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RESCALED LOTKA-VOLTERRA MODELS CONVERGE TO
SUPER-BROWNIAN MOTION

By J. THEODORECOX! AND EDWIN A. PERKINS?
Syracuse University and The University of British Columbia

We show that a sequence of stochastic spatial Lotka—\Volterra models,
suitably rescaled in space and time, converges weakly to super-Brownian
motion with drift. The result includes both long range and nearest neighbor
models, the latter for dimensions three and above. These theorems are special
cases of a general convergence theorem for perturbations of the voter model.

1. Introduction. In [13], Neuhauser and Pacala introduced a stochastic
spatial version of the Lotka—\olterra model for competition between species.
We show here that a sequence of these Lotka—\olterra processes, suitably
renormalized, converges to super-Brownian motion with a nontrivial drift. We do
this by proving a more general convergence theorem, extending the main results
of [3] on the voter model. In future work we will show that the above drifts
are connected to the questions of co-existence and survival of a rare type in the
original Lotka—\Volterra model. At present our main results hold for three or more
dimensions. Our introduction is structured as follows. In Section 1.1 we describe
a special case of the model introduced in [13], and then formulate and state our
convergence result. In Section 1.2 we define a class of processes weteall
model perturbationsand present a convergence theorem for this class. Our result
on Lotka—\Volterra models is a special case of this theorem. In Section 1.3 we state
and prove a number of corollaries of the main theorem.

1.1. Lotka—\Volterra models. We suppose that at each siteZsf (thed-dimen-
sional integer lattice) there is a plant of one of two types. At random times
plants die and are replaced by new plants, the times and types depending on
the configuration of surrounding plants. The state of the system at:timike be

denoted by, an element of0, 127, whereg; (x) gives the type of the plant at
at timet. We have chosen to label the two types 0 and 1; in [13], the types were
1 and 2. To describe the system’s evolution, weAet— Z¢ be a finite set not
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containing the origin, such thate & implies—y € N. Let f; = f;(§) = fi (x, &)
be the frequency of typein the neighborhood + .V in configurations,

1

(1.1) fite, §) =

> UG +e) =i, i=0,1

eeEN

Finally, let «g, 1 be nonnegative parameters. The dynamicg,ofan now be
described as follows: at site in configurationé, the coordinatet (x) makes
transitions

0->1 at ratef1(fo + «o0f1),

(1.2)
1—-0 at ratefo( f1 + a1 fo).

These rates are interpreted in [13] as follows. A plant of typdies at rate

fi +a; f1—;, and is replaced by a plant whose type is chosen at random from its
neighborhood. In the “death rate¢; + «; f1—;, «; measures the strength of inter-
specific competition of typé, and we have taken the strength of competition due
to individuals of the same type to be one. Note that the two configurations, all 0’s
and all 1's, are both traps. Singg+ f1 = 1, the caseg = o1 = 1 gives the well-
known voter model (see [11] and [3]). In [13], an additional fecundity parameter
allows them to consider populations in which one type has an advantage in
replacement. We have chosen to treat onlyithel case.

Unlike the voter model, the Lotka—\olterra modgldoes not have a simple
dual process. However, it was shown in [13] thakdf= a1 = @ < 1, thené, has
anannihilating dual processa “double branching annihilating process” in which
particles move as random walks, branch, and annihilate each other. Although this
process is difficult to analyze, it was instrumental in the proof of Theorem 1
of [13], which states that fax sufficiently small (depending ow', and excluding
N ={—1, 1} in one dimension), coexistence of types is possible. Here, coexistence
means that there is an invariant measure which a.s. concentrates on configurations
with infinitely many 0’s and infinitely many 1's. On the other hand, comparisons
with biased voter model&ee Section 4) show that for certain valuegaf, «1),
survival of a given type occurs. More precisely, §gtdenote the process started
from a single 1 at the origin, and 0’s everywhere else, and define

S = {(ao,al) : P( Z g (x)>0forallz > O) > O}.
xezd
Theorem 4 of [13] shows thatc S, whereS is the set ofwg, @1) such that

1—«(1—ap), ifl—kl<ap<l,

1.3 O<ay <
(13) = 1_{1+K_1(ao—1), if oo > 1,

andx = |N|.
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We treat here asymptotics for the “low density regime” where there are
relatively few plants of one type, which we take to be type 1. It is useful in this
context to change our original interpretation, and think now of 0's as representing
vacant sites and 1's as representing “particles” which may die or give birth to
particles at other sites. We may consider a “measure-valued” versign of
placing an atom of a given size at each site with a particle. For the voter model
casewg = a1 = 1, it was shown in [3] (see also [2]) that appropriate low density
limits of renormalized voter model processes lead to super-Brownian motion (see
Theorem A below). Here we will consider asymptotics for Lotka—\Volterra models
with thea; — 1, and will obtain super-Brownian motion with drift in the limit.

Let Mf(Rd) denote the space of finite Borel measuresRdn endowed with
the topology of weak convergence of measures.Skety = D([0, 00), Mf(Rd))
be the Skorohod space of cadlﬂgf(Rd)—valued paths, and l€2x ¢ be the space
of continuoust(Rd)-valued paths with the topology of uniform convergence on
compacts. In either cas&;; will denote the coordinate functiorX; (w) = w (7).
Integration of a functiorp with respect to a measugewill be denoted by (¢).
Forl<n <oo,letCy (R?) be the space of bounded continuous functions whose
partial derivatives of order or less are also bounded and continuous.

An adapted a.s.-continuouwf(Rd)-valued procesx,,t > 0 on a complete
filtered probability spacé2, ¥, #;, P) is said to be asuper-Brownian motion
with branching rateb > 0, drift & € R and diffusion coefficient? > 0 starting at
Xo € Mf(Rd) if it solves the following martingale problem:

(MP) For allg € C{°(RY),

t 02A¢ t
4 M@ =X - X0 - [ X(75)ds -0 [ X@as
is a continuoug #;)-martingale, withMp(¢) = 0 and predictable square
function

t
(1.5) (M($)); = [0 X, (bg?) ds.

The existence and unigueness in law of a solution to this martingale problem

is well known (see, e.g., Theorem 11.5.1 and Remark 11.5.13 of [14]). Let

2
P,‘;f*" denote the law of the solution of2x ¢ (and also a probability on the

space of cadlag patli3x p).

We define our rescaled Lotka—Volterra models following the approach used
in [3]. For N =1,2,..., let My € N (the set of positive integers), and let
Ey=My+/N. LetSy=Z4/ty, and letWy = (W}, ..., W) e (Z4/My \ {0})
be a sequence of random vectors such that

(a) Wy and —Wy have the same distribution _
(H1) (b) Thereis afiniter? > 0 such thail:V lim E(Wi, W}) =802
— 00
(c) The family{|WN|2, N e N} is uniformly integrable.
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Define the kernelgy by

(1.6) pN(x)zP(f[//—%zx) x € Sn.

For& € {0, 1}, define the densitieg" = £V (&) = £V (x, &) by

(1.7) o= pyvo—0uEG =i}, =01
YeESN

We lete; = ¥ depend onv, and letg" be the process taking values{y, 1}
determined by the rates: at sitein configurationé, the coordinate (x) makes
transitions

0—1 at rateNle(féV +ozof1N),
(1.8)
1—-0 atrateNfy (f +arfd).

Thatis,&" is the rateN Lotka—\Volterra process determined by the parameg@rs
(and kernelpy), which we will abbreviate alsV(a{)V, ai\’). Note that we recover
the original formulation of our process by settidg= 1 and letting W, be
uniformly distributed ovewV, thatis,py (x) = Lxeny/IN|.

We now consider the measuké’ determined by assigning masg\ to each
site of ¥ with value 1 and mass O to all other sites. Here the scaling for the
particle mass satisfies4 N’ < N, and will depend on the particular choice of
the Wy. Given a sequenc®’(N), we define the corresponding measure-valued
processxN by

1
(1.9) xN = v >N (0)8x
x€SN

(8, is the unit point mass at). We make the following assumptions about the
initial statess)’:

@) Z Sév(x) < 00.
(H2) xeSy
b)x) - Xo  inM;(RY) asN — oo.

A consequence of (H2) is that sMp({)V(l) < 00, a fact we will frequently use.
The conditiongH1) and (H2) will be in force throughout this paper.
Our basic assumption concerning the raiﬁ{sis fori =0,1,

(H3) 6N =N@) -1)—6,eR  asN — cc.

We will for the most part focus on Lotka—Volterra models with two types of
kernelspy.
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(M1) Long range modelsLet Wy be uniformly distributed on(Z?/My) N 1,
wherel =[—1, 1]¢ \ {0}, and asN — oo,
My /N — oo ind =1,
M2%/(logN) - 0o ind=2,
My — oo ind > 3.

It is simple to check that all the parts of (H1) are satisfied with= 1/3.

(M2) Fixed kernel modeld.et My =1, and letp(x) be an irreducible, symmetric,
random walk kernel orZ¢, such thatp(0) = 0 and ¥, .74 x'x/ p(x) =
(Sijaz < 00. DefineWy by P(Wy = x) = p(x). It is simple to check that
(H1) is satisfied in this case.

As noted before, if we set eaak = 1, so thatg)’ = 6. =0, then the

LV, 1) proces&,N is, in fact, the voter model. It was shown in [3] that in this
caseXN converges weakly iR2x p to super-Brownian motion. More precisely,
let Py denote the law ok V. If (M1) holds andN’ = N, then

(1.10) Py= PgOY® asN — oco.

Under (M2) we have the following (Theorem 1.2 of [3]):

THEOREMA. AssumdM2). (a)lf d > 3andN’ = N, then

2
Py = P

Here y, is the “escape probabilityy of a random walk with step distributiop
[see(1.11)below.
(b)Ifd =2and N’ = N/logN, then

47102,0,02
PX0

asN — oo.

Py = asN — oo.

The two-dimensional case in the above theorem is the most delicate and explains
why we allowed the possibility oN’ # N in our definition of XV. As explained
in [3] (or see Proposition 2.3 below), the voter model may be viewed as a branching
random walk with state dependent branching raﬁé(ex, gN). Ford = 2, this rate
will approach 0 asV — oo due to the recurrence of two-dimensional random
walk. To counteract this, we increase the branching rate by a factor of,log
equivalently, reduce the inverse mass per particle by a factor @V ldgs we will
only treat either the fixed kernel case with> 3 or the long range case below, we
will assume that

N'=N  inthe rest of this work.
Let us return now to the Lotka—\Volterra moded§. We let Py denote the
law of XN = %ersN £N(x)8, on Qyx.p. Under the assumption (H3) on the

rateSal.N, we again have convergence to super-Brownian motion, but this time with
a (possibly) nonzero drift. Recall that (H1) and (H2) are always in force.
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THEOREM1.1. AssumdH3)and(M1). ThenPy = Pf(’o_gl’l/S asN — oo.

Next, we consider the fixed kernel case (M2). This time, to specify the
parameters in the limiting super-Brownian motion, we must introduce a coalescing
random walk systeniB?, x € Z¢}. EachB; is a rate 1 random walk of¢ with
kernel p, with ég = x. The walks move independently until they collide, and then
move together after that. For finitec Z¢, lett(A) = inf{s: |{I§§, x € A} =1} be
the time at which the particles starting frafncoalesce into a single particle, and
write t(a, b, ...) whenA ={a, b, ...}. Ford > 3, define the “escape” probability
(used in Theorem A) by

(1.11) ve= ) p(e)P(r(0,e) = o0).
ecZd

Note thaty, is the probability that a discrete time random walk with step
distribution p, starting at the origin, never returns to the origin. We also define

B= >_ ple)p)P(t(e,e') <00, 7(0,e)=1(0,¢) =00),

e e'e7d

8= Y ple)p)P(z(0,e)=1(0,¢') = 00).

e’ eZ4

(1.12)

Here we are considering a system of 3 coalescing random walks starting at O,
e and¢’, wheree ande’ are independent with layw. Then B is the probability

the walks starting a¢ ande¢’ coalesce, but this coalescing system does not meet
the random walk starting at O, whileis the strictly larger probability that the
coalescing system starting {at ¢’} does not meet the random walk starting at O.

2
THEOREM 1.2. Assume(H3), (M2) and d > 3. Then Py = Pé’:’@"’ as
N — oo, whered = 68 — 016.

Although Theorem 1.1 is a simpler result than Theorem 1.2, it includes the low-
dimensional casé < 2. Theorem A suggests that it should be possible to extend
Theorem 1.2 to the more delicate two-dimensional setting, With= N/log N
and a different drift arising from asymptotic versions @fand §. This is the
objective of parallel work.

In Theorem 1.1 there is néy dependence in the limiting law. This suggests
the possibility of a long range limit theorem without insisting tbagt approach 1.

This is, indeed, the case and in a forthcoming paper we will establish a long range
limit theorem for fixedwg € [0, 1] and af’ as above. The argument, based on a
combination of ideas used here and in the corresponding convergence for the long
range contact process [6], suggests that a unification and generalization of these
results should be possible.
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Our motivation for this work is two-fold. First, it has been shown in recent years
that a number of different spatial stochastic systems at or near criticality, and above
a “critical dimension,” converge to super-Brownian motion or a near relative when
suitably rescaled. This includes lattice trees above 8 dimensions [4], long-range
contact processes above 1 dimension [6], oriented percolation above 4 spatial
dimensions [9] and, of course, the voter model (Theorem A above). (See [15] for
a nice survey.) It is natural to ask if the same is true forltk€éxo, 1) models.

The above results are steps in this direction, but, more generally, one could ask
if such a limit theorem will hold [in the context of (M2)] with zero limiting drift

for any “critical” LV («g, «1) model. (Of course, one must define “critical” here.)

A second motivation for proving any limit theorem is to actually use it to study the
more complicated approximating systems—especially, as is the case here, when
there are few tools available for their study. In a forthcoming paper we will use
Theorem 1.2 to refine the survival and co-existence results of [13] mentioned
earlier for(ap, 1) near(1, 1).

1.2. Voter model perturbations.In view of assumption (H3), the Lotka—
\Volterra modelst Y can be viewed as smalerturbationsof the voter model. To
see this, we first rewrite the rates in (1.8) in the form

01 atrateNfY + 68 (fV)?
(1.13) NN N2
1-0 atrateNfy' +0; (f5 )°.

Adopting the notation of [11], the Lotka—\Volterra modg¥ is thespin-flip system
with rate functioncy (x, £) [which gives the rate at which coordinatér) changes
to 1-£(x)],

(1.14) en(x, &) = Ney(x, 8) +cy(x, &),

wherecy, (x, £) is the voter model rate function

(1.15) i@ &)=Y pn(@©LE(X +e) #E(x))
eeSy

andcy, (x, £) is the “perturbation”

(1.16) ¢ (x, &) =600 () (x, £)*1{E ) = 0} + 0 (£ (x, £))*1{E (x) = 1}.

We will generalize the above, defining a wider class of voter model pertur-
bations, and prove convergence to super-Brownian motion for these processes
(hence, including Theorems 1.1 and 1.2 as special cases). First, we need some
additional notation. LetPr denote the set of finite subsets &f. For A € P,

x € Sy, £ € {0, 1}V, define

av(Ax &)= [] &x+e).

ecA/ln
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We assume now thaty (x, &) is a function of the form given in (1.14), where
cy(x, &) isasin (1.15), andy (x, §) is given by

(1.17) y(x,E) = > xn(A,x,8) (BN (A)L{EMX) =0} + Sy (A)L{E(x) = 1)).

AEPF

HereBy anddy are real-valued functions aPy (which may take negative values),
but we will assume throughout that

(1.18) cy(x,6)>0 forallx, &.

It is easy to check that the Lotka—Volterra rates can be written as in (1.17) [see
(1.25) and (1.26) below].

We now make a number of assumptions on the kerpg|sand on the
perturbation rategy andsy.

Kernel assumptions.The kernel assumptions (K1)—(K3) below are similar to
the ones in [3]. We assume that tipg; are given by (1.6) [recall (H1) is in
force], and we Iet{B,N’x,x € Sy} denote a ratév¥ continuous time coalescing
random walk system of$y with step distributionpy such thatéév”‘ = x. For
finite A C Sy, let £V (A) denote the time at which all particles starting from
have coalesced into a single patrticle,

tN(A)=inf{r = 0: (B, x € A} = 1}.
We will also need a collection of independent (noncoalescing) Natesn-

tinuous time random walks with step distributigry, which we will denote

{B,N’x :x € Sy}, such thatBéV’““ = x. We can now state the kernel assumptions.
We assume there is a constant 0 and a positive sequen¢sy,} with 3, — 0
andNey — oo asN — oo, such that the following hold:

(K1) Jlim NP(B%’V’O =0)=0.
im Y pn(e)P(TV({0,e}) € (efy.1])=0  forallz >0,
(K2) e
lim > py(P(EY(0,e}) > &}) = .
N—>ooeeSN

For A € Pr, let tV(A) = t¥(A/Ly), and putoy(A) = P(tV(A) < &}). [We
make the convention” (@) = 0, soon (@) = 1.] The last kernel assumption we
need is

(K3) o(A) = Nlim on(A) exists for allA € Pr.
—00

We ask the reader to distinguish between the funatién defined above and the
variance parameter? in (H1).
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We will see below that the conditions (K1)—-(K3) hold if the kernelg are
either of the long range (M1) or fixed kernel (M2) type.

A key step will be to show that local spatial averages of microscopic quantities
like the local density of 1's or O's near a 1 converge to certain coalescing
probabilities (likeg or §) asN — oo. The spatial averaging will be implemented
by taking a conditional expectation with respect to the process up tortime,,
wheret is the current time. Sey, must be large enough to allow enough time for
the averaging [hence, (K1) and (K2)], but still approach 0 to ensure locality of the
averaging.

Perturbation assumptions.We may assume without loss of generality that
Bn(A) =d6n(A) =0 ifOeA.

To see why this is the case, note that the valugfA) is irrelevant when & A
becausey (A, x, n)1(n(x) = 0) = 0. If we define

oo [o it0ea,
N()‘{aN(A>+6N(AU{0}>, if0 ¢ A,

then a short calculation shows that repladigwith 8}, does not change, (x, ).

The assumptions we now make appear somewhat technical, but in Section 1.3
we will show that they can be simplified (or hold automatically) in some natural
special cases. Roughly speaking, (P1) says that the “perturbatfansind §
are appropriately bounded, (P2) and (P3) say that these rates converge in a well-
behaved way, and we require (P4) and (P5) in order to make comparisons with
the biased voter model in Section 4. As usual,Pr) is the space of functions

f1Pr— Rsuchthat| flli =3 pep, | f(A)] < o0.
(P1) s}ypA;F max(|Al, D(|Bn (A)] + 18x (A)]) < oo.
(P2) There exist functiong, § on Pr such that
By — B and &y — 4 pointwise onPr asN — oo.
(P3) Ifo () isin (K3), then asV — oo,
Bn(on() = B()o () and Sy()on(-U{0}) — 8()o(-U {0}
in £1(PF).
(P4) There is a constaks > 0 such that for alk < {0, 1}2" with £(0) =1,

Yoon(A) [[E@ = —ks Y pnG/En)(1—E®X)).

AePr acA yeZd

(P5) Bn (@) =0.
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Condition (P1) and (1.18) imply that the rateg(x,n) above determine a
unique{0, 1}>-valued Feller process. More specifically, consider the associated
Markov pregenerator

(1.19) QvfE) = ) en(x,E(FET) = F&),

x€SN
defined for functiong : Sy — R which depend on only finitely many coordinates.
Here&* is the configuratiorg with the coordinate at flipped to 1— £(x). It is
straightforward to check that (P1) and (1.18) imply the hypotheses of Theorem B3
of [12], and so there is a unique Feller procé§swhose generator is the closure
of Qu.

For our main result, Theorem 1.3, we assume now that the conditions (1.18),
(H1), (H2), (K1)—(K3) and (P1)—(P5) hold, ari is the corresponding voter
model perturbation. As before¥" is the measure-valued process determined
by &N, XN = (1/N) ¥ s, & ()8, and Py is the law of XN onQy p.

2
THEOREM1.3. AsN — oo, Py = pﬁgﬁvf’

(1.20) 0= > B(A)a(A)— > (B(A)+8(A)o(AU{0}),

AEPF AEPF
ando (-) is given in(K3).

, Wherey is given in(K2),

REMARK 1.4. Our assumption th@ty (A) =3y (A) =0if 0 € A implies that
B(A) =8(A) =0 if 0 € A. Therefore, lettingP, = {A € Pr:0¢ A}, the sums
over Pr in (1.20) can be replaced by sums ow&. Similarly, in (P3), we need
only consider convergence i(Py).

1.3. Applications of Theorert.3. In this section we specialize Theorem 1.3
to kernelspy which satisfy (M1) or (M2). We will see that in each case, the kernel
conditions (K1)—(K3) hold, and that some of the perturbation conditions may be
simplified. We also show that the Lotka—Volterra Theorems 1.1 and 1.2 follow
from Theorem 1.3. We consider first the fixed kernel case.

Assume first that (M2) holds [and, hence, (H1)], ahd 3. Then the conditions
(K1)—(K3) follow for any sequence;, — 0 such that, > N~1/3. To check (K1),
we make use of the local limit theorem bound (see Lemma A.3 of [3], e.g.),
P(B? =0) < Ct~4/? for some constant. Sinced > 3,

NP(B°=0)=NP(B},, =0)<C(Ne}) "* >0  asN — .
Next,

Z pn(e)P(Tn(0,¢) > ey) = Z p(e)P(t(0,e) > Ney)
eeSN ecZd

— > p(e)P(t(0,¢) = 00) = 7.

ecZ4
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A similar calculation, using transience of the random walks, shows that the first
limit in (K2) holds. ForA € Pg,

on(A) = P(tV(A) <e%) = P(t(A) < Nek) — P(t(A) < 00) =o' (A),

so (K3) holds as well. Furthermore, a little rearrangement shows that we may
rewrite the limiting drifté given in (1.20) in Theorem 1.3 in the form

0= > B(AP(t(A) <00, T(AU{0}) =)

AGPF

— > 3(AP(T(AU{0}) < 00).

AePr

(1.21)

We can now present several corollaries of Theorem 1.3. We will assume, of
course, that the rateg, (x, £) are nonnegative and are given by (1.14) and (1.17),
and that (H2) and (M2) hold, antl> 3, but all other assumptions will be specified.
We will consider the alternative conditions

(P1Y Bn(A) =38n(A)=0 if |A| > no for some finiteno,
and for somes, § € £1(Pr),

(P3Y By — B and Sy —§ in £1(PF).

COROLLARY 1.5. Assume that the perturbation ratgy}, {Sx} satisfy(P1),

(P3Y, (P4)and (P5). Then Py = P}Z(’:’g"’z as N — oo, wherey, is the escape
probability in (1.11)and#é is the drift specified irf1.21).

ProOF To apply Theorem 1.3, it suffices to check that (P2) and (P3) hold. It
is clear that (P3)implies (P2), and an easy uniform integrability argument using
on <1 shows that (P3)also implies (P3) [recall (K3)]. Thus, the conclusion of
Theorem 1.3 holds. O

COROLLARY 1.6. Assume that the perturbation ratgy}, {6y} satisfy(P1),

(P3Y, (P4)and (P5). Then Py = P}Z(’:’g"’z as N — oo, wherey, is the escape
probability in (1.11),and® is the drift specified irf1.21).

PROOF. Itis easy to check that (P1and (P3)imply (P1), so we may apply
Corollary 1.5. O

If we consider kernelg with finite range (as for simple symmetric random
walk), then the technical condition (P4) follows automatically from (a weaker
version of ) (P1).
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LEMMA 1.7. Assumd&M?2) and thatp has finite rangelf

(1.22) sup > Sn(A)” < oo,
N AePr

then(P4)holds

PrROOF The fact thaty (x, £) > 0 implies that ifé € {0, 1}Zd and&(0) =1,
then

Yo v [[e@=-N Y p(M(A—E(1)=—Nfo(08),

Aczd acA yeZd

where fo(x, ) = 2y Py =)L —E&(y). If f0(0, &) =0, then (P4) holds trivially
by the above. Iffy(0, §) > 0, then the finite range assumption implies that for
somee > 0, fo(0, &) > ¢. Then (1.22) implies that for som@ > 0,

YosnA [[s@=— ) sn(A)” =—C.

AePrp acA AePr
Sincefp(0,&) > ¢, —C > —(C/¢) fo(&), and (P4) follows in this case as well(]

COROLLARY 1.8. Assume that the perturbation ratgéy }, {6y} satisfy(P1),

(P3Y and (P5),and p has finite rangeThen Py = P§’0"”9’“2 as N — oo, where
v, IS the escape probability ifl.11),andé is given in(1.21).

PROOF By Lemma 1.7, (P4) holds, and so the result is immediate from the
previous corollary. J

We consider now the long range case, and will suppose that (M1) [and,
hence, (H1)] hold until further notice. To verify that the kernel conditions
(K1)—(K3) hold for suitables}, ando (A), we rely on results from [3].

The first fact we need is that

(1.23) lim  sup P(cV(A) <) =0 forallz > 0.
N—00 pAcpr |A|>2

To prove this, we need only take the sup ol = 2 in the above, but this case

is covered in the proof of Theorem 5.1(a) of [3]. Only minor notational changes in
that argument are required. We also need Lemma 5.2 of [3], which states that there
is a finite constan€ such that for alk > 0,

C
MG(Nt +1)d/2°

PBN°=0) < exp< _]2Vt> +

The condition (K1) follows easily from this last estimate for asfy — O,
provided %, > N~Y3 for d > 3, &% > maxMy?,4logN/N) for d = 2, and
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e > ma><(NM1§2,4IogN/N) for d = 1. If we sety = 1, then the kernel
condition (K2), for any sequeneg, — 0, is an immediate consequence of (1.23).
Settingo (A) = 1{|A| < 1}, condition (K3) also follows from (1.23). In view of
the above Remark 1.4, the dréftin Theorem 1.3 takes the form

(1.24) 6 = [ > ﬂ({a}):| — 8(2).

acZ4

As in the fixed kernel case, we consider two alternative perturbation assump-
tions:

(P1y s]thpZ(wN(An + 18N (A)]) < 00,
A

(P3Y {BvUaD}, ez = {BUaD ) cpe N €U(ZY).
Recall that we are assuming (H2) and (M1).

COROLLARY 1.9. Assume that the perturbation ratgsy }, {8} satisfy(P1),
(P1Y', (P2), (P3Y, (P4)and (P5). Then Py = P5."*/° as N — oo, whered is
given in(1.24).

PrROOF To apply Theorem 1.3, we need only check that (P1) and (P3) hold.
Condition (P1) is immediate from (P13nd (P1). For (P3), we note by (1.23) that
there is a sequenaegy — 0 asN — oo such that

Y. Bn@loy(AU{Oh = > [8n(A)]on(AU{O)

AePr, A#D AeP’F,A;éQ
<nv Y. n(A)]
A€PL, A#+D
< nNC — O,

the last inequality by (P1) A similar argument shows that

lim Z |1Bn(A)|oy(A) =0.
N=00 cprial=1

These last two results, (P3)and limy_ ~ éy (&) = §(2) [which follows
from (P2)] imply (P3), so we are donel]

We now derive Theorems 1.1 and 1.2 as applications of Corollary 1.9 and
Corollary 1.6, respectively.

PrROOF OF THEOREMS 1.1 AND 1.2. As previously noted, the rate func-
tion cy(x, &) for the Lotka—\olterra rates (1.8) can be written in the form
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Ncy (x, &) +cy(x, &), wherecy, (x, &) is given in (1.15) and}, (x, &) is given
in (1.16). For configurations with £(x) = 1, one can rewrite (1.16) in the form

01 =20 3" pn(@E(x+e)+0) Y pn(e)pn()E(x +e)E(x +¢).

eeSN e,e'eSy
It follows easily that if we defing andsy by
60 (pn(a/en))?, A={a),
(1.25) B =128 py(a/en)pn(d/ty),  A={a,d},
0, otherwise,
and
63, A=0,
1.26) w4y = | A [V @/t0) =2py(a/tn)]. A= a)
20 py(a/tn)pn (@' /Ly, A={a,d},
0, otherwise,

then (1.17) is satisfied.

Before considering the two types of models separately, we note that condi-
tion (P4) is satisfied in both cases. This is because (1.13) shows tljat @, 1}
with £(x) =1,

> an(An (A, x.6) =67 (f (. ) = 16 | 1 (x. ).
Acz4

This implies that foi < {0, 1}2 with £(0) = 1,
> vA) [[&@ > —162Y] > pn(y/EnL{E(Y) =0},
Aczd acA yezd

and, thus, (P4) follows. Conditions (PIyvith ng = 2) and (P5) are also clear for
both models.

Consider the long range model (M1), andlgt = ((—My, My1¢ N Z%) \ {0}.
The formulas forBy andéy simplify to

6)'1{a € Tn}/ITN /2, A={a},
BN(A) =120M1{a,d’ eTy)/ITN12  A={a,d),

0, |A| #1or2,

and

oY, A=0,

Q{Vn{aerlv}[i—i], A ={a},
dn(A) = ICnI1?  ITw|

20N 1{a,a’ e Tn}/ITN I A={a,d'},

0, 1A > 2.
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If we setB(A) =0forall A, §(@) =61 ands(A) =0 for A £ &, then clearly (P2)
holds. It is also trivial now to verify (PY)and (P3)y. Theorem 1.1 is thus a
consequence of Corollary 1.9.

Consider now the fixed kernel model (M2). Due to the assumptigtia/
£n) = p(a), By anddsy only depend onV through@iN. Therefore, if we define
B(A) ands(A) asBy(A) anddy (A), but withé; in place of@iN, (P3) is a simple
consequence of (H3). The hypotheses of Corollary 1.6 are therefore valid.

It remains only to verify the form of the drift given in Corollary 1.6. Recall
the definitions of8 ands from (1.12). The term involving thg(A)’s in the drifto
of (1.21) equals

Y B(A)P(t(A) <00, T(AU{0}) = x0)
A
=60 p*(e)P((0,¢) = o)

+60 Y ple)p(e)P(t(e,e) <o0,7(0,e,¢)=00)
e#te

= GOZp(e)p(e/)P(r(e, ¢') <00,7(0,e) =7(0, ) = 00) = Hpp.

ee

The term involving thé(A)’s is

91[1+ > (p(e)? —2p(e) P(t(0,e) <00) + Y p(e)p(e)P((0,e,¢) < oo)]
e e#e’

= 91|:1+ Zp(e)p(e/)(l — P((0,¢,€') = 0))

- ZZ p@)P(t(0,e) < oo):|
= 01|:22p(e)P(t(0, e) = 00)

=Y " p(e)pE)(P(r(0,e) =o0) + P(z(0,e) <00, 7(0,¢) = oo))]

e,e

= 91[2 p(e)P(t(0, e) = o0)

— > ple)p)P(t(0,¢) <00, 7(0, ) = oo)] = 616.

e,e
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In the next to last line we used symmetry to interchangede’. This shows the
drift in Corollary 1.6 equals that in Theorem 1.2, and so Theorem 1.2 is proved
aswell. O

For our final application of Theorem 1.3, we consider rescaled Lotka—Volterra
models in which thalispersionkernel is still p, but thecompetitionkernels for
the two types may be different. We focus on the fixed kernel case (M2)iwit!3,
and fix a pair of competition kernejs” and p? on Z¢. The latter two kernels are
arbitrary laws orz¢ satisfying p?(0) = p?(0) = 0, while the dispersal kerngl
still is as in (M2). The rates for the rescaled procg¥son Sy = Z4/+/N are now
given by

01 atrateNfN(fON +ad 1),
(1.27) N, d,N N ¢d,N
1-0 atrateNfy (f1 +ay fo ).

Here fl.b Vs the local density of typewith respect to the rescaled kemﬁ;, and

similarly for fi"’N. We continue to assume (H2) and (H3). As befoxd, is the
empirical measure which assigns mag#/ to the site of each 1 ig", and Py is
its law. Finally, we define

B = Z p@)pP(e)P(t(e,e’) <00,7(0,e) =1(0,¢) = 00),

e, e’ eZ4
8= Y pp')P(r(0,e)=1(0,¢)=c0).
e’ eZ4
;2
COROLLARY 1.10. Py = Pf{’ge’g ‘%" asN — oo, whered’ = pp’ — 618'.

PrROOFE This is another application of Corollary 1.5 with

608 p(@)p’(a), A = {a},
Bv(A) =160 (p(@p”@) + pla)p’@),  A=la,d},
0, otherwise,
and
oY, A=0,
swiay = | L P@P'@ = pl@ = pl@). - A=ta)
6 (p(a)p (@) + p(a) p®(a)), A={a,d},
0, otherwise.

One proceeds by verifying the conditions of Corollary 1.6 and applying that
result as in the proof of Theorem 1.2—the arguments are similar and left for the
reader. OJ
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The outline of the rest of the paper is as follows. In Section 2 we derive some
crude bounds on the size &f¥ (1), and obtain a semimartingale decomposition
of XtN(qb) for a large class of test functions. In Section 3 the proof of our
main result is reduced to a moment bound (Proposition 3.3) and a key estimate
(Proposition 3.4). Given these results, we establish tightness of our sequ&nce
and show all limit points converge to super-Brownian motion with the given
parameters. A comparison scheme with the biased voter model in Section 4 will
give the above moment bound, and play an important role in the proof of the
key estimate. The latter is proved in Section 6 after some necessary probability
estimates are established in Section 5.

2. Construction and decomposition. Our goal in this section is to de-
rive the martingale problem foX" and derive some elementary bounds on
1EN =3, &N (x). We assume that is the spin-flip system with pregenera-
tor Qu described in the previous section. In this section we will not need any
of the kernel assumptions, and will only need (P5) and the following weaker form
of (P1) of the perturbation assumptions:

(P1Y” > (IBN(A)| +18n(A)]) <oo  forall N.
AGPF

Recall also that (H1) and (H2) hold as always. Throughout this sechiowill
be fixed, and we will letF; be the canonical right-continuous filtration associated
with £V All martingales will be understood to I3 -martingales.

ProPOSITIONZ2.1.

(2.1) E(sup|§,N|f’) < oo forall p>0andT € [0, c0).

t<T

PROOR Letcy =3 4cp, |Bn(A)] [finite by (P1)"], and lety be a selection
function on the nonempty subsetshig, thatis,y(A) € A/£y for all nonemptyA.
Define

cx.m =N Y pyv@nx+e)+ Y 1By An(x+v¥(A)).

eeSy AePp

Letn() e Zfﬁ“ be the pure birth particle system such that) — 7(x) + 1 with
ratec(x, n). Then|n,| =Y, :(x) is a pure birth process with birth raté + c1

for each particle (this makes the existence and uniqueness of this system starting
from a configuration of finitely many ones obvious) nlfx) = 1(5(x) > 1), then

n is a spin-flip system with jump rat€(x, n) = ¢(x, n)1(n(x) = 0). It is easy to

use (1.14) and (1.17) to see thatifx) = n(x) = 0, thency (x, &) < '(x, n). If

n(x) =1, theney (x, &) > 0= c’(x, n). By Theorem II1.1.5 of [11], ifno = &},

we may construct versions gf' andy. so that with probability one¥ < n, for
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allt > 0. [Forg, &' € {0, 1}V, ¢ < ¢’ means that(x) < &'(x) for all x € Sy.] This
implies that

N
supl&,” | <supln:| = Int|.
t<T t<T

(Here, it is easy to use (P1)to check the condition (0.3) on page 122 of [11],
and so Theorem I111.1.5 may be applied.) Since the pure birth prdgesshas
moments of all orders (see, e.g., Example 6.8.4 in [8]), so Hggsand the proof
is complete. [

PrOPOSITION2.2. Forall x € Sy andr > 0,
(2.2) &V =€ )+ MY+ DY,

where {MN-* x e Sy} are orthogonal square-integrable martingales with pre-
dictable square functions given by

t
(M), = / { 3 Non(y =0 EN ) — N (0))?
0 yeESN

(2.3) + > an (A, x, EN (B (ALEY (x) = 0)
A

+ 8 (ALEY (x) = 1})] ds

and
1t
p* = f [Z Npn (=) (EN () — N (x))
0 yeSy
(2.4) + > avA X EN) (BN (ALEEN (x) = 0}
AePrp

—Sn(ALEN () = 1})] ds.

ProOOF We will use the fact (e.g., Theorem 1.5.2 of [11]) that tprin the
domain ofQy,

t
25) M=¢@E) —do) - /0 Qu(,)ds  isamartingale.
Letting ¢, (§) = &(x), a calculation shows that

Qng: (€)= Y Npn(y —x)(E() — &)
yeSN

+ > v (A, X, HBN(ALE(x) = 0} — Sy (A)1{E(x) = 1}].

AGPF
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An application of (2.5) now gives the decomposition in (2.2). It follows from (2.2)
that M,N’x is uniformly bounded on compact time intervals and, hence, square
integrable.

To derive the facts about the square function, we proceed as follows. @gfine
(in the domain ofQy) by ¢, (&) = £(x)&(y), and apply Itd’s formula tap, ,.
Since(g]N (x))? = £V (x), we obtain the (second) decompositiorggf(x),

t t
SIN(X):éév(x)+2[ gsl\i(x)dev’x—i_Z/ ésl\i(x)devvx_i_[MN,X]t’
0 0

where[M"*]. is the square variation function afV-*. The stochastic integral
above is a martingale, as[is&/V*], — (MN-*),, and, hence,

t
é:tN(x) —Sév(X) — 2/(; é:sl\i(x)dD;Vax _ (MN,)C)t

is a martingale. Thus, we have writtéff (x) as the sum of a martingale and a
continuous process of bounded variation in two ways. Equating the processes of
bounded variation leads to

t
(MN )y, = DN 2/ N (x)dDM.
0

A short calculation now gives (2.3).

The proof that the martingaleM,N’x are orthogonal proceeds in the same way.
We use (2.5) witlp = ¢, , to obtain a semimartingale decomposition for the prod-
uct&N (x)&) (). We then apply 1to’s formula to obtain a second decomposition.
Equating the processes of bounded variation leadsf~, M"-¥), = 0, and the
proof is complete. [J

With Proposition 2.2 in hand, we can now obtain a decompositiorXfd(e).
First we introduce the following notation. For

. 0
¥ € Cp(SN), ¢ = ps(x), s (x) = £¢(S, x) € Cp([0, T] x SN),
ands < T, define

ANW) =Y Npv(y —0) (¥ (y) — ¥ (x)),
YESN

t .
DN g) = fo XN (Anes + dy) ds,

1t
DtN“’<¢>=N/O 3 60 S Br(A)xw (A, x.EN)ds.

XESN AePp

1 t
D)=+ /0 3 ) S (Br(A) +Sn(A))EN ) xw (A, x,EN) ds,

XGSN AGPF
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(MY @)1 = f Y 020 Y Npw(v -0 00— £ (0)2d

XESN YeESN
(MY (@) =17 / Y 0Zx) Y an(Ax EN (BN (ALEY (x) = 0)
x€SN A€ePrp

+ v (ALEN (x) = 1)) ds
Note that{M" (¢)),,, may be negative.

PROPOSITION2.3. For ¢, ¢ € Cp([0, T] x Sy) andr € [0, T,

(2.6) XN (¢0) = X4 (¢0) + DY () + M (9),

where

(2.7) DY (@) = D" (@) + D (@) — D} 3(¢).

and MN (¢) is a square-integrable martingale with predictable square function
(2.8) (MY (@) = (MY ()10 + (M (@))2,

PROOF Use Proposition 2.2 and integration by parts to see that

t t
31 0OEN (1) = po(0)EY (x) + /o Bo(x) dMN + /0 s(x)dDV
2.9)

t
; N
+ /0 $s(EN (v) ds.
Using (P5) and the elementary inequality
(2.10) AN (A, x, &Y )_— Y. &l x+a), A#o,
| |a€A/ZN
we have
DY v A x EN(IBVAILEY (1) =0) + S (ADIL(EY (x) = 1))
xeSy AePr
< [ oy |A|—1ZSSN(x+a/zN)|ﬂN<A>|}
xeSy AePr acA
(2.11)
+[|SSN| > |8N(A>|]
AePrp

<1EM] D" (1BN (A + 188 (A)]).

AEPF
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This, together with Proposition 2.1, (H2) and (P1¥hows that each of the terms

in (2.9) is nonzero for only finitely many values.ofor all r < T a.s. Here we first
make this conclusion for each of the terms other than the martingale integral and,
hence, infer it for the martingale integrals. We therefore may sum (2.9)oeerd

after a bit of rearranging, obtain the required decomposition with

(2.12) MV (¢) = / By () AMN,
xeSN

Now use (2.11) and Proposition 2.1 to see that

(o))~

This shows that the series in (2.12) converged.funiformly in 1 < T and
S0 My (¢) is a square integrable martingale. It also shows that its predictable
square function is

I|m Nz Z</ ¢S(x)dMNx>

VESN

|x|<K
where the limit exists irL ! by the above but also for all< T a.s. by monotonicity.
A simple calculation using (2.3) now gives (2.8) and the proof is compléte.

3. Convergence to super-Brownian motion. Our strategy in proving The-
orem 1.3 is standard. We will prove that the family”, N > 1} is tight, and
that all weak limit pointsX. satisfy the martingale problem characterizing super-
Brownian motionX. with the specified parameters. Hen&e = X. asN — oo.
Our task here is less complicated than in [3], because we consider only the high-
dimensional case] > 3. The appropriate mass normalizeitN$= N, which fits
well with Brownian space-time scaling. Many of the complications in [3] arose
considering the delicaté = 2 case, for which the appropriate mass normalizer
wasN’' = N/logN. On the other hand, our task here is more difficult than in [3]
because the Lotka—Volterra and perturbed voter models do not have tractable dual
processes, as does the basic voter model.

A sequence of probability measurgRy} on D([0, 00), E) (E a Polish space)
is C-tight iff it is tight and every limit point is supported by ([0, co), E). Recall
that Py is the law of XV on D([0, c0), Mf(Rd)), and that the assumptions of
Theorem 1.3 are in force. Our strategy requires proving the following two results.

PROPOSITION3.1. The family of lawg Py, N € N} is C-tight.

PROPOSITION3.2. If P* is any weak limit point of the sequenég, then
P* = P2)/,9,0'2.
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Clearly, Theorem 1.3 follows from these propositions.

We now state a pair of key technical results, Propositions 3.3 and 3.4 below,
whose proofs we defer to Sections 4—6. Assuming these two propositions, we give
the proofs of Propositions 3.1 and 3.2 in this section.

ProPOSITION3.3. For K, T > 0,there exists a finite consta@i(K, T) such
that if supy X3 (1) < K, then

(3.1) supE(supX,N (1)2) <C3(K,T).
N

t<T

This bound allows us to emplok? arguments. Note that it is a consequence
of (H2) that there will exist & as above.

Our second (and key) technical bound will need the following notation. For
A€ Pp, ¢:[0,T] x Sy — R bounded and measurablg, > 0 andr € [0, T,
define

En(A, 9, K, 1)

2

1
= sup E((fo [NZ@(x)xN(A,x,;{V)—w(A)X?(@)}ds))

x¥ =<k

[recall thatoy (A) = P(ty(A) < e))]. For¢:Sy — R, define
PllLip = @ lloo + S;Jplaﬁ(X) —pMllx —yI ™
XF£y

Also, recall thatl y = My+/N — oco. By (P1),cp = Supy Y acp, B (A)T < 00
and we may set = cg + ks, whereks is as in (P4).

PROPOSITION3.4. There is a positive sequeneg — 0asN — oo, and for
any K, T > 0, a constantC4(K, T) > 0, such that for anyp € C,([0, T] x S\)
satisfyingsup . [|¢sllLip < K, nonemptyA € Pr,ac€ A, J >1,and0<7<T,

EN(A, ¢, K., 1) < Ca(K, T)[e5eN + J72

(3.2)
+ J%(en] Al + (on (A) A (en +1al/en)))]-

In particular, limy_ sup.7 én(A, ¢, K, 1) =0.
This result says that
1 N N
Nqus(x)xN(A,x,ss )~ oy (A)X]) (¢5),
X

in some average sense, and is the key to identifying any weak limit %of
We proceed now assuming the validity of the above two propositions.
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We begin by obtaining more precise information on the terms in the decom-
position of XV (¢) given in Proposition 2.3. Lemma 3.5 below estimates the
terms in the increasing proces¥ " (¢));, Lemma 3.6 estimates the terms in the
drift DN ().

LEMMA 3.5. There is a constanC such that if¢:[0,7] x Sy > R is a
bounded measurable functiaghen

@) (MY ()2 = [ym5 (¢)ds, where

ol N
N X (D

(3.3) Im% ($)] < C
(b)

t t
34) (MY, =2 /0 XN (@2 1N EN)) ds + /0 m (p)ds,

where

<
VN
(c) Fori =2,3,D)"(¢) = Js dV(¢)ds fort < T,where for allN ands < T,

(35) i, @)1 = | S0l XY D] A2101Z XY )

14 ()] < Clldlloo XN (D).
PROOF. () The definition of M" (¢))2., implies

1
|m§,s<¢>|sm2|¢s<x>|2 > (BN + 188 (A ) xn (A, x, EY)

XESN AePp\Q
1
+ NX?X (@285 (D).

By (P1) and (2.10), there is a const@nhsuch that

A Sn(A 1
mY @) <ol Y (I1Bn(A)| + |85 (A)]) ZW ZSSN()H_%)

AePp\@ |A| acA xeSy

2 BN(Q)
(3.6) + loll5 N

o112,
N

xN ()

<C

xN@).

(c) This is proved by making minor changes in the derivation of (a).
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(b) A little rearrangement is necessary to handle the témd (¢))1;.
We rewrite it in the form

l t
- /0 3 v —0e2m[EN 01— &Y 1) + 1 — &N (0)eN ()] ds
X, yESN

1 t
== 3 N pn(y —x)(L—EN(y))ds
N /O x,yeS\

1 t
+ < /o x stN N (20 py (y — 1) (1 — £V (1)) ds

1 t
-y f 3wy — 0l620) — p2IEN () (1 - £V () ds.
0 X,yeSN

That is, (3.4) holds where
1
mi, @) =5 > pn0y- ) (p2) — pZM)EN (L —EN (x)).
X,YESN

Note that |¢,(x)% — ¢y (y)?| < 2||¢s||Eip|x — yl|, and also, by (H1) for some
universal constant,

> pn(y —x)lx =yl = E(Wy)/v/N < C/(2VN).
y
These inequalities establish (3.5).]

Let 7 > 0 and¢: [0, T] x Sy — R be such thaw, ¢ € C,([0, T] x Sn), and
define

1
SyGs.p)= > ﬂN(A)[ﬁ > ¢s<x>XN(A,x,§,N>—cm(A)XﬁV(qss)],

AePr xeSN

1
85(s.9) = (Bn(A) + SN(A))[N > p()xn(AUL0}, x, EY)
A xeSN

—on(AU{OhXY <¢s>}.

It follows from (2.10), (P1), (P5) and Proposition 3.3 that these series converge.
Also, set

dd' =" Bn(Aon(A)— > (BN(A) +8n(A))on(AU{O)),

AGPF AGPF
and note by (P1) that

(3.7) c1=sup|d{’| < oo.
N
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With this notation, (2.6) of Proposition 2.3 may be written as
l .
X! (60 = X5 @0 + MY @) + [ X CAves + ) ds

t t
(3.8) +/0 dgvxjv(q)s)derfO (83 (s. ) — 8% (5. ¢)) ds
forallr €[0, T].
LEMMA 3.6. There is a sequences, — 0asN — oo and for eachk, 7 > 0

a constaniCo(K, T) (increasing in each variab)esuch thatify : [0, T] x Sy — R
satisfiessup -7 ¢ llLip < K andsupy Xé\’(l) < K, then

00 sule([ 50 ([ R0a) )] <cor

forall N.

PrROOE Assume¢ and Xé" are as above. If € [0, T], then by Cauchy—
Schwarz and (P1),

(s 00))

1
=E(< 2 ﬂN<A>/ [ﬁ > b (A, x,EY)
AePr 0 xeSy
(3.10)

2
—on(AXY (@)} ds) )

<C ) IBN(A)IEN(A, ¢, K, 1)

AEPF

for a constantC. Proposition 3.4 and (P1) show that for some positive sequence
ey — 0andany/ > 1,

2
supE((/(: 515, ) ds) ) < C(T.K)(ly + T2+ T%Ey +nw).

t<T
whereC (T, K) does not depend on the choiceggfand
v =) IBN(A)|(on(A) A (en +1al/En)).
A

(Recall a denotes some element of.) By (P3) and a uniform integrability
argumentyy — 0 asN — oo. Optimize the above over to see that for some
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positive sequence), — 0,

t 2

supE((/ 5}V(s,¢)ds) ) < C(T, K)ey,.

t<T 0

A similar argument goes through f&%, (s, ¢) [note thaboy (AU{0}) <oy (A)]and

so the result follows (the monotonicity requirements@nare trivial to realize).
]

The proof of Proposition 3.1 (tightness) proceeds as follows. We first establish
tightness forX™ (¢) for an appropriate class of test functiopsWe then prove
a “compact containment” condition fak¥. We can then appeal to a version
of Jakubowski’'s theorem for weak convergence Ix[0, co), M f(Rd)) (see
Theorem 11.4.1 in [14]), completing the proof of Proposition 3.1.

PROPOSITION 3.7. For each ¢ € C2’3(]R+ x R3), each of the families
(XN (), N €N}, (DN(¢), N €N}, ((MN(#))., N e N}y and {MN (¢), N € N} is
C-tightin D([0, c0), R).

PrROOFE Fix ¢ as above and recall the decompositionX(jY(qbt) in Proposi-
tion 2.3. We start with the drift terms and recall an analytic estimate (Lemma 2.6)
of [3]:

o2 A

AN (¢s) — -0 asN — oo.

(3.11) sup{

s<T

9]

SinceD,N’l(qb) = fé XN (ANgs + $)ds, (3.11), Proposition 3.3 and the Arzela—
Ascoli theorem imply that

(DN1(¢), N eN} istightinC([0, c0), R).
Fori =2,3, D) (¢) = [3dN" (¢) ds, where by Lemma 3.5(c),
4 (@) < Cliglloo X (D), i=2.3,
Again Proposition 3.3 and the Arzela—Ascoli theorem imply that
(DN (¢), N e N} is tight in C([0, 00), R),i = 2, 3.

We turn now to the martingale terms. By (2.8) and Lemma 3.5(a, b), there is a
finite constantC such thatforG<s <r < T,

t
(3.12) (MY @) — MY @) = oI, [ XY du.
Consequently, Proposition 3.3 shows that
(MY (#))., N eN} istightinC([0, o), R).
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Since the maximum jump discontinuity M (¢) is bounded above by /N,

it follows from Theorem V1.4.13 and Proposition VI1.3.26 of [10] that
{MN(p), N eN} isC-tightin D([0, o), R).

In view of (H2), we see from the above and Proposition 2.3 that(¢,)
and D,N(gb) are each a sum af'-tight processes iD([0, oo), R). Since a sum
of C-tight processes i ([0, c0), R) is alsoC-tight, the proof is complete.[]

To derive the appropriate compact containment condition, we will first need an
estimate on the mean measureXjf. Let PV denote the semigroup associated
with the generatos y .

PrROPOSITION3.8. There is a constant; > 0, a positive sequencq%, -0
as N — oo, and constantsC1(K, t), K,t > 0), nondecreasing in each variable
such that ifsupy Xé\’(l) < K,and¢:Sy — R, satisfieg|¢||Lip < K, then

E(XN(¢)) < eV XY (PN§) + C1(K, ey
PROOF Assumerisasin(3.7) an@ is as in the statement of the proposition.
Fix ¢t > 0 and define

¢s(x)=e PN p(x),  (s,x)€[0,1] x Sy.
Then (3.8) becomes

t
e~ VXN (p) =X (PN @)+ MY (¢) + (d) — c1) /o XN (¢s)ds

+ /O (8 (s, 9) — 83,(s, 9)) ds.

Note that the third term on the right-hand side is nonpositive. It is easy to
verify that sup., ll¢sliLip < K. Therefore, we may use Lemma 3.6, and take

expectations in the above withi = ¢, recalling thatMN (¢) is a mean zero
martingale (Proposition 2.3), to arrive at

E(XN () < eV XY (PN p) + e 2Co(K, 1)eS.
The result is then immediate

For the following, letB(x, r) denote the open ball iR? of radiusr centered
atx.

PrRoPOsSITION 3.9 (Compact containment).For all € > 0, there is a finite
p = p(¢) such that

supP( sup XV (B(0, p)°) > e) <e.

N t<e1
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PROOFE Leth, :R? — [0, 1] be aC® function such that
BO,n)C{x:h,(x)=0}C{x:h,(x) <1} C{BO,n+ 1)}
and

sup Z I (hn)illoo + [1(hn)ijlloo + [ (hn)ijkllco = Ch < 00.
"o jk<d

Letc1 be as in (3.7) and use (3.8) wigf (x) = e~ “**h,, (x) to get

t
e~ XN () = XY () + MY (¢") + /o e~ XN (Axn)

(3.13) t
+ (dl —cl)X§V(¢;’)ds+/o 8L (s, @) — 82 (s, ¢™) ds.
Note that
2
E(/t X§V(|ANhn|)ds) < HAMzn _ oA E(/txgv(l)ds)
(3.14) 0 oo \JO

t 2
+E<f Xﬁ(M)ds).
0 2

The first term in (3.14) approaches zeroMas~ oo, uniformly in» by (3.11) and
Proposition 3.3. Choose

(3.15) K> max(l, Cn(c?/2+ 1), supxyy (1)).
N

Then¢ = 02| Ah,|/2 satisfies the hypotheses of Proposition 3.8 and so that result
bounds the second term in (3.14) by

t 2| Ahy,
(3.16) / XY (PSN(G '2 ')) ds + C1(K, )€y,
0

SinceAh, =0 onB(0, n), we may use (H1) and (H2) to conclude that

X5 (PY (1AhaD) < CuXg (P (L))
< Ch(X (B0, n/2)°) + XY (1) P(1BON | > n/2))
< Ch(XY (B0, n/2)%) + X§ (D)en=2s)
-0 asn — oo uniformly in N ands <.

The above proves

(3.17) lim E(f(: Xﬁv(lANh,,l)ds) o

(N,n)— 00
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Use (2.8) and Lemma 3.5 to see that [regdlix) = e~ h, (x)]
E((MY (¢™)) < C(N"T + Nl/z)E( /O XY ds)

+2E</OZX§V(h5)ds).

Now use Proposition 3.8 to bound the second term in (3.18) [just as in (3.16)] and
Proposition 3.3 to bound the first term in (3.18) and conclude

(3.19) (MM (@"),)=0  foralls > 0.

(3.18)

lim E
(N,n)—00
Lete > 0. By (H2), (3.17) and (3.19) there is ap € N such that forV, n > ny,
P(e X8 ) + sup e (4]

t<e-1

(3.20) .
-
+/0 W= XN (| ANh, ) ds > e) <e.

Turning now to the last term in (3.13), note first the trivial bound

185 (5, ™) + 163 (s, ¢ < S (1Bn (A)] + 183 (A))4X N (1)
A

(3.21)
<cxN),

the last inequality by (P1). Our choice &f in (3.15) shows that eaght’ satisfies
sup 14} lILip < K and so Lemma 3.6 implies that for dll> 0,

)0

asN — oo uniformly inn fori =1, 2.

supE(’/Ol 8 (s, ™) ds

t<T

(3.22)

Now (3.21) and Proposition 3.3 show tHg§ Sjv(s, ¢")ds:N eN},i=1,2, are
tightin C (R4, R), while (3.22) shows that each limit point of the above sequences
is identically 0. This shows weak convergence [gb), (s, ¢"°) ds to the zero
process and, therefore,

} > e) =0.

lim P( sup e“lt{
N—o0 f<e-1

Now use the above and (3.20) in (3.13), noting th%Y —c1) XN (¢5°) <0, and
conclude that there is aMg so that if N > N,

t t
1 no 2 no
/OSN(S,(j) )ds —i—‘/o Sn(s,9"0)ds

P( sup XN (h,) > 26) < 2.

r<e-1
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By increasingug if necessary to handl¥y < Ny, we get

SupP( sup XN (hp,) > 26) < 2e,

N t<e-1

and the proof is complete becausg > 150, np+1)c. 0

PROOF OF PROPOSITION 3.1. The C-tightness of{Py, N € N} is now
immediate from Propositions 3.7 and 3.9 above, and Theorem 11.4.1 in [TL4].

PROOF OFPROPOSITION3.2.  We assume below thate Ci3([0, T] x RY),
supy X{)V(l) < K [such aK exists by (H2)] and G< ¢t < T. First, (3.11) and
Proposition 3.3 imply

(3.23) E((D,N’l(@ - /Ot Xﬁ(”zﬁd)“ +¢'>S) ds>2> -0  asN — oc.

We also have
DN(¢) - DV3(g) = / 515, ) — 625, $) ds + / "XV (@) ds
¢ ' = J, OV N (s, o Jo Xs :
It follows from (P3),0n5 (A U {0}) < on(A), (P2) and (K3) that
BN(on(-U{0) = (o (-U(0)  in€1(Pp) asN — oo,

This and (P3) imply thaﬂ(’)\’ — 6 asN — oo. We may apply these results with
Proposition 3.3 and Lemma 3.6 to conclude

(3.24) E((D,N’Z(q&) — pN3(g) — 9/(: X§V(¢s)ds>2> 50 asN — oo.

We claim now that

(3.25) E(((M’V(¢>)>, —2y /Ot xN(¢?) ds>2> —-0  asN — oo.
Define

yv =) pn@P(E"({0.¢) > £})
eeSy

[recall V(A) = tN(A/ty) for A c Z4]. By (2.8), Lemma 3.5, (K3) and
Proposition 3.3, to prove (3.25), it suffices to prove that

(3.26) E((/(: XN@2 N EN) — A -y XN 9D ds>2) —~0  asN — oo.
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To do this, we expand the integrand above in the form
xY (@2 EYN) - A=y XY (D)

1
=5 2 HE® X vy = 0[ET0) = PV (0. (v = 0ty) < )]

xeSN yeSy
1
=Y v~ Y EOEN @[EN (x +y) — P(tV (0. yen) <&3)]
yESN N xeSy

1
=3 m(a/zm[— Y g2 xn({0.a}, x, &) —on ({0, ah XY (¢§>]

N
aecZ4 xeSN

Applying Cauchy—Schwarz, the left-hand side of (3.26) is bounded above by

1
Y pn(a/en)E (( fo [ﬁ > @2 xn ({0, a}, x, &N
ae7d xeSN

2
—an({0,ah) XV <¢>§>} ds) )

Proposition 3.4 now completes the proof of (3.26) and, hence, of (3.25).
The abovel 2 estimates [i.e., (3.23)—(3.25)] imply that for- 0,

g

D,N<¢>—/OZXA?(%ZAw«zBs)ds—efotx?“(mds

> 8) —0
and

P(| e @ -2y [ x@?as

>s>—>0

asN — oo.

Now suppose thaP (XM e .) = P(X. € -) in D([0, 00), Mf(Rd)) for some
X. € C([0, 00), M f(RY)) ask — oco. Since(X M, DN (¢), (M (¢)).) is C-tight
in D([0, o), M r(R?) x C(R) x C(R™)) [by Theorem 3.7 and Proposition 3.1], by
Skorohod’s theorem (taking a further subsequence if necessary), we may assume
that

(xNe, DNe(g), (MNe(9))) — (X., D.(¢), L.(9))  as,

where (X., D.(¢), L.(¢)) is continuous. By the probability estimates above,
it follows that
t

o? . !
(8.27) D,(qb):/ XS<—A¢+¢S)ds+9/ X (pg)ds Vt>0a.s.
0 2 0
and

(3.28) Li(¢) =2y /O "X,(¢D)ds  Vi=Oas.
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By Proposition 2.3M N+ (¢) — M.(¢) € C(R) a.s., where
O’2A¢s
2
and M, (¢) is continuous and, X -measurable. By (3.25) and Proposition 3.3,

s;pE((MN@»%) < o0.

t ) '
(3.29) X,(¢h) = Xo(do) + My () + /o Xs( +¢s)ds+ fo X, (0y) dis,

Using Burkholder’s inequality and the fact thex M"Y (¢)(1)| < |¢lloo/N, We
obtain

supE(sup|M,N(¢>)|4> < 00.
N

t<T

Consequently)M.(¢) is a continuousL2, X -measurable martingale, and
t
(M(@)): = Jim (MY (@), =2y /0 X,(#Dds  as.

ConsequentlyP (X. € -) satisfies the martingale problem characterizﬂ?gﬁ’”z,
and soP (XM € ) = P799% asN; — 00, [

4. Comparison with biased voter models. In this section we show that we
can dominate the proceg$ by a biased voter modé}” . That is, we show that
the two processes can be coupled so that with probability &tes £V for all
t > 0. Easily obtained bounds of(]&"|) and E(|N|?) thus provide bounds
on E(XN (1)) and (E(XN(1))?). The results in this section will use (P1), (P4)
and (P5), but not any of the kernel assumptions.

Let p and p be two probability kernels o4, and fix parameters > 0, b > 0.
Fori =0, 1, define

fite,m)y =Y ply —x)1{n(y) =i}
yezd
and
fite,my =Y ply—01L{n(y) =i}.

yezd
The biased voter modé} is the spin-flip system taking values {8, 1)Z" which
in state¢ makes transitions at,
0—1 atratevfi(x,&) +bfi(x, &),

10 at ratevfo(x, ).

If b =0, we obtain the voter model, while &# > 0O, there is a bias in favor
of creating 1's. It is clear from these rates that we may as well assume
p0) = p(0) =0. _

We will need the following estimates on the first two moment&gf

4.1)
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LEMMA 4.1. Assume thalg| < co. Then|& | is submartingale such that

(4.2) E(|&]) < e”|&ol,
and|£;|2 is a submartingale such that

_ _ b+2v -
(4.3) E(&D) = e (16 + 7= @ - ) o ).

PROOF.  First, note that by bounding;| above by a pure birth process just
as in the proof of Proposition 2.1, one may conclude thatffer 0, the first and
second moments of sup, |E;|are finite. Next, if81({a}) = %ﬁ(a), B1(A) =0 if
|A| # 1, ands; = 0, then|&, ,, | is preciselyX (1), whereX?!is as in Theorem 1.3
with N = 1. Clearly,81(A) =0 if 0 € A, (P5) holds and (P1)is valid, so from
Proposition 2.3,

—_ - t —_ - _
@4)  |&] =Gl + f S bp(e)Ex +e)(1— & () ds + M.

x,ecZ4

whereM, is a square-integrable martingale with predictable square function

(M), = /0 > [vp(y—x)ﬂ(és(x#ém)
(4.5) yen

+ > bpe)é(x+e)(1- és(x))] ds.

x,ecZd

By (4.4),
_ _ o _ _
|§z|§|€0|+/0 bIE,| ds + M,

and as we have already noted thiat has a finite mean, (4.2) follows by taking
means in the above and using Gronwall’s lemma.

Using some stochastic calculus in (4.4), we get (With), the square variation
function of M)

_ _ o _ _ _
1812 = |Eol® + /0 20810 p(e)E(x +e)(1— & (x)) ds
(4.6) —
n f 208, dM, + [M].
0

Proposition 2.1, the fact thég;| can be bounded by a pure birth process and (4.5)
imply that the stochastic integral in the above is a martingale, g |s— (M);,
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consequently,

_ _ t _ _
E(&%) < |E|®+2b / E(&>) ds + E((M),)
(4.7) 0

—_ 2 t - 2 t -
< ol +zb/0 E(lE,| )ds+/0<2v+b)E<|ss|>ds.

From this, (4.2) and the previously noted fact tl4ts; |?) is bounded on compact
time intervals, (4.3) is easy to derive. Finally, the fact thiat and |&|? are
submartingales is clear from (4.4) and (4.6}

Our task now is to define a biased voter mog#l taking values in{0, 1}
which dominates the voter model perturbat;ghﬁ. To do this, we must determine
the appropriate kernels and rates- vy andb = by, which we do by considering
the maximum and minimum values of (x, £) given by (1.14), (1.15) and (1.17).
We assume thaV > ks [recall (P4)] in what follows.

ForS,N, at sitex in configurationt with £(x) =1, the flip rate from 1to O is

eNELE)=N D pn(y—0)(L—EO)+ D SN(A)xn(A, x, &)
yeSN AePr
(4.8) N
> (N —ks) fp) (x, €),

where we have made use of assumption (P4).
Similarly, at sitex in configurationt with £(x) = 0, the flip rate fromO0to 1 is

eN(xL E)=N D pn(y—0ED) + D BN(A)xn (A, x,§)

yeSN AePrp

(4.9) SN (6 + Y Br(A)xn(A, x,8)

AePrp

(A
<N &+ Y, G )ZS(HMN),

AGPF | | acA

where we have used (2.10). To simplify this last expression, we define a probability
kernel py on Sy by settingey = Y4 p, By (A) and

B (A)

R 1
pn(a) = — Z IA]

CB AiacA/ty

(If cg’ = 0, the construction simplifies considerably and the necessary modifica-
tions will be obvious.) Note thgby (0) = 0. Now if

N8 = vy —0LEQ) =i},
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inequality (4.9) can be rewritten as
(4.10) en(x, ) S NFY (2. 8) +cff Y (x,8).

Recall by (P1),cs = supy cé}’ < 00, and we use this constant to define another
probability kernelpy on Sy by

_ kspn(a) + cgpla)
ks + cB '

It follows then, with f¥(x,&) =Y, pn(y — x)1{E(y) = i}, that (recallc =
ks +cp)

@.11)  NA GO +ef Y@ < (N —ko) Y (x, ) + 2/ (8).
We now leté be the biased voter model with rate function
(N —k) i (x. 6) +8f' ®), i () =0,
(N = ks) fo' (x.8). if §(x) = 1.
From (4.8), (4.10) and(4.11), we see thag i &,
en(x,§) <in(x,§)  ifEX) =0,
en(x, &) =en(x,§)  ifEx) =1

On account of this (see Theorem II.1.5 of [11]), we may construct versions
of &V and&" on a common probability space such thatff = £}, then with
probability one,

(4.14) gV <g)N  forallt>0.

pn(a)

(4.12) conv(x,§)=

(4.13)

In Section 5 we will also need a voter model dominated By Let £V be the
process with the same flip rates specified in (4.12), exceptanitio. ThenétN is
a voter model, and i€} (x) < &Y (x) for all x, then, as above, we can defig#
andéN on a common probability space so that with probability one,

(4.15) EN <N forallr>0.
We also note tha@tN| is amartingalefe.qg., by (4.4) withb = 0], so
(4.16) E(EN)=1&Y) forallt>0.

We record now some consequences of Lemma 4.1, including the proof of
Proposition 3.3. We assume th&f’ and X are as above, with) =&Y =&}'.
Let XY (¢) = (I/N) L, ¢(0)EN (x) and XN (¢) = (I/N) X, p(x)EN (x). By
Lemma 4.1,

(4.17) E(XN D) <ex{ (D).
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Also by Lemma 4.1,

(4.18) EXN(1)? <e* ()‘({)V(l)z RS, 2(]\1]\7_— k) 1- e—E’)X{JV(l)).

Since}_({"(l)2 is a submartingale by Lemma 4.1, it follows that f6r> 0 and
K > 0, there exists a consta@t(7, K) > 1 such that

(4.19) sup E(sup)‘({v(l)z) < C(T, K).
XY=k t<T

PROOF OF PROPOSITION 3.3._ This is now immedigte from the above
inequality, since the coupling" < &" implies thatx¥ (1) < XN (1). O

Note that by (4.17) and the fact th&f" (1) is a submartingale,
(4.20) 0< E(XY (D) - X' (D) < (¢ = DX (D).

To get similar bounds on the differendé,’\’(l) — X{)V(l), use Proposition 2.3
and Lemma 3.5 to see thaN (1) — X}'(1) = [§d¥ (D) ds + MN (1), where
E(MtN(l)) =0, and there is a consta@tsuch that

a¥ @) <cxN@ <cxNw

fors < T. It follows therefore from (4.17) that

ct _ 1
(4.21) BN @ - x§ )] = c——x¢ @,

5. Thekey lemma. For bounded functiong on Sy and nonempty € Pr,
define

v (X, A b,9)

(5.1)
1
= |Exy (ﬁ Y dan (A x. &0 = P(eV(4) < s)XSN(qs))‘
and
(5.2) Ny, (A ¢.s)= Sup N (Xg.A.¢.s).

xY =y
The proof of Proposition 3.4 is based on the following lemma. We assume the
hypotheses of Theorem 1.3 are in force.

LEMMA 5.1. There is a finite constar@ and a positive sequeneg, — 0 as
N — oo such that for any/, K > 1, ¢ : Sy — R such that||¢||Lip < K, nonempty
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finite A c Z¢ anda € A, ands > 0,
v (XE, A, ¢.5)
(5.3) < CK[(eES —DIA| + (P(IN(A) <s)A (% + ElB‘fV’O|))}XéV(1)
+ CK|AINP(BYN? = 0)(x} (1))

and

(5.4) v (A, ¢, ex) < CKJ2(8N|A| +on(A) A (Lﬂll + 8N>>.
N

PROOF LetJ, K, ¢ andA be as above. Let" be the biased voter model and
let £V be the voter model from the previous section, vigh= &Y = £}, coupled

so thatg) < &N and&N < EN. By the triangle inequalitypy (XY, A, ¢, s) is
bounded above by the sum of the following four “error” terms:

1 _
(5.5 n'(s)= E(ﬁ e (A, x, ) — XN(A,x,ssN)])',

1 _ N
(5.6) nY(s)= E(ﬁ > dxn (A, x, EY) —xN(A,x,siVn)',

El

1 ~ N
G7) 1)) = E([ﬁng(x)xN(A,x,ssN)] — P(eV(A) <)X} <¢))

(5.8) n)(s)=P(rV(A) <s)|EXY (@) — XV (@)

(recall X} = x{).

The strategy behind this decomposition is as follows. We want to argue that for
smalls, the perturbed voter modgl is close in some sense to the voter magé]
and then compute wit&N using voter modedluality. However, we cannot directly
compares N with £V, but must instead argue that bt andé) are close t&) .
These two comparisons can be made because of the couplings and the inequality
Ty zi — [T/ wil <>°F_11zi — w;| for numbersz;, w; bounded in absolute
value by 1.

In preparation for estimating thgf\’(s), by the previous inequality,

v (A, EN) — (A, x ENDN < DY 1EY (e a/ew) — €N (x +a/ty))

acA

=S EN(x+asey) &N +ajw)),

acA
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the last step following from the coupling¥ < £V. Thus,

1 _ _
¥ > v (A x EN) — xn(A x, EN < 1AI(XY ) — XY ().
xeSy

A similar argument shows that
1

v > Ixan (A x, EN) — v (A x, EN < 1AIXY () - XV ).

xeSy
Consider the first error termﬂl\’(s). By the above,

1 _
ny (s) < ¥ Y IP@IEIxn (A, x,EN) — xn (A, x, &N
x€ESN

< lI¢lllAIE(XY (1) — XV (D)
<KIA(E(XN Q) - XY @)+ |[E(xY @D - xN Q)|

[recall X3 (1) = X&' (1)]. By (4.20) and (4.21), this implies there is a constant
such that

(5.9) nd (s) < CK (€™ — 1)|A|1X) (2).

For nY (s), using E(XN (1)) = X} (1) = X (1) [see (4.16)] and arguing as
above, we get

13 (s) < ¢l |AIE(XY (D) — XN (D) < KIAIE(XY (D) - X (D).
Now apply (4.20) to see there is a constansuch that
(5.10) n3 (s) < CK|A|(e” — DX{ (D).

Turning to nf{’(s), by adding and subtracting ¥ (¢) and then proceeding as
above, there is a constafitsuch that

(5.11) ny (s) < CK (™ — Dx{ (D).

We come now to the main ternm,é\’(s). Here we will use the independent
random walk systen{B,N*X,x € Sy} and the coalescing random walk system
{B,N’x, x € Sy} introduced in Section 1. Recall that fdre Pp,

V(A =inf{r: (B}, x € AJen} =1).

Fory € Sy, let 7)Y (A) = ¥ (yty + A). By translation invariance and symmetry,
for anyy e Sy and finiteA c Z4,

(5.12) P(r)/(A) <s)=P(1)' (A) <) = P(r)' (—A) <s5) = P(r}) (—A) <5).
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Also, we may assume here that our coalescing random walk system is constructed
from the independent random walk system via some collision rule. In particular,
fora # a’ € Z¢, we may assume that

P(BN-+a/tn — y BNy — o N (0 ')y > )
(5.13) — p(BNHeltn —y gt o N ((a gl)) > o)
< P(B) TN = y) (BN = o),

Finally, we will make use of the well-known duality between the voter model and
coalescing random walk (see Section 3 of [5], e.g.) in the form

(5.14) E(xn(A,x,EN)) = P(BN*Ta/tv ¢ eV va e A).

We will evaluate the right-hand side above by decomposing the event according to
whethertN (A) < s or not.
To estimated (s), we define

k]

1 . .
(5.15)  pYi(s) = 'N Y p)P(BY TN el Vae A TN (A) > 5)
xeSN

1

(5.16)  nh,(s) = ' v

Y ) P(BYTN eV Vae A, TN (A) <)
xeSN

— P(N(A) <s5) X (#)

’

and observe that the duality equation (5.14) above implies that

n} (s) < nd1(5) + 13 2().
We proceed now to estimate each of these terms.
For ny'y(s), fix any a € A. Since{r} (A) > 9)} = Usea\a){t) (@. @) > s},

it follows from (5.13) andP(BY-* = w) < P(BN-0 = 0) (e.g., see Lemma A.3
of [3]) that

1 A N
1510 < lplloos Do D0 P(BY ey,
xeSyacA\{a}
BNxt+alty ¢ £V tN(a,a) > 5)
1
Slgllee Do & 2o PBITTN=y)

acA\{a} x,y,2€SN

x P(BN*Ha/ty — )&V (1)E) (2)
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1 N.O
<l¢llec Y. 2 > NPBYP=0)
acA\{a} X,¥,2ESN
x P(BNF/tv = ) EN ()&l (2).

By symmetry and time reversat(B. /N = z) = P(BN-* = x+a/ty). Thus,
in the inequality above, if we carry out the summation first oweand then over
y andz, we obtain the estimate

(5.17) nY1(s5) < K(1A| = DN P(BY0 = 0)(X) ().

For né‘fz(s), we begin with a calculation that uses time reversal, symmetry and
translation invariance. For aryc A,

P(BY-H0 =y, 1(A4) <)
=P(BN=y— (x+a/ty), BNO=BN @D/t yq ¢ A)
P(BNC=(x+a/ty)—y, B} O = BN/ yge A)
(BNy altN — x, BNy ajly — B;V,y—a/ﬁzv VaeA)
N,y—a/ly _ N
=P(BN 7 =x, 1) (—A) <).

Using this equality, we have, for any fixeds A,

1 . .
~ Y p)P(BN TN cgllVae A, N (A) <5)

xeSy
_1 Y p@EY P(BN TN =y 1V (A) <)
N
x,yeSN
1
5 2 PWE MPBYTYY =x, 1 (-4) <5)
xyeSN

= N Y EYME@BY YN 1V (—A) <5).
YESN

Furthermore, sinc® (rV(A) <s) = P(r)],V(—A) <) for all y e Sy [by (5.12)],
adding and subtractingi(y) in the sum above gives

1 A ~
¥ Y p) PB4/ el Vae A TN (A) <)
xeSN

=— Z EVOE(@(BN =4ty — ¢ (y): 1) (—A) <55)
yeSN

+ P(eV(A) <5)XY (9.
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Therefore,

1 - . _
1320) = 5 22 & WIE@ B ) =g (1) 7y (-4) <5)].
YESN
Now, since||¢|lLip < K,

[E(p(BYY=4N) — ¢ (y): 1)) (—A) <9)]

< @xp(e )=o) AE(|o(y = 1=+ BY0) —p0))

5%
<2k (P () =9) A (% +EQBY)) ).
Assembling these estimates, we obtain
13 5(s) < 2K}?{,V(1)<P(rN(A) <s)A <|ziN| + E(|B§V’O|))>.
It now follows from the estimates o', (s) andn}’,(s) that

Y )

+ KIAINPBN°=0)(x} ()%

Combining (5.9)-(5.11) and (5.18) completes the proof of (5.3). Settiag},
in (5.3) and using the kernel assumption (K1), we obtain (5.4), provided

that E(|B£Y]i]’°|) — 0 as N — oo. But this follows easily from (H1), since
E(BL°PD) = ey E(Wx ). O

(5.18)

6. Proof of Proposition 34. LetT,K,¢,A, J and 0<t < T be as in the
statement of Proposition 3.4. Define the hitting times

TN =inf{s >0:xY (1) > J}.
By Proposition 3.3,
(6.1) supP (TN <1) < C3(K,T)J 2.
N

Letey > 0 be as in (K1)—(K3). Also, define
1
AN(A, ¢, EN) = ~ D s xn (A, x, EN) — P(tn(A) < &) XY ().

Stepl. We claim that for < T,

! N N 2
E AT(A, @585 )d
(</<T}V+e;<v)m (A4 .55 s))

(6.2) t
<4K?TC3(K,T)J 2| E(XN(1)ds.
0



LOTKA-VOLTERRA MODELS 945

This inequality is easily derived. For adye A, xn(A,x,EN) <&N(x +a/ty),
and, hence,

AN (A, by, £ < %Z b8 (v + ) +6h )

(6.3) N
< 2)pllec Xy (D).

With this inequality, Cauchy—Schwarz implies
t 2
([ 16> 1 +enpa®a g sas)
0

N 2 ! N 2
<ep(r =nalgl [ (xF@)ds

and the claim follows from (6.1).
Step2. Because (T} <s1 <T) + e} )l{s1+ey <s2<T) +¢ey}=0

(TN +e5)A 2
(6.4) E<</o o IAN(A,qﬁs,ESN)ds) ):11(N, J, 1)+ Ix(N, J, 1),

where

t
N N
Il(N, J, t)ZZA EI:]]'{SlfTJN'f‘S;]}A (Av d)sl’gﬁ‘l)

(6.5)
(s1+ey) At

x /5-'1 ﬂ{sstjN—l-s } (A ¢S2» §g2)> dS2:| dsy

and
t
IZ(N, J, t) = ZA E|:1{51§TJN}AN(A, ¢S1»§s]¥)
(6.6) t
N N
x /;51+67V)At ]]'{SZST]N-I-S}"V}A (A’ P75 %-SZ ) dS2:| dsy.

By (6.3), (4.17) and the Markov property,
LN, 7,0 < 8lg12, (f XY@ / XN(l)dszdsl)
<8llpI2, (/ XN / EXN sz_‘n(l))dszdsl)
<8lg1% ([ X2 e XYW dsa)

— 8K 2e% N /O E(XN(1)%ds
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Now considerl>(N, J, t). Let 0<s1 < 5o <t satisfys; + &}, < s2 < TJN + ey,
in which casex”¥ . (1) <J. Then
2—EN
|E(Ufs1 < TN Y{s2 < T} + en}AN (A, ¢p, E)) AN (A, b5, ED))]
<E(1{s1 < T)}{s2 < T} + &3} An(A, di&))|

X |EX5]\;—5* (AN(A7 bs,, 5;\;/,)|))

<E({s1 < T){s2 < T} + e} AN(A, ¢ &) v, g (A, bsyo )
<N, (A, sy e8) 20|l E(X D (D),

the last by (6.3). By these estimates we have

t t
(6.7) Ix(N, J,t)foO nN,,(A,qss,ejv)dszK/o E(xY()ds.

Now for the proof of (3.2). By the above bounds, and Proposition 3.3 and
Lemmab5.1, ifa, ey andJ are as in Lemma 5.1, then fox T,

En(A, 9, K, 1)

. T
<C(K, T)[(J—2+87Ve08w)/() E(xN@)?)ds

T . T N
+ /0 nw.s (A, s, £35) ds /0 E(X! (1))ds}

-2, % & 2 a
<CK, T)|J “+eyeN+Jen|Al +on(A) A 7 +eéen ,
N
and we are done.
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