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Comment on Article by Celeux et al.

Martyn Plummer∗

The Deviance Information Criterion (DIC) for model choice was introduced by

Spiegelhalter et al. (2002) as a Bayesian analogue of the Akaike Information Criterion.

The aim of DIC is not to identify the “true” probability model, but to find a parsimo-

nious description of the data Y in terms of parameters θ. The parameters are of lower

dimension than the data, either because θ is restricted to a low-dimensional subspace,

or because it has a highly structured prior. A penalty function pD measures the “effec-

tive number of parameters” of the model, and this is added to a measure of fit – the

expected deviance – to give the DIC. Given a set of models, the one with the smallest

DIC has the best balance between goodness of fit and model complexity.

DIC has received a mixed reception, as shown by the discussion of Spiegelhalter et al.

(2002). On the one hand, it gives a pragmatic solution to the problem of model choice,

and is now routinely available in the software WinBUGS (Spiegelhalter et al. 2004).

On the other hand, a number of technical and conceptual difficulties with the criterion

remain. Celeux et al. (2006) investigate these difficulties in the context of missing data

models, and in particular mixture models. They have produced 8 variations on the

theme of DIC. Some of these variations address the problem of finding a good “plug-

in” estimate of θ, which is necessary for the calculation of the penalty pD. Others are

innovations that provide a way of calculating DIC in missing data models, which might

otherwise be intractable. I have attempted to classify these criteria according to their

level of “focus”.

1 Focus

The concept of focus is fundamental to understanding DIC, since DIC is not a global

evaluation of the model, but of a particular partition f(y|θ)f(θ). In a hierarchical model,

there may be a multitude of choices for θ, so this choice – the focus of DIC – must be

made explicit. Figure 1 shows the directed acyclic graph defined by the mixture model

considered in section 5 of Celeux et al. (2006). Any edge cut of this graph defines a

partition of the model into a “likelihood” part f(y|θ) and a “prior” part f(θ). Figure 1

shows 3 of the 11 possible cuts.

At the lowest level of focus, corresponding to cut F1, θ is empty and the likelihood

term is the predictive distribution f̂(y) = Eθ|Y (f(y|θ)). This level of focus is appropriate

if the mixture components have no physical meaning, but are just a convenient semi-

parametric way of describing the distribution f(y). At a higher level, F2, the focus is on

the mean µk, standard deviation σk , and probability pk of the mixture component k for

k = 1 . . .K. This is the focus of the “observed DICs” (DIC1 and DIC2) of Celeux et al.

(2006). DIC3 does not have an unambiguous focus, as it has elements of both F1 and
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Figure 1: Directed acyclic graph of a normal mixture model, showing different levels of

focus for the DIC

F2. It will not be considered further here.

A third level of focus, F3, uses indicator variables Zi, which identify the group

that each observation belongs to. This level of focus – which is also used by DIC7 of

Celeux et al. (2006) – emphasizes the ability of the model to accurately classify the

observed data into groups, and not just to characterize the population they were drawn

from.

2 An alternative penalty function

In the discussion of Spiegelhalter et al. (2002), I suggested an alternative definition of

pD that does not require a plug-in estimate (Plummer 2002). This is based on the

Kullback-Leibler information divergence between between the predictive distributions

at two different values of θ

I(θ(0), θ(1)) = E[Yrep|θ(0)]

{
log

(
f(Yrep | θ(0))

f(Yrep | θ(1))

)}
,

The penalty pD can be defined as the expected value of I(θ(0), θ(1)) when θ(0), θ(1) are

independent samples from the posterior distribution of θ. For linear mixed model, this

expression is identical to the pD of Spiegelhalter et al. (2002). It also generalizes easily

to other models for which pD is not easily calculated. Although this definition of pD

lacks a formal derivation, it is interesting to consider in the current context as one of

many possible generalizations of DIC for mixture models. It has some useful properties:

it is always non-negative and is independent of the coordinates of θ. It also provides an

interpretation of pD as a penalty for inconsistency. A model is penalized if it gives high

posterior probabilities to two different values of θ that give inconsistent predictions for

Y .

To my knowledge, this definition of pD has never been used in practice. I took the
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opportunity to examine its empirical behaviour. Table 1 shows results for the galaxy

data set, for the three levels of focus considered in figure 1. The DICs have been

standardized so that the DIC for the best fitting model is zero. For each model, the

default prior of Richardson and Green (1997) was used. The penalty pD was estimated

using two parallel MCMC chains.

With focus F1, the penalty term is zero for all models. Although the model with

K=7 groups is, in fact, more complex than the model with K=2, this complexity appears

in the likelihood, and is ignored by DIC, which only takes account of complexity in the

prior. Unsurprisingly, the model with the largest number of components gives the

best fit to the data, although there are clearly diminishing returns from adding extra

components.

When the focus is at level F2, the penalty pD increases quite rapidly with the number

of components. Consequently, the model with K = 3 is strongly favoured. This DIC

behaves similarly to DIC2 of Celeux et al. (2006) up to K = 5, but penalizes models

K = 6 and K = 7 more strongly.

When the focus is at level F3, the penalty pD is not monotonic in K. It drops

dramatically for K = 3, increases to a peak at K = 5 and then diminishes again

slightly. The small value of pD for K = 3 may appear surprising, but it is consistent

with the notion of pD as a penalty for inconsistent prediction. Inspection of figure 1 of

Celeux et al. (2006), which shows a histogram of the galaxy data, shows that the galaxies

can be divided by eye into three groups, a central mass and two small outlying groups:

one around 10×106m/s and the other around 32×106m/s. The three-component model

unambiguously classifies the observed galaxies into these three groups, as a result of

which the predictions for Yi given Zi are quite consistent between different draws from

the posterior distribution of Z. The decrease in DIC for K ≥ 5 is somewhat harder to

explain. In fact, the DIC for an 8-component model is smaller than the DIC for the

3-component model (data not shown). One is left with a choice between a simple model

with poor fit, and a complex model with good fit. Of course, this is exactly the choice

that DIC was designed to resolve, but the differences in this case are extreme. The

measures of fit and complexity both change by about 100, and it is not clear that they

are both commensurable over such a wide range. Although DIC7 has the same focus,

it behaves quite differently.

3 DIC with missing data

The remaining DICs considered by Celeux et al. (2006) are extensions of the original

concept of DIC. They are designed for missing data problems, in which the likelihood

f(y|θ) may not be available in closed form and hence for which DIC cannot be calculated.

Again, these can be distinguished by their level of focus: the “complete DICs” with focus

F2 and the “conditional DICs” with focus F3. I believe there is an ambiguity in the

definition of the complete DICs, due to the fact that the log likelihood log(f(y, z|θ)) is

only defined up to an arbitrary function of the data. When Y, Z are both observed, this

is not a problem, as differences between DICs are well defined, even if the absolute values
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depend on the underlying measure used to define the density f . However, when Z is

missing, this is no longer true. The difference between values of EZ|Y (log(f(y, z|θ))) for

two different models will, in general, be sensitive to the underlying measure, since the

predictive distributions f(Z|Y ) will be different. This may not be an insurmountable

problem, but is an extra complication not shared by other DICs.

The “conditional DIC”, DIC8, based on f(y|z, θ) appears particularly useful for

models that can be factorized as

f(Y |Z, θ)f(θ)f(Z|ϕ)f(ϕ)

and where the focus of interest is on θ. When Z is observed, inference on θ is independent

of ϕ. But when Z is missing, ϕ is a nuisance parameter that must be eliminated. DIC8

eliminates ϕ using a two-step procedure: first calculate what the value that DIC would

take if Z were observed, using the sub-model f(Y |Z, θ)f(θ), then calculate the expected

value of this DIC using the posterior distribution of Z.

Table 2 shows results for the galaxy data set using this approach, and the definition

of pD based on the information divergence. The mixture model factorizes, as above,

with θ = {µ, τ} and ϕ = p. The estimates were calculated by drawing 2000 samples

from the posterior distribution of Z, and then calculating DIC for each sampled value

pretending that it was observed.

The expected deviance is the same as for the standard DIC, with focus F3. Small

differences in D between table 1 and 2 are due to sampling error. The penalty term is,

however, much lower in table 2, and so this DIC apparently favours a model with more

components. However, this may not be a valid comparison. If we could, in fact, observe

Z, then we would know exactly how many components were represented in the data.

There would then be no need to compare models with different numbers of components,

as in table 2.

I would suggest that this approach to DIC should be limited to situations that satisfy

two criteria. Firstly, that Z should be observable in principle, so there is no ambiguity

over whether Z is a construct of the model or a platonic true score. Secondly, all models

under comparison should use the same sub-model f(z|ϕ)f(ϕ). Neither assumption holds

for the current example.

In summary Celeux et al. (2006) provide a useful extension of DIC for missing data

models. If used with caution, this could extend the application of DIC to situations

in which it could not, otherwise, be calculated. The diverse behaviour of different

generalizations of DIC is notable. Ultimately, there is a limit to our ability to judge

DIC by its empirical behaviour, and these difficulties underscore the lack of a solid

theoretical foundation for DIC and its derived measures. More work is required in this

direction.
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K Focus

F1 F2 {µ, σ, p} F3 {µ, σ, Z}
D pD DIC D pD DIC D pD DIC

2 442.1 0 46.2 445.8 9.2 16.5 405.5 67.5 116.2

3 412.5 0 16.6 418.0 20.5 0.0 343.0 13.8 0.0

4 403.2 0 7.3 412.2 35.2 9.0 306.1 106.7 56.0

5 398.2 0 2.3 408.4 42.4 12.4 271.9 132.2 47.3

6 396.5 0 0.6 406.9 72.6 41.0 250.8 128.1 22.1

7 395.9 0 0.0 406.4 97.5 65.4 236.9 123.8 3.9

Table 1: Results for the galaxy data set at different levels of focus: expected deviance

D, penalty pD, and DIC relative to best fitting model.

K EZ|Y (D) EZ|Y (pD) EZ|Y (DIC)

2 405.7 4.1 159.2

3 343.1 8.1 100.6

4 305.4 9.2 64.1

5 272.0 10.9 32.4

6 251.1 12.5 13.1

7 236.4 14.1 0.0

Table 2: Expected DIC for the galaxy data set if Z were observed, with focus F3(µ, σ, Z).
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