
∑
z cz = ∑

z π̃z = 1. Hence, |S0f |∞ ≤ |f |∞, |S1f |∞ ≤ |f |∞. It
is then convenient to consider a Bernoulli process with probability (1 − κ, κ). For
each σ ∈ {0,1}N, we let σn be the first n symbols of σ and set Sσn := Sσn · · ·Sσ1 .

Using E for the expectation with respect to the above process, we see that

Snf =E(Sσnf ).(4.16)

The advantage of the representation (4.16) lies in the fact that S0 can be conve-
niently treated by our covering space techniques, while the occurrences of S1 are
weighted by a small probability.

To be more precise, recall that, by the analogue of (4.8), μ= limN→∞ SN
′
μe.

Then, after setting ζ := (S′ − 1)μe, we can write

SN
′
μe = μe +

N−1∑
n=0

Sn
′
ζ,

(4.17)
|Sn′ζ(ϕ)| ≤ |E(ζ(Sσnϕ)1�n)| +E(1�cn)‖ϕ‖∞,

where �n is the set of σ such that σn contains a string of zeros with length greater
than tn := −(1 −ϑ)[ln(1 − κ)]−1 lnn, ϑ ∈ (0,1). Clearly, E(1�cn)≤ e−Cϑn

ϑ/2
. On

�n, let mσ denote the beginning of the first string of tn zeros. We have

|ζ(Snϕ)| ≤
∣∣∣∣∣ ∑
q∈Zd

E(ζ(Sσn,...,σmσ+tn JqS
tn
0 Sσmσ ϕ)1�n)

∣∣∣∣∣ + e−Cϑnϑ/2‖ϕ‖∞

(4.18)
≤ E(|Pr(S

tn
0 �(S

′
σn,...,σmσ+tn ζ ))(Sσmσ ϕ)1�n |)+ e−Cϑn

ϑ/2‖ϕ‖∞,
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where we have introduced the covering operator S0 defined by

S0(cν, (ν̄)q)= (cν, (S̄0ν̄)q) :=
(
cν,

∑
z∈�
(KCz(0, ν̄))q

)
(4.19)

and, contrary to (4.13), we have defined (Cz(0, ν̄))q(f ) := νq+z(czτ zf ). A direct
computation shows that S

n

0 covers Sn0 , hence formula (4.18).
Note that the summands in the first line of (4.17) are absolutely continuous

measures with respect to μe, by Lemma 4.6. Hence, the total variation of such
measures is the L1(�,μe)-norm of their density.

Unlike S̄, the operator S̄0 is reasonably local. To make precise such a locality,
we introduce the norm ‖ν̄‖1 := ∑

p∈Zd |νp| and define B1 := {(0, ν̄) ∈ B :‖ν̄‖1 <

∞}.

LEMMA 4.7. For each (0, ν̄) ∈ B1,

‖S0ν̄‖1 ≤ η0‖ν̄‖1.

PROOF. Let (0, ν̄) ∈ B1. Then,

∑
p∈Zd

(S0ν̄)p| ≤ ∑
z∈�

cz
∑
p∈Zd

[
|K ′

pτ
zνp+z| +

∑
q∈Zd\{p}

|K ′
q,pτ

zνq+z|
]

≤ ∑
z∈�

cz
∑
p∈Zd

[
d0|νp+z| +

∑
q∈Zd\{p}

dq−p|νq+z|
]

≤ d0‖ν̄‖1 + ∑
q∈Zd

|νq |
∑
z∈�

cz
∑

v∈Zd\{0}
dv

=
(
d0 + ∑

v �=0

dv

)
‖ν̄‖1.

�

Next, we verify that the above norm is relevant to the problem at hand.

LEMMA 4.8. For each n ∈ N and σ ∈ {0,1}N, we have

‖�(S′
σnζ )‖1 = ∑

q∈Zd

|J ′
qS

′
σnζ | ≤ Cn((ξ

′+1)/(ξ ′−d))d .

PROOF. We start by studying J ′
qS

′
σnμe. We will also write S for Sσ , since

the computation is exactly the same. Given q ∈ Z
d , we can change the kernel K

for all points ‖p‖ ≤ C4
2 ‖q‖ to have only interactions of range C4‖q‖(8n)−1. (The

constant C4 is defined at the beginning of Section 4.1.)
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We call K(q) and S(q) the resulting Markov operators for the process of the
environment and the environment as seen from the particle, respectively. Clearly,
by Assumption (A8),∥∥(

S(q) − S)
ϕ

∥∥∞ ≤ C‖q‖−ξ ′+dnξ ′‖ϕ‖∞.
Hence, for all m≤ n,

∥∥((
S(q)

)m − Sm)
ϕ

∥∥∞ ≤
m−1∑
k=0

∥∥(
S(q)

)k(
S(q) − S)

Sm−1−kϕ
∥∥∞

(4.20)
≤ C‖q‖−ξ ′+dnξ ′

m‖ϕ‖∞
and the same holds for K(q) and K . On the other hand, if n≤ C4

2 ‖q‖, then(
S(q)

)n
Jqϕ = ∑

z1,...,zn∈�
πz1K

(q)τ z1
[
πz2K

(q) · · ·K(q)τ zn−1
[
πznK

(q)τ znJqϕ
] · · ·]

= ∑
z1,...,zn∈�

πz1K
(q)τ z1

[
πz2K

(q) · · ·K(q)τ zn−1[πzn] · · ·
]

× K(q)τ z1
[
K(q) · · · τ zn−1

[
K(q)τ znJqϕ

] · · ·]
= ∑
z1,...,zn∈�

πz1K
(q)τ z1

[
πz2K

(q) · · ·K(q)τ zn−1[πzn] · · ·
]

× τ z1+···+znKnJqϕ + O(‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞),
where we have used the fact that if two functions f,g have disjoint support, then
K(q)(fg)= K(q)f · K(q)g, the same considerations as in (4.20) and the transla-
tion invariance of K . Set zn−k := (zk+1, . . . , zn) and

ψzn := τ−z1−···−zn[πz1K
(q)τ z1

[
πz2K

(q) · · ·K(q)τ zn−1[πzn] · · ·
]]
.

Then,

ψzn = [τ−z1−···−znπz1]K(q)[τ−z2−···−znπz2]K(q) · · ·K(q)[τ−znπzn]
= [τ−z1−···−znπz1]K(q)ψzn−1

since, when applied to a function f supported in the box {p ∈ Z
d :‖p‖ ≤ C4

4 ‖q‖},
the operator K(q) is invariant under translation by τ−z1−···−zn , provided nC1 ≤
C4
8 ‖q‖, that is K(q)τ−z1−···−znf = τ−z1−···−znK(q)f .

REMARK 4.9. Note that later on in the proof, we will apply K(q) to func-
tions that are supported in a box of size C4

2 ‖q‖ centered at the origin. Hence, by
construction, such functions never see the kernels in which the interaction is long
range and, accordingly, we can modify K(q) to have interactions of length ‖q‖ in
all of Z

d without any change in the above formulae. We will call K̃(q) the resulting
translation invariant object.
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We set  n := ∑
z1,...,zn

ψzn and write the above estimate as∣∣μe(SnJqϕ)−μe( n · (
K(q))nJqϕ)∣∣ ≤ C‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞.(4.21)

As Jqϕ does not depend on points ‖p‖ ≤ C4‖q‖, (4.11) yields∣∣μe(SnJqϕ)−μe( n) ·μe((K(q))nJqϕ)∣∣
≤ C‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞ +C‖q‖−ξ ′+d(ln‖q‖)ξ ′+1‖ϕ‖∞‖ n‖∞

and as μe((K(q))nJqϕ)= μe(Jqϕ)+ O(‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞), it follows that

|μe(SnJqϕ)−μe(Jqϕ)|
≤ |μe( n − 1)|‖ϕ‖∞ +C‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞(1 + ‖ n‖∞)

+C‖q‖−ξ ′+d(ln‖q‖)ξ ′+1‖ϕ‖∞‖ n‖∞.

At this point, we can estimate the real objects of interest:

|ζ(SnJqϕ)| ≤
1∑
i=0

|μe( n+i − 1)|‖ϕ‖∞ +C‖q‖−ξ ′+dnξ ′+1‖ϕ‖∞‖ n‖∞
(4.22)

+C‖q‖−ξ ′+d(ln‖q‖)ξ ′+1‖ϕ‖∞‖ n‖∞.

To conclude, we must estimate |μe( n − 1)| and the norm ‖ n‖∞ on the right-
hand side of the above equation. To do so, it is convenient to consider the operators
Kgϕ := gK̃(q)ϕ, K̂gϕ := gK̃(q)ϕ− gμ(q)e (ϕ), where μ(q)e is the unique invariant
measure of the operator K̃(q). The proof of the existence of such measures is
exactly the same as the proof of the existence of μe or μr .

Note that K̂g1 = 0. If we set πzn−k := τ−zk+1−···−znπzk+1 , then

 n = ∑
zn

KπznKπ
zn−1 · · ·Kπ

z1
1

(4.23)
= ∑

zn

K̂πznKπ
zn−1 · · ·Kπ

z1
1 + πznμ(q)e (Kπ

zn−1 · · ·Kπ
z1

1).

The translation invariance discussed above implies

∑
zn

∣∣πznμ(q)e (Kπ
zn−1 · · ·Kπ

z1
1)

∣∣ ≤
(

1 + ∑
z

‖πz‖∞
)

= 1 +D.(4.24)

To conclude, we need to understand the properties of compositions of the operators
K̂
π
j
z
. To do so, we again use our covering spaces, as we did for the operators

K, S. Indeed, given an operator K̂g with g = a+ ĝ, a ∈ R, and ĝ supported in the
box p +� centered around p, we can define the covering dynamics KḠ of K̂ ′

g ,
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where K is defined as in (4.7), while Ḡ(cν, ν̄) := (0,Gν̄) is defined, in analogy
with (4.13), by

(Gν̄)q :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gνq + ∑

p′∈p+�
J ′
q(ĝνp′), if q /∈ p+�,

aνq + ∑
p′∈p+�

J ′
q(ĝνp′), if q ∈ p+�.

A direct computation shows that Pr(KḠ1 · · ·KḠn�ν) = K̂ ′
g1

· · ·K̂ ′
gn
ν, that is,

the above operators cover arbitrary products of the operators of interest. In addi-
tion, if φ ∈ C0

loc depends only of M variables, then

‖K̂gn · · ·K̂g1φ‖∞ ≤
[
n∏
k=1

(
a + (1 + 2|�|)‖ĝk‖∞

)∑
q

dq

]
M‖φ‖∞.(4.25)

Iterating the procedure in (4.23), (4.24) and using (4.25) yields

‖ n‖∞ ≤ C
n−1∑
k=0

ηk1(1 +D) <∞.(4.26)

Next, observe that μ(q)e ( n)= 1, which can easily be checked by a direct com-
putation that uses the invariance of μ(q)e under translations and under the kernel
K̃(q). Hence, |μe( n − 1)| ≤ |μe( n)−μ(q)e ( n)| and as  n depends on at most
C‖q‖d variables, we can apply (4.8) and its analogue for the kernel K̃(q) to con-
clude that∣∣μe( n)−μ(q)e ( n)∣∣ ≤ ∥∥Kn n − (

K̃(q))n( n)∥∥∞ +C‖q‖dηn‖ n‖∞

≤ n ·C‖q‖d ∑
‖p‖≥C4‖q‖/8n

dp +C‖q‖dηn‖ n‖∞(4.27)

≤ C‖q‖d−ξ ′
n1+ξ ′ · ‖ n‖∞,

where we used Assumption (A8) in the last step.
Combining (4.22), (4.26) and (4.27), we thus arrive at

|ζ(SnJqϕ)| ≤ C‖q‖d−ξ ′
n1+ξ ′ · ‖ϕ‖∞(1 + ‖ n‖∞),

which, using the trivial bound |J ′
q(S

′)nν| ≤ 2|ν| for ‖q‖ ≤ n(ξ ′+1)/(ξ ′−d), implies
the lemma, as ξ ′ > 2d by Assumption (A8). �

Finally, applying Lemmas 4.8 and 4.7 to (4.18), we have

|ζ(Snϕ)| ≤ C(
η
tn
0 n

((ξ ′+1)/(ξ ′−d))d + e−Cϑnϑ/2)‖ϕ‖∞ ≤ Cn−C6‖ϕ‖∞,(4.28)

where C6 > 1. Indeed, η
tn
0 ≤ n−((1−ϑ) lnη−1

0 )/(ln(1−D)−1), thus the claim

holds true, provided
(1−ϑ) lnη−1

0
ln(1−D)−1 − ξ ′+1

ξ ′−d d > 1 or, equivalently, η0 < (1 −
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D)(ξ
′(1+d))/((ξ ′−d)(1−ϑ)). By Assumption (A9)(c), we can always choose ϑ so that

this inequality is satisfied.
Accordingly, the sum on the right-hand side of the first line of (4.17) is con-

vergent, which implies that d(S
n)′μe
dμe

converges in L1(�,μe) to some function h,
hence μ= hμe is absolutely continuous with respect to μe.

Finally, to prove equivalence, if μe is not absolutely continuous with respect
to μ, then there exists an invariant set A such that μ(A) = 0 but μe(A) > 0. Ac-
cordingly,

0 = μ(Sn1A)= μe(hSn1A)=
∑

z1,...,zn∈�
μe(hπz1Kτ

z1πz2 · · ·K1A),

which implies μe(hKnτ
∑n
i=1 zi1A) = 0 for each choice of n and zi such that

γzi �= 0. By ellipticity, there exist s ∈ N and
∑s
i=1 zi = 0 [see the proof of (2.9)],

thus μe(hKs1A)= 0. To conclude, we consider the processes P
e
μ and P

e
μe

. Clearly
the first is absolutely continuous with respect to the second and the Radon–
Nikodym derivative is given by H((θt )) := h(θ0). Accordingly, calling τ̄ the time
shift and considering the set B := {(θt ) ∈ � : θ0 ∈ A}, we have EPeμe

(H τ̄ sn1B) =
μe(hK

sn1A)= 0. Thus,

0 = 1

n

n−1∑
k=0

EPeμe
(H τ̄ sk1B).

But the Birkhoff ergodic theorem and the ergodicity of P
e
μe

then imply

0 = EPeμe
(H)EPeμe

(1B)= μe(A),
which is a contradiction. This shows that μ and μe are equivalent, hence Assump-
tion (A1).

APPENDIX: CENTRAL LIMIT THEOREM FOR ADDITIVE
FUNCTIONALS OF MARKOV CHAINS

In this Appendix, we recall the results and arguments of [19], keeping explicit
track of some estimates that are needed for the present paper. The basic idea, going
back to [16], is to construct a martingale approximation by solving the equation

(1 + ε)hε =
hε + g,
where g = 〈w,G〉 satisfies condition (2.21). Setting Vth := ∑t−1

s=0

sh, a solution

to this equation can be written as

hε = ε
∞∑
s=1

Vsg

(1 + ε)s+1 .

If we define

Hε(ω,ω
′) := hε(ω′)−
hε(ω),
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then
t−1∑
s=0

g(ωs)=Mε,t + ε
t−1∑
s=0

hε(ωs)+Rε,t ,

where Mε,t is an Ft -martingale and Rε,t a boundary term

Mε,t :=
t−1∑
s=0

Hε(ωs,ωs+1); Rε,t :=
hε(ω0)−
hε(ωt ).

LEMMA A.1. If (2.21) holds, then for each ε > 0, setting εk := 2−kε, we have∑∞
k=0

√
εk‖hεk‖ = o((ln ε−1)−ρ), where the norm is the L2(�,Peμ)-norm.

PROOF. By definition,

‖hε‖ ≤ C +Cε
∞∑
s=2

[‖Vsg‖s−3/2(ln s)ρ]ϕε(s)(ln s)−ρ,

where ϕε(s) := s3/2(1 + ε)−s . Then,
∞∑
k=0

√
εk‖hεk‖ ≤ Cε3/2 +C

∞∑
s=2

(ln s)−ρ[‖Vsg‖s−3/2(ln s)ρ]
∞∑
k=0

ε
3/2
k ϕεk (s)

and ∞∑
k=0

ε
3/2
k ϕεk (s)≤

∞∑
k=0

(
sε

2k

)3/2

e−(sε/2k)(1−(εk/2)eεk )

≤ C
∫ ∞

0
x3/2e−x/2x−1 dx =C.

Setting != ε−1/2, it follows that
∞∑
k=0

√
εk‖hεk‖ ≤ Cε3/2 +Cε3/2!3/2

!−1∑
s=2

[‖Vsg‖s−3/2(ln s)ρ]

+C(ln!)−ρ
∞∑
s=!

[‖Vsg‖s−3/2(ln s)ρ]

≤ Cε3/4 +C(ln ε−1)−ρ
∞∑
s=!

[‖Vsg‖s−3/2(ln s)ρ]

and the result follows trivially from (2.21). �

THEOREM A.2. If (2.21) holds, then
t−1∑
s=0

g(ωs)=Mt +Rt,

where Mt is a martingale and ‖Rt‖ ≤ Ct1/2(ln t)−ρ .
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PROOF. Since, by [19], Lemma 2, {Hεk } is a Cauchy sequence in L2(P), we
set H := limk→∞Hεk . Then, by Lemma A.1, there exist Rt := limk→∞Rεk,t and∑t−1
s=0 g(ωs)=Mt+Rt , whereMt := ∑t−1

s=0H(ωs,ωs+1) is an L2-martingale. The
last estimate follows from Lemma A.1 and equation (8) of [19]. �
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