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We investigate the evolution of barycenters of masses transported by
stochastic flows. The state spaces under consideration are smooth affine
manifolds with certain convexity structure. Under suitable conditions on
the flow and on the initial measure, the baryceritér} is shown to be a
semimartingale and is described by a stochastic differential equation. For the
hyperbolic space the barycenter of two independent Brownian particles is a
martingale and its conditional law converges to that of a Brownian motion
on the limiting geodesic. On the other hand for a large family of discrete
measures on suitable Cartan—Hadamard manifolds, the barycenter of the
measure carried by an unstable Brownian flow converges to the Busemann
barycenter of the limiting measure.

1. Introduction. We consider the motion of a mass moving according to the
law of a random flow. This can be used to model the motion of passive tracers
in a fluid, for example, the spread of oil spilled in an ocean. Such motion can be
assumed to obey a stochastic flow where particles at nearby points are correlated,
for example, isotropic flows as investigated in [22, 27] or a general semimartingale
flow as considered in [5]. The evolution of pollution clouds in the atmosphere
or a gas of independent particles, on the other hand, can be described as blocks
of masses moving according to the laws of independent stochastic flows. Here
we propose to study the dynamics of masses transported by stochastic flows by
investigating the motion of their centers of mass. As the medium in which the
liquid travels is not necessarily homogeneous or flat, it makes sense to work on a
nonlinear space, for example, on a manifold diffeomorphik’tdut with different
geometric structure. All measures considered here are normalized to have mass 1.

The center of mass for a measure BA is the minimizer of the square
distance function averaged with respect to the measure. This definition is used
to define martingales oR”. The same minimizing problem can be considered
on Riemannian manifolds. Although the distanceLifis the traditional object
to minimize, we can also make sense of finding the minimizer of the distance
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function inL1. Busemann barycenters, for example, of measures on the boundaries
of hyperbolic spaces are minimizers of Busemann distance functioh.ifihe
Busemann barycenter was investigated for continuous measures for its application
in analysis (see, e.g., [3]), while we are interested in both discrete and continuous
measures. We shall relate the center of a mass pushed by a stochastic flow, in the
limit, to the Busemann barycenter of its limiting measure.

From the point of view of minimizing assumptions on the state space, we note
below that a center of mass can be defined using the concept of geodesics. For this
we only need a linear connection on a smooth manifold, and the paiz, V)
shall be called aaffine manifold Denote byy, the geodesic with initial velocity
u € TyM. Denote by expTM — M the exponential map exp = y, (1), if it
exists.

A pointx € M is anexponential barycentasf . if it is a solution to

(1.2) fM exg?ly,u(dy) =0.

In the sequel, by barycenter we always mean exponential barycenter. Note that
(1.1) always makes sense locally and therefore for measures with sufficiently small
support. However, to consider more general measures we are obliged to work on
convex manifolds. An affine manifol@V, V) is said to beconvexif for every pair

of pointsx, y € M there exists a unique geodesic, defined usingining x andy

and this geodesic depends smoothlyxcandy.

Main results. In Section 2 the existence and uniqueness of exponential
barycenters of a probability measure with compact support are established for
CSLCG manifolds. A CSLCG manifold is an affine manifold satisfying certain
convexity conditions. Furthermore, a stochastic differential equation governing the
motion of the barycenter is given.

To study the large time behavior of the barycenter, we first investigate the toy
model of the empirical measurne; = %Z?=15x; of n independent Brownian

particles(X!) on an hyperbolic spacH. Forn = 2 this is explicitly studied in
Section 3 and for > 3 this can be considered as a special case of the discussion
in Section 4 and can be proved analogously. For two particles, wiets large

the barycenter gets close to a Brownian motion of variarny@adh the geodesic

with asymptotic directionstl, and X2 , whereX’_ is the limit of X!. For more

than two particles, the barycenter converges to a unique point in the manifold.
This result seems to be surprising. However, it has a link to the elementary Steiner
problem of finding a point which minimizes the sum of its distances tpven
vertices: there is a unique minimizer if and only if the vertices do not all lie on
the same line. If we replace the usual distance in this problem by the Busemann
distance function and look for the point which minimizes the sum of the distances
to then given points on the boundary, we shall obtain the Busemann barycenter
of the empirical measure of the limiting points. The unique point the barycenter
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of u; converges to is this Busemann barycenter./=er2, the two limiting points
can be joined by a geodesic and every point on the geodesic is a minimizer for the
Busemann distance function.

In Section 4 the state space under consideration is a Cartan—Hadamard manifold
with pinched negative curvature on which the Brownian motions satisfy a law
of large numbers. In this case a Brownian fldy(y) converges almost surely
for every starting pointy to a process(y) on the visibility compactification
of M. Furthermore, under suitable conditions, the limiting process separates the
initial points and the uniforna(z) fluctuations for the Brownian motions vanish
in the limit. Thus the? minimizer of the distance function is the same asifie
minimizer, the Busemann barycenter, of the limiting measure on the boundary.
More precisely, supposgo has finite support and all the weights are smaller
than /2. Then the barycenter of, converges almost surely to a random variable
Z~ € M, the Busemann barycenter Bf,(110), characterized by

im | ¢(Zoo, F;())(0)dpu(y) =0,

t—o0 Jpm
where(p(z, ¥)(s), s > 0) is the unit speed geodesic connectingndy starting at
zandg(z, )(0) = 5ls=00(z, Y)(s).

Notation. Throughout the paper, a standard filtered probability sgecer,
(F1)r>0, P) is fixed. If (X;) is an M-valued continuous semimartingale aad
is a C! section of 7*M, we denote by/{(x(X,),8X,) and [§(a(X,),dV X,),
respectively, the Stratonovich and It integralsxadlong X. The second integral
requires a connectiolW on M. If X,(w) takes its values in the domain of a local
chart for anyr € [S(w), T (w)[ whereS andT are stopping times, then

r T CoL T e (X))
[ twn.ox) = [ aceyaxi+ g [CEEEE X0,
and
T \Y d j 1i j k
|, (. d¥x0 = [ anCrn@x; + 3Tl o dix!, x4.),

wherel‘i.k are the Christoffel symbols d¥. The It6 integral can be defined via
the Stratonovich integral as follows: ¢t ; : Tx,M — Tx, M be the stochastic
parallel transport alongX,) and letZ, = [} //a}SX, be the anti-development
of (X;), aTx,M-valued semimartingale. Then

t v t
/ (@(X,), dVX,) = f (@(Xy) 0 /fos, dZ5).
0 0

A semimartingalg X;) is called avV-martingaleif and only if, for every smooth
sectiona of T*M, [§(a(Xs),dVX,) is a local martingale. Equivalently the
stochastic anti-development @X;) by V is a local martingale. The reader may
consult [7-9] and [12] for general reference.
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2. Exponential barycenters of measurestransported by flows.

2.1. Preliminaries. If the geodesics determined by two linear connections are
the same, then the two connections differ by a tensor of ¢§p2). In particular,
given any connection, we can always subtract from it half of its tordioto
obtain a torsion-free connection with the same geodesics. Since convexity and
barycenters are determined by geodesics, we assumeévthsita torsion-free
connection. We do not impose the condition that our connection be metric with
respect to any Riemannian metric #A However, for calculations we shall fix an
auxiliary Riemannian metric oM with the corresponding Riemannian distance
function denoted by. In the sequel when the terrRfemannian manifolds used
it is considered as an affine manifold with respect to the Levi—Civita connection.
A smooth local diffeomorphism between two manifoltisand (M, V) induces
a connectionv on M. An affine map¢ between two affine manifoldeM, V)
and (M, V) is a smooth map such that for all smooth functiohsM — R,
Vd(f o ¢) = ¢*(Vdf). An affine map onM preserves geodesics. We shall
frequently use the following:

1. Apointx in M is a barycenter of. if and only if

2.1) H(x) = Hy,(x) = /wa,y)(omdy) ~0

for geodesicsy (x, y)(s):0 < s < 1) connectingr andy.

2. If z is the barycenter ot andG : M — N an affine map between two convex
affine manifolds, theiw (z) is the barycenter of the push forward measiife,)
by G.

3. For a smooth Riemannian manifold lgt be a probability measure oMW
such thatf(x) = [, dis(x, y) u(dy) is finite for some (hence for ally
in M. Then the exponential barycenters @fare the critical points of the
function f ([10], Proposition 3). Moreover, it is an exponential barycenter
of u andh is a convex function oM, then we have Jensen’s-type inequality
([10], Proposition 2)

2.2) hx) < th(y)u(dy)-

A convex manifoldM is diffeomorphic to an open set &", m = dim(M), and
there exists a neighborhodd of the null section irfi" M such that

(x,u)eUr> (x,exp.u)eM xM

is a diffeomorphism. Standard convex complete Riemannian manifolds include
Cartan—Hadamard manifolds (complete, simply connected manifolds with sec-
tional curvature less than or equal to 0). Examples of incomplete convex manifolds
are given by: small geodesic balls in Riemannian manifolds or small balls centered
at the origin in an exponential chart in an affine manifold. [Note that every point
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in a Riemannian manifold/ has a convex geodesic bdl} (x); in the case of a
sphere of radiug, a maximal convex set is given by an open half sphere, and its
convexity radius isrr/2.]

Recall that a functiog : M — R on an affine manifoldM, V) is convexf ¢ oy
is a convex function for all geodesigs that is, for all geodesicg/ (x, y)(¢),0 <
t < 1) connecting two different pointsandy,

(2.3) Py (x, (1) <tdp(x) + (1= 1) ().

For aC? function ¢, it is convex if and only if2 4.4 (y,) > 0, whereZ denotes
covariant differentiation with respect to

For the uniqueness of exponential barycenter we often use a convex function on
M x M which separates points. The definition below is partly borrowed from [9].

DEerFINITION 2.1. Consider an affine manifolM, V) and M x M with
product connection. A convex functigh: M x M — R vanishing exactly on
the diagonalA of M x M is called aseparating functioron M. Let p € 2N.
A manifold which carries a smooth separating functiosuch that

(2.4) cp? <¢ < Cp”

for some constants @ ¢ < C and some Riemannian distance functjpis called
amanifold withp-convex geometry

For Cartan—Hadamard manifolds, the Riemannian distance function is a
separating function. Note that the square of the distance function is also a
separating function and it is smooth. In more general Riemannian manifolds,
sufficiently small geodesic balls have 2-convex geometry. For instance, any
geodesic ball strictly smaller than an open hemispherephasnvex geometry
for somep depending on the radius, as proved by Kendall in [15], and any pointin
an affine manifold has a convex neighborhood with 2-convex geometry. However,
an affine manifold carrying a separating function is not necessarily convex. For
exampleR™ \ {0} is not convex even though the distance function is a separating
function. It is more difficult to find convex manifolds which do not carry separating
functions; see [16].

Let ¢ be aC? convex function with{¢ < 0} a relatively compact set. Then
any probability measurg. on M with support included in{¢ < 0} has an
exponential barycenter, see [10, 14]. AlsoMf is an affine manifold with a
bounded separating function, then any probability measur® dvas at most one
exponential barycenter [10, 14].

As a consequence: |8f be a convex manifold with convex geometry, and let
¢ be aC? separating function witkp1([0, a[) relatively compact il for some
fixedx € M and some: > 0 whereg, = ¢ (x, -) (which is not the case in general).
Then any measure supported on the ¢gt([0,a[) has a unique exponential
barycenter.

Observe that an open convex subset of a convex manifold wAtonvex
geometry is a manifold witlp-convex geometry.
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2.2. Existence and uniqueness.

DEFINITION 2.2. A convex affine manifoldM, V) is said to be CSLCG
(convex, with semilocal convex geometry) if every compact sulisef M has
a relatively compact convex neighborhoti@ which hasp-convex geometry for
somep € 2N depending orK .

Equivalently, a convex affine manifolgV, V) is CSLCG if there exists an
increasing sequencé#,),>1 of relatively compact open convex subsetabtuch
that M = {UJ,,~1 U, and for everyn > 1, U, has p-convex geometry for some
p € 2N depending om.

This definition is motivated by Propositions 2.4 and 2.7 which state that
any probability measure in a CSLCG manifold, of compact support, has a
unique barycenter and that in a certain sense, the exponential baryceptés of
differentiable as a function of.

Note p increases withK. Examples of CSLCG manifolds are open hemi-
spheres endowed with the Levi—Civita connection (which do not hagenvex
geometry for anyp € 2N; see [15]). Examples of geodesically complete CSLCG
Riemannian manifolds should be given by manifolds with a pole under curvature
conditions to be determined. We conjecture thaiMf, V) is a CSLCG manifold,
then(T M, V¢) is a CSLCG manifold, wher€¢ is the complete lift ofv. Note that
on every relatively compact convex subseffa#f one can construct a continuous
separating function: by [17], uniqueness of martingales with prescribed terminal
values implies the existence of such a separating function, and by [1], uniqueness
holds. So the conjecture concerns the smoothness of the separating function, and
the fact that it satisfies (2.4).

One can find in [16] an example of convex manifold which has not semilocal
convex geometry. In the manifold constructed there, there exists a probability
measure carried by three points, which possesses four exponential barycenters.
Clearly there is no convex neighborhood of these seven points in which we can
define a separating function.

LEMMA 2.3. Let (M,V) be a CSLCG manifoldEvery compact convex
subsetk of M has a convex neighborhootl with a nonnegativeC! convex
functiongx such thaip*({0}) = K.

PROOF Let U’ be an open convex relatively compact neighborhoodof
with p-convex geometry for some € 2N. Let ¢ be a smooth separating function
onU’ satisfyingcp? < ¢ < Cp? where O< ¢ < C, andp is the Euclidean distance
induced by a global chart, for example, an exponential chart. Defineddy’

(2.5) ¢k (x) =inf{p(y,x),y € K}.
Clearly¢>,}1({0}) = K, sincekK is compact.
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1. First we show thapg is convex onU’. Take(x1,x2) € U’ x U’. Let p(x;)
be points in the compact sé& achieving the minimumex (x;) = ¢ (p(x;), x;),
i =1, 2. Sinceg is convex, for every € [0, 1],

o(v (p(x1), p(x2)) (1), ¥ (x1, x2) (1)) < (1 — )P (p(x1), x1) + 19 (p(x2), Xx2).
On the other hand, by the definition @, we have since (p(x1), p(x2))(t) € K

ok (v (x1, x2) (1)) < ¢(v (p(x1), p(x2)) (1), ¥ (x1, x2)(1)).
Putting these equations together we obtain

¢k (v (x1, x2) (1)) < (1= )k (x1) + ¢k (x2),

which proves the convexity afx .
2. Nextwe show thapg is C1 on some convex neighborhodtlof K included
in U’. We first prove that there exists a neighborh@bd: U’ of K on which there
is a unigue poinp(x) such thatp g (x) = ¢ (p(x), x).
Suppose for € U’ andyo, y1 € K, ¢ (x) = ¢(yo, x) = ¢ (y1, x). Sety(r) =
v (yo, y1)(#). Then necessarily, for everye [0, 1], ¢ (y(2), x) = ¢px (x).
By the Hadamard lemma (see, e.g., [4], Corollaire 3.1.9 and Exercice 3.1.10)
we can write in the global chart

m

p . .
d.x0)= > ai.i, @[]0 —xY)

i1yeeip=1 j=1
+ Y bipiy . 0) [JOY —x1),
i1,0ipr1=1 j=1

wherea;, ;, andb,-lm,-p+l are smooth functions.
Write f(r) = ¢(y(¢), x). It is a constant function. On the other hand, we can
differentiatep times the functionf with the expression ap in the chart. Using

V@ ==Y Thoy oy,

Jjk=1

Wherel“i.k are the Christoffel symbols 67 in the chart, we see that'?) is of the
following format:

m

p .
fP0= 3 a0 +g06@). 3@, x),

i1,..,0p=1 j=1

where g is a smooth function. Sinc&’ is a relatively compact convex open
neighborhood ok, we see by the Hadamard lemma and explicit calculation that

lg(y, 2, ) < Clly —xlllzll”
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for some positive constaxt’. Now sincecp?” < ¢, we have for every € R™

m

p
> ai.i,®) [ =clzl”.

i1,..,0p=1 j=1

We choosel of the formU = {x’ € U’, ¢k (x') < &}, with ¢ €10, cPT1/(C")?[,
such thatl is convex and relatively compact i’'. Consequently fox € U and
y GK, “y_x”p §¢(xsy)/058/c and

FP@) = clyN” —Clly@) — x| - 1y@11”
> (c— (e/OYPC)IyIP  VYiel0,1],

where ¢ — (¢/¢)YPC’ > 0. But f is constant, so we have(r) = 0 and
consequentlyg = y1.

3. Forx e U, we letp(x) be the point inkK such thatg (x) = ¢ (p(x), x). We
prove thatp is continuous orU. If not, let (x,),en be a convergent sequence in
U with limit x such thatp(x,) does not converge tp(x). Sincek is compact, by
choosing a subsequence if necessary, we can asgime— y € K \ {p(x)}. By
the continuity ofg, ¢k (x,) = ¢ (p(xn), x») — ¢ (v, x). On the other hand, since
¢k is convex on the open s#t, it is continuous (see, e.g., [11], Proposition 1) and
so limgg (x,) = ¢k (x). Consequentlyy (v, x) = ¢k (x) and by the uniqueness
given in (2) we obtairy = p(x), a contradiction. So the magpis continuous.

4. We are left to prove thatg is C1. Denote byd, ¢k the Gateaux-differential
of ¢. Recall that for every € U andv € Ty M,

¢k (EXprv) — ¢k (x)
t
and thatd, ¢k (x) is convex onf, M (again by [11], Proposition 1). Lete U and
ve T, M. If t > 0is sufficiently small, we have
Pk (EXP1Y) — ¢k (x) < B(p(x), exptv) — ¢(p(x), x)
which yields

dypx () (v) = im

dgpg (x)(V) < dp(x)(x)(v),

¢, denoting the mapp(y,-). Since dg,)(x) is linear, this inequality im-
plies dgpg (x) = dppr)(x) on T, M. Otherwise we would have,¢x (x)(v) <
dépx)(x)(v) for somev e T, M, which would give by convexity of, ¢« (x)

depk (xX)(—V) = —dgpg (x)(V) > —dpp(x) () (V) =dp(x) (x) (=),

a contradiction. Sdy¢x (x) = d¢,(x)(x) on T M. The differentiability ofpx then
easily comes from the inequalities, for ale T, M sufficiently close to 0,

0 < ¢k (expv) — ¢px (x) — dPp(x) (x) (V)
=< ¢p(x) (expv) — ¢p(x) (x) — d¢p(x) (x)(v).
Thatgy is C* comes from the continuity gf. [
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PROPOSITION2.4. Let M be a CSLCG manifoldEvery probability mea-
sureu on M with compact support has a unique exponential barycenter

PROOFE The proof is a slight modification of that of Proposition 5 in [10]. For
uniqueness let andx’ be two exponential barycenters of SetK = suppu) U
{x,x}. Let ¢ be a separating function defined on a convex relatively compact
neighborhood ofK. Writing v the measure: pushed forward by — (v, y),

(x, x") is an exponential barycenter of so

1 1 1
pP(x,x") < =p(x,x) < —/¢(y,y’)dv(y,y/)= —/¢(y,y)du(y)=0
C C C

giving x = x’.

For the existence let be a convex compact subsetMdfcontaining the support
of u (we know that this exists in a CSLCG manifold). By Lemma 2.3 there
exists aC! convex nonnegative functiapy defined on a relatively compact open
neighborhood’ of K, such that 1 ({0}) = K. Lets > 0 satisfyp ([0, ) C U.
We apply [10], Proposition 5, to the functiapgy — ¢/2 to see thatu has an
exponential barycenter m,;l([o, ¢/2[) (note [10], Proposition 5 is still valid with
a C! convex function instead of @ convex function). [

2.3. Mass moved by a smooth vector fieldet (M, V) be a smooth convex
affine manifold withV torsion free. As before, fat, y in M let (y (x, y)(s),0 <
s < 1) be the geodesic, with respect¥ with end pointst andy. The geodesic
y (x, y) shall be abbreviated aswhere there is no risk of confusion. Set

J(u,v)(s) = T(y(-, ')(s))(u, V), ueTyM, veTyM, s €R,

whereTy (s)(u, v) denotes the derivative 9f(s) in the direction of(u, v). The
map (J(u,v)(s),0 < s < 1) is the Jacobi field satisfying boundary condition
J(u,v)(0) = u and J (u, v)(1) = v. Write J(u, v)(s) = (VayasJ (u,v))(s). For
everyx, y € M, we define the linear map

(2.6) Yy  TeM — T M, u > J(u,0y)(0),

where Q is the zero tangent vector iR, M.

On TM one can define a connectiorf, called the complete lift oV (see,
e.g., [26]). It is a torsion-free connection sin8eis, so it is characterized by
its geodesics, which are the Jacobi fields of the connectioThe canonical
projection 7 :(TM, V) — (M,V) is affine. We easily see thatT M, V°)
is convex if (M,V) is and the only geodesic joining and v in TM is
(J(u,v)(s),0<s <1).Given aCl vector fieldA, consider the mag:M — TM.
Itinduces a measur&() onTM. A pointv € T M is a barycenter of a measure
A(w) if and only if 7 (v) is a barycenter oft and

(2.7) /M J (v, A(x))(0)dp(x) =0.
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A measureu is differentiable along a vector field if its pushed forward
measures; (1) is weakly differentiable in, where forx € M, S;(x) is the integral
curve of A starting fromx. The following lemma asserts that the map-> b(uw),
b(u) the barycenter oft, is a differentiable map in the above sense.

PROPOSITION2.5. SupposdM, V) is a CSLCG manifoldFori =1, ..., n,
let 1/ be a probability measure oW with compact suppork , let A’ be a smooth
¢! vector field and let S/ (x),0 < ¢ < 7) be its integral curve starting from.
For p; > Owith 37, p; = 1, setu, = 314 p; Si(u'). If z(¢) is the exponential
barycenter ofu,:

(@) thenz(—) is differentiable at = 0 and z(0) is the exponential barycenter
of > 4 piA'(n') with respect to the complete I§t¢ of V;
(b) there isCx > 0 depending only oK and the arbitrary metric such that

10|l < Ck sup A (x)]|.
xekK
1<i<n

PROOF Let M’ be a convex relatively compact open neighborhoodkof
with p-convex geometry jf € 2N). Let ¢ be a smooth separating function
on M’ satisfyingcp? < ¢ < Cp? where p is a Riemannian distance function,
0 < ¢ < C.Fort < t the barycentet(r) exists and by the definition of barycenters,
(z(0), z(¢)) is the exponential barycenter d7_; p; (S5, S1) (') with respect to
the product connection. ' _ _

_ Alpply (2.2) to seep(z(0), 2(1)) < X1y pi [x (Sh(x), S} (x))dpu’ (x), which
implies

S|

1/p
p(2(0), z(1)) < [ ¢(2(0), Z(f))]

Cc\Yp[ - S\
(2.8) S(;) (;pi/K,Op(S(’)(x),S,’(x))d,ul(x))

c\Y/p )
< <—> t sup sup |A'(S)(x))
c ie{l,....,n} xekK

O<r<t

’

where|| - || is the Riemannian metric correspondingdoSince all Riemannian
metrics onM’ are comparable,

1
”; exp g, z(r)H < ?p(z(o), 2(1))
(2.9)

c\Y/p o
< co(—> sup sup |A'(SL(x))],
c ie{l,...,.n} xekK

O<r<t
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some constanty and so the family% expz_(é) z(¢), t < 1} is bounded and thus has
a limit pomt WhICh shall be denoted by Let#;, be a sequence going to 0 such that
liMis oo = o eXpy (0) z(t) = u. Eachgz,, satisfies

dm—z:ﬂf (2(t0). SE(1))(0) dpr! (x)

and the covariant derivative ¢f(z(z), S; (x))(0) along the subsequengesatisfies
D
diy,
Integrate the identity ove¥! and use the dominated convergence theorem to see

y (2(), 81,(x))(0) = J (u, A’ (x))(0).

tk—>0

0.0 = me (1, AT () (0) dpa’ (x)

which together with
0.0 = Zm/ (2(0). x)(0) dpt’ (x)

shows that is an exponential barycenter pf?_, p; A’ (u') with respect tove.
Letw :TM — M be the canonical projection. To prove the uniqueness consider
the map

. 1
T®P¢:TM' — R, v lim = (7 (v), exprv),
t—0t tP

which is V¢-convex andl'®” ¢ (v) < C||v||?. Furthermore the map
0, V) > T®Pp (W —v)

is convex onE = {(v,v) e TM' x TM', =(v) = = (v')} for the connection
V¢ ® V¢ (note E is a totally geodesic submanifold), and vanishes exactly on the
diagonal ofT M’ x T M’. See [1] for the proof and details.

Let ’ be another exponential barycenter 4fu.) with respect tov¢. Since
w has a unique barycenter and is affine, 7(u’) = w(u). So it makes sense
to estimateT®P¢u’ — u). Setv = Y1 | p; (A, AD)(u'). Then (u,u’) is an
exponential barycenter for, so

T®P¢(u—u') < / T®P¢ (v —v)dv(v,v)

——Ejpl/ TP (Al (x) — Al (x)) sl (x) = 0.

This implies thatu = «’, which in turn implies that the fam|I>3L exp, g, z(1) has
only one limit point asx goes to 0 and so it converges ito Thu3t — z(t) IS
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differentiable at = 0 with derivative the exponential barycenteof_, p; A’ (1)
with respect tov¢. Finally, using (2.8) and (2.9), lettinggo to O, invoking the
compactness ok and the continuity of*, we get
, c\Y/p
50 <Cx sup JAT)]  whereCyx =cof ) -
i€{l,...n} c
xek O

The mapy, , defined in (2.6) is not invertible in general, as can be seen with
two pointsx and y at a distancer/2 in a hemisphere. However, we have the
following:

LEMMA 2.6. LetM be a CSLCG manifoldet K ¢ M be a compact set and
let p be a Riemannian metric aif. Then there exists a constafif, > 0 such that
for any probability measure in M with support included ink, letting z be the
exponential barycenter @f, the linear map orf, M.

urs [ Vi@ duto)

is invertible with inverse bounded lgyj, (with respect to the metrip).

PROOF SinceM is convex, the map — J(0,, v)(0) from T, M to T, M is
injective and so is surjective. Its inversei (x, -) is well defined. For eacine T, M
fixed, A(-, u) is the vector field inM characterized by (0,, A(x, u))(0) = —u.
Let b(u) € T.M be the exponential barycenter afu)(n) (by Proposition 2.5, it
is well defined). By (2.7)

0= fM J(b(u), A(x,u))(O)u(dx)

:/ J (b(u), 0)(0)ie(dx) +/ J(0, A(x, u))(0)pu(dx).
M M
By the definitiony(; ., (v) = J (v, 0,)(0) for v € T, M,

([ vem©dut)) @) == [ 0. At w)@ due) =u.
We have sup.g [|A(x,u)|| < C|lu] for some constanC since K is compact.
Apply Proposition 2.5 to see
(2.10) Ib@)]l < Ck supllA(x, u)|| < CkCllul.

xekK

Thus [, ¥z, (-) di(x) is invertible with inverse satisfying

1
H( / wz,x)(-)du(x)) (w)
M

As a direct consequence of Lemma 2.6 and its proof, we make more precise the
result of Proposition 2.5 and give an expressionz{oy.

<|b@)ll <Cklull  forC;=CCk.



BARYCENTERS OF MEASURES 1521

PrROPOSITION2.7. Assume&M, V) is a CSLCG manifold with the connec-
tion V torsion free Forn > 1andi =1, ..., n, let p; be positive numbers satisfy-
ing >_" 1 pi =1and letyu’ be probability measures oM with compact support
Let

S1(-) 1[0, oo x suppu') > M

be a map of clas€* -9 for somek > 1 [i.e., C¥ in r with derivatives up to ordek
with respect tar continuous in(z, x)]. Then the exponential barycente(t) of
we =y r_q piS;(n') exists and is uniqué-urthermore

(i) t— z(r) is CK;

(ii) the barycenter(r) is characterized by the identity

;Pi -/M J(Z(l‘), Osj(x))(o) dpbi(x) = — Zpi /M j(oz(t), S;(X))(O) dui(x)

i=1
whereQ, is the zero vector i, M;
(iii) z(r) solves the ordinary differential equation

d=- ;pi /M (]Z:lpj /M Vos! W (x))

x J (0.0, S (1)) (@) dpt’ (),
whereyr is defined by2.6).

(2.11)

Taking ' to be Dirac distributions, we get from Proposition 2.7 the following:

ProPOSITION2.8. If (M,V) is a CSLCG manifold with the connectidn
torsion free letn > 1 and p = (p1, ..., py) be ann-tuple of positive numbers
satisfyingd_7_; p; = 1. Then the mag, defined by

n
Gp:M"—> M, (xl,...,xn)Hb(Zpiéxi),
i=1

is smooth with derivative

—1
n n
TGp(ul,---aun)=_Zpi<ZPjW(G(xl ..... x,,),xj)) J(0G (xy....x,)» i) (0),

i=1 j=1
where(uy, ..., u,) € Ty M x - x Ty, M.

PROOF  Just note ifS (x;) = exp(tu’), thenz(0) = TG, (ut, ..., u"). O

We want to generalize Proposition 2.7 to the case where for evetlye
flow is a semimartingale. We begin with a simple case, which is an immediate
corollary of Proposition 2.8 sincg, as a smooth function of semimartingales is a
semimartingale and stochastic calculus applies.
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PROPOSITION 2.9. Let (M,V) be a CSLCG manifoldLet n > 1, p =
(p1,---, pn) be ann-tuple of positive numbers satisfying;_; p; = 1, x1...x,
ben points of M and uo = >_'_; pidy,. For everyi, let X! be a semimartingale
started aty;. Then the exponential barycent&f of > ; pﬂSX;- is a semimartin-
gale and satisfies

(SZ’:_X;pl(X:lplw(Z[,X{)) J(OZ[,SX[/)(O)
= =
If X! = F,(x') whereF,(x) is a semimartingale flovthen
1
5ze=— [ ([ vizmodno)) J (07, 5E) O dpa(y)

When g is carried by two points we do not need to assume that the manifold
has locally convex geometry: convexity is sufficientulf = %(&CO +8y0)y Xt =
F;(x0), Y; = F;(yo) for a stochastic flowF;, thenZ; is a semimartingale and

(2.12) 82, = —(V(z,.x) + Vz.v)) T(J(0z,.8X,)(0) + J 0z, 8Y,)(0)).

2.4. Mass pushed by a random flowNext we consider the case wheFeis
a local semimartingale flow of homeomorphisms (which we abbreviate as semi-
martingale flow). Following Kunita ([18], Section 4.7) with small modifications,
see also [20, 21], let(z, x, y, ) be a predictable process with values in the tensor
product”.M ® T,M, letb(z, x, w) be a predictable process with valueslin\/
and letA; be a continuous adapted real-valued increasing process. We say that
F;(x) is a semimartingale flow with characteristic(z, x, y, w), b(t, x, w), A,) if

dF(x) @ dF;(y) =a(t, F;(x), F;(y))dA;,  Vx,yeM,
and the drift ofF; (x) is b(z, F;(x)) dA;, that is, for every 1-forna € T*M,

/(a(F,(x)), dV Fi(x) — b(t, Fi(x))dA,)

is a local martingale.

PrOPOSITION2.10. Let (M, V) be a CSLCG manifold witl¥ torsion free
and let g be a probability measure with compact suppadkssumerF;(x) is a
semimartingale flow with characteristi@:(z, x, y, w), b(¢, x, w), A;), such that
a(t, —, —, w) andb(t, —, w) are C with derivatives as. locally uniformly bounded
in time and spaceThen the exponential barycent&y of u, exists and is unique
Furthermore

(i) the processZ; is a semimartingale of0, t[, wheret is an almost surely
positive random explosion time
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(i) the barycentefZ; is characterized by the identity

fM J (821,05, () (0) dpo(x) = — /M J(0z,, 5F,(x))(0) dpeo(x):

(iii) Z; solves the stochastic differential equation
-1
@13) 82 =~ [ ([ Vizrduo)) (07, 8F,)©duo(r)

REMARK 2.11. The assumptions on the semimartingale flow can be weak-
ened. We can assume, instead, that, x, v, ), b(¢, x, w), A;) belongs to the
classB%! in the sense of [18], adapted to a manifold.

PROOF OF PROPOSITION 2.10. Fix an arbitrary Riemannian distange
on M. For simplicity we choose andb bounded (by [18], remark on page 85,
this amounts to changingi;). Using a change of time, we may assume that ¢.
With the assumptions on the local characteristics of the #ipv), we can choose
a version of F;(x) jointly continuous in(z, x). Let (U,),>1 be an increasing
sequence of relatively compact convex open subsetd aontaining supfo)
and such thatJ, U, = M. Define

1, = inf{t > 0, F;(x) ¢ U, for somex € supfo)}.

Then since the ma@, x) — F;(x) is almost surely continuous apg has compact
support,z, is an increasing sequence of stopping times converging to the explosion
time 7, which is almost surely positive.

The map(z, y) — F;(y)(w) is almost surely uniformly continuous df, R] x
suppo) for every R > 0 smaller thanr. As a consequence, the barycenfgr
of u, is defined or0, t[, and is continuous and adapted.

We shall show thatZ, is a semimartingale and is given precisely by the
eqguations in parts (i) and (iii) up to each timg. Letting n tend to infinity will
prove that the conclusion of the proposition holds.

For the local result we begin with the following lemma which can be considered
as an extension of Lemma 2.6.

LEMMA 2.12. Let U be a relatively compact convex open subsetddf
containingsupp(o) and

y =inf{t > 0, F;(x) ¢ U for somex € suppito)}.
There existgs > 0 such that ift <ty andp(z, Z;(w)) < ¢, then
f V(2. Fr(x)) dio(x)
M

is invertible with inverse bounded by a constant depending only.on
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PROOF  Consider the sefl/)’ of probabilities on/, endowed with the weak
topology. It is a metrizable space. Sindds compact, the map

(2. 1) > fM Vi die(x)

is continuous onU x (U)’ for the product topology. Furthermore, the map
from (U) to M sendingu to its exponential barycentei() is continuous by
Skorokhod theorem: ifi;, converges tqe, there is a sequence of random variables
X and a random variabl& with values inU such that the law ok} is u, the
law of X is i and X converges almost surely 8. SinceU is compactp (Xx, X)
converges to 0 irL.? for every p € 2N. On the other handiz(x), z(1)) is the
exponential barycenter of the law 6Xy, X) andU is p-convex forp sufficiently
large. So

p(z(ui), 2(w) < Cllp(Xi, X) I p

which implies thatz(ui) converges toz(i). This proves thatu — z(w) is
continuous onU)’.

Next recall that for every. € (U, [3; Yz(w).x) di(x) is invertible. The image
of the compact setU)’ by the continuous map St Uiz (u.x) d(x) (Wer.t.
the weak topology) is compact. This implies the existence of a neighborhood of
the graph ofu — z(u) of the form {(u, z) € (U) x U), p(z,z(n)) < ¢} for
somee > 0, on which,, ¥ x) du(x) is invertible with inverse in a compact set
depending only o/ . This proves the lemma.[]

We continue with the proof of the proposition. For relatively compactggt
let &, be the constant defined by Lemma 2.12 and set

Tn1 =1, Ainf {t >0, p(Zo, Zy) > %"}

For every; € U, with p(Zo, z) < &,/4 we define &, M -valued stochastic process:

t -1
Glt) = — /O /M ( /M Ve roon) dMo(X)) J (02, 8F, (1) (0) dpo(y),

O<t<TL

Clearly G(z, t) is a semimartingale for eachwith bounded local characteristics
depending smoothly on the spatial parametésee, e.g., [27], Theorem (3.3)). So
one can solve the equation

(2.14) 8Z,=G(Z,,81),  ZH=Zo.

Its solutionZ; exists and is a semimartingale up to time

n

T!:=T! Ainf {t >0, p(Z;,Z;) > Z}-
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We only need to show that, = Z,, the exponential barycenter f (o), that is,
(2.15) [M Y(Z}, Fi(0))(0) dpto(x) = 0.

The equality holds for = 0. The proces¥ (Z;, F;(x))(0) is a semimartingale
with continuous spatial parameter and local characteristics uniformly bounded
on (x,t) € suppguo) x [0, 7,[ and so using [27], Theorem (3.3), we see that
integration ovetM commutes with covariant Stratonovich differentiatibpin ¢:

(2.16) D, /M V(Z1, Fi(x))(0)dpo(x) = /M Dyy(Zy, F(x))(0) dpio(x).
More precisely, (2.16) is equivalent to: writing(x) = y(Z;, F;(x))(0),

[ <p*<a>, ([ Vs(X)duo(X)>> -1 ([ @), V() ) ditor).

for every 0<t < T, and every sectio of T*M. Herep:TTM — TM is the
map induced by the connection which to an elemerit B associates its vertical
part.

Now since the connection is torsion free and sipcis smooth,D, -2 75 = ds5t

where% denotes covariant differentiation in Consequently, we have 66, 7, [,
| D (Z;. Fi) @ daot)
= [ 2571, Fi () O do(a)
/ 8Zt, §F;(x))(0)dpo(x)
= [ 962].07,)) 0 + (07, 8F,(0) @ dpio(x)

= ([, ¥ ran©di )62+ [ 7(07,.5,0)© dnoto.
Plugging the expression (2.14) f8Z; in the last formula yields
2.17) D /M 7 (2}, Fi(0))(0) dpto(x) = 0.
Together withZj = Zo we see that for € [0, T,,[,
(2.18) [ 921, )@ dpot) = 0.

ConsequentlyZ; is the exponential barycenter @ (uo) up to time7,. This
implies that7 = T,
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On the se{T;! < 7,} we replace time 0 by tim&? and timeT,! by
. &
T?:=1, Ainf {t > Tl p(Zg1,2,) = Z”}

to prove the requested property up to tiﬂ(;,% With the same procedure we define

a sequence of stopping timeﬁ,{‘)kzl converging almost surely tg,, such that

Proposition 2.10 is true of®, Tn"[. Consequently it is true of0, 7,[ as requested.
O

2.5. The hyperbolic space example.et M be a Riemannian manifold and let
V be the Levi-Civita connection. Assume thit is convex for the Levi—Civita
connection. Denote by (x, y) the distance function betweenand y which is
abbreviated apg where there is no risk of confusion. For any two pointg y and
y = y(x, y) the geodesic connecting them, a veaiar 7, M has an orthogonal
decomposition: = u’ + u" whereu® is in the direction ofy (0). We may also
useut™» andu¥*¥) when the points concerned need to be clarified. Denote
by //x,y:TxM — T,M the parallel transport along the geodesicx, y). Set
Ei(x,y)(s) = (//x,y(s)) Ei (x, ¥)(0) for some tangent vectots; (x, y)(0) on T, M
such that(E1(x, y)(0), ..., E,(x,y)(0)) is an orthonormal frame of, M. We
shall fix E1(x, y)(0) = H;E—gill so that

eXB(xy))
Py (x, ¥)(s),y)
SinceM is convex we can assume that thg(x, y)’s are chosen to be smooth in
x andy in a neighborhood of somgyg, yo) off diagonal.
Denote byH™ the hyperbolic space of dimensienand byG :H” x H" —
H™ the smooth map which sends, y) to the center of the geodesic segment
[x,y]:G(x,y) = exp, (5 exp; 1y).

E1(x,y)(s) = s €0, 1.

LEMMA 2.13. The mapG:H™ x H™ — H™ is harmonic

PROOF We need to prove that WdG = 0. We do it with a symmetry
argument. Observe thét(x, y) = G(y, x) for all x, y. We have
(2.19) trvdG(x,y) =trvdG(y, x).

On the other hand, the symmetpy , in H" with centerG(x, y) is an isometry
which exchanges andy. So

trvdG(y,x) =trVdG(¢x,y(x), ¢x,y ()
= (¢x,y)xrVdG(x,y) = —trvdG(x, y).
The identities (2.19) and (2.20) lead toMG(y,x) =0. O

(2.20)
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PROPOSITION 2.14. For xg,yo € H™ set ug = %(% + 8,,). Consider
two independent Brownian motior’s; and Y; with initial points xo and ypg,
respectivelySetp, = p(X;, Y;) and define a measuye, by u,(A) = %((SX[ (A) +
8y,(A)). ThenZ, is a martingale inM. It satisfies the Itd equation

1 1
V2= S (//x.2,4" X)" + 5 (//v,.2,d"¥)"

e — avx N avy, N ,
+ ZCoshpt/Z)((//X”Z’ )"+ (//v.2.d X))
whereu = u® + u™ with u’ tangential (resp »" orthogonal) to the geodesic
y (X;, Y;). Furthermore we have locally

dvz, = iEl(z,, X)dwr+ 1 i Ei(Z:, X;)dW!
V2 V2costip:/2) (5

for W/ independent real-valued Brownian motions

PrRoOE We haveZ, = G(X;, Y;), whereG is smooth and harmonic. Conse-
quently, sinceX, Y) is a Brownian motion irHl” x H™, Z, is a martingale irH"™.
We first look for a Stratonovich equation fdy. All Jacobi fields along (x, y) can
be written as:J(s) = (a® + bls)E1(s) + Y7 [coshsp)a’ + sinh(sp)b'1E; (s),
wherea;,b; € R and p = p(x, y). In particular foru € T,H", v € T,H" and
J (u, v) the Jacobi fields along the geodegic:, y) with boundary values andv,
one has

J @, v)(s) = (@ = 5) + sv ) Ex(s)

+>° <(cosr(sp) — sinh(sp) cothp)u’ + mv’)Ei (s),
= sinhp
whereu' = (u, E;(0))i, v' = (v, E;(1))m and(-, -)i denotes the scalar product in

H = H". Note thatu! E1(0) = ul®Y) andvlEq(1) = v ™), This gives

J@,0)(0) = —uE1(0) = Y p(x, y) coth(p(x, y))u' E; (0)
i=2
(2.21)
= —u"Y — p(x, y) coth(p (x, y))u ™,

J0.0)0 = v Ey @) + 3 LY g g

< sinh(p(x. )

p(x,y)

_ Ly o 2077
=(//yxv) + sinh(p(x, y))

(//y,xv)N(x’y)-
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We have
[, 7621.0r,0) @ dio(y)
= —3@Z)" X0 — 30(Z,, X1) coth(p(Ze, X)) (8 Z)V #X0)
— 3BZ)" AT — 5p(Z4, Yy coth(p(Zy, Y) (8 Z)N 1Y

= _((SZt)L(Zt’Xt) _ %p(Xt, Y)) COth(%p(X,, Yt))(BZZ)N(Zt,X,)’

sinceX,, ¥, andZ, lie on the same geodesié (%X = yL(Z:.Y) for any vecton.
We shall abbreviatel (%X = yL(Zi.Y) g5yl On the other hand

[, 902 8F:) @ dpot)

1. 1.
= EJ(o, §X:)(0) + EJ(O’ §Y1)(0)

_ 1 L 1 pZ, X)) N
= é(//XI,ZtSXt) + ém(//xt,zt‘sxz)
1 L 1 plZ,Yy) N
+ E(//Yt,Z,CSYt) + Em(//n,z,fwz)

1 (XY
4sinh(3p(Xy, Y,)

1 L 1 /O(Xt’ Yt)
+ 2/ 28%)" + S
2(//Y,Z ) 4S|n|'(%p(Xt,Yt))

Finally, applying Proposition 2.10(ii) gives the Stratonovich equation

1
= S U/x,.20X)" + (//x,28%:)"

(//Yr,ZtSYt)N-

8Z = 5(//x,.2,8X)" + 5(//v,2,8%)"
+ Lcosh(Ep (X, Y0) (//x,.2,8X)™ + (//v,.2.8¥)").

Obtaining the I1td equation (2.14) from the Stratonovich equation is immediate
sinceZ; is a martingale.

For the local form of the Itd equation, by a localization procedure as in [8],
Lemma 3.5, we only need to defiié’ locally. We do it with the formula

. 1
(2.22) AW = —(E:(Zt, X0), /] x,.2.d" Xe + /v, 2. d" Vi),
V2
valid for (X;, Y) in a small open subset & x H™ \ {diagona}. The processes
(W}) are martingales with quadratic variatiornd therefore Brownian motions.
The independence comes from the mutual orthogonaliy; 6F;, X;)'s. O
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REMARK 2.15. Note that ifwg is a point such that the geodesic

(X:(wo)Y;(wg)) converges, therr, is close to the solution tdz, = %El(zt,
Xoo(w0)) dW?E, which lives on the geodesic segmént.(wo)Y.(wo)) oo if it starts
there. In the next section we shall make precise this convergence.

3. The barycenter of two independent Brownian particlesin H. Consider
the hyperbolic spac#l = H¢ of dimensiond > 2 as an oriented manifold. Let
oH be the visibility boundary in its visibility compactification, that is, the set of
equivalence classes of geodesic rays. In the upper half space @aifidel the
union of the boundary hyperplane and the point at infinity. The visibility topology
coincides with the usual topology whéhis considered as a subsetRf .

Let X andY be two independent Brownian motions Iih with initial points
Xo andYp, respectively. Then they convergelﬁhwith limits X4, andY in 0H,
respectively. We denote hiXY)., C H the random geodesic connecting the two
limit points. By a random variablg on (XY )., we meanu(w) € (XY)so(w) for
almost allw.

THEOREM 3.1. Let X, andY; be two independent Brownian particleslih
and letZ, be their exponential barycenté&enote by (Xo, Yo) the law of(Z;);>o.
Let u be an ¥,-measurable random variable ofXY)~, and let(7,),>1 be a
sequence of finite stopping times increasing to infinity such Zhatconverges
to u almost surelyThen for almost alkwg, (X1, (wo), YT, (0)) CONverges as
goes to infinity to the law of a Brownian motidg,);>o of variancel/2 on the
geodesic(XY )~ (wo) With starting pointu(wo); that is (z2:):>0 iS a Brownian
motion on(XY)eo (wp).

PrROOFE For the proof take the upper half space model
Hz{yz(yl,yz,...,yd)eRd,yd > 0}.

The processX,, Z,) is a diffusion as the image of the diffusiaix, Y) by the
diffeomorphism (x, y) = (x, ¥ (x, )(3)) on H x H. Set X! = Xz, 4, ¥ =
Yr,++ andZ} = Zr,1,. Then(X7}, Z}') has initial condition(Xr,, Z7,) which by
assumption converges & o, u).

Since the hyperbolic Laplacian is given by f (x) = 3(x%)?A — 452x43,, the
hyperbolic Brownian motions can be written as the solution to the It6 stochastic
differential equation

dX, =X dB, — 3(d — 2)Xe dt,
3.1
(31) dY, =Y!dB] — 3(d — 2)Y e dt,

where (B;, B/) is a Brownian motion ink%? and {ei}f:l is the canonical basis
in RY,
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Setf(x1,...,x%) =supx?,0). Then(X;) can be considered to be the solution
to

dX, = f(X)dB, — 3(d — 2 f(X))eqdt

on R?. This equation has locally Lipschitz coefficients. We shall show that the
process(X;, Z;) also satisfies an equation which extendRtox H with local
Lipschitz coefficients. First note that sin&e andY; are martingales, (3.1) yields

d¥X,=X%dB,,  d“Y,=Y!dB,.
On the other hand, by Proposition 2.14

1 1
dvzt = é(//Xz,Zr del‘)L + E(//Yt,Zr deI)L

1

Vx )V Vy\N
T Scostip ) (V/xez d )T+ (.2, d 7)),

We have
(3.2) dz,=d"z, - i0(2,)@d" 2,,d" Z,) d1,

whereI'(z) is the Christoffel symbol at for the canonical connection iH. It is
a smooth function, so we only need to prove that the equatiod Yaf; extends
as requested. For this pldag’ X; andd"Y; into the formula ford" Z; and observe
thatY (r) = H(X(¢), Z(¢)) for H(x, z) = exp(2 exp;lz) to obtain

1
dv 7z, = 5%z, (Xdd B,y X2

L(H(X,.Z).Z
) Hx,. 207 (H (X, Z0)? dBj)H Ko 2020y

/] x,.2,(X3d B)NXe:Z0)
2coshp(X;, Zy))

4 /X202, (H (X, Ze)4d B)yNH X 20, Z0)
2coship(X;, Zy))

Let w = (wl,...,w?) be a vector inR? and letx, = (x},...,x%) be a
sequence i converging tox = (x1,...,x?"1, 0) € 9H \ {o0}. SetE(z, x) =
p(ix) exp;lx, which extends smoothly to the s@f x H) \ {diagona} considered
as a subset dfl x R?. Furthermore,

; d, \L(xn,2)
I’lII—>mOO //XnyZ('xn U)) "

= nleoo(—xg)<w, E(xn, 2)HE (2, Xn)

(w, —(xHLE(xn, 2))E(z, x0) = —w? E(z, x)

lim
n— oo
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since(x,”f)—lE(xn, 7) converges te,, and similarly

. L(H (xy,2),2
M/ 50,29, (H Cen, 2) ) PO < B (2, ),

Moreover, forz € H,

lim (//xn,z(xgw)N(x"’z) + //H(xn,z),z(H(xn, Z)dw)N(H(x,,,z),z)) .

0,
n—00 2 cosho(xy, 2)

from the boundedness of the nominator and the convergengedof cosho(x,,,

z). We conclude that each coefficient in the equatior(#ar, Z;) smoothly extends
overH x H and(X;, Z;) is a solution to the system of equations of the following
form:

(3.3) ax, = foxhan, — 122 pxhear,

(34) dZt:G(lezt)d(Bt’B;)+b(xtazt)dta

wheres (x, 7) = o (¥, z) andb(x, z) = b(x, z) if x¢ <0andx = (x1,...,x971 0).
Since all coefficients are smooth @hx H and (R? \ H) x H they are locally
Lipschitz onR¢ x H. Consequently the system (3.3)—(3.4) has a unique solution
and it does not explode for starting pointslihx H as known. If, however, the
starting point satisfiexg <0, thenX. = Xg and (3.4) reduces to

(3.5) dvz, = 3E(Z,, Xo)(—dB? + dB]*)

whose solution starting froniZp shall be denoted bwZ,(Xo, Zo)). Then
Z2(Xo, Zo) is a Brownian motion on the hyperbolic geodesikoZp). In
particular, it does not explode.

Consider the procesgX”, Z") as solution to (3.3)—(3.4) wheréb;, B)) is
replaced by(Br, ., B/Tn+t), with starting point(Xz,, Zr,) which by assumption
converges almost surely (X, u). SinceR? x H is diffeomorphic toR* we
can apply Corollary 11.1.5 in [25] foR™-valued SDE and conclude that the
transition probabilities are Feller continuous and so by the Markov property the
law of (X", Z") conditioned by(X7,, Z7,) converges almost surely to the law
of X0, Z(Xso,1)). Hence the law ofZy; is that of a Brownian motion on the
geodesid X, u), as requested.]

The rest of this section is devoted to the existence of sequences of stopping
times(7,),-1 as in Theorem 3.1.

First we note the following fact: IfX, and Y, are independent Brownian
motions inH, then for almost allv the random geodesiX; (w)Y; (w)) converges
to (X (w)Y (w))so uniformly on compact sets asgoes to infinity, that is, for
any compact sek, lim; oo SURc(x,v,)nk 2 (2: (XcYoo)) = 0. To see this we
take the upper half space representation. We may assame{(x?, ..., x%) e
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H, x? > ¢} for somee > 0. If z € (X,Y;) N K, thenz belongs to a Euclidean
tubular neighborhood of the half-circkeXY )., with radius sup., max(|| X; —
Xooll, IYs — Yool). Since forz € K the hyperbolic distance is smaller than the
Euclidean distance divided hy

. 1
lim  sup  p(z, (Xeo¥oo)) < lim = sup(max(||Xs — Xooll, | ¥y — YoolD)
1= c(X,Y,)NK 1—00 & g>t

=0.

Next for x,y,x € H with x # y, denote by(xy) the geodesic segment
connecting them and by(z, x, y) the orthogonal projection afinto the geodesic

(xy).

LEmMmA 3.2. Let (X)), (Yy), (Ty),>1 and u be as in TheorenB.l. If
(un)p>1 IS a sequence otf‘”Tn)-adapte_d random variables ifill converging
almost surely to anf..-measurable random measurable on (XY), then
lim,— oo p(un, Xt,, Y1,) = 1 @lmost surely

PROOF  Since the projection to the convex gefr,Yr,) is 1-Lipschitz we
have

p(u, p(un, X1, Yr,))
<p(u, p(u, X7,,Y1,)) + p(p(u, X1, Y1,), P01 X713, Y1,))
<p(u, (X1,Yr,)) + p(u, up) > 0

following from the fact that for almost alb the geodesi¢X; (w)Y;(w)) converges
t0 (XY) oo (w) uniformly on compact set& of H. [

THEOREM 3.3. Let(X;), (¥;), (Z;) andu be as in Theorer.1. There exists
a sequence of finite stopping times,),>1 increasing to infinity such thaZr,
converges ta almost surely

PROOF. Let (u,),-1 be a sequence aff,)-adapted random variables ki
converging almost surely ta. By Lemma 3.2 it is sufficient to prove that
there exists a sequence of stopping tini&s),>1 such that7,, > n and Zr, =
p(un, X1,, Y1,,) @almost surely. Conditioning with respect %, it is sufficient to
prove that for every € M andn > 1, there exists a stopping tinTg > n such that
Zr, = plo, X1,, Y1,).

Let P, = p(o, X;, Y;). SinceP, andZ, belong to the geodesic segmékt, Y;1,

P, = Z, if and only if the signed distanc®, = p(P;, X;) — p(X;, Z;) betweenp,
andZ; is zero. For the existence of the stopping times we only need to show that
D, is recurrent. SeRX = p(0, X;) andR! = p(o, Y;). By the definition ofP, and
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the triangle inequalities, we haygX,, P,) < RX andp (P, Y;) > R} — p(o, P,).
So

D, =p(P, X;) = 30X, Y) = p(Pr, X)) — 5(p(Xs. P) + p(Pr. Y1)
=3p(X1. P) = 3p(P1. Y,) < 5(RX — R]) + 3p(0. P))
and similarly D; > 3(RX — RY) — 3p(o, P,). Since lim_.o p(o, P;) exists we
only need to showkRX — R} is recurrent. Note that

d—1
dRX =dB) + — cothRX dt,

d—1
dRY =dB} + — cothr/ dt,
Where(BtX, B,Y) is a planar Brownian motion. So for almost all
inf (R (w), RY () > 3(d — Dt
for sufficiently large time. Now
t
RX-R'=BX-B' +3ad-1 / (cothRX — cothRY) ds.
0

But BX — B} is recurrent and§°(cothRX — cothR) ds exists since
X ¥ b'e Y
|cothR; — cothR; | =|cothR; — 1 — (cothR; — 1)]
2 2 |_ 4
T p2RE 1 p2RY _ 1|~ ed-Ds/i2_1

for large times. ConsequentRX — R! is recurrent and so iB,. O

4. Barycentersof measuresin a Cartan—-Hadamard manifold. Let M be a
Cartan—Hadamard manifold with pinched negative curvatbresh? < k < —a?,
for b > a > 0. Denote byM = M UM its visibility compactification wheré M is
the set of equivalence classes of unit speed geodesidsunder the equivalence

relation

i~y < limsupp(y1(r), y2(1)) < oo,

11— 00

endowed with the sphere topology. See, for example, [2], page 22. Note that
for each pointz € M andx € dM there is a unique unit speed geodesic in the
equivalence class of with initial point z, which we shall denote ag(z, x)(¢),
O0<t<oo}. Forz,y e M, z #y, we shall also denote by (z, y)(¢),t > 0} the

unit speed geodesic satisfyiRgz, y)(0) = z and¢(z, y)(p(z, y)) = y. In other
words,

Pz, O =y y(/p(z,y))  Vz,y € M satisfyingz # y.
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Letw :TM — M be the canonical projection and let
o SM={veTM, |v|=1} — M

be the map which sendsto [exp, 4 (10)];>0 € IM. The mapd = (r, ¢) from
SM to M x 3M is a homeomorphism. In fach~1(z, x) = ¢(z, x)(0) (see, e.g.,
[6], Propositions 2.13 and 2.14).

Foro € M denote by(v, «, x € 9M) the family of Busemann functions:

(4.1) Vox(y) = lim [p(y, 00, x)(t)) —1].

These functions are characterizediy, (o) = 0 and gragj Yox = o L(y,x)=
—¢(y,x)(0), anyy € M. We write y, for ¢, , if there is no risk of confusion.
Denote by M1(X) the set of probability measures on a topological space
endowed with the Boref -field. Set

42) Y@ =von) = /a Voa@du().  we Ma@M).
Then
(4.3) grad v, = — fa | $ER O du).

A solution to grady,, = 0 is called a Busemann barycenten.of

The aim of this section is to show that for discrete probability measures of
finite support transported by a suitable random flow, the exponential barygenter
converges to the Busemann barycenter of the limiting measure on the boundary.

LEMMA 4.1. Letu be a probability measure oM with corresponding vector
field H,: M — T M defined by2.1). We have

(VuHy,u) < —as(z, Wllul®>,  ueTH,
where

(4.4) o= min [ pGx)Sir (g, 00) du ).

PrRooE We follow the notation of Section 2.3 and note that
V,H, = /M J (. 00)(0) dpa(x),

where Q € T, M is the zero vector. Writee = u’ + u"¥ whereu® = 4@ js
colinear to expx andu® = u™&" is its orthogonal complement. Then

J(,0,)(0) = J (", 0,)(0) + J " ,0,)(0) = —u” + J @",0,)(0),



BARYCENTERS OF MEASURES 1535

sum of two orthogonal vectors. Writé(r) = J ", 0 )(t) and f@)=1JDI.
Then f/'(r) = ||m)”u(t) J(1)). In particular, f/(0) = ” N||< , J(0)) and fur-
thermore

1@ = f2OWIONPNT O = (T @), TOZ + TN (1), T (1))
> X @1), T (1))

= — O @), R @), y(0))y (1)) = a®p?(z, x) f (1),

wherey (t) = y(z,x)(¢) for ¢t € [0, 1] anda is the upper bound of the sectional
curvature. Note thaf (0) = |« | and £ (1) = 0. By comparison with the solution
to g (t) = a®p?(z, x)g(t) with the same boundary conditions, we see

£/(0) < g'(0) = —ap(z, x) coth(ap(z, x)) |u™ | < —ap(z, x)|[u" ||
which leads tou®, J(0)) < —ap(z, x)[|u" 2. Finally

(Y Hyo 1) = fM(—||uL||2+ (0, uM)) dp(x)
s/ (—||uL||2—ap(z,x>||uN||2)du(x>s—/ ap(z, )llu™ 12 dp(x)
M M
= —a||u||2/Mp<z,x>sin2(u,¢<z,x>(0>)u(dx) < —allule(z, 0. 4

LEMMA 4.2. Letu be a probability measure ohM . Then

(4.5) le//u(u,u)Zaoz(z,u)”u”2 Yuel,M, ze M,
where
(4.6) alz, ) = wrenslan /BM Sin? (w, @(z, x)(0)) dp(x).

PROOFR Letzpe M andx € 0M. Set

Vi x (=) = p(—, ¢(z0, ) (1)) — 1.

By Proposition 3.1 in [13], as goes to infinity, ({; ., grady; , V grady; )
converges to(y,, grady,, V grady,) uniformly on compact sets. In fact, the
proof of the same proposition shows that the convergence is uniform In
particular, if we set

Vo) = /d i) du).

then

grad . = — /a | $lz0oD0) O du)

v, grady, , = — /a | Vudl 90, 0) O dut)
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(Y0, Qrady, ., V grady, ,) converges to(y,, grady,, Vgrady,) uniformly
on compact sets and the convergence is uniforg.in

Let ur = ¢(zo, —) (1)« (1). Sincey (x, y)(0) = p(x, y)(0)@(x, y)(0),

Hy,(2) = fM ¥ (2 9)(O) dpu(y)
- fa P90 )9 (0 DO) O diu().
If ueT;,M, thend,p(-, ¢(zo, x)(t)) = —(¢(z0, x)(0), u) and

V,H,, = ]d (0,90, ) (0) Vusp (- 920, X)) O) dp )
4 /a  dup (920, )(z0. 00 (D) ©) du(r)
- f 1V, (-, 920, ) (1)) (0) dju(x)
oM
- /a (90, 0(0). 1) 0. (O du(x)

= —tV, grady, ,, — /W((b(zo, x)(0), u)¢(z0, x)(0) dpu(x)

using p(zo, ¢(zo, x)(t)) =t and for alls > 0, ¢(z0, ¥(z0, X) (1)) (s) = @(z0, X)(s).
Consequently

(VuHy,,u) = —t{Vy,grady; ,,, u) — /aM(¢(Z°’ x)(0), u)?dpu(x).
This together with Lemma 4.1 gives

(Vugrady;,,, u)

=

~ | Q

1
e(z0, o) lull® — = f (@(z0, X)(0), u)?dpu(x)
t Jom

S

. : i 1
2 Tll? min, [ oo, ) SIP (0,920, O dp () — ¢ ul?

Q

2 .
> — min s , X))t
> tllull LN, aMp(zo @(z0, x)(1))

. ) 1
x Sin? (w, (20, (20, X)(1))(0)) du(x) — ;llull2

. ) ) 1
:“”””Zwe”}g‘M faMsmz(w, ¢ (20, x)(0)) dpa(x) — ;uuu2

1
2 2
= aa(z0, ju) Jul|” = —fufl”.
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Taking ¢ to infinity and using the convergence ®fgrady; , to V grady,, we
obtainVdy, (u, u) > aa(zo, w)|u||?, as desired. O

Let U be the subset a1 (d M) containing discrete measures with no atoms
of weight greater than or equal tg2 Clearly the functionx(z, 1) is continuous
on M x U, using the weak convergence topology tn Moreover, it is strictly
positive onM x U: for everyz € M, the sef{¢(z, x)(0), x € suppu)} contains at
least three different vectors, and this implies thauna S, M is colinear to all of
them. The positivity then follows from the compactness a¥/.

PROPOSITION4.3. For u € U there exists a uniquee M such that

(4.7) grad Y=~ | 9z du() =0

Denote the solution b (). Then the magy : U — M is continuous

PROOFE The existence and unigueness are well known in the caseuthat
is a continuous measure. In fact the uniqueness follows from Lemma 4.2 since
a(z, n) > 0 andyr, is strictly convex. For the existence we only need to show
that there is a geodesic ball(o, T) C M of radiusT > 0 on which grady,
points outward the boundary and therefore has a zero inside the geodesic ball.
ForT > 0, takey € dB(0, T). Let y € aM be the point corresponding to the
geodesic rayy(o,y) and let B.(y) c aM be the set of points whose angle
with y (o, y) is smaller thare using the sphere topology. Choase> 0 so that
€0 = SUP, ¢y 1(Bgy(x)) < 1/2 which is possible due to the compactness of the
sphere at infinity. Let € d M, ¢ the angle betweep(0, y)(0) and¢ (0, x)(0), and
a the angle betweeti(y, x)(0) and¢(y, 0)(0). By comparison with a manifold
with constant curvature-a2, we have

. CoSe cosw + 1 2
Sine < — < —
sinecosiaT) ~ sinecoshaT)
and
(@(y,x)(0), 9(y,0)(0) =1 4
ax ’ ’ o - - R .
v v sirfe costf(aT)
Consequently

_(gra® wﬂv (0()’» 0)(O)>

([, ] )60.00.60.00) duw
aM\BSO(V) Bso(V)

4
1— 1 (B
Z/fJM\Bg()(f)( Sinzecosf?(aT)>d’u(x)+( ) - 14(Beo (7))
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4 - _
- (1  sirfe cosr?(aT))(l = 1Beo(7))) = 1 (Beo )
4
1- -2
= sinf e cosf(aT) 0
>0

when cosR(aT) > 4/ sirf (1 — 2cq). Sinceg(y, 0)(0) is normal to the boundary
dB(o, T) and pointing inwards, this proves that gyag, is pointing outwards.
Consequently there exists= B(o, T) such that gradys,, = 0, soG is well defined.

For the continuity ofG note that gragy, is continuous with respect @, )
since grad . ., which is continuous irty, 7, ), converges to grady uniformly
ony in compact sets and uniformly . Let (©,),>1 be a sequence of elements
of U converging tou € U. Setz, = G(u,) andz = G(n). From the convergence
of the sequencéu,),>1 to u, we can choose the same, co and 7 for all
u, and . Consequentlyz and all thez, belong toB(o, T). Furthermore, the
function« in Lemma 4.2 is continuous, so we havg= inf{a(y, u,):(y,n) €
B(o,T) x N} > 0 and consequentlyV, grady,,, u) > acollul/? for all y €
B(o, T) andu € TyM. Letz,(t);>0 be C1 paths inM with z,(0) = z andz, (t) =
—grady,,, (z,(t)). Then by differentiating| grady.,,, (z, ()| with respect tor
we see | grady,, (z,())|| < e | grady,, (z,(0))|. It follows that z, =
Zn(00) = lim;_, » z,(t) and the length of the curve from = z,(0) to z,
is smaller than|| grady,, (z)||/(acg). Since grads,, (z) — grady,(z) = 0,
lim, o p(z,z,) = 0. SOG is continuous. O

EXAMPLE 4.4. LetH c C be the Poincaré upper half plane. The boundary
of H is the real lineR, plus one point at infinity. Fon > 2 andx; < --- < x,
in R setu = % 2?21 8x;- If n =23, the angles between the vecteiss (1), x;)(0)
are +27 /3. Considering first the cases = co and then the general case via
homographic transformations, one finds

x1X3 + x2x3 — 2x1x2 + i/3x3(x2 — Xx1)
2x3 — x1 — X2 + i+/3(x2 — x1) .

For n = 4, the situation is even simple6 (u) is the intersection between the
hyperbolic geodesicéi1x3) and(x2x4).

G(p) =

Next we consider a Brownian flow; in M, that is, a semimartingale flow
with characteristic(a(z, x, y, w), 0,¢) as defined in Proposition 2.10, such that
for everyx € M, F;(x) is a Brownian motion [which is equivalent to saying that
a(t,x,x,w) = Zle ei ®e;, where(e;)1<i<4 iS an orthonormal basis af, M]. We
furthermore assume thét is unstable, that is, whenever andy, are two distinct
points inM, the distance betwedh (y1) and F; (y2) converges teroo ast goes to
infinity. Typical examples of unstable flows are given by isotropic Brownian flows
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in the hyperbolic plane with positive first Lyapounov exponent (see, e.g., [24]).
The following result is immediate.

PROPOSITION4.5. Let F; be an unstable Brownian flow iW. Takee > 0,
y1# y2 and letX} = F,(y;), i =1, 2. Then for almost allv there ist (o) such that
p(X1E, X2) > ((d — Da — &)t whenever > t ().

PROOF Forxy # xz andu = (u1, u2) € T(xy,xp) (M x M) write u; = v; + w;,
the orthogonal decomposition witla tangential to the geodesig1x2). We have
by the Hessian comparison theoreRyp (u, u) > atanh(%%)(woll® + lw1]?)
(see, e.g., [23] Lemma 1.1.1, where a similar calculation is done in positive
curvature). As a consequence, the drift\gf:= p(X,l, th) is larger than(d —
Da tanf‘(%) dt. Whent is sufficiently large, thef(; is large by instability of the
flow, so its drift is close tdd — 1)a dt. On the other hand, singeis 1-Lipschitz,
the processr; has a bracket satisfying(T, Y); < 2dt. So we can conclude that
for e > 0 andr large, Y, > ((d — Da —e)t. O

ProPOSITION4.6. Let X; and Y; be two M-valued continuous functions
converging toX, and Y, on dM, respectivelyast — oco. Suppose furthermore
thatlim;— oo (p(0, X;) —€t)/t =0, lim; 5 (p (0, Y;) — £t)/t =0andp(X;, Y;) >
a't for t large, for some constants’, £ > 0 ando € M. ThenX o, # Yoo.

PROOF We only need to establish that#¥ is the orthogonal projection df,
on the half-geodesifw X;) := {¢(0, X;)(s), s = 0}, then lim_, o p (P, ¥;) = oc0.
We will prove that, fors large, p(P;, Y;) > “/2“3;. When P; = o, this is clear. Let

us consider the case whePe+ o. Lett be a time such that(o, ;) > p(o, X;).
Then

p(0,Yy) = plo, P) =p(0, X;) + p(Xs, B) = p(o, X)) + p(X:, Yy) — p(Pr, Yy),

which implies

o (P, Y) = p(o, X;) — p(o, Yy) + p(X,, Yo).

This clearly implieso(ﬁ,, Y > %t whent is large. Now let be a time such that
p(o, ) < p(o, X;). We have

p(P,Y) = plo,Y)) = plo, P,
p(PY) = p(Xe, Y) — p(Pr, X)),
Adding the two together gives
2p(P, Yy) = p(0,Yy) + p(X1, Yy) — po, X)) ~ p(X,, Yy) = a't

which again proves thai(ﬁt, Y;) > %t whent is large. ThusX o # Yoo. O
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A stochastic procesk; is said to satisfy the law of large numbers with limit
if im ;- oo %p(o, X;) = £. Itis known that all Brownian motions satisfy the law of

large numbers with nonzero limit if (@Y = H¢, (b) M is the universal cover of
a compact Riemannian manifold with negative curvature (see, e.g., [19]), or more
generally, (c)M is a Cartan—Hadamard manifold such that for some poiiV/,
Ap(o, —) converges to a negative constantagoes to infinity.

Note that if p(X(¢), y) are more or less all of the same length independent
of i, that is, p(X(1),0) = f(t) + R'(t) with R'(r) small compared tof (),
then the minimizer ofy ;" 1,o(X’ (1), y) is close to (or the same as) that of

l,02(X (1), y). This is the consideration behind the following theorem.

THEOREM 4.7. Let u be a discrete probability measure avf with finite
support and no weight greater than or equal 1¢2. SupposeF; is an unsta-
ble Brownian flow satisfying the conditions of Propositidrb and such that
liMm;— o %p(o, X,) = ¢ wheret > 0. Denote byZ, the exponential barycenter of
the pushed forward measugg = F; (). Let uo be the measuréo, () onoM.
Thenlim;_, « Z; = G (o) almost surely

PROOF The measuraus, is carried by a finite set, and by Propositions
4.5 and 4.6, for almost alb, Foo(y1, ®) # Fo(y2, ®) if y1 # yo. This implies
hoo € U. FOr p € M fixed denote by®,(g) the point ondM determined by
the geodesiap(p, g), that is, ©,(g) = ¢(¢(p,¢)(0)). Then F;(x) induces a
measurgi, ; ondM by ®,(-) andji, ; — us. Furthermore, by continuity of,
Proposition 4.3, i o0 G(fip,1) = G (Joo)-

Define

1
R; = fM ‘;p(o, Fy(y)) — f‘ du(y).

Sinceu has finite support, ligi, o Ry = 0 almost surely.
SetZ; = G(ji;). By definition [y, ¢(Z;, x)(0) d i, (x) =0, SO

Hu(Z) = [ 720 RO)Odut) = ts [ $(Z 00 dfias(0)
. f (Z4, Fs0)(0) — £54(Z,, F;(1))(0) din(y)
+os / (@(ZL, Fa(3))©0) — ¢(ZL, ©,(Fs(»)))(0) dpu(y)
_ / (ZL, Fs() — €5) 9(Z, Fs(1))(©0) diu(y)

+ &5 /M (@(Z}, Fs())(0) — ¢(Z;, O (Fs(y)))(0)) dpe(y).

Set Ry = £ [y, 19(Z;, Fs(y))(0) — @(Z;, O (Fs(y)))(0)[| due(y). By the conver-
gence ofZ;, the angular convergence of Brownian motions and the continuity off
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diagonal of the magz, x) — ¢(z, x)(0) from M x M to SM, lim,_, o R, =0
almost surely. We have

|| HMS(Z;)” < p(o, Zé) + Rgs + sR; =pl(o, Z;) + s(Rs + R;).

On the other hand, fop € M, let Ry(y) = |%,o(o, F;(y)) — £|. Note that for
z€ B(Z;,1),

p(z, Fs(y) = p(o, Fs(»)) = p(z,0) = b5 — Ry(y)s — [p(z, Zy) + p(Z;, 0)]
>ls — Ry(y)s —1— p(Zy, 0).
Consequently, by Lemma 4.1,ife T,M andz € B(Z., 1),
(Vi H,, u)

< —allul® min f p(z. Fo()) SI (w, (2. Fy(3))(0)) dia()
WESz M
< —a||u||2(zs min [ sir? (w,9(c. F0) @) duty)

— Rys — p(0, Z)) — 1)

= —alu||?(€sa(z, fizs) — Rys — po, ZL) — 1),

whereq is the continuous and positive function defined in Lemma 4.2. Singe
converges tdF, (1) andZ;, converges il to G (i), there exisC1(w) > 0 and
s(w) > 0 such that fos > s(w),

(4.8) (VuH,, u)<—Cilul®>s VzeB(Z.,1), ueTM.

Next let Bs(r), t > 0, be theC?! path starting fromZ and such thataa—tﬂs(t) =
—H, (Bs(t)). Then with an argument similar to the end of the proof of
Proposition 4.3, (4.8) implies that for every- 0 smaller than the exit time from
B(Zg, 1),

| Hyi (B (1) < e | H, (Z))]

and
| Hy (Z)l
,O(,Bs(l‘),ﬂs(O)) =< T
(4.9) / , / /
- po,Z) +s(Ry+Ry)  plo,Zy)/s + Ry + R;
- C1s - C1 '

Since the right-hand side converges to Osagoes to infinity, we see that far
large, Bs (1) stays inB(Z;, 1) for all t > 0. Moreover S, () converges asgoes to
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infinity to B, (00) = Z; which is the only point in the manifold wher¢,, vanishes.
From (4.9), we get

10(0’ Z;)/S + RS + R;
C1 '

The right-hand side goes to 0, €9 converges tar (teo). [

IO(ZSv Z;) S

REMARK 4.8. WhenM is the hyperbolic spacE™ anda has second-order
space derivatives almost surely bounded, Theorem 4.7 generalizes to a discrete
measures with compact but not necessarily finite support. The proof is the same;
the only difference is that one has to find another argument for the almost sure
convergence oR; to 0. The new argument is as follows. In an exponential chart
W based ab, let (a’, b’, t) be the characteristic of the flow. Thehhas second-
order space derivatives almost surely boundedléad%AlIJ has first-order space
derivatives almost surely bounded. Since the chart is centeredta distance to
the origin is the same in the chart and in the manifold. Using [5], Theorem 2.1,
we can say that almost surely, for alke supgu), Rs(y) = |;—L,0(0, Fy(y)) — L] is
bounded by a constant depending only on the suppaort 8inceR;(y) converges
almost surely to 0 as goes to infinity, by dominated convergendg,goes to 0.
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