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ON MULTIDIMENSIONAL BRANCHING RANDOM WALKS IN
RANDOM ENVIRONMENT

BY FRANCIS COMETS 1 AND SERGUEI POPOV 2

Université Paris 7 and Universidade de São Paulo

We study branching random walks in random i.i.d. environment in
Zd , d ≥ 1. For this model, the population size cannot decrease, and a nat-
ural definition of recurrence is introduced. We prove a dichotomy for recur-
rence/transience, depending only on the support of the environmental law. We
give sufficient conditions for recurrence and for transience. In the recurrent
case, we study the asymptotics of the tail of the distribution of the hitting
times and prove a shape theorem for the set of lattice sites which are visited
up to a large time.

1. Introduction and results. Branching random walks in random environ-
ment provide microscopic models for reaction–diffusion–convection phenomena
in a space-inhomogeneous medium. On the other hand, much progress has been
achieved in the last decade in the understanding of random walks in random en-
vironment on Zd , which is reviewed in Zeitouni’s lecture notes [32]. It is natural
to investigate such branching walks, and to relate the results to the nonbranching
case. In this paper we continue the line of research of Comets, Menshikov and
Popov [6] and Machado and Popov [20, 21]: each particle gives birth to at least
one descendant, according to branching and jump probabilities which depend on
the location, and are given by an independent identically distributed random field
(environment). We stress here that the branching and the transition mechanisms
are not supposed to be independent, and moreover, differently from [6, 20, 21],
we do not suppose that the immediate offspring of a particle jump independently.
We assume that the jumps are finite range. For an appropriate notion of recur-
rence and transience we prove that either the branching random walk is recurrent
for almost every environment or the branching random walk is transient for al-
most every environment. In addition, we show that details of the distribution of
the environment do not matter, but only its support. Although we could not give
a complete (explicit) classification in the spirit of [6, 20, 21], this is quite inter-
esting in view of the difficulty of the corresponding question for random walks
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in random environment. For nonreversible random walks (without branching) in
random environment, very little is known on recurrence/transience. In the case
of balanced environment (i.e., when the jump distribution is symmetric), Lawler
proved an invariance principle [17], and the walk is recurrent for d ≤ 2 and tran-
sient for d ≥ 3 (Theorem 3.3.22 in [32]). For general random walks in random
environment Sznitman gave sufficient conditions for the random walk to be ballis-
tic (and, consequently, transient) in [27, 28]. These conditions, though, normally
are not easily verifiable. On the other hand, for the model of the present paper, we
give explicit (and easily verifiable) conditions for recurrence and transience, that,
while failing to produce a complete classification, nevertheless work well in many
concrete examples.

Also, we give a shape theorem for the set of visited sites in the recurrent case. In
terms of random walks in random environment, this case corresponds to nestling
walks (i.e., the random drift can point in all directions) as well as to nonnestling
ones with strong enough branching, and the result is once again interesting in view
of the (corresponding) law of large numbers for random walks [29, 34], which, so
far, could allow the speed to be random in dimension d ≥ 3 due to the lack of 0–1
law.

Some interesting problems, closely related to shape theorems, arise when study-
ing properties of tails of the distributions of first hitting times. Here we show that
branching random walks in random environment exhibit very different behaviors
in dimensions d = 1 and d ≥ 2 from the point of view of hitting time distribution:
in the recurrent case, the annealed expectation of hitting times is always finite in
d ≥ 2, but it is not the case for the one-dimensional model. Hitting times for ran-
dom walks without branching in random environment have motivated a number
of papers. Tails of hitting times distributions have a variety of different behaviors
for random walks in random environment in dimension d = 1; they have been ex-
tensively studied, both under the annealed law [7, 24] and the quenched law [13,
23]. Also, in higher dimensions, Sznitman obtains estimates for hitting times of
hyperplanes [25, 26].

Many other interesting topics are left untouched in this paper. They include
shape theorems for the transient case, questions related to the (global and local)
size of the population, hydrodynamical equations, models with continuous space
and time (where branching random walk is substituted by a branching Brownian
motion and the random environment is defined appropriately), models with un-
bounded jumps, and so on. Also, it is a challenging problem to find the right order
of decay for the tails of hitting times in dimension d ≥ 2, in the recurrent case. Fi-
nally, since in our model each particle has at least one descendant, we do not deal
at all with extinction, which seems to be a difficult issue in random environment.

An important ingredient in our paper is the notion of seeds, that is, local config-
urations of the environment. Some seeds can create an infinite number of particles
without help from outside, potentially enforcing recurrence. So, as opposed to ran-
dom walks without branching, the model of the present paper is in some sense



70 F. COMETS AND S. POPOV

more sensitive to the local changes in the environment. Together with the fact that
more particles means more averaging, this explains why the analysis is apparently
easier for the random walks with the presence of branching.

We briefly discuss different, but related, models. A multidimensional (d ≥ 3)
branching random walk for which the transition probabilities are those of the sim-
ple random walk, and the particles can branch only in some special sites (randomly
placed, with a decreasing density) was considered by den Hollander, Menshikov
and Popov [15], and several sufficient conditions for recurrence and transience
were obtained (we mention also Volkov [31]). Dimension d = 1 leads to more ex-
plicit results, thanks to the order structure (see, e.g., [6]). In the case d = 1 with
nearest-neighbor jumps, particles have to visit all intermediate locations, and, for a
location-independent jump law, Greven and den Hollander [14] and Baillon, Clé-
ment, Greven and den Hollander [3] could prove some useful variational formulas.
As can be seen in [21], the case where particles move on the tree has a flavor
similar to d = 1. The case of inhomogeneous jumps with constant branching rate
can be formulated as a tree-indexed random walk. In this case, a complete classi-
fication of recurrence/transience is obtained by Gantert and Müller [12], involving
the branching rate and the spectral radius of the transition operator. For a constant
branching rate and a random jump law on Z biased to the left, positivity of the
velocity of the rightmost particle is studied by Devulder [8]. The occurrence of
shape theorems in the branching random walk literature goes back at least to [4].

This paper is organized as follows. In the next section we define the model
formally and the appropriate notions of transience and recurrence, together with
their basic properties: recurrence/transience do not depend on the starting point
and hold either for almost all or for almost no environments. In Section 1.2 we
state the result that recurrence/transience only depend on the support of the envi-
ronmental law, and we present sufficient conditions for recurrence and transience.
In Section 1.3 we discuss two closely related topics: hitting times and the asymp-
totic behavior of the set of the sites visited up to a given time, in the recurrent case.
Then, in Sections 2.1 and 2.2 we introduce two important objects which will be
intensively used in the proofs of our results: induced random walks (obtained by
“eliminating” the branching from the model in some reasonable way) and seeds
(these are just local configurations of the environment). In Section 2.3 we simul-
taneously construct processes starting from all possible initial positions (that will
be needed for the proof of the shape theorem). In Section 3 we prove the results
related to recurrence/transience, and in Sections 4 and 5 we deal with those on
hitting times and asymptotic shape correspondingly.

1.1. Formal definitions and some basic properties of the model. We now de-
scribe the model. Fix a finite set A ⊂ Zd such that ±ei ∈ A for all i = 1, . . . , d ,
where ei ’s are the coordinate vectors of Zd . Define (with Z+ = {0,1,2, . . .})

V =
{
v = (vx, x ∈ A) :vx ∈ Z+,

∑
x∈A

vx ≥ 1

}
,
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and for v ∈ V put |v| = ∑
x∈A vx ; note that |v| ≥ 1 for all v ∈ V . Furthermore,

define M to be the set of all probability measures ω on V:

M =
{
ω = (

ω(v), v ∈ V
)

:ω(v) ≥ 0 for all v ∈ V,
∑
v∈V

ω(v) = 1

}
.

Finally, let Q be a probability measure on M. Now, for each x ∈ Zd we choose
a random element ωx ∈ M according to the measure Q, independently. The col-
lection ω = (ωx, x ∈ Zd) is called the environment. Given the environment ω, the
evolution of the process is described in the following way: start with one particle
at some fixed site of Zd . At each integer time the particles branch independently
using the following mechanism: for a particle at site x ∈ Zd , a random element
v = (vy, y ∈ A) is chosen with probability ωx(v), and then the particle is substi-
tuted by vy particles in x + y for all y ∈ A.

Note that this notion of branching random walk is more general than that of [6,
20, 21], since here we do not suppose that the immediate descendants of a particle
jump independently (e.g., we allow situations similar to the following one [d = 1]:
when a particle in x generates three offspring, then with probability 1 two of them
go to the right and the third one goes to the left).

We denote by P,E the probability and expectation with respect to ω (in fact,
since the environment is i.i.d., P = ⊗

x∈Zd Qx , where Qx are copies of Q), and
by Px

ω,Ex
ω the (so-called “quenched”) probability and expectation for the process

starting from x in the fixed environment ω. We use the notation Px[·] = EPx
ω[·] for

the annealed law of the branching random walk in random environment, and Ex for
the corresponding expectation. Also, sometimes we use the symbols Pω,Eω,P,E
without the corresponding superscripts when it can create no confusion (e.g., when
the starting point of the process is indicated elsewhere).

Throughout this paper, and without recalling it explicitly, we suppose that the
two conditions below are fulfilled:

CONDITION B.

Q{ω : there exists v ∈ V such that ω(v) > 0 and |v| ≥ 2} > 0.

CONDITION E.

Q

{
ω :

∑
v:ve≥1

ω(v) > 0 for any e ∈ {±e1, . . . ,±ed}
}

= 1.

Condition B ensures that the model cannot be reduced to random walk without
branching, and Condition E is a natural ellipticity condition which ensures that the
walk is really d-dimensional. In this paper, “elliptic” will mean “strictly elliptic.”
We will sometimes use the stronger uniform ellipticity condition:
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CONDITION UE. For some ε0 > 0,

Q

{
ω :

∑
v:ve≥1

ω(v) ≥ ε0 for any e ∈ {±e1, . . . ,±ed}
}

= 1.

Due to Condition B, for almost all environments the population size tends to
infinity, as can be seen from Lemma 2.3 below. This shows that the branching
random walk is always transient as a process on ZZd

+ . So, we introduce more ap-
propriate notions of recurrence and transience.

DEFINITION 1.1. For the particular realization of the random environment ω,
the branching random walk is called recurrent if

P0
ω[the origin is visited infinitely often] = 1.

Otherwise, the branching random walk is called transient.

By the Markov property, the recurrence is equivalent to

P0
ω[the origin is visited at least once] = 1.

In principle, the above definition could depend on the starting point of the process
and on the environment ω. However, a natural dichotomy takes place:

PROPOSITION 1.2. We have either:

(i) For P-almost all ω, the branching random walk is recurrent, in which case
Px

ω[the origin is visited infinitely often] = 1 for all x ∈ Zd , or:
(ii) For P-almost all ω, the branching random walk is transient, in which case

Px
ω[the origin is visited infinitely often] < 1 for all x ∈ Zd .

The next proposition refines item (ii) of Proposition 1.2:

PROPOSITION 1.3. Let us assume that the branching random walk is tran-
sient. Then for P-almost all ω we have Px

ω[the origin is visited infinitely often] = 0
for all x ∈ Zd .

It is plain to construct (see, e.g., the example after the proof of Theorem 4.3
in [6]) environments ω such that Px

ω[0 is visited infinitely often] is strictly between
0 and 1. The next example shows that randomness of the environment is essential
for our statements (and also shows, incidentally, that there is no hope to prove
Proposition 1.3 by arguments of the type “recurrence should not be sensitive to
changes of the environment in finite regions”).

EXAMPLE 1. Let d = 1, A = {−1,1}, and consider two measures ω(1),ω(2):
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(i) under ω(1), with probability 2/3 there is only one child which is located
one step to the left and with probability 1/3 there is only one child which is located
one step to the right;

(ii) under ω(2), with probability 1/3 there is only one child which is located
one step to the right and with probability 2/3 there are two children one being
located to the right and the other to the left.

If all sites x < 0 have the environment ω(1) (we say they are of type 1) and all
sites x ≥ 0 are of type 2, we have Px

ω[0 is visited infinitely often] is 1 for x ≥ 0 and
is less than 1 for x < 0. Changing the site x = 0 from type 2 to type 1 turns the
branching random walk from recurrent to transient. This example also shows that,
in general, the recurrence does depend on the environment locally. Moreover, it
shows that P0

ω[the origin is visited infinitely often] may be different from 0 and 1.
We will see below that selecting randomly the environment in an i.i.d. fashion
makes this branching random walk recurrent (for this particular example it follows,
e.g., from Theorem 1.5).

Now, we begin stating the main results of this paper. As mentioned before, in
Section 1.2 we formulate further results concerning transience and recurrence of
the process, and in Section 1.3 we deal with questions related to (quenched and
annealed) distributions of hitting times and shape theorems.

1.2. Transience and recurrence. It is worth keeping in mind a particular ex-
ample to illustrate our results.

EXAMPLE 2. With d = 2 and A = {±e1,±e2}, consider the following v’s:
v(1) = δe1 (with δ the Kronecker symbol), v(2) = δe2 , v(3) = δ−e1 , v(4) = δ−e2 ,
v(5) = δe1 + 2δe2 + δ−e1 + δ−e2 , and the following ω(0),ω(+),ω(−) defined by
(0 < a < 1):

ω(0)(v(1)) = 3
8 , ω(0)(v(2)) = 1

4 , ω(0)(v(3)) = 1
8 , ω(0)(v(4)) = 1

4 ,

ω(+)(v(1)) = a, ω(+)(v(5)) = 1 − a,

ω(−)(v(3)) = 1
8 , ω(−)(v(5)) = 7

8 ;
see Figure 1. Note that Conditions B and UE are satisfied.

It seems clear that the branching random walk with Q = Q1 such that
Q1(ω

(0)) = α = 1 − Q1(ω
(−)) is recurrent at least for small α. In fact, it is re-

current for all α ∈ (0,1). It seems also clear that branching random walk with
Q = Q2 such that Q2(ω

(0)) = α = 1 − Q2(ω
(+)) may be recurrent or transient

depending on a. The following can be obtained using Theorems 1.5 and 1.6 from
this section: if a ≤ 1/2, then the process is recurrent [since the condition (3) is
fulfilled], and if a ≥ 8/9, then the process is transient [to verify (6), use s = e1 and
λ = 1/3]. But it is not so clear that the behavior does not depend on α provided
that 0 < α < 1; nevertheless, from Theorem 1.4 we shall see that this is the case.
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FIG. 1. The random environment in Example 2.

Our first result states that transience/recurrence of the process only depend on
the support of the measure Q, that is, the smallest closed subset F ⊂ M such that
Q(F) = 1. We recall that ω belongs to the support if and only if Q(N ) > 0 for all
neighborhood N of ω in M.

THEOREM 1.4. Suppose that the branching random walk is recurrent (resp.,
transient) for almost all realizations of the random environment from the distribu-
tion Q. Then for any measure Q′ with suppQ ⊆ suppQ′ (resp., suppQ′ ⊆ suppQ)
the process is recurrent (resp., transient) for almost all realizations of the random
environment from the distribution Q′. (We recall that we assume that Q′ satisfies
Condition E.)

The fact that recurrence and transience only depend on the support of the mea-
sure Q is not a complete surprise for this kind of model. Besides [6, 20, 21], we
can mention also [10]: there in Theorem 3 it is shown that, for the branching dif-
fusion, the intensity of “mild” Poissonian obstacles plays no role for exponential
growth and local extinction.

Unlike the corresponding results of [6, 20, 21], here we did not succeed in writ-
ing down an explicit criterion for recurrence/transience. However, sufficient con-
ditions for recurrence or transience can be obtained (they are formulated in terms
of the support of Q, as they should be). To this end, for any v ∈ V and any vector
r ∈ Rd , define (see Figure 2)

D(r, v) = max
x∈A : vx≥1

r · x,(1)

where a · b is the scalar product of a, b ∈ Rd . Let also ‖ · ‖ be the Euclidean norm
and Sd−1 = {a ∈ Rd :‖a‖ = 1} be the unit sphere in Rd .

THEOREM 1.5. If

sup
ω∈suppQ

∑
v∈V

ω(v)D(r, v) > 0(2)
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FIG. 2. The set {supω∈suppQ{∑v ω(v)D(r, v)}r; r ∈ Sd−1} for the branching random walk (the
one defined by Q2, with a < 1/2) from Example 2 is the solid line; note that (2) [resp., (3)] means
that the origin should be strictly inside (resp., outside) this set.

for all r ∈ Sd−1, then the branching random walk is recurrent. Moreover, if

sup
ω∈suppQ

∑
v∈V

ω(v)D(r, v) ≥ 0(3)

for all r ∈ Sd−1 and Condition UE holds, then the branching random walk is re-
current.

Note that (3) cannot guarantee the recurrence without Condition UE. To see
this, consider the following:

EXAMPLE 3. Let d = 1, and Q puts positive weights on ω(n), n > 5, where
ω(n) is described in the following way. A particle is substituted by in mean n

n−1
offspring (for definiteness, let us say that it is substituted by two offspring with
probability 1

n−1 and by one offspring with probability n−2
n−1 ); each one of the off-

spring goes to the left with probability 1/n, to the right with probability 4/n, and
stays on its place with probability 1 − 5

n
, independently. In this case (3) holds, but

we do not have Condition UE. Applying Theorem 1.6 below (use λ = 1/2), one
can see that this branching random walk is transient.

REMARK. (i) Two rather trivial sufficient conditions for recurrence are: there
is ω ∈ suppQ such that ∑

v∈V

ω(v)|v| = +∞,(4)

or such that ∑
v∈V

ω(v)v0 > 1.(5)

The proof is given after the proof of Proposition 1.3.
(ii) A particular case of the model considered here is the usual construction of

the branching random walk, for example, [6, 20, 21]: in each x, specify the tran-
sition probabilities P̂

(x)
y , y ∈ A, and branching probabilities r̂

(x)
i , i = 1,2,3, . . . .
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A particle in x is first substituted by i particles with probability r̂
(x)
i , then each

of the offspring jumps independently to x + y with probability P̂
(x)
y . The pairs

((r̂
(x)
i )i≥1, (P̂

(x)
y )y∈A) are chosen according to some i.i.d. field on Zd . In our nota-

tions, ωx is a mixture of multinomial distributions on A:

ωx(v) = ∑
i≥1

r̂
(x)
i Mult

(
i; P̂ (x)

y , y ∈ A
)
.

Note that, in this case, D defined in (1) is trivially related to the local drift of
the walk by ∑

v∈V

ωx(v)D(r, v) ≥ r · ∑
y∈A

yP̂ (x)
y .

The family of transition probabilities P̂
(x)
y , y ∈ A, defines a random walk in i.i.d.

random environment on Zd . The following definitions are essential in the theory
of such walks [32, 33]; they are formulated here in the spirit of (1). With Q̂ the
common law of (P̂

(x)
y )y∈A, the random walk is

• nestling, if for all r ∈ Sd−1,

sup
ω∈supp Q̂

r · ∑
y∈A

yP̂y > 0;

• nonnestling, if there exists r ∈ Sd−1 such that

sup
ω∈supp Q̂

r · ∑
y∈A

yP̂y < 0;

• marginally nestling, if

min
r∈Sd−1

sup
ω∈supp Q̂

r · ∑
y∈A

yP̂y = 0.

Suppose now that the random walk in random environment is nestling (or, either
nestling or marginally nestling with Condition UE). Then, under Condition B, The-
orem 1.5 implies that the branching random walk is recurrent, regardless of the
amount of branching that is present in the model and even though the effective drift
of the random walk can be arbitrarily large. This extends the observation made in
this case in dimension d = 1, Example 1 in Section 4 of [6], to arbitrary dimension
and more general branching random walks. The heuristic scenario to produce such
effects remains the same: due to the nestling assumption, the medium develops
atypical configurations which trap the particles at some distance from the origin;
there, the branching generates an exponential number of particles, which will bal-
ance the small probability for returning to the origin. Indeed, the quenched large
deviations rate function vanishes at 0 in the nestling case; see [30, 33].
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Now, we turn our attention to the conditions for transience. Define for ω ∈ M,
y ∈ A,

µω
y = ∑

v∈V

vyω(v),

that is, µω
y is the mean number of particles sent from x to x + y when the environ-

ment at x is ω. Consider the following:

CONDITION L. There exist s ∈ Sd−1, λ > 0 such that for all ω ∈ suppQ we
have ∑

y∈A

µω
y λy·s ≤ 1.(6)

We note that, by continuity, Condition L is satisfied if and only if (6) holds for
Q-a.e. ω.

THEOREM 1.6. Condition L is sufficient for the transience of the branch-
ing random walk in random environment. Moreover, for P-a.e. ω, with positive
Px

ω-probability the branching random walk will not visit the half-space {y ∈ Zd :
y · s0 ≤ 0}—provided that its starting point x is outside that half-space, where

s0 =
{

s, if λ < 1,
−s, if λ > 1.

(As we will see below, Condition L cannot be satisfied with λ = 1.) Furthermore,
the number of visits of the branching random walk to the half-space is a.s. finite.

In [6, 20, 21] it was shown that, if the descendants can jump only to nearest
neighbors, conditions analogous to Condition L are sufficient and necessary for
transience in cases when the branching random walk in random environment lives
on the one-dimensional lattice or on a tree. In particular, by repeating the argument
of [6], it is not difficult to prove that for the present model in dimension 1 in the
nearest-neighbor case, Condition L is necessary and sufficient for transience. More
precisely, for this one needs, first, to prove the modified versions of Theorems
2.1 and 2.2 of [6] (with the suitable modifications in formulas (2.1) and (2.2) of [6];
note that, in the notation of [6], r(x)Pxy is the mean offspring sent from x to y),
and generalize the proof of Theorem 4.1 (one should modify the definition of hξ (λ)

in the beginning of Section 4 of [6]; the rest of the proof can be left practically
intact). On d-dimensional lattice (d ≥ 2) or even in dimension 1 when larger jumps
are possible, the question whether Condition L is necessary for transience remains
open.
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1.3. Hitting times and asymptotic shape in the recurrent case. For the process
starting from one particle at x, let us denote by ηx

n(y) the number of particles in y

at time n, and by Bx
n the set of all sites visited by the process before time n. Also,

denote by T (x, y) the moment of hitting y 	= x. For the formal definition of those
quantities, see Section 2.3, although here we do not need to construct simultane-
ously all the branching random walks from all the possible starting points x.

First, we are going to take a closer look at the hitting times T (0, x) for recurrent
branching random walks. It is immediate to note that the recurrence is equivalent
to P[T (0, x) < ∞ for all x] = 1. So, for the recurrent case it is natural to ask how
fast the recurrence occurs, that is, how fast (quenched and annealed) tails of the
distribution of T (0, x) decrease. For the (quenched) asymptotics of Pω[T (0,1) >

n] in dimension 1, we have the following result:

PROPOSITION 1.7. Suppose that d = 1 and the branching random walk in
random environment is recurrent. Then, for P-almost all environments there exist
n∗ = n∗(ω) and κ > 0 such that

Pω[T (0,1) > n] ≤ e−nκ

(7)

for all n ≥ n∗.

This result follows from a more general fact that will be proved in the course of
the proof of Theorem 1.10, case d = 1 [see the remark just below formula (56)].
Moreover, the following example shows that, for the class of recurrent one-
dimensional branching random walks in random environment, the right order of
decay of Pω[T (0,1) > n] is indeed stretched exponential.

EXAMPLE 4. We consider d = 1, A = {−1,1}, and suppose that Q gives
weights 1/3 to the points ω(1),ω(2),ω(3), which are described as follows. Fix a
positive p < 1/82; there is no branching in ω(1),ω(2), and ω(1) (resp., ω(2)), sends
the particle to the left (resp., to the right) with probability p and to the right (resp.,
to the left) with probability 1 − p. In the sites with ω(3), the particle is substituted
by one (resp., two) offspring with probability 2p (resp., 1 − 2p); those then jump
independently to the right or to the left with equal probabilities. By Theorem 1.5,
this branching random walk is recurrent.

Denote a = ln 1−p
p

and 	 the number of integers in the interval (0, a−1 lnn],
and observe that

P
[
ω−x = ω(1),ωx = ω(2) for x ∈ (0, a−1 lnn],ω0 = ω(1)]

=
(

1

3

)1+2	

≥ 3−1−2a−1 lnn

= n−2a−1 ln 3

3
.
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Clearly, p < 1/82 implies that 2a−1 ln 3 < 1/2. This means that a typical en-
vironment ω will contain a translation of the trap considered above in the box
[−n1/2,0], that is, there is an interval [b−a−1 lnn,b+a−1 lnn] ⊂ [−n1/2,0] such
that ωx = ω(1) for x ∈ [b−a−1 lnn,b] and ωx = ω(2) for x ∈ (b, b+a−1 lnn]. For
such an environment, first, the initial particle goes straight to the trap (without cre-
ating any further particles on its way) with probability at least pn1/2

, and then stays
there with a probability bounded away from 0 (note that the depth of the trap is lnn,
and this is enough to keep the particle there until time n with a good probability).
This shows that Pω[T (0,1) > n] ≥ Ce−n1/2 lnp−1

.

One can construct other one-dimensional examples of this type; the important
features are:

(i) there are ω’s from suppQ without branching and with drifts pointing to
both directions, so that traps are present;

(ii) all ω’s from suppQ have the following property: with a positive probability
the particle does not branch, that is, it is substituted by only one offspring; this
permits a particle to cross a region without necessarily creating new ones.

In dimensions d ≥ 2, finding the right order of decay of Pω[T (0,1) > n] is, in
our opinion, a challenging problem. For now, we can only conjecture that it should
be exponential (observe that the direct attempt to generalize the above example
to d ≥ 2 fails, since creating a trap with a logarithmic depth has higher cost).
As a general fact, the annealed bound of Theorem 1.8 below is, up to a constant
factor, also a quenched one by Markov inequality. This is the only rigorous result
concerning the quenched asymptotics of Pω[T (0,1) > n] we can state in the case
d ≥ 2; we believe, however, that it is far from being precise.

Now, we turn our attention to the annealed distribution of hitting times.

THEOREM 1.8. Let d ≥ 1 and assume that the branching random walk in
random environment is recurrent. For any x0 ∈ Zd there exists θ = θ(x0,Q) such
that

P[T (0, x0) > n] ≤ exp{−θ lnd n}(8)

for all n sufficiently large.

Define G ⊂ M to be the set of ω’s without branching, that is,

G =
{
ω ∈ M :

∑
v∈V : |v|=1

ω(v) = 1

}
.

In other words, if at a given x the environment belongs to G, then the particles in x

only jump, without creating new particles. Also, for any ω ∈ G, define the drift

�ω = ∑
x∈A

xω(δx).
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The following result shows that Theorem 1.8 gives in some sense the best possible
bounds for the tail of the hitting time distribution that are valid for the class of
recurrent branching random walk in random environment.

THEOREM 1.9. Suppose that Q(G) > 0 and that the origin belongs to the
interior of the convex hull of {�ω :ω ∈ G ∩ suppQ}. Then for any x0 ∈ Zd there
exists θ ′ = θ ′(x0,Q) such that

P[T (0, x0) > n] ≥ exp{−θ ′ lnd n}(9)

for all n sufficiently large.

From Theorems 1.8 and 1.9 there is only a small distance to the following re-
markable fact: the implication(

P[T (0, x) < ∞ for all x] = 1
) �⇒ (

ET (0, x) < ∞ for all x
)

is true for d ≥ 2 but is false for d = 1. To see this, it is enough to know that the
constant θ ′ in (9) can be less than 1 in dimension one. Consider the following
example:

EXAMPLE 5. Once again, we suppose that A = {−1,1} and suppQ consists
of three points ω(1),ω(2),ω(3), with Q(ω(1)) = α1, Q(ω(2)) = α2, Q(ω(3)) = 1 −
α1 −α2. We keep the same ω(1),ω(2) from Example 4, and let ω(3)(δ1 +δ−1) = 1. It
is immediate to obtain from, for example, Theorem 1.5 that this branching random
walk in random environment is recurrent. Abbreviate a = ln 1−p

p
and let

H = {
ωx = ω(1) for x ∈ [−2a−1 lnn,−a−1 lnn],

ωx = ω(2) for x ∈ (−a−1 lnn,0]};
then P[H ] = (α1α2)

a−1 lnn. Now, on H there is a trap of depth lnn just to the left
of the origin, so for such environments the quenched expectation of T (0,1) over
all paths which visit the site (−a−1 lnn) before the site 1 is at least Cn. Indeed,
with a probability bounded away from 0, the initial particle goes straight to the
trap and spends time n there. Therefore, we have

ET (0,1) ≥
∫
H
EωT (0,1) dP ≥ CnP[H ] = Cn1−a−1 ln(α1α2)

−1 → ∞

when a−1 ln(α1α2)
−1 < 1 [or equivalently, p < (1+ (α1α2)

−1)−1]. Here we could
use also the same branching random walk of Example 4 (with p < 1/10); note,
however, that in the present example we could allow sites where particles always
branch.
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Now, we pass to a subject closely related to hitting times, namely, we will study
the set of the sites visited by time n (together with some related questions). Recall
that

Bx
n = {y ∈ Zd : there exists m ≤ n such that ηx

m(y) ≥ 1}.
Also, we define B̄x

n as the set of sites that contain at least one particle at time n,
and B̃x

n as the set of sites that contain at least one particle at time n and will always
do in future:

B̄x
n = {y ∈ Zd :ηx

n(y) ≥ 1},
B̃x

n = {y ∈ Zd :ηx
m(y) ≥ 1 for all m ≥ n}.

Evidently, B̃x
n ⊂ B̄x

n ⊂ Bx
n for all x and n.

When dealing with the shape results for B̃x
n and B̄x

n , we will need the following
“aperiodicity” condition, where we use the standard notation ‖x‖1 = |x(1)|+ · · ·+
|x(d)| for x = (x(1), . . . , x(d)) ∈ Zd :

CONDITION A. There exist x ∈ A, v ∈ V with ‖x‖1 even and vx ≥ 1 such that
Q{ω ∈ M :ω(v) > 0} > 0.

We refer to Condition A as the “aperiodicity condition” because, without it, the
process starting from the origin would live on even sites at even times, and on odd
sites at odd times.

For any set M ⊂ Zd we define the set F(M) by “filling the spaces” between the
points of M :

F(M) = {y + (−1/2,1/2]d :y ∈ M} ⊂ Rd .

We only deal with the recurrent case here, leaving the more delicate, transient
case for further research. In the recurrent case (at least when d ≥ 2) we are able to
use the above Theorem 1.8 to control the hitting times (in particular, for proving
shape theorems, it is generally important to show that the expected hitting time is
finite for any site, and Theorem 1.8 takes care of that in the case d ≥ 2).

THEOREM 1.10. Suppose that the branching random walk in random envi-
ronment is recurrent and Condition UE holds.

Then there exists a deterministic compact convex set B ⊂ Rd with 0 belonging
to the interior of B , such that P-a.s. (i.e., for P-almost all ω and Pω-a.s.), we have
for any 0 < ε < 1

(1 − ε)B ⊂ F(B0
n)

n
⊂ (1 + ε)B

for all n large enough.
If, in addition, Condition A holds, then the same result—with the same limiting

shape B—holds for B̄0
n and B̃0

n .
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It is straightforward to note that B is a subset of the convex hull of A (time being
discrete, one can show by induction that B0

n belongs to the convex hull of nA); also,

since Bx
n

law= B0
n + x, the same result holds for the process starting from x, for any

x ∈ Zd . However, as it often happens with shape results, in general it is not easy to
obtain more information about the limiting shape. Let us mention that, as opposed
to the results of the previous section, the limiting shape B does not only depend
on the support of Q; see the example below:

EXAMPLE 6. Let d = 1 and A = {−2,−1,0,1,2}. Put v(1) = δ−1 + δ0 + δ1,
v(2) = δ−2+δ−1+δ0+δ1+δ2, ω1 = δv(1) , ω2 = δv(2) and Q(ω1) = 1−Q(ω2) = α.
Then, it is quite elementary to obtain that B = [−(2 − α),2 − α], that is, the as-
ymptotic shape depends on Q itself, and not only on the support of Q.

Another interesting point about Theorem 1.10 is that the shape B is convex, but
one finds easily examples—as the one below—where it is not strictly convex.

EXAMPLE 7. With d = 2 and A = {±e1,±e2}, consider v(1) = δe1 + δe2 ,
v(2) = δe1 +δe2 +δ−e1 , v(3) = δe1 +δe2 +δ−e2 , and the following ω(1),ω(2) defined
by

ω(1)(v(1)) = ω(2)(v(1)) = ω(1)(v(2)) = ω(2)(v(3)) = 2
5 ,

ω(1)(v(3)) = ω(2)(v(2)) = 1
5 ;

see Figure 3. Then, with Q(ω(1)) = 1 − Q(ω(2)) = α [with α ∈ (0,1)], the
branching random walk is recurrent by Theorem 1.5. For arbitrary α ∈ (0,1),
B0

n ∩ Z2+ = {(x1, x2) :x1, x2 ∈ Z+, x1 + x2 ≤ n}, and so

B ∩ R2+ = {(x1, x2) :x1, x2 ≥ 0, x1 + x2 ≤ 1},
and B has a flat edge.

FIG. 3. The random environment in Example 7.
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2. Some definitions and preliminary facts. First, let us introduce some more
basic notation: for x = (x(1), . . . , x(d)) ∈ Zd write

‖x‖∞ = max
i=1,...,d

∣∣x(i)
∣∣.

Define L0 to be the maximal jump length, that is,

L0 = max
x∈A

‖x‖∞,

and let Kn be the d-dimensional cube with side of length 2n + 1:

Kn = [−n,n]d = {x ∈ Zd :‖x‖∞ ≤ n}.
For ω ∈ M and V ⊂ V , sometimes we will use notation like ω(v ∈ V ) or even

ω(V ) for
∑

v∈V ω(v).

2.1. Induced random walks. It is most natural to connect the branching ran-
dom walk in random environment with random walks in random environment.
Defining

Ṽ = {
(v, κ) :v ∈ V, κ probability measure on {y :v(y) ≥ 1}},

we consider some probability measure Q̃ on Ṽ with marginal Q on V . An i.i.d. se-
quence ω̃ = ((ωx, κx), x ∈ Zd) with distribution Q̃ defines our branching random
walk as above, coupled with a random walk in random (i.i.d.) environment with
transition probability

px(y) = ∑
v∈V

ωx(v)κx(y)

from x to x + y. In words, we pick randomly one of the children in the branching
random walk. We call this walk the Q̃-induced random walk in random environ-
ment. Here are some natural choices (in the examples below κ does not depend
on ω):

(i) uniform: κ is uniform on the locations {x ∈ A :vx ≥ 1};
(ii) particle-uniform: κ(y) is proportional to the number of particles sent by v

to y;
(iii) r-extremal, r ∈ Sd−1: κ is supported on the set of x’s maximizing r ·x with

x ∈ A, vx ≥ 1.

The following proposition is a direct consequence of Theorem 1.5:

PROPOSITION 2.1. If the branching random walk in random environment
is transient, then any induced random walk is either nonnestling or marginally
nestling. Moreover, if Condition UE holds, then any induced random walk is
nonnestling.
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Note, however, that one can easily construct examples of recurrent branching
random walks such that any induced random walk is nonnestling, that is, the con-
verse for Proposition 2.1 does not hold. For completeness we give the following:

EXAMPLE 8. Let d = 1 and Q = δω, where ω sends one particle to the left
with probability 1/3, and five particles to the right with probability 2/3. Then,
clearly, any induced random walk is nonnestling. To see that this branching ran-
dom walk is recurrent it is enough to obtain by a simple computation that a mean
number of grandchildren that a particle sends to the same site in two steps is
strictly greater than 1 (indeed, conditioning on the first step, we see that it is
1
3 · 10

3 + 2
3 · 5 · 1

3 = 20
9 ).

See also Example 2 of [6].

2.2. Seeds. In the next definition we introduce the notion of (U,H)-seed,
which will be frequently used throughout the paper.

DEFINITION 2.2. Fix a finite set U ⊂ Zd containing 0, and Hx ⊂ M with
Q(Hx) > 0 for all x ∈ U . With H = (Hx, x ∈ U), the couple (U,H) is called a
seed. We say that ω has a (U,H)-seed at z ∈ Zd if

ωz+x ∈ Hx for all x ∈ U,

and that ω has a (U,H)-seed in the case z = 0. We call z the center of the seed.

LEMMA 2.3. With probability 1 the branching random walk visits infinitely
many distinct (U,H)-seeds (to visit the seed means to visit the site where the seed
is centered).

PROOF. By the ellipticity Condition E, the uniform induced random walk is
elliptic, so for every environment it cannot stay forever in a finite subset. Take n

such that U ⊂ Kn, and partition the lattice Zd into translates of Kn. Since the
environment is i.i.d., we can construct the induced random walk by choosing ran-
domly the environment in a translate of Kn at the first moment when the walk
enters this set. If Q(Hx) > 0 for all x ∈ U , then by the Borel–Cantelli lemma, infi-
nitely many of those translates contain the desired seed, and by using Condition E,
it is elementary to show that infinitely many seed centers will be visited. �

As we will see, the notion of seed becomes powerful when combined with in-
dependence of the medium. Hence we give two more definitions.

DEFINITION 2.4. For a particular realization of the random environment ω,
we define the branching random walk restricted on set M ⊂ Zd simply by dis-
carding all particles that step outside M , and write Pω|M,Eω|M for corresponding
probability and expectation.
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DEFINITION 2.5. Let U,W be two finite subsets of Zd with 0 ∈ W ⊂ U .
Let p be a probability distribution on Z+ with mean larger than 1, that is,
p = (p0,p1,p2, . . .) with pi ≥ 0,

∑
pi = 1,

∑
ipi > 1. A (U,H)-seed is called

(p,W)-recurrent if for any ω such that ωx ∈ Hx,x ∈ U , we have

Py
ω|U [W will be visited by at least i “free” particles] ≥

∞∑
j=i

pj

for all i ≥ 1 and all y ∈ W . By “free” particles we mean that none is the descendant
of another one. To shorten the notation, in the case W = {0} we simply say that the
seed is p-recurrent.

Note that, by definition of the restricted branching random walk, the above prob-
ability depends on the environment inside U only.

The next lemma shows the relevance of p-recurrent seeds.

LEMMA 2.6. Suppose that there exists a (U,H)-seed that is (p,W)-recurrent
for some p,W . Then this implies the recurrence of the branching random walk for
a.e. environment ω.

PROOF. By Lemma 2.3, an infinite number of (U,H)-seeds will be visited.
Moreover, a.s. we can find a (random) sequence z1, z2, z3, . . . such that:

• z1, z2, z3, . . . are visited;
• there is a (U,H)-seed in zi for all i = 1,2,3, . . .;
• (zi + U) ∩ (zj + U) = ∅ for all i 	= j .

The point is that each of those seeds gives rise to a supercritical Galton–Watson
branching process. Indeed, consider the first particle that enters zn and set ζ n

0 = 1;
then let ζ n

1 be the number of free descendants of this particle that visit zn + W in
the process restricted on zn + U (coupled with the original process as in Defini-
tion 2.4). By Definition 2.5, these free particles are such that the distribution of ζ n

1
dominates p. Then, let ζ n

2 be the number of free descendants of those ζ n
1 parti-

cles in the restricted process, and so on. By construction, the process (ζ n
k )k=0,1,2,...

dominates a supercritical Galton–Watson branching process with offspring distrib-
ution p, which means that when the Galton–Watson process survives forever, then
in the original process the set zn + W is visited infinitely often. Since the seeds
centered in z1, z2, z3, . . . are nonoverlapping, the processes (ζ n· ), n = 1,2,3, . . . ,

are independent. So, almost surely at least one of the sets zn + W will be visited
infinitely often, thus sending also an infinite number of particles to 0, which proves
the recurrence. �

PROOF OF PROPOSITION 1.2. Assume that the event {P0
ω[the origin is vis-

ited infinitely often] = 1} has positive P-probability. Then, by Condition B, this
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event intersected with {there exists x ∈ Zd :ωx(v : |v| ≥ 2) > 0} has also positive
P-probability. Fix ω in the intersection, and also in the support of P. By Condi-
tion E, the following happens with positive P0

ω-probability: one particle (at least)
of the branching random walk reaches this branching site x, and is then substi-
tuted by two particles (at least), each of them eventually hitting the origin. Since
the number of visits to 0 is infinite, we get by the Borel–Cantelli lemma that

P0
ω[the origin is visited by (at least) two free particles] = 1

(recall that by “free” particles, we mean that none is the descendant of the other;
we do not require that they visit 0 at the same moment). Then, we can take t large
enough so that

P0
ω[the origin is visited by (at least) two free particles before time t] > 3/4.

Since the jumps are bounded, this probability is equal to

P0
ω|KtL0

[the origin is visited by (at least) two free particles before time t],
which depends only on ωx, x ∈ U := KtL0 . By continuity, we can choose now
small neighborhoods Hx of ωx, x ∈ U , such that

P0
ω′|KtL0

[the origin is visited by (at least) two free particles before time t] > 3/4

for all ω′ with ω′
x ∈ Hx , x ∈ U . By the support condition it holds that Q(Hx) > 0,

and we see that the (U,H)-seed is p-recurrent, with p = (1/4,0,3/4,0,0, . . .).
From Lemma 2.6, we conclude that the branching random walk is recurrent for
Q-a.e. environment. Therefore the set of recurrent ω′ has probability 0 or 1.

On the other hand, it is clear by ellipticity that

ω ⇐⇒ P0
ω[x is visited infinitely often] = 1,

for all x ∈ Zd . Since the law of ω is stationary, this means that the recurrence is
also equivalent to

Px
ω[0 is visited infinitely often] = 1

for all x ∈ Zd . �

PROOF OF PROPOSITION 1.3. Assume that with positive P-probability,

Px
ω[the origin is visited infinitely often] > 0

for some x ∈ Zd , and fix such an ω in the support of P. Then, by Condition E,
the inequality holds for all x ∈ Zd , and in view of Condition B, we can assume
without loss of generality that

ωx(v : |v| ≥ 2) > 0.(10)
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By Condition E, x is visited infinitely often a.s. on the event E := {0 is visited
infinitely often}. Together with (10) this implies that x is visited by infinitely many
free particles a.s. on the event E. With β = Px

ω[E] > 0, fix some integers K, t such
that Kβ/2 > 1 and

Px
ω[at least K free particles visit x before time t] >

β

2
.

We note that this probability depends only on ω inside U := x + KtL0 , hence it is
equal to the Px

ω|U -probability of the event under consideration. By continuity, we
can choose small neighborhoods Hy of ωy , y ∈ U , such that

Pω′|U [at least K free particles visit x before time t] >
β

2
for all ω′ with ω′

y ∈ Hy , y ∈ U . We see that the (U,H)-seed is (p, {x})-recurrent
with pK = β/2 = 1−p0, and has a positive P-probability since ω is in the support
of this measure. From Lemma 2.6, we conclude that the branching random walk is
recurrent, which completes the proof. �

We conclude this section by proving the sufficiency (for the recurrence) of the
conditions (4) and (5). In the latter case, we define U = W = {0} and p by

∞∑
j=i

pj = inf(ω′{v :v0 ≥ i};ω′ ∈ N ), i ∈ Z+,

where N is a neighborhood of ω. As N ↘ {ω}, the mean of p increases by conti-
nuity to

∑
v ω(v)v0 > 1 in view of (5). Choosing N small enough so that the mean

of p is larger than 1, the seed ({0},N ) is p-recurrent in the sense of Definition 2.5.
Applying Lemma 2.6, we obtain that (5) is sufficient for the recurrence.

In the former case, we let U = A,W = {0}, and for x ∈ A \ {0},

Hx =
{
ω′ :

∑
v : ve≥1

ω′(v) ≥ ε for all e ∈ {±e1, . . . ,±ed}
}
,

where we fix ε > 0 small enough so that Q(Hx) > 0. Fix a > ε−dL0−1, and a
distribution q on Z+ which is stochastically smaller than the distribution of |v|
under ω and has mean at least a. By continuity again, and in view of (4), the set

H0 = {ω′ : distribution of |v| under ω′ is stochastically larger than q}
is a neighborhood of ω. Now, if ω has a (U,H)-seed in 0, a walker starting at 0
has a number N of offspring stochastically larger than q, each of which is able
to walk back to 0 simply by ellipticity. So, we see that, given N , the number of
free visits to 0 without exiting U dominates a binomial distribution B(N, εdL0+1),
and that, unconditionally, it dominates the mixture p of such binomials for N ∼ q.
Since p has mean larger than 1, the seed (U,H) is p-recurrent, and it has positive
P-probability. Again applying Lemma 2.6, we conclude the proof.
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2.3. Formal construction of the process and subadditivity. Recall that, for the
process starting from one particle at x0, the variable η

x0
n (x) is the number of par-

ticles in x at time n. Given ω, for all x ∈ Zd , consider an i.i.d. family vx,i(n),
i = 1,2,3, . . . , n = 0,1,2, . . . , of random elements of V , with Pω[vx,i(n) = v] =
ωx(v) (with a slight abuse of notation, we will still write Px

ω for the forthcoming
construction for a fixed ω, and Px[ · ] = EPx

ω[ · ]). Now, the idea is to construct the
collection of branching random walks indexed by the position of the initial particle,
using the same realization of (vx,i(n), x ∈ Zd, i = 1,2,3, . . . , n = 0,1,2, . . .).

To this end, consider first the process beginning at the origin, and put η0
0(0) = 1,

η0
0(y) = 0 for y 	= 0. Inductively, define for y ∈ Zd and n ≥ 0 [recall that vx,i(n)

is an element of V , so vx,i
a (n) is the number of particles sent by vx,i(n) to a ∈ A]:

η0
n+1(y) = ∑

x : y∈A+x

η0
n(x)∑
i=1

v
x,i
y−x(n).(11)

Define T (0, y) to be the first moment when a particle enters y, provided that the
process started from 0, that is,

T (0, y) = inf{n ≥ 0 :η0
n(y) ≥ 1},

and T (0, y) = +∞ if there exists no such n. Now, the goal is to define ηz
n for

z 	= 0. We distinguish two cases.
If T (0, z) = +∞, we proceed as before, that is, put ηz

0(z) = 1, ηz
0(y) = 0 for

y 	= z, and

ηz
n+1(y) = ∑

x : y∈A+x

ηz
n(x)∑
i=1

v
x,i
y−x(n).(12)

When m0 := T (0, z) < ∞, we put ηz
0(z) = 1, ηz

0(y) = 0 for y 	= z, and

ηz
n+1(y) = ∑

x : y∈A+x

ηz
n(x)∑
i=1

v
x,i
y−x(n + m0).(13)

Define also

T (z, y) = inf{n ≥ 0 :ηz
n(y) ≥ 1}.

Note that the set Bx
n can now be defined by Bx

n = {y :T (x, y) ≤ n}. The follow-
ing lemma will be very important in the course of the proof of Theorem 1.10:

LEMMA 2.7. For any y, z ∈ Zd and for all realizations of (vu,i(n), u ∈ Zd ,
i = 1,2,3, . . . , n = 0,1,2, . . .) it holds that

T (0, z) + T (z, y) ≥ T (0, y).(14)
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PROOF. Inequality (14) is obvious when T (0, z) = +∞, so we concentrate on
the case m0 := T (0, z) < ∞. In this case, by induction, it is immediate to prove
that ηz

n(x) ≤ η0
n+m0

(x) for all x ∈ Zd and all n ≥ 0, which, in turn, shows (14). �

REMARK. For the present model we failed to construct a coupling such that
T (x, y) + T (y, z) ≥ T (x, z) holds for all x, y, z ∈ Zd . In absence of such a cou-
pling we need to use a stronger version of the subadditive ergodic theorem, a vari-
ant of Theorem 5.3 below. An example of “branching-type” model for which such
a coupling does exist can be found in [1].

3. Proofs: recurrence/transience.

3.1. Proof of Theorem 1.4. We need some preparations. The following lemma
complements Lemma 2.6.

LEMMA 3.1. Suppose that the branching random walk in random environ-
ment from Q is recurrent. Then there exist p, m ≥ 1 and a collection H =
(Hz ⊂ M, z ∈ KmL0) such that Q(Hz) > 0 for all z ∈ KmL0 , and such that the
(KmL0,H)-seed is p-recurrent.

In fact, the reader probably has noticed that a similar result was already proved
in the course of the proof of Proposition 1.2. However, for later purposes, we will
construct this seed in a more explicit way (see Definition 3.2 below).

PROOF OF LEMMA 3.1. By Condition B, for some ε > 0 the set

H0 = {ω :ω(v : |v| ≥ 2) ≥ ε} ∩ suppQ

has positive Q-probability. By the recurrence assumption, the set of ω such that

Py
ω[at least one particle hits 0] = 1

for any y ∈ A and such that ω0 ∈ H0, has positive P-probability. We fix ω′ in this
set and also in the support of P. Then, for any ρ < 1 it is possible to choose m in
such a way that

min
y∈A

Py

ω′ [at least one particle hits 0 before time m] > ρ.

The probability in the above display depends only on the environment inside the
cube KmL0 . By continuity we can choose neighborhoods Hz ⊂ suppQ of ω′

z, z ∈
KmL0 , with Q(Hz) > 0,

inf
ω

min
y∈A

Py
ω[at least one particle hits 0 before time m] > ρ,
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where the infimum is taken over all possible environments ω such that ωz ∈ Hz for
all z ∈ KmL0 . Due to the boundedness of jumps, for any ω ∈ MZd

and any y ∈ A

Py
ω[at least one particle hits 0 before time m]

≤ Py
ω|KmL0

[at least one particle hits 0].
Hence, under P0

ω, with probability ε two particles will be present at time 1 in A

and otherwise at least one particle, each of them having independent evolution and
probability at least ρ to come back to 0 before exiting KmL0 . By an elementary
computation, we see that

P0
ω|KmL0

[0 will be visited by at least i free particles] ≥
2∑

j=i

pj

with

p1 = (1 − ε)ρ + 2ερ(1 − ρ), p2 = ερ2, p3 = p4 = · · · = 0.(15)

It remains only to choose m large enough to assure that ρ becomes sufficiently
close to 1 to guarantee that the mean (1 − ε)ρ + 2ερ(1 − ρ) + 2ερ2 of p defined
above is strictly larger than 1. Then, the (KmL0,H)-seed constructed in this way
is p-recurrent, and it has a positive P-probability. �

For later purposes, it is useful to emphasize the kind of seed we constructed
above.

DEFINITION 3.2. Let U,W be two finite subsets of Zd such that 0 ∈ W , A +
W ⊂ U , and let ε,ρ ∈ (0,1). A (U,H)-seed is called (ε, ρ,W)-good, if:

(i) for any ω ∈ Hz we have ω(v : |v| ≥ 2) > ε for all z ∈ W ;
(ii) for any ω such that ωx ∈ Hx , x ∈ U , we have

Py
ω|U [at least one particle hits W ] > ρ

for any y ∈ A + W ;
(iii) we have (1 − ε)ρ + 2ερ(1 − ρ) + 2ερ2 > 1.

In the case W = {0} we say that the seed is (ε, ρ)-good.

At the end of the last proof, we just showed that such a seed is p-recurrent, in the
case W = {0}. It is a simple exercise to extend the proof to the case of a general W .
We state now this useful fact.

LEMMA 3.3. Any (U,H)-seed which is (ε, ρ,W)-good is also (p,W)-recur-
rent with p defined by (15).
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Now we finish the proof of Theorem 1.4. Observe that if a p-recurrent seed
has positive probability under Q, then it has positive probability under Q′ for
any Q′ such that suppQ ⊂ suppQ′. (One may invoke the stronger condition of Q

being absolutely continuous to Q′, but due to the particular form of the seed we
consider here, the weaker condition of equal support is sufficient.) An application
of Lemmas 2.6 and 3.1 concludes the proof.

3.2. Proof of Theorem 1.5.
Part 1. We start with the first statement, assuming Condition E only. For any

s ∈ Sd−1 define

ϕQ(s) = sup
ω∈suppQ

∑
v∈V

ω(v)D(s, v),

with D defined in (1). Since ϕQ(s) is a continuous function of s and Sd−1 is
compact, (2) implies that

a0 := inf
s∈Sd−1

ϕQ(s) > 0.

Since suppQ is closed, for any s there exists ω(s) such that

ϕQ(s) = ∑
v∈V

ω(s)(v)D(s, v).

Moreover, by continuity for any s we can find δs > 0 and an open set �s ⊂ M with
ω(s) ∈ �s and Q(�s) > 0 such that

inf
s′∈Sd−1 :
‖s−s′‖<δs

inf
ω∈�s

∑
v∈V

ω(v)D(s′, v) >
a0

2
,(16)

where ‖ · ‖ stands for the Euclidean norm.
Since Sd−1 is compact, we can choose s1, . . . , sm ∈ Sd−1 that generate a finite

subcovering of Sd−1 by the sets {s′ ∈ Sd−1 :‖sn − s′‖ < δsn}, n = 1, . . . ,m. For
each n = 1, . . . ,m, it is possible to choose a set Un ⊂ {s′ ∈ Sd−1 :‖sn − s′‖ < δsn}
in such a way that Ui ∩ Uj = ∅ for i 	= j and

⋃m
i=1 Ui = Sd−1.

To prove recurrence, we construct an (ε, ρ,W)-good (A,H)-seed with a super-
critical branching inside W and, in A \W , the drift pointing toward W (and so this
seed is a trap):

(i) Similarly to the proof of Theorem 1.4, we argue that there exist ε > 0 and
H̃ ⊂ suppQ such that Q(H̃) > 0 and ω(v : |v| ≥ 2) ≥ ε for any ω ∈ H̃ .

(ii) Take W = {y ∈ Zd :‖y‖ ≤ L2
0/a0}, and put Hz = H̃ for all z ∈ W .

(iii) Choose ρ > 0 in such a way that condition (iii) of Definition 3.2 holds.
(iv) Denote r1 := L2

0/a0 and choose large enough r2 > r1 in order to guarantee

that ρ ≤ r2−r1−L0
√

d

r2−r1+L0
√

d
.
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(v) To complete the definition of the seed, take A = {y ∈ Zd :‖y‖ ≤ r2}; it
remains to define the environment in A \ W . It is done in the following way: if
z ∈ A \ W , let n0 be such that (−z/‖z‖) ∈ Un0 ; then put Hz = �sn0

; see Figure 4.

To prove that the seed constructed above is indeed (ε, ρ,W)-good, we construct
a random walk ξn that is similar to example (iii) of r-extremal induced random
walks from Section 2.1. Specifically, suppose that at some moment the random
walk ξn is in site z 	= 0 (this does not complicate anything, since we really need
the random walk to be defined only inside A \ W and 0 /∈ A \ W ). Generate the
offspring of that particle from z according to the rules of the branching random
walk; suppose that those offspring went to z+w1, . . . , z+wk . Let k0 be the number
which maximizes the quantity (−z/‖z‖) · wl , l = 1, . . . , k; then take ξn+1 = z +
wk0 . Clearly, for the random walk constructed in this way,

Eω

(
(ξn+1 − ξn) · (−z/‖z‖) | ξn = z

) = ∑
v∈V

ωz(v)D(−z/‖z‖, v).(17)

Now, we have to bound from below the probability that the random walk ξn

starting somewhere from W + A hits W before stepping out from A. We use ideas
which are classical in the Lyapunov functions approach [11]. To do that, we first

FIG. 4. Construction of an (ε, ρ)-good seed for the branching random walk (defined by Q2, with
a < 1/2) of Example 2.
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recall the following elementary inequality: for any x ≥ −1,
√

1 + x ≤ 1 + x

2
.(18)

Let px,y be the transition probabilities of the random walk ξn. Using (18), (17)
and (16), we obtain

Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z)

= ∑
y∈A

pz,z+y(‖z + y‖ − ‖z‖)

= ‖z‖ ∑
y∈A

pz,z+y

(√
1 + 2z · y

‖z‖2 + ‖y‖2

‖z‖2 − 1

)

≤ ∑
y∈A

pz,z+y

z

‖z‖ · y + L2
0

2‖z‖(19)

≤ −a0

2
+ L2

0

2‖z‖ ≤ 0(20)

for all z ∈ A \ W . Let τ be the first moment when ξn leaves the set A \ W ; the
calculation (20) shows that the process ‖ξn∧τ‖ is a (bounded) supermartingale.
Denoting by p̃ the probability that ξn hits W before stepping out from A and
starting the walk inside W +A, we obtain from the optional stopping theorem that

r1 + L0
√

d ≥ Eω‖ξ0‖ ≥ Eω‖ξτ‖ ≥ p̃
(
r1 − L0

√
d

) + (1 − p̃)r2.

So,

p̃ ≥ r2 − r1 − L0
√

d

r2 − r1 + L0
√

d
≥ ρ,

which shows that the (A,H)-seed constructed above is (ε, ρ,W)-good. Indeed,
we have to check condition (ii) of Definition 3.2; this condition holds because of
the last display and the obvious comparison between the branching random walk
and the random walk ξ . With an application of Lemma 3.3 and of Lemma 2.6 we
conclude the proof of the first part of Theorem 1.5.

Part 2. Now, we prove that (3) together with Condition UE implies recurrence.
The basic idea is the same: we would like to construct an (A,H)-seed that is
(ε, ρ,W)-good, where W = {y ∈ Zd :‖y‖ ≤ r1}, A = {y ∈ Zd :‖y‖ ≤ r2}, for
some r1, r2 (to be chosen later). As above, we choose ε > 0 in such a way there ex-
ists H̃ ⊂ suppQ such that Q(H̃) > 0 and ω(v : |v| ≥ 2) ≥ ε for any ω ∈ H̃ . Then,
choose ρ > 0 in such a way that the condition (iii) of Definition 3.2 holds. To de-
fine the seed inside W , put Hz = H̃ for all z ∈ W . Now, it remains to specify r1, r2
and to define the seed in A \ W . To do that, we need some preparations. For any
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possible environment inside A \ W (i.e., for any ω such that ωz ∈ suppQ for all
z ∈ A \ W ) we keep the same definition of the random walk ξn; by Condition UE,
there exists γ > 0 such that for all x 	= 0

Eω

(
(‖ξn+1‖ − ‖ξn‖)21{‖ξn+1‖≤‖ξn‖} | ξn = x

) ≥ γ.(21)

With that γ , we successively choose α > 0 such that

γ (α + 1) > L2
0,(22)

then r2 > r1 > L0 with

(r1 + L0)
−α − r−α

2

(r1 − L0)−α − r−α
2

> ρ,(23)

and finally, ε′ > 0 such that

ε′ <
γ (α + 1) − L2

0

2r2
.(24)

Now we define the seed on the set A \ W in the following way. When (3) holds,
analogously to the first part of the proof of this theorem, for any s ∈ Sd−1 we can
find δ′

s > 0 and an open set �′
s ⊂ M with ω(s) ∈ �′

s and Q(�′
s) > 0 such that

inf
s′∈Sd−1 :
‖s−s′‖<δ′

s

inf
ω∈�′

s

∑
v∈V

ω(v)D(s′, v) > −ε′.(25)

Similarly to what has been done before, we choose s′
1, . . . , s

′
m ∈ Sd−1 that generate

a finite subcovering of Sd−1 by the sets {s ∈ Sd−1 :‖s′
n − s‖ < δs′

n
}, n = 1, . . . ,m.

For each n = 1, . . . ,m, we choose a set U ′
n ⊂ {s ∈ Sd−1 :‖s′

n − s‖ < δs′
n
} in such a

way that U ′
i ∩ U ′

j = ∅ for i 	= j and
⋃m

i=1 U ′
i = Sd−1. Now, if z ∈ A \ W , let n1 be

such that (−z/‖z‖) ∈ U ′
n1

; then put Hz = �s′
n1

.
To prove that the (A,H)-seed is indeed (ε, ρ,W)-good, we have to verify con-

dition (ii) of Definition 3.2. First, it is elementary to see that the following inequal-
ity holds: for any x ≥ −1, α > 0

(1 + x)−α ≥ 1 − αx + α(α + 1)

2
x21{x≤0}.(26)

Keeping the notation τ from the proof of the first part of the theorem, we are
aiming to prove that ‖ξn∧τ‖−α is a submartingale. Indeed, using (26), (19), (21)
and (24), we obtain for z ∈ A \ W

Eω(‖ξn+1‖−α − ‖ξn‖−α | ξn = z)

= ‖z‖−αEω

((
1 + ‖ξn+1‖ − ‖ξn‖

‖ξn‖
)−α

− 1
∣∣∣ξn = z

)

≥ −α‖z‖−α−1Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z)
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+ α(α + 1)

2
‖z‖−α−2Eω

(
(‖ξn+1‖ − ‖ξn‖)21{‖ξn+1‖≤‖ξn‖} | ξn = z

)

≥ α‖z‖−α−1
(
−ε′ − L2

0

2‖z‖ + (α + 1)γ

2‖z‖
)

> 0.

Then, by using the optional stopping theorem again, we obtain that the probability
that ξn hits W before stepping out from A and supposing that its starting point
belongs to W + A is at least

(r1 + L0)
−α − r−α

2

(r1 − L0)−α − r−α
2

,

so, recalling (23), we see that condition (ii) of Definition 3.2 holds. We finish the
proof of the second part of Theorem 1.5 by applying Lemma 3.3.

3.3. Proof of Theorem 1.6. Due to Condition B, there exists ω ∈ suppQ such
that

∑
y∈A µω

y > 1. Hence, Condition L cannot be satisfied with λ = 1. Moreover,
if Condition L holds for λ and s, it holds also for λ−1 and (−s). So, we can suppose
that λ ∈ (0,1) without loss of generality.

Denote the half-space Ys = {y ∈ Zd :y · s ≤ 0}. Take an arbitrary starting point
z /∈ Ys and define

Fz
n = ∑

y∈Zd

ηz
n(y)λy·s .

1. Let us also modify the environment in such a way that any particle which en-
ters Ys neither moves nor branches anymore. By (6) it is straightforward to obtain
that the process (F z

n , n = 0,1,2, . . .) is a supermartingale:

Ez
ω

(
Fz

n+1 | ηz
1(·), . . . , ηz

n(·)
) = ∑

x∈Ys

ηz
n(x)λx·s + ∑

x /∈Ys

ηz
n(x)λx·s × ∑

y∈A

µωx
y λy·s

≤ Fz
n .

Since it is also nonnegative, it converges a.s. as n → ∞ to some random vari-
able F∞. By Fatou’s lemma,

Ez
ωF∞ ≤ Ez

ωF0 = λz·s < 1,

for z /∈ Ys . On the other hand, any particle stuck in Ys contributes at least one unit
to F . That shows that with positive probability the branching random walk will
not enter to Ys , so the proof of the first part of Theorem 1.6 is finished.

2. We no longer make Ys absorbing. Note that Fz
n is still a supermartingale,

and has an a.s. limit (for all ω). Let k ≥ 1. First of all, let us show how to prove
the result when Condition UE holds. Under Condition UE, each time a particle
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enters the half-space Ys it has Pω-probability larger than εdk
0 to enter Y

(k)
s = {y ∈

Zd :y · s ≤ −k}. By the strong Markov property, an infinite number of particles
will hit Y

(k)
s a.s. on the set where the number of visits of the branching random

walk to Ys is infinite. We will then have, on this set, lim supn F z
n ≥ λ−k for all k

(recall that λ < 1). Since Fz
n has a finite limit, this shows that the number of visits

to Ys is finite.
Now, we explain what to do when only Condition E holds. By the previous

argument, it would be enough to prove that, on the event that Ys is visited infinitely
often, for any k, the set Y

(k)
s is visited infinitely many times Pz

ω-a.s. Define H
(k)
s =

Ys \ Y
(k)
s . Suppose, without restriction of generality, that ‖s‖∞ = 1. For any z ∈

H
(k)
s define

g(k)
z (ω) = Pz

ω

[
at time k there is at least one particle in Y

(k)
s

]
.

It is elementary to obtain that:

(i) g
(k)
u (ω) and g

(k)
v (ω) are independent if ‖u − v‖∞ > 2kL0, and

(ii) there exists hk > 0 such that P[g(k)
z (ω) > hk] ≥ 1/2, uniformly in z ∈ H

(k)
s .

Indeed, if ‖s‖∞ = 1, then there exists e ∈ {±e1, . . . ,±ed} such that e · s = −1.
Then, to enter Y

(k)
s from any point of H

(k)
s , it is enough to perform k steps in the

direction e.

Now, suppose that Ys was visited an infinite number of times, and suppose also
that the number of visits to H

(k)
s is also infinite (because otherwise, automatically,

Y
(k)
s is visited infinitely many times). Let z1, z2, z3, . . . be the locations of those

visits. Using (i) and (ii), we can extract an infinite subsequence i1 < i2 < i3 < · · ·
such that g

(k)
zij

(ω) > hk , for all j . Similarly to the previous argument, we obtain

that in this case Y
(k)
s will be visited infinitely often, which leads to a contradiction

with the existence of a finite limit for Fz
n .

4. Proofs of Theorems 1.8 and 1.9.

PROOF OF THEOREM 1.8. Roughly, the idea is as follows: by recurrence we
know that there are p-recurrent [in fact, even (ε, ρ)-good] seeds, each of them sup-
porting a supercritical Galton–Watson process (i.e., if we consider the branching
random walk restricted on such a seed, it dominates in some sense a supercritical
Galton–Watson process). To prove (8) it suffices essentially to control the time to
reach a large enough quantity of these seeds.

By Lemma 3.1, there exist n0, ε, ρ > 0 and a collection H = (Hz ⊂ M, z ∈
Kn0) having positive P-probability, such that the (Kn0,H)-seed is (ε, ρ)-good
(in the proof of Lemma 3.1, we indeed constructed such a seed). Moreover, it is
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straightforward to see that there exists t0 such that

P
[
the (Kn0,H)-seed is (ε, ρ)-good and for any y ∈ A

(27)
Py

ω|Kn0
[at least one particle hits 0 before time t0] > ρ

]
> 0

(recall that Py
ω|Kn0

corresponds to the branching random walk starting from y and
restricted on Kn0 ; cf. Definition 2.4). For any ω, define the random subset Sω of
the lattice with spacing 2n0 + 1:

Sω = {z ∈ (2n0 + 1)Zd : z is the center of (Kn0,H)-seed

which is (ε, ρ)-good and satisfies (27)}.
We need to consider two cases separately: d ≥ 2 and d = 1.
Case d ≥ 2. Consider the event

Mn = {∀y ∈ KL0n ln−1 n ∃z ∈ Sω :‖y − z‖∞ ≤ α lnn};
the (small enough) constant α will be chosen later. We will use the bound

P[T (0, x0) > n] ≤ sup
ω∈Mn

P0
ω[T (0, x0) > n] + P[Mc

n].(28)

Let us begin by estimating the second term in the right-hand side of (28). We have

P[Mc
n] = P[∃y ∈ KL0n ln−1 n : (y + Kα lnn) ∩ Sω = ∅]

(29)
≤ |KL0n ln−1 n|P[Kα lnn ∩ Sω = ∅].

The point is that the events {x ∈ Sω} and {y ∈ Sω} are independent for any x, y ∈
(2n0 + 1)Zd , x 	= y. Denoting the left-hand side of (27) by p0 = P[0 ∈ Sω] > 0,
we obtain

P[Kα lnn ∩ Sω = ∅] ≤ (1 − p0)
αd lnd n/(2n0+1)d ,

so, from (29),

P[Mc
n] ≤ Ld

0nd ln−d n exp
{
−αd ln(1 − p0)

−1

(2n0 + 1)d
lnd n

}
(30)

≤ exp{−C1 lnd n}
for some C1 > 0 and for all n large enough.

Now, we estimate the first term in the right-hand side of (28). Let ξn be the
uniform induced random walk in random environment; compare example (i) in
Section 2.1. By Condition UE, this random walk will be uniformly elliptic as well,
in the sense that for any x ∈ Zd and any ω ∈ suppQ

Px
ω[ξ1 = x + e] ≥ ε1 > 0(31)
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for all e ∈ {±ei, i = 1, . . . , d} with a new constant ε1 = ε0(2L0 + 1)−1. By (31),
we have that for arbitrary ω ∈ Mn and any m with 0 ≤ m ≤ n ln−1 n − dα lnn,

P0
ω

[{ξm, . . . , ξm+dα lnn} ∩ Sω 	= ∅|ξ0, . . . , ξm−1
] ≥ εdα lnn

1 .(32)

Define

τ = inf

{
m :

m∑
i=0

1{ξi∈Sω} ≥ lnd n

}
,(33)

that is, τ is the moment when the random walk ξ hits the set Sω for the �lnd n�th
time. Also, let us recall Chernoff’s bound for the binomial distribution: if Sk is a
binomial B(n,p) random variable, for any k and a with 0 < a < p < 1, we have

P
[
Sk

k
≤ a

]
≤ exp{−kU(a,p)},(34)

where

U(a,p) = a ln
a

p
+ (1 − a) ln

1 − a

1 − p
> 0.

Now, divide the time interval [0, n ln−1 n] into (dα)−1n ln−2 n subintervals of
length dα lnn. Fix the constant α in such a way that dα ln ε−1

1 < 1/2. Use the
Markov property for ξ under P0

ω, the inequality (32), and (34) with p = εdα lnn
1 ,

k = (dα)−1n ln−2 n, a = dαn−1 ln2+d n [and an elementary computation shows

that then U(a,p) is of order n−dα ln ε−1
1 ] to obtain that for some C2,C3 > 0

P0
ω[τ ≤ n/3] ≥ P0

ω[τ ≤ n ln−1 n]

≥ P0
ω

[
k∑

i=1

1{ξj ;(i−1)dα lnn<j≤iαd lnn}⋂
Sω 	=∅ ≥ ka

]

(35)
≥ 1 − exp{−C2(dα)−1n1−dα ln ε−1

1 ln−2 n}
≥ 1 − exp{−C3n

1/2}
for any ω ∈ Mn (supposing also that n is large enough so that a < p).

Now, we show that each time the random walk ξ passes through the points
of Sω it gives rise to a supercritical Galton–Watson process, and that on the set
{τ ≤ n/3}, about lnd n such independent Galton–Watson processes will be started
before time n/3. Indeed, analogously to the proof of Lemma 3.3, if we have a par-
ticle in the center of the seed, its direct offspring in this Galton–Watson process are
those descendants (in the branching random walk restricted on the seed) that pass
through the center not later than t0. (Actually, we must take this Galton–Watson
process independent of the random walk ξ , so when ξ passes through the seed, we
cannot use the corresponding particle in the Galton–Watson process. This, how-
ever, does not spoil anything, because with uniformly positive probability another
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particle will be generated somewhere in the set x + A—with x the center—at that
moment, so it can be used to start the Galton–Watson process.) By construction,
this Galton–Watson process is “uniformly” supercritical, so there exists p1 > 0
such that with probability at least p1 in the [n/3t0]th generation of the process the
number of particles will be at least C4α

n
1 , for some C4 > 0, α1 > 1. So, since the

real time between the generations is at most t0, this means that for any x ∈ Sω

Px
ω[the seed in x generates at least C4α

n
1 free particles

(36)
before time n/3] > p1.

Now, by (36) we have

P0
ω[at least one seed generates at least C4α

n
1 free particles

before time (2n/3) | τ < n/3](37)

≥ 1 − (1 − p1)
lnd n.

Consider those C4α
n
1 free particles. By Condition UE, any descendants of each one

will hit x0 by the time 2L0dn ln−1 n < n/3 with probability at least ε
2L0dn ln−1 n
0 ,

so at least one particle will hit x0 with probability at least

1 − (1 − ε
2L0dn ln−1 n
0 )C4α

n
1 ≥ 1 − exp

{−C4 exp{n[lnα1 − 2L0d ln ε−1
0 ln−1 n]}}

where the quantity in the brackets is positive for large enough n. Taking into ac-
count (35) and (37), we then obtain that for any ω ∈ Mn

P0
ω[T (0, x0) > n] ≤ e−C5 lnd n(38)

for some C5 > 0 and all n large enough. We plug now (30) and (38) into (28) to
conclude the proof of Theorem 1.8 in the case d ≥ 2.

Case d = 1. Now, we prove Theorem 1.8 in dimension 1. For d = 1 the above
approach fails, because if α is small, then (30) will not work, if α is large, then we
would have problems with (35), and it is not always possible to find a value of α

such that both inequalities would work.
First, we do the proof assuming that L0 = 1, that is, A is either {−1,1} or

{−1,0,1}. Analogously to the proof for higher dimensions, if we prove that, on
the set of environments of P-probability at least 1 − e−C1 lnn, the initial particle
hits at least const· lnn many good seeds from Sω, we are done. To this end, note
that, on the time interval of length lnn

2 ln ε−1
0

a single particle (even if it does not

generate any offspring) covers a space interval of the same length with probability
at least

ε
(lnn)/(2 ln ε−1

0 )

0 = n−1/2.
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So, by time n ln−1 n, with large (of at least stretched exponential order) probability
there is an interval of length lnn

2 ln ε−1
0

containing 0 such that all sites from there are

visited.
Analogously to the proof for higher dimensions, consider the set

M(1)
n =

{
the number of good seeds from Sω in all the intervals

of length
lnn

2 ln ε−1
0

containing 0 is at least C2 lnn

}
,

which corresponds to the set of “good” environments. Since Sω has a positive
density, we can choose small enough C2 in such a way that

P
[(

M(1)
n

)c] ≤ e−C3 lnn

for some C3. Now, on M
(1)
n , with probability at least 1 − e−C4n

C5 by time n ln−1 n

at least C2 lnn good seeds from Sω will be visited. The rest of the proof is com-
pletely analogous to the proof for d ≥ 2.

Let us explain how to proceed in the case of a general L0. In the above argument
the fact L0 = 1 was used only for the following purpose: if we know that a parti-
cle crossed a (space) interval, then we are sure that all the good seeds that might
be there were visited. For a general L0, instead of (ε, ρ)-good seeds of Sω, use
(ε, ρ,W)-good seeds with W = {0,1, . . . ,L0 − 1}, so that particles cannot jump
over the translates of this W . [Indeed, it is clear that a recurrent branching random
walk generates (ε, ρ,W)-good seeds for any finite W .] So, proof of Theorem 1.8
is concluded. �

PROOF OF THEOREM 1.9. The method of the proof is very similar to the con-
struction of Example 5. Roughly speaking, for given n and x, we create a (rather
improbable) environment that has a trap near the origin; for such an environment
with a good probability the event {T (0, x) > n} occurs.

Now, let us work out the details. Rather than doing the proof for T (0, x) with
a general x ∈ Zd , we use x = e1, the general case being completely analogous.
Suppose that the origin belongs to the interior of the convex hull of {�ω :ω ∈
G∩ suppQ}. Then, analogously to the proof of Theorem 1.5 (see Section 3.2), one
can split the sphere Sd−1 into a finite number (say, m0) of nonintersecting subsets
Û1, . . . , Ûm0 and find a finite collection �̂1, . . . , �̂m0 ⊂ G having the following
properties: for all i = 1, . . . ,m0,

(i) there exists p1 > 0 such that Q(�̂i) > p1,
(ii) there exists a1 > 0 such that for any z ∈ Ûi and any ω ∈ �̂i we have

z · �ω < −a1.
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Take A = {y ∈ Zd :‖y‖ ≤ u lnn}, where u is a (large) constant to be cho-
sen later. Consider the (A,H)-seed with Hx,x ∈ A defined as follows. First, put
H0 = G; for x 	= 0, let i0 be such that x

‖x‖ ∈ Ûi0 (note that i0 is uniquely defined),

then put Hx = �̂i0 . Clearly

P[there is (A,H)-seed in y] ≥ p
(2u)d lnd n
1 .(39)

Note that for any possible environment inside the (A,H)-seed there is no
branching. This means that the process restricted on A is a random walk (with-
out branching), which will be denoted by ξn.

Analogously to (20), we can prove that there exist a2 > 0,C1 ≥ 0 such that

Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z) < −a2(40)

for all z ∈ A \ {y :‖y‖ ≤ C1}, provided there is an (A,H)-seed in 0. Let τ̃ be the
hitting time of the set (Zd \ A) ∪ {y :‖y‖ ≤ C1} by ξn. Next, we prove that, when
a3 > 0 is small enough, the process ea3‖ξn∧τ̃ ‖ is a supermartingale. Indeed, first,
note that there exist C2,C3 > 0 such that

ex < 1 + x + C2x
2(41)

when |x| < C3. We can choose a3 small enough so that |‖ξn+1‖ − ‖ξn‖| < C3/a3
a.s. From (41) we obtain

Eω

(
ea3‖ξn+1‖ − ea3‖ξn‖ | ξn = z

) = ea3‖z‖Eω

(
ea3(‖ξn+1‖−‖ξn‖) − 1 | ξn = z

)
≤ ea3‖z‖(−a3a2 + C2a

2
3L2

0)

< 0

if a3 is small enough, so ea3‖ξn∧τ̃ ‖ is indeed a supermartingale.
Now, we need to make two observations concerning the exit probabilities. First,

consider any y such that C1 + 1 ≤ ‖y‖ < C1 + 2. If p̂1 is the probability that,
starting from y, the random walk ξn hits the set Zd \A before the set {y :‖y‖ ≤ C1},
then it is straightforward to obtain from the optional stopping theorem that

ea3(C1+2) ≥ Eωea3‖ξ0‖ ≥ Eωea3‖ξτ̃ ‖ ≥ p̂1e
a3u lnn,

so

p̂1 ≤ ea3(C1+2)

na3u
.(42)

Second, suppose now that the random walk ξn starts from a point y with
‖y‖ = u lnn (i.e., on the boundary of A). Analogously, using the optional stop-
ping theorem, one can show that, with probability bounded away from 0, the ran-
dom walk hits the set {y :‖y‖ ≤ C1} before stepping out of A. Now, suppose that
u > a−1

3 , and that there is an (A,H)-seed centered at (−u lnn)e1 (i.e., touching
the origin; cf. Figure 5). Using the previous observation together with (42), one
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FIG. 5. Construction of a trap.

can obtain that, with probability bounded away from 0, the particle will go to the
set (−u lnn)e1 + A and will stay there until time n [without generating any other
particles, since there is no branching in the sites of (A,H)-seed]. So, by (39),

P[T (0, e1) > n] ≥ e−C4 lnd n,

thus completing the proof of Theorem 1.9. �

5. Proof of Theorem 1.10. We prove this theorem separately for two cases:
d ≥ 2 and d = 1. There are, essentially, two reasons for splitting the proof into
these two cases. First, as usual, in dimension 1 we have to care about only one
(well, in fact, two) directions of growth, while for d ≥ 2 there are infinitely many
possible directions. So, one may think that the proof for d = 1 should be easy
when compared to the proof for d ≥ 2. For the majority of growth models this is
indeed true, but not for the model of the present paper. This comes from Theorems
1.8, 1.9 and Example 5: recurrence implies that the annealed expectation of the
hitting time is finite only for d ≥ 2, but not for d = 1.

5.1. Case d ≥ 2. First, we need to show that the sets of interest grow at least
linearly. Recall the notation Kn = [−n,n]d and Condition A given before the the-
orem.
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LEMMA 5.1. Suppose that d ≥ 2 and the branching random walk in random
environment is recurrent and Condition UE holds. Then:

(i) There exist δ0, θ0 > 0 such that

P[Kδ0n ⊂ B0
n] ≥ 1 − exp{−θ0 lnd n}(43)

for all n sufficiently large.
(ii) Suppose, in addition, that Condition A holds. Then there exist δ1, θ1 > 0

such that

P[Kδ1n ⊂ B̃0
n] ≥ 1 − exp{−θ1 lnd n}(44)

for all n sufficiently large.

PROOF. We will use the notation from the proof of Theorem 1.8.
Step 1. Let us prove part (ii) first. To do that, we need to examine in more

detail the supercritical Galton–Watson process arising in seeds centered in the
points of Sω. Specifically, we need more information about how (conditioned
on survival) the particles of that process are distributed in time. As we have
seen before, in that Galton–Watson process a particle has one offspring with
probability (1 − ε)ρ + 2ερ(1 − ρ), two offspring with probability ερ2 and zero
offspring with the remaining probability, and the parameters ε,ρ are such that
(1 − ε)ρ + 2ερ(1 − ρ) + 2ερ2 > 1, so the process is uniformly supercritical.
Moreover, the real time interval between the particle and its offspring is not larger
than t0; however, the exact distribution of this time interval is unknown. So, let us
suppose that if a particle has one offspring, then it reappears in the center of the
seed after k time units with probability qk , k = 1, . . . , t0, and if a particle has two
offspring, then they reenter the center after i and j time units with probability qi,j ,
i, j = 1, . . . , t0, i ≤ j (we have

∑
k qk = 1 and

∑
i,j qi,j = 1).

Supposing for a moment that the Galton–Watson process starts from one particle
at time 0, denote by ζ(n) the number of particles of that process at time n. We
are going to prove that, conditioned on survival,

∑(n+1)t0
i=nt0

ζ(i) grows rapidly in n.

To do so, we construct two processes Zi
n, Ẑ

i
n, n = 0,1,2, . . . , i = 0, . . . , t0 − 1.

We start by defining Ẑi
0 = 0 for all i, Zi

0 = 0 for i = 1, . . . , t0 − 1, and Z0
0 = 1.

Inductively, suppose that the processes Z, Ẑ are constructed up to n. Suppose, for
example, that Z

i0
n = a > 0; this means that there are a particles of Z in the center

of the seed at time i0 + nt0. For each of those a particles, do the following:

• let it generate its offspring according to the rules of the Galton–Watson process;
those offspring reenter the center either during the time interval [nt0, (n+ 1)t0),
or during [(n + 1)t0, (n + 2)t0);

• for those offspring that appeared in the center of the seed during the interval
[nt0, (n + 1)t0), repeat the above step.
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Doing that, we obtain a cloud of free particles (again, in the sense that one cannot
be descendant of another) in the interval [(n + 1)t0, (n + 2)t0). Fix a parameter
h > 0 and declare each of those particles to be of type 1 with probability 1 − h

and to be of type 2 with probability h, independently. Repeat the same proce-
dure for all i0 ∈ {0, . . . , t0 − 1} (note that the particles from Ẑ are not used in this
construction). Then, define Zi

n+1 to be the number of type 1 particles at the mo-

ment i + (n + 1)t0, and Ẑi
n+1 to be the number of type 2 particles at the same

moment, i = 0, . . . , t0 − 1. Then, Zn = (Z0
n, . . . ,Z

t0−1
n ) is a multitype branching

process with t0 types. Furthermore, it is straightforward to see that if h is small
enough, then the mean number of particles (of all types) generated by a particle
from Zn is greater than 1, so that process is supercritical (this follows from, e.g.,
Theorem 2 of Section 3 of Chapter V of [2], noting also that if, for a nonnegative
matrix, the sum of entries is strictly greater than 1 for each row, then the maximum
eigenvalue of that matrix is strictly greater than 1). That is, with positive probabil-
ity the size of nth generation of Z grows exponentially in n. From that it is quite
elementary to obtain that there exist constants γ2,p2 > 0, α2 > 1 (depending on
qi ’s and qi,j ’s) such that |Ẑn| > γ2α

n
2 for all n with probability at least p2, where

|Ẑn| = Ẑ0
n + · · · + Ẑ

t0−1
n . In fact, we think that with some more effort one should

be able to prove that these constants can be chosen uniformly in qi ’s and qi,j ’s;
however, it is easier to proceed as follows. Clearly, there are γ3,p3 > 0, α3 > 1
(not depending on qi ’s and qi,j ’s) such that

P
[
P0

ω[|Ẑn| > γ3α
n
3 ] ≥ p3, for all n|0 ∈ Sω

] ≥ 1
2 .(45)

Now, we recall the aperiodicity Condition A. Essentially, it says that the density
of the aperiodic sites is positive, where by “aperiodic site” we mean the following:
for a given ω, x ∈ Zd is an aperiodic site if there exists y such that ‖x−y‖1 is even,
and a particle in x sends at least one offspring to y with a positive Pω-probability.
We need Condition A here because without the aperiodic sites the process would
live on even sites at even moments of time and on odd sites at odd moments of
time.

For any z ∈ Sω and Ẑ the process defined above starting from z, define the event

Ez = {|Ẑn| > γ3α
n
3 , for all n}.

Define

M ′
n = {∀y ∈ KL0n ln−1 n ∃z ∈ Sω :Pz

ω[Ez] ≥ p3,‖y − z‖∞ ≤ α lnn,

and there is an aperiodic site x1 such that x1 + A ⊂ KL0n ln−1 n}.
Due to (45), an estimate similar to (30) holds for P[(M ′

n)
c]. As in the proof

of Theorem 1.8 between (30) and (35), one can prove that, with overwhelming
P0

ω-probability when ω ∈ M ′
n, before time n ln−1 n the random walk ξn will meet

a seed (centered, say, in z0) where an “explosion” (i.e., the event Ez0 ) happens.
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Suppose that t1 is the moment when the Galton–Watson process in z0 starts; we
have t1 ≤ n ln−1 n.

Now, take an arbitrary m ≥ n and suppose that ω ∈ M ′
n. Supposing that n is

large enough and δ1 is small enough, there exists k0 such that[
t1 + k0t0, t1 + (k0 + 1)t0

) ⊂ [m − 4δ1n,m − 3δ1n]
and k0 ≥ m

2t0
. Then, since the event Ez0 occurs, there exists t2 ∈ {0, . . . , t0 − 1}

such that Ẑ
t2
k0

≥ γ3α
k0
3 /t0; that is, there are at least γ3α

k0
3 /t0 “unused particles”

(they were not used in the construction of the branching processes, so we do not
have any information about their future) at z0 at the moment t1 + k0t0 + t2. Take
any x0 ∈ Kδ1n and suppose, for definiteness, that ‖x0 − z0‖1 is odd. Denote t̂ =
m − (t1 + k0t0 + t2) (notice that 3δ1n ≤ t̂ ≤ 4δ1n) and consider two cases:

Case 1: t̂ is odd.
Then, by Condition UE, any particle in z0 will send a descendant to x0 in time
exactly t̂ with probability at least εt̂

0.
Case 2: t̂ is even.

Here we will have to use the fact that on M ′
n there exists an aperiodic site some-

where in KL0n ln−1 n. That is, when going from z0 to x0 in time t̂ , on the way we

pass through the aperiodic site, and this happens with probability at least C6ε
t̂−�
0 .

So, in both cases we see that a particle in z0 will send a descendant to x0 in
time t̂ with probability at least C7ε

t̂
0 for some C7 > 0. Recall that we dispose of

at least γ3α
k0
3 /t0 independent particles in z0, so the probability that at least one

particle will be in x0 at time m is at least

1 − (1 − C7ε
t̂
0)

γ3α
k0
3 /t0 ≥ 1 − (1 − C7ε

4δ1n
0 )γ3t

−1
0 α

m/(2t0)

3

≥ 1 − exp
{
−C8γ3

t0
exp

[
lnα3

2t0
m − 4δ1n ln ε−1

0

]}
.

Choosing δ1 small enough, it is straightforward to complete the proof of part (ii).
Step 2. As for part (i), it can be proved analogously to part (ii), by writing

{T (0, x) ≤ n} ⊃ ({T (0, x) = n} ∪ {T (0, x) = n − 1})
and noting that for handling of one of the events in the right-hand side of the above
display Condition A is unnecessary. The proof of Lemma 5.1 is completed. �

Consider any x0 ∈ Zd \ {0}, and define a family of random variables

Yx0(m,n) = T (mx0, nx0), 0 ≤ m < n.

Let us point out that the sequence of random variables (Y x0(n − 1, n), n =
1,2,3, . . .) is in general not stationary (although they are of course identically dis-
tributed). To see this, note that, conditioned on ω, the random variables T (0, x0)
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and T (x0,2x0) are independent [because (recall the construction of Section 2.3),
given T (0, x0) = r , the random variable T (x0,2x0) depends on vx,i(n) for n ≥ r],
while T (x0,2x0) and T (2x0,3x0) need not be so. Nevertheless, we will prove that
the above sequence satisfies the strong law of large numbers:

LEMMA 5.2. Denote βx0 = EYx0(0,1). Then for any ε > 0 there exists θ2 =
θ2(ε) such that

P

[∣∣∣∣∣1

n

n∑
i=1

Yx0(i − 1, i) − βx0

∣∣∣∣∣ > ε

]
≤ exp{−θ2 lnd n}(46)

for all n. In particular,

1

n

n∑
i=1

Yx0(i − 1, i) −→ βx0 P-a.s. and in Lp,p ≥ 1.(47)

PROOF. Abbreviate Yi := Yx0(i − 1, i) and introduce the events Gi = {Yi <√
n/(2L0)}, i = 1, . . . , n. Suppose for simplicity that

√
n is integer, the general

case can be treated analogously. Define the events

F =
{∣∣∣∣∣1

n

n∑
i=1

Yi − βx0

∣∣∣∣∣ > ε

}
,

Fi =
{∣∣∣∣∣ 1√

n

√
n∑

j=1

Yi+(j−1)
√

n − βx0

∣∣∣∣∣ > ε

}
,

i = 1, . . . ,
√

n; since

1

n

n∑
i=1

Yi = 1√
n

√
n∑

i=1

√
n∑

j=1

Yi+(j−1)
√

n,

we can write

F ⊂
√

n⋃
i=1

Fi.(48)

Now, to bound from above the probability of a single event Fi , we write

P[Fi] ≤ P

[∣∣∣∣∣ 1√
n

√
n∑

j=1

Yi+(j−1)
√

n1Gi+(j−1)
√

n
− βx0

∣∣∣∣∣ > ε

]

+ P
[
there exists j ≤ √

n such that Gc
i+(j−1)

√
n

occurs
]

=: I1 + I2.
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By Theorem 1.8, with some C9 > 0

I2 ≤ √
nP[Gc

1] ≤ √
n exp{−C9 lnd n}.(49)

To bound the term I1, we note first that it is elementary to obtain from Theo-
rem 1.8 that, for some C10,

βx0 − EY11G1 ≤ exp{−C10 lnd n}.(50)

The key point here is that the random variables Yi+(j1−1)
√

n1Gi+(j1−1)
√

n
and

Yi+(j2−1)
√

n1Gi+(j2−1)
√

n
are independent when j1 	= j2. Indeed, on the event

{
max

{
T

(
(n1 − 1)x0, n1x0

)
, T

(
(n2 − 1)x0, n2x0

)}
<

|n2 − n1|
2L0

}
,

the random variables T ((n1 −1)x0, n1x0) and T ((n2 −1)x0, n2x0) are functions of
vx,i(n)’s where the superscript x belongs to nonintersecting subsets of Zd . There-
fore, having in mind (50) and Theorem 1.8, to bound the term I1 from above we
can use some large deviation result for the sums of i.i.d. random variables without

exponential moments (use, e.g., Corollary 1.11 from [22] with x = ε
√

n
2 , y = n1/4,

noting also that, since the number of terms here is
√

n, the quantity B2
n of [22]

is O(
√

n)) to obtain that

I1 < exp{−C11 lnd n}.(51)

Using (49), (51) and (48), we conclude the proof of (46). Since (47) follows
from (46) immediately for p = 1, the proof of Lemma 5.2 is finished in this case.
To extend it to a general p, it suffices to note that for all p′ ≥ 1,

(
1

n

n∑
i=1

Yx0(i − 1, i)

)p′

≤ 1

n

n∑
i=1

(
Yx0(i − 1, i)

)p′
,

which has a finite expectation. �

To proceed with the proof of Theorem 1.10, we state the result of [18], which is
an improved version of Kingman’s subadditive ergodic theorem [16].

THEOREM 5.3. Suppose that {Y(m,n)} is a collection of positive random
variables indexed by integers satisfying 0 ≤ m < n such that:

(i) Y(0, n) ≤ Y(0,m) + Y(m,n) for all 0 ≤ m < n (subadditivity);
(ii) the joint distribution of {Y(m+ 1,m+ k + 1), k ≥ 1} is the same as that of

{Y(m,m + k), k ≥ 1} for each m ≥ 0;
(iii) for each k ≥ 1 the sequence of random variables {Y (nk, (n + 1)k), n ≥ 0}

is a stationary ergodic process;
(iv) the expectation of Y(0,1) is finite.
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Then

lim
n→∞

Y(0, n)

n
→ γ a.s.,

where

γ = inf
n≥0

EY(0, n)

n
.

Similarly to the proof of a number of other shape results, our original intention
was to apply Theorem 5.3 to the family (Y x0(m,n),0 ≤ m < n). Indeed, assump-
tion (i) of Theorem 5.3 holds due to Lemma 2.7, from the construction of the
random variables T (·, ·) it is elementary to observe that assumption (ii) holds as
well, and assumption (iv) follows from Theorem 1.8. However, as we observed
just before Lemma 5.2, the sequence of random variables in (iii) need not be sta-
tionary (even though it has good mixing properties and the random variables there
are equally distributed). So, we take a slightly different route: consider the proof
of Theorem 5.3 (here we use the proof of Theorem 2.6 of Chapter VI of [19]), and
follow its steps carefully. One sees that assumption (iii) (which is assumption (b)
in Theorem 2.6 of Chapter VI of [19]) is used only in (2.11) and between the
displays (2.14) and (2.15) of Chapter VI of [19] to prove that a certain sequence
converges a.s. and in L1 to its mean. So, we can state the following extension of
the standard subadditive ergodic theorem.

THEOREM 5.4. Theorem 5.3 remains valid if assumption (iii) is substituted
by the following one:

(iii)′ for all k ≥ 1 there exists a constant γ (k) such that the sequence of random
variables (

1

n + 1

n∑
j=0

Y
(
jk, (j + 1)k

))
n≥0

converges almost surely and in L1 to γ (k).

Now, let us notice that, in our situation, condition (iii)′ holds due to Lemma 5.2
[note also that Yx0(mk,nk) = Y kx0(m,n)].

From the above argument we conclude that for any x ∈ Zd \ {0} there exists a
number µ(x) (depending also on Q) such that

T (0, nx)

n
−→ µ(x) P-a.s., n → ∞.(52)

From this point on, the proof of the shape result for B0
n becomes completely

standard, so we only briefly outline the main steps and refer to, for example, [1, 5,
9] for details:
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• It is easy to obtain that for any x ∈ Zd, a ∈ Z+, we have µ(ax) = aµ(x).
• Using that, µ(x) is first extended on x ∈ Rd with rational coordinates (if x ∈ Qd

and ax ∈ Zd , with a ∈ Z+, then µ(x) := µ(ax)
a

), and then, using subadditivity
and part (i) of Lemma 5.1, to the whole Rd .

• The limiting shape B is then identified by B = {x ∈ Rd : µ(x) ≤ 1} [note that B

is convex since the subadditivity property µ(x +y) ≤ µ(x)+µ(y) is preserved;
however, B need not be symmetric, since generally µ(x) need not be equal to
µ(−x)].

• To complete the proof (for B0
n), cover B and a sufficiently large annulus of B

by balls of radius δ′, where δ′ is sufficiently small, and then use part (i) of
Lemma 5.1.

To complete the proof of Theorem 1.10 (for dimension d ≥ 2), we recall the
relation B̃x

n ⊂ B̄x
n ⊂ Bx

n , so all we need to prove is that for any ε > 0, (1 − ε)B ⊂
F(B̃0

n) for all n large enough. This follows easily from part (ii) of Lemma 5.1 and
the corresponding shape result for B0

n .

5.2. Case d = 1. As noticed in the beginning of Section 5, here we cannot
guarantee that ET (0,1) < ∞ (although it may be so), so we need to develop a
different approach. On the other hand, still a number of the steps of the proof
for d = 1 will be quite analogous to the corresponding steps of the proof for d ≥ 2;
in such cases we will prefer to refer to the case d ≥ 2 rather than writing down a
similar argument once again.

The main idea of the proof of Theorem 1.10 in the case d = 1 is the fol-
lowing. From the proofs of Theorems 1.8 and 1.9 we saw that, while usually
Pω[T (0,1) > n] is well behaved [and, in particular, EωT (0,1) < ∞], there are
some “exceptional” environments that may cause ET (0,1) = ∞ in dimension 1
(see Example 5). So, if the environment is “atypical,” instead of starting with one
particle, we start with a number of particles depending on the environment (and
the more atypical is the environment, the larger is that number).

For the sake of simplicity, we suppose now that the maximal jump L0 is equal
to 1; afterward we explain how to deal with general L0.

Keeping the notation Sω from the proof of Theorem 1.8, we note that the set Sω

has positive density in Z, so there exists (small enough) γ1 such that an interval
of length k contains at least γ1k good seeds from Sω with P-probability at least
1 − e−C1k . Let us say that an interval is nice, if (k being its length) it contains at
least γ1k good seeds from Sω.

Fix r < C1 (e.g., r := C1/2) and define

hx(ω) = min{m : all the intervals of length k ≥ m

intersecting with x + [−erk, erk] are nice};
with this choice of r it is elementary to obtain that there exists C2 > 0 such that

P[h0(ω) = n] ≤ e−C2n.(53)
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Now, suppose that, instead of starting with one particle, the process starts with
eKh0(ω) particles in 0, where K is a (large) constant to be chosen later. For � ≥ 1,
define

T̃ (0, �) = min
{
n ≥ 0 :η0

n(�) ≥ eKh�(ω)},
that is, T̃ (0, �) is the first moment when we have at least eKh�(ω) particles in �.
Now, our goal is to prove that if K is large enough, then ET̃ (0,1) < ∞. Denote
Z = h0(ω) ∨ h1(ω), and write

ET̃ (0,1) = EEωT̃ (0,1)
(54)

≤
∞∑

m=1

(
sup

ω : Z=m

EωT̃ (0,1)

)
P[Z = m].

Let us obtain an upper bound on the supremum in the right-hand side of (54).
Fix m ≥ 1 and let us consider an environment ω such that Z = m [so that
h0(ω) ≤ m]. First, we prove the estimate (55) below, in the following way:

(i) Consider the time interval [0, θ0m], where θ0 = K

2 ln ε−1
0

. Each particle that

is initially in the origin (even if it does not generate new offspring) will cover the
box [0, θ0m] ⊂ Z by time θ0m (simply by going always one unit to the right),
with probability at least ε

θ0m
0 (ε0 is from Condition UE). Recall that initially we

had eKh0(ω) particles in 0; since K > θ0 ln ε−1
0 , there exists C3 such that, with

probability at least 1 − e−C3m all the sites of the box [0, θ0m] will be visited by
time θ0m.

(ii) By definition of the quantity h0(ω), the box [0, θ0m] contains at least
θ0γ1m good seeds from Sω (here we suppose that θ0 > 1, i.e., K > 2 ln ε−1

0 ). Since
all of them were visited, there will be an explosion in at least one of these seeds
with probability at least 1 − e−C4θ0m.

(iii) Now, we only have to wait C5m (where C5 is a [large] constant depending
on K) time units more to be able to guarantee that at least eKh1(ω) particles will
simultaneously be in the site 1 at some moment from the time interval [θ0m,θ0m+
C5m] (to see that, use an argument of the type “if the number of visits to the site 1
during the time interval of length n1 was at least n2, then at some moment at least
n2/n1 particles were simultaneously in that site”). So, finally one can obtain that
there exist C6, θ1 (depending on K) such that

Pω[T̃ (0,1) > C6m] < e−θ1m,(55)

and the crucial point is that θ1 can be made arbitrarily large by enlarging K . So,
choose K in such a way that θ1 > 5 ln ε−1

0 .

Next, the goal is to obtain an upper estimate on Pω[T̃ (0,1) > n] which does not
depend on K . Specifically, we are going to prove that, for some positive constants
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C7,C8, we have, on {ω :h0(ω) ∨ h1(ω) = m} and for large enough m,

Pω[T̃ (0,1) > n] ≤ e−C7n
C8(56)

for all n ≥ e5m ln ε−1
0 .

REMARK. To obtain the estimate (56), we will use only one initial particle
in 0; so, the same estimate will be valid for T (0,1), thus giving us the proof of
Proposition 1.7.

Now, to prove (56), we proceed in the following way.

(i) Consider one particle starting from the origin. During any time interval of
length lnn

5 ln ε−1
0

it will cover a space interval of the same length (by going to the right

on each step) with probability at least

ε
(lnn)/(5 ln ε−1

0 )

0 = n−1/5

(note that there is a similar argument in the proof of Theorem 1.8 for the case
d = 1). So, in time n1/4 a single particle will cover an interval of that length with
probability at least 1 − e−C9n

1/20
(note that these estimates do not depend on ω).

(ii) Abbreviate r ′ = r

5 ln ε−1
0

[r is from the definition of hx(ω)]. If n ≥ e5m ln ε−1
0 ,

then all the intervals of length lnn

5 ln ε−1
0

intersecting with the interval [−nr ′
, nr ′ ] are

nice (so, in particular, they contain at least one good seed from Sω) on {ω :h0(ω)∨
h1(ω) = m}.

(iii) Consider the time interval [0, n1/2]. One of the following two alternatives
will happen:

(iii.a) Either some of the particles from the cloud of the offspring of the initial
particle will go out of the interval [−nr ′

, nr ′ ], or
(iii.b) all the offspring of the initial particle will stay in the interval [−nr ′

, nr ′ ]
up to time n1/2.

In the case (iii.a), at least γ1n
r ′

good seeds from Sω will be visited. In the case
(iii.b), argue as follows: we have n1/4 time subintervals of length n1/4; during each
one a good seed will be visited with overwhelming probability. So, with probability
greater than 1 − n1/4e−C9n

1/20
the number of visits to good seeds will be at least

n1/4 (and all of these good seeds are in the interval [−n1/2, n1/2]).
(iv) Thus, in any case, by time n1/2 there will be a polynomial number of visits

to good seeds. So, with overwhelming probability one of them will explode and
produce enough particles to guarantee that there are at least eC10n particles which
were created at distance no more than n1/2 from 0 before time n/2. Then, it is
elementary to obtain that, with overwhelming probability, we will have at least
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eC11n particles in site 1, for some C11 > 0. Since n ≥ e5m ln ε−1
0 , this will be enough

to make the event {T̃ (0,1) ≤ n} occur when C11e
5m ln ε−1

0 > Km, and the last in-
equality holds for all, except possibly finitely many, values of m.

Now, we finish the proof of the fact that ET̃ (0,1) < ∞. Write

EωT̃ (0,1) =
∞∑

n=0

Pω[T̃ (0,1) > n],

and use (56) to bound Pω[T̃ (0,1) > n] for n ≥ e5m ln ε−1
0 , and (55) for n ∈

[C6m,e5m ln ε−1
0 ). Since θ1 > 5 ln ε−1

0 , we obtain that EωT̃ (0,1) < C12m + C13 on
{ω :h0(ω) ∨ h1(ω) = m} for m large enough, so using (54) and (53), we conclude
the proof of the fact that ET̃ (0,1) < ∞.

The rest of the proof (for L0 = 1) is straightforward. First, we define variables
T̃ (k,m), 1 ≤ k < m, repeating the construction of Section 2.3, with the following
modifications: the process initiating in k starts from eKhk(ω) particles, at the mo-
ment [with respect to vx,i(n)] T̃ (0, k) [instead of T (0, k)]. Then, it is elementary
to see that we still have the subadditivity relation T̃ (0,m) ≤ T̃ (0, k) + T̃ (k,m).
There is again a problem with the absence of the stationarity for the sequence
T̃ (0,1), T̃ (1,2), T̃ (2,3), . . .; this problem can be dealt with in exactly the same
way as in Section 5.1.

So, the above arguments show that T̃ (0,n)
n

converges to a limit as n → ∞, which
immediately implies the shape theorem in dimension 1 (we do not need the ana-
logue of Lemma 5.1 here) for the model starting with eKh0(ω) particles from 0.

We now complete the proof of Theorem 1.10 in the case d = 1 (and, for now,
L0 = 1): it is elementary to obtain that, for a recurrent branching random walk
in random environment starting with one particle, for P-almost all ω’s, at some
(random) time we will have at least eKh0(ω) particles in the origin. Now, it remains
only to erase all other particles and apply the above reasoning.

To treat the case of a general L0 ≥ 1, we apply the same reasoning as in the
proof of Theorem 1.8 for d = 1 [viz. instead of (ε, ρ)-good seeds, we consider
(ε, ρ,W)-good seeds with W = {0,1, . . . ,L0 − 1}, so that a particle cannot over-
jump W ].
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