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BLOW-UP FOR THE STOCHASTIC NONLINEAR
SCHRODINGER EQUATION WITH
MULTIPLICATIVE NOISE

BY ANNE DE BOUARD AND ARNAUD DEBUSSCHE
Université Paris—Sud and ENS de Cachan

We study the influence of a multiplicative Gaussian noise, white in time
and correlated in space, on the blow-up phenomenon in the supercritical
nonlinear Schrddinger equation. We prove that any sufficiently regular and
localized deterministic initial data gives rise to a solution which blows up in
arbitrarily small time with a positive probability.

1. Introduction. The understanding of the influence of a noise on the
propagation of waves is a very important problem. Although the propagation
is often described by deterministic models, in many circumstances randomness
should be taken into account. It can change drastically the qualitative behavior and
result in new properties.

This is a very vast subject. Propagation can be described by many different
models and randomness can take several different forms. In this article, we
consider the nonlinear Schrodinger equation as the deterministic model. It
describes the propagation of waves in media with both nonlinear and dispersive
responses. Itis used in many areas of physics, for example, hydrodynamics, plasma
physics, nonlinear optics, molecular biology, and so on.

It is well known that this equation has localized solutions called solitary waves
or, sometimes, solitons. When the nonlinearity is not too strong—or subcritical,
these are particularly robust and propagate without changing form. However, for
stronger nonlinearity, these are unstable and the instability results in the collapse—
or blow-up—of the localized wave.

Here, we are particularly interested in the influence of a noise acting as a
potential on this behavior. Such noise has been considered in [14]; there the paths
of the noise are smooth functions and the nonlinearity is subcritical. In the case of
a white noise, which is considered here, this type of model has been introduced in
the context of crystals (see [1, 2] and also [18, 21] for other models). It is expected
that such a noise has a strong influence on the solutions which blow-up. It may
delay or even prevent the formation of a singularity. In [12], some numerical
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simulations tend to show that this is the case for a very irregular noise: for a
space-time white noise. However, in the supercritical case and for a noise which is
correlated in space but nondegenerate, it has been observed that, on the contrary,
any solutiorseems to blow-up in a finite time. Recall that in the deterministic case,
only a restricted class of solutions blow-up. Our aim is to prove rigorously such a
behavior.

It is mathematically very difficult to consider space-time white noises; this is
due to the lack of smoothing effect in the Schrédinger equation. Thus, we restrict
our attention to the study of correlated noises.

The case of an additive noise has been considered in [8, 9] and it has been
proved thatfor any initial datg blow-up occurs in the sense that, fanbitrary
t > 0, the probability that the solution blows up before the tinestrictly positive
(see Remark 4.4). Thus, the noise strongly influences this blow-up phenomenon.
This result is in perfect agreement with the numerical simulations. The argument
is based on three ingredients. First, we generalize the deterministic argument to
prove that blow-up occurs for some initial data. This is based on a stochastic
version of the variance identity (see [20, 22]). Then, we use the fact that the
nonlinear Schrodinger equation is controlable by a forcing term. Thus, any initial
data can be transformed into a state which yields a singular solution. Finally,
since the noise is nondegenerate and the solution depends continuously on the
path of the noise, we can argue that, with positive probability, the noise will be
close to the control so that blow-up will happen afterward.

In the multiplicative case, we can again generalize the variance identity and
prove that a restricted class of initial data evolves into a singular solution. An
initial data with sufficiently negative energy is in this class. This is done in
Sections 3 and 4, after we have set some notation and recalled some preliminary
results in Section 2. However, it is not known if the nonlinear Schrédinger
equation is controlable by a potential and it is well known that the solution
does not depend continuously on the noise. Thus, it is not straightforward to
generalize the argument used in the additive case. In Section 5 we address
this problem and show that, using more subtle arguments, we can prove the
same result as in the additive case, when the nonlinearity is supercritical. First,
for any initial data, we construct a deterministic potential such that, when it
is used as a control in the nonlinear Schrodinger equation, the energy of the
solution becomes arbitrarily negative. The problem is then to replace the continuity
argument. In fact, we prove that the controlled solution is in the support of the
diffusion associated to the stochastic nonlinear equation, which is exactly what
we need to prove our result. The techniques used to obtain this last step are
inspired from [19] and we refer the reader to this article for a nice and simple
presentation of support theorems, as well as for references on this subject. Many
ingredients used in [19] are similar to the ones used to prove the convergence
of a numerical scheme. Thus, we have been led to use the ideas developed
in [11].
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2. Notation. We consider a complete probability spage, , P), endowed
with a filtration (#;);>0, and a sequenceéBi)ien Of independent real-valued
Brownian motions onR* associated to the filtration#;);>o. We study NLS
equations with multiplicative noise. The noise is real valued. To define it
rigorously, we use the spade(R?; R) of real-valued square integrable functions
onR? and a Hilbertian basige; ey Of this space. Then, given a bounded linear
operatorg on this space, we define the process

o0
Wt x,0) =) Bi(t,0)per(x), 120, xeRY, weQ.
k=0

It is a Wiener process ofi2(R?; R), with covariance operatape*. In all that
follows, ¢¢* will be assumed to be a finite trace operatoELf{R?; R); this easily
implies, for a fixedr, the convergence of the series abovelf(2; L2(R?; R)),
and almost surely ii.2(R¢; R). The time derivative of¥ models a noise which is
delta correlated in time. k is defined through a kernét’, which means that for
any square integrable function

puc) = [ K u)dy.

then the correlation function of the noise is formally given by

o oW , oW _ 5
(W( ,x)W(s,y)) — c(x, V)81,
with

C(X,y)Z/RdJC(X,Z)JC(y,z)dz.

Let o > 0, we consider the following stochastic NLS equation, introduced in
[1] and [2],

(2.1) idu — (Au+ X uydt =uodW,

whereo stands for a Stratonovich product in the right-hand side of (2.1). We will
use the equivalent Ité form of this equation. Define,far R?, the function

o0

Fp) = (¢er(0)?,

k=0

which does not depend on the bagig);cn; this equivalent 1td equation may be
written as

(2.2) idu — (Au+ @ uydt =udWw — léuFd,dt

(see [7] for details).
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A local existence result for (2.2) has been proved in [10]. Before recalling it, we
need to set the functional framework.

For p > 1, LP(R?) is the classical Lebesgue space (of complex valued
functions), and the inner product in the real Hilbert spacgR?) is denoted
by (-, ), that is,

(u,v) = Re[;@d u(x)v(x)dx

foru, v e L2(R9). The norminL”(R?) is denoted by - |;» and, forp = 2, by| - |.

We define the usual spaég’ (R?) of tempered distributions € 8’ (R?), whose
Fourier transfornd satisfies(1+ |£]%)%/%0 € L2(R%); H* (R4, R) is the subspace
of H*(R?) consisting of real-valued functions. The norm#ft (R?) is denoted
by | - |gs. For p € N, Wh7(R?) is the space of functions ih? (R?) whose first
order derivatives are ifi” (R¢) and its norm is denoted by lwip-

If 7 is an interval ofR, E is a Banach space, and<lr < +oo, thenL’(I; E)
is the space of strongly Lebesgue measurable functidrem 7 into E such that
the functionr — |v(¢)|g is in L" (I). We define similarly the spacds (Q2; E).

Given two separable Hilbert spacés and H, we denote by.Lo(H, H) the
space of Hilbert—Schmidt operatotsfrom H into H, endowed with the norm

|<I>|fcz(Hﬁ) =tro*d =) |berl%,
keN

where (ex)ken is any orthonormal basis of. When H = L2(R¢; R) and H =
H*(R?; R), thenLo(H, H) is simply denoted bycg’s. Given a Banach spadg,
we will also consider bounded linear operators frod(R?) into B, and in order
to replace the notion of Hilbert—Schmidt operators, we use in this case the notion
of y-radonifying operators (see, e.g., [3, 4]). We denoterioy.2, B) the space of
y-radonifying operators fronL.?(R?; R) into B. We recall that ifB is a Hilbert
space, themR(L?, B) coincides with.L2(L?(R?; R), B).

It is classical that ify(-) is a predictable random process defined[0)T],
with values in the space of continuous operators fiofiR?, R) into an Hilbert
spacek, and is such that

T
2
[ 8L oz ds <00 as,

then the stochastic integral

T T
| v@awe =3 [ perpecdpes)
0 ten”0
is a well-definedk -valued random variable.
We now recall the existence result of [10]. For technical reasons, we restrict
our attention to the cageé< 3. However, if the assumptions are suitably modified,
most of the results can be extended to larger spatial dimensions.
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We recall that a paifr, p) of positive numbers is called an admissible pair if
r>2and?=d(3 - %).

THEOREM 2.1. Assume thaD <o ifd=10or2and0<o <2if d = 3.
Let¢ e £g’l N R(L2, Wl*(R?)) with « > 2d4. Then there exists an admissible
pair (r, p) such that for anyFo-measurableig with values inH1(R?), there exist
a stopping timer*(ug, w) and a unigue solution t¢2.2) starting fromug which
is almost surely inC ([0, t]; HX(R?)) N L™ (0, t; WkP(R?)) for any t < t*(uq).
Moreoverwe have almost surely

(o, w)=+00 or  lmsup [u(t)|yiga = +oc.
1/ % (uo,w)

In this article we want to study blow-up phenomena. As in the deterministic
case, we need to work in the contextt solutions. This is why we use the result
of [10]. In [7], L? solutions are considered, requiring weaker assumptions; on
however, there, a stronger restriction is imposeaoand it is not expected that
blow-up occurs in that case. Indeed, it is shown in [7] that the solutions are global
in time. In fact, we will require that does not fulfill the assumption of [7]. We
will work in the so-called critical and supercritical cases:

2

o= —.

The critical case correspondsdo= § and most of our results will not be true in
that case. Note that # satisfies the assumptions of Theorem 2.1, by the Sobolev
embedding theorem, we know th&fl(R¢) c L% *+2(R?) with a continuous
embedding.

In fact, we need stronger assumptions on the initial data. As in most of the
deterministic blow-up results, we require some spatial localizationy Bo6, we
introduce the spaces

7 ={ve H'(R?Y):|x|"v € L3(RY))}
endowed with the norm: |s»:
2
vy = (vl + [1x]"]%.

Whenp =1, we setzl = 3.
In all of the article,c or c(-,...,-) is a constant which may change from one
line to another and depends only on its arguments.

3. The stochastic variance identity. In this section we derive an identity on
the evolution of the variance, or virial, of the solutions of the nonlinear Schrédinger
equation (2.2). This is a generalization of the well-known corresponding formula
in the deterministic case.



STOCHASTIC NONLINEAR SCHRODINGER EQUATION 1083

The variance (this quantity should not be confused with the probabilistic

variance) is defined by
V (v) :f Ix|?|v(x)|?dx, vET.
Rd
Its evolution is described in terms of the mass,

M) = [ v@Pdx =l ve L3E),

the energy,
H®) = }f |Vo(x)[?dx — = ] lv(x) | T2 dx
2 Jrd 20 + 2 Jrd
_2| Ul _20_+2|U|L20+2’ ve )

and the momentum,
G(v):lm/dv(x)x-VG(x)dx, veEX.
R

The first result describes the evolution df and H and is proved in [10]. We
introduce the functiorfq} depending on the covariance operatoand such that,

for any orthonormal basi&/)¢cy of L2(R?; R),
fr@x) =Y |Vpe(n)?,  xeR
£eN

Note that this function does not depend on the chosen basign. Indeed, since
¢ is assumed to be Hilbert—Schmidt frabd(R¢) into H1(R?), it is associated to
a kernelX € L2(R? x R9) such thatV, X € L2(R? x R9); it can be seen that

[0 = Ve K (@) 2y
PrROPOSITION3.1. Letug, o and¢ be as in Theorerd.1. For any stopping
timet such thatr < 7*(ug) a.s., we have
(3.1) M@u(t))=M(uo)  as
and
) =Huo) ~m Y [ [ a6.0Vu(s.2)- V(e ) dxdpe(s

(3.2) ) teN
1 2,1
+_/ / ) d d a.S.,
A Rdlu(s )| fy(x)dxds

whereu is the solution of(2.2) given by Theorer@. 1 with u(0) = uo.
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The dlfferent terms in (3.2) make sense. To see this we first observe that, since
¢ € L37, the function £} is an L! function and sincep € R(L?, Wt (R?)),

we also havef, e L“/Z(Rd) (see [3, 4, 7]). Thus, thanks to Hélder’s inequality,
f¢} e L1(RY) for anyq € [1, /2]. We then introduce the stopping time:

=inf{s € [0, 7], |u(s)|y1 > k}.

For anyk € N, we have

o

S [T [ A 0vue. 0 Vgeowdx dpis)

£eN

)
_E(Z/

2
ds)
£eN

<e([""(], |ﬁ<s,x>||W<s,x)|(f;(x>)1/2dx>2ds),

thanks to Minkowski's inequality in the last step. Using Sobolev’s embedding, it
iS now easy to see that this is a finite quantity. Since, for almost every2, we
haver < 7; for somex, it follows that the stochastic term in (3.2) is a well-defined
stochastic integral.

We now investigate the evolution &f andG.

u(s, x)Vu(s,x) - V(ger)(x)dx

ProPOSITION3.2. Let the assumptions of Propositi@nl hold and assume
moreoverthatug € ¥ a.s.,, then for any stopping time such thatr < t*(uo) a.s,,
we have

Gu(r) = Gluo) +4 [ Hu(s)) ds + — / ()52 ds

(3.3)
+ Z/ [, luts 00 - V(e ) dx dpis)
keN
and
(3.4) V(u(r)) = V(ug) + 4/(;r G(u(s))ds.

REMARK 3.3. The proof of this result is postponed to Section 6.1. Note that,
formally, it is the result of the same computation as in the deterministic case and
that it is easier to perform the computation with the Stratonovich equation since in
that case the standard calculus can be used. However, in the proof we use the It
form which is better suited for rigorous justifications.

A similar result was obtained in the case of an additive noise in [8]. The
formula was more complicated there. In the case of a multiplicative noise, more
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terms cancel in the computation. This strongly uses the fact that the noise is real
valued and reflects the fact that a Stratonovich multiplicative noise corresponds to
a noisy potential and is a more realistic representation of physical phenomena in
the present context.

REMARK 3.4. We will actually prove that, for each> 0 andk € N, there
exists a constart(V (ug), t, k) such thatV (u(z)) < ¢(V(uo), t, k) provided: <
*(ug) and|u(s)|y1 < k for s € [0, 7] [see (6.2)].

Using this and similar arguments as above, it can be seen that the stochastic
term in (3.3) is well defined.

COROLLARY 3.5. Underthe same assumptions as in Proposi8dhwe have
V(u(t)) = V (uo) + 4G (u0)T + 8H (o) 7>

2 od
420 [ [ i dssds

+8/ f /él/d |u(sz,x)lzfd,l(x)dxdszdslds

+4Z//f |u(s1, x))%x - V(per)(x)dx dBy(s1) ds

keN

— 16ImkeZN/OT /os /OSI/Rdﬁ(sz,x)Vu(Sz,x)

X V(per)(x) dx dBy(s2) ds1ds.

(3.5)

4. Blow-up for initial data with negative energy. The aim of this section
is to generalize the well-known deterministic result stating that, for the critical or
supercritical NLS equation, an initial data with negative energy yields a solution
which forms a singularity in finite time. (See [20], Chapter 5, where more
sophisticated results can also be found.)

THEOREM 4.1. Let uo, o and ¢ satisfy the assumptions of Theorémn.
Assume also that > £, ug € L2(Q; )N L@ 2(Q; L2 T4(RY)), £} is abounded

function and for somet >0,
(4.1) E(V(u0)) + 4E(G (u0))7 + 8E(H (u0))i? + 47 °myE(M (uo)) <0,
wheremg = | f}|; then
P(t*(ug) <7) > 0.
REMARK 4.2. Clearly, if the energy afp is a.s. negative, then the conclusion

of Theorem 4.1 holds for sonte> 0 provided the noise is not too strong, that is,
providedm, is small enough.
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REMARK 4.3. By Sobolev's embedding theorem, the condition tﬁqétis

bounded is fulfilled if¢ is a y-radonifying operator fromL2(R?;R) into
WP (R?: R) with (s — 1)p > d.

REMARK 4.4. In [8], in the case of an additive noise, this result was proved
under a severe assumption enand the proof was rather technical. Under the
assumptions made here, only a weaker result was proved. The argument used
below can, in fact, be easily adapted to the additive case and the severe assumption
ono can be removed.

PROOF OFTHEOREM4.1. Assume that the conclusion of Theorem 4.1 does
not hold; thens < t*(up) a.s. and we can take = ¢ as a stopping time in
Corollary 3.5. In that case (3.5) can be simplified into

V(u()) = V(ug) + 4G (ug)7 + 8H (ug)i>

2—od (! _
+4= 2 [ =9 5% as

d z 2 2 1
4.2) +4‘/(; (t—yx) /Rd|u(s,x)| f¢dxds

r
+4Y [[=9 [ 60 Ve drdpes)

£eN

r
—SImZ/;) (t_—s)Z/Rd u(s, x)Vu(s, x) - V(¢ep)(x) dx dpe(s).

LeN
Let us set for, r > 0,
V(t,r) =V (uo) + 4G (ug)t + 8H (ug)t?
2—od
o+1

+4/(:(t—s)2/Rd u(s, x)|2f}dx ds

t
4= [ =) ds

+4Z/0 =) [, IG5 Vige ) dx dBis)

£eN

— SImZ /;)r(t — S)ZA;‘] u(s, x)Vu(s, x) - V(gee)(x)dx dpe(s),

LeN
clearly, V(u(t)) = V(z, t ). Define the stopping time

T =inf{s € [0, 7], |u(s)|y1 >k},
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for k € N. Since the mass of is constant, we have, assuming 7,

() B

Tk
< m¢,IE< /o (t — s)zM(uo)V(u(s))ds)

=) [, G0 Vigen () dx

=

myt> sup E(V (u(s A )M (uo))
se[0,7]

Wl

sincemy = |f¢1|Loo. By Remark 3.4, we deduce that this quantity is finite. It
follows that, whernr = 1, the first stochastic integral above is square integrable
and its expectation vanishes. Similarly,

2

ds)

Tk

E( > /

LeN 0
< tmgt"k’E(M (uo))

and, wherr = 1, the expectation of the last term also vanishes. Moreover, using

again the conservation of the mass,

t
/0 (t —s)szd lu(s, )12 f5(x) dx ds < 1t3my M (uo)

(t — S)Z/H;d (s, X)Vu(s, x) - V(ger)(x) dx

and, recalling that > %, we get that, for any € N,

E(V (1, w)) < E(V (1)) + 4E(G (u0))t + 8E(H (u0))t? + §:3mgE(M (u0)).

We now choose = r. By assumptiong; —  a.s. a% goes to infinity. Thus, thanks
to Fatou’s lemma, we have

E(V (7)) < E(V(u0)) + 4E(G (u0))7 + 8E(H (u0))i? + 47 °myE(M (ug)).
This last inequality contradicts (4.1), sin€éu(z )) is nonnegative. Thus, the result
is proved. O

The result stated in Theorem 4.1 is still valid if the expectation o¥amn (4.1)
is replaced by the expectation over &g-measurable subset ©f. More precisely,
defining, forM and H positive constants,

43) Vpg=eX. V) <M, GO) <M, [v2, <M, H@) <—H},
M,H L
we can prove the following.

COROLLARY 4.5. Letug, o and ¢ satisfy the assumptions of Theor@m.
Assume also that > %, up € ¥ a.s. and f¢} is a bounded functiarThen for any

M > 0and7 > 0, there is a constani (7, M) > 0 such that
P(ug € vﬂ,ﬁ) >0 — P(T*(uo) < t) > 0.
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PROOF This is simply proved by taking large enough so that
M +4iM — 872H + 37%myM <0
and applying Theorem 4.1 witky replaced by:olg,, where
Qo={we, up(-,w) e ’Vﬁﬁ}.

Note, indeed, that the solution of (2.2) satisfie®, w) = 0 for anys > 0O if
u0,0w)y=0. O

5. Blow-up for any initial datain the supercritical case. In this section we
assume that the nonlinearity is supercritical;> %. In that case we are able to
strengthen considerably the result of Theorem 4.1.

5.1. Main result. The main result of this article is the following.

THEOREM5.1. Assume thaf <o if d=1,2and3 <o <2if d = 3. Let

¢ € £(2)’2 be such thaker¢* = {0}. Then for anyug € ¥2 with ug # 0 ands > 0,
we have

P(t*(uo) <) >0,

where t*(ug) is the existence time of the solution (#.2) with initial data ug
provided by Theorer.1.

The proof of this result is given in Section 5.4. The idea is the same as in [8]
where the case of an additive noise is treated. We chqose > 0 and consider
a control problem where the noise is replaced by a control and show that, for
any initial data, there exists a control such that the solutioaf the controlled
nonlinear Schrédinger equation at timesatisfies

(5.1) V(U(t) +4G(U(t)t2 + 8H (U (t1))t2 + 4t3myM (U (11)) < O.

Then, using the nondegeneracy of the noise, that ispker {0}, we know that
the noise will be close to the control on the time interf@lz] with positive
probability. Intuitively, this means that at timgthe solution of (2.2) will be close
to U (r1) on a set of positive probability and that we will hd®e: (1) € Vir.ig) >0
for someM and H as in Corollary 4.5—the initial time being instead of 0
andt = tp. Thus, for the solution starting at 0, blow-up will occur with positive
probability before the time1 + t>. This is exactly the result sinca, r are
arbitrary.

In the case of a multiplicative noise considered here, this is much more difficult
to justify rigorously.

First, the control is a potential and it is not known whether the nonlinear
Schrédinger equation is controlable by a potential. We prove in Section 5.2 that,
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for any initial data, it is possible to construct a potential such that the solution at
arbitrary timer, has a very negative energy so that (5.1) holds. This construction
only works in the supercritical case. It is not difficult to see that in the critical case,
o= % such a result cannot be true.

The second difficulty is that the 1t6 or Stratonovich products are not continuous
with respect to the paths of the noise. Then, to replace the continuity argument
used in [8], we use more sophisticated probabilistic tools inspired by the
characterization of the support of a diffusion (see [19]). We prove that, if the
noise is hondegerate, the solution of the controlled problem is in the support of
the diffusion associated with (2.2), which implies that with positive probability the
solution will be close to the solution of the controlled problem. This is the aim of
Section 5.3. Finally, we end the proof in Section 5.4. Technical results are proved
in Section 6.

The assumption on the smoothnessugfis quite strong here since in the
deterministic literature it is common to consider initial dat&sinOur result can
probably be extended to such data, however, this would considerably complicate
the proof in Section 6.2 and, for clarity, we have decided to restrict our attention
to this smaller class of initial data.

5.2. Construction of a potential leading to blow-upWe first show that for a
supercritical nonlinearity it is possible to build a control which acts as a potential
in the nonlinear Schrodinger equation and has the property that, in a finite time,
the solution has a very negative energy. Therefore, if the control is then switched
off, and replaced by the noise, it follows from Corollary 4.5 that the solution will
rapidly blow-up.

PROPOSITIONS.2. Letug€ X, ug#0, T1 > 0. Let M = max(M (uo) + 1;
V(uo) + 4|G(uo)| + 1). Then for any H > 0 there existd» < T1 and a potential
f € L*(0, To; WhP(R?)), for somes > 1 and somep with 1 < p <1+ 1, such
that the solution of

dU 2

— — (AU +|U|”°U + fU) =0,
(5.2) i ( U] fu)

U0) =ug

exists on0, 7] and satisfied/ (T2) € Vy; 7, whereVj; 7 is defined by4.3).
Moreoverif ug € H2(R?), then f € C([0, Tz]; H2(R?; R)).

PROOEFE We can assume thdy < 1. Let% < 0 < o. We then consider the
following supercritical nonlinear Schrodinger equation:

dU -
i— — (AU +AlUI*U) =0,
(5.3) dt
U(@©0) = ug.
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The constani > 0 is taken such that the energy corresponding to equation (5.3)
satisfies

1

Hy o) = [ | 51Vuo(o)? =

2542
d
5 %+ 5 lo()l x

1 (V( ) 4+ 4T1|G( )|)
< —— .
8T12 uo 1 uo

Sinces < o, ando < 2 if d = 3, it follows from the deterministic theory (see [5])
that there exists a solutiotd in C([0,#*]; ) N L" (0, *; WLP(R%)) for some
t* > 0 and(r, p) admissible withp = 26 + 2. Moreover, by the assumption above,

V (uo) + 411G (ug) + 8T Hjy ; (o) <O

and, since;zl < o, this implies thatU blows up at some tim&* < Ty. This is

classical ([15, 20, 22]) and follows from the deterministic variance identity which
states that itJ exists on the time intervd0D, Ty], then

(5.4)  VU®)) < V(uo) +4G(uo) + 8°Hs ; (uo);  t€[0, T1).

But sinceV (U(t)) is nonnegative, this is clearly impossible. In fact, we have
|Ut)| g1 — +oo  and |U(1)|; 2542 = +00 whent — T*.

By the conservation of the2 norm and Hélder’s inequality, we have

5 26 +2 .
VO < 5, 55 5 VOB + G0, ol

it follows

5 1

H(U(f))=2&+2 L2&+2_20+2

U355 + Ha 5. (U (1))

< UEE 4 20,8 ol + Hy (U )).
26 +2 L 26 +2 L

Recalling thatH; , (U (7)) does not depend an we deduce that

HU((t)) —» —o0 whent — T*.
Thus, there exist$> < Ty such that

H(U(T2) < —H.
Moreover, by (5.4),
V(U(T2)) <V (uo) + 4T2G (o) + 8T5 Hj ;. (uo)
< V(uo) +4/Guo)| < M

sinceT, <1 andH; ; (uo) <O0. Itis also classical that

G(U(T2)) < G(ug) +4T2H; (uo),
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so thatG (U (T»)) < G(ug) < M. In addition, M (u(T»)) = M(ug) < M, hence,
U(T») € Vy; - It suffices to takef (1) = A|U (1)[% — |U(1)[* andU is then the
solution of (5.2).

Finally, we observe that ifig € H2(RY), it follows from [17] that U e
C([0, T»]; H2(R%)). Now, if d = 3, f is not necessarily ir C ([0, T2]; H2(R?)),
but it is easily seen thaf € C([0, Tz]; WL7(R%)) for any p with 2 < p <
2d/(d — 2), and we may argue by density as follows: tgkes C([0, T>]; H?(R%))
with £, — £in C([0, T»]; WL?(R?)), wherep < 2d/(d —2) is such that for some
g <2d/(d—2), wehavel =1— % =1+1 thatis,2 + 1 = 1. Thisis possible
thanks to the fact that < 4. Using then the method in [17], it is not difficult to see
that the solutiort,, of (5.2), with f replaced byf;,, exists on0, T»>] andU,, — U
in C([0, T»]; H1(RY)). In addition,xU, — xU in C([0, T»]; L?(R%)), as follows
from the same arguments as in [5], Corollary 6.4.4. Hence; frfficiently large,
f fits the conclusion of Proposition 5.2

5.3. The support result. We now show that, if the noise is nondegenerate, the
solutionU given by Proposition 5.2 is in the support of the diffusion associated
to (2.2). More precisely, under some additional assumptions on the initial data,
we prove that the support of the law 8f7») contains a neighborhood i&
of U (T>). In fact, following [19] and slightly generalizing our arguments, we could
characterize exactly the support of the diffusinrHowever, this is not the aim of
this paper and, for clarity, we simply state and prove the result we need.

PROPOSITION 5.3. Suppose that the assumptions of Theor2rh hold,
uoe X% ug#0, ¢ € £g’2 and the noise is nondegeneraterg* = {0}. Let
T1 > 0, H > 0 arbitrary, and 7> < Ty, U be given by PropositioB.2; let u be
the solution of(2.2) given by Theorer.1; then for arbitrary neighborhoo& of
U(T») in =, we have

]P)(‘L'*(I/to) > Toandu(T?) € 'V) > 0.

PROOF We adapt the method used to characterize the support of a diffusion
and follow the same line as in [19].

We choosd™ > T>. Let (¢x)ren be a complete orthonormal systentif(R?; R)
and (By)reny be a sequence of independent Brownian motions suchWhat
Y ken Brger. We defineW, = 3", .y Brex SO thatW, is a cylindrical Wiener
process orL2(R?; R).

Since kep* = {0}, we know that the range op is dense inL?(R¢, R)
and thus in H3(R?,R). It follows that, for anyn € N, there existsg, €
C ([0, T»]; L%(R4, R)) such that

1
(5.5) |f = d8nlcqomy mamay = -
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where f is the potential given by Proposition 5.2. We set

fn(@) = dgn(1), t <Tp, fa() =0, Th<t<T.

We also assume that we have chosen,cn in such a way that, € H2(R9),
k € N. We denote byP, the orthogonal projector ontSp(eo, ..., e,) and set
At = % We construct a piecewise constant approximation of the noise in the
following way:
Pan(kAt) - Pan((k - 1)At)
At

Wen(t) = , t € [kAt, (k+ 1) At],

and

Wn = ¢Wc,n
[we setW,.(—At) = 0]. Then, we consider the following equation, foe N:
(5.6) idu" — (Au" + |u" | u" + fou™ydt = u" dW — %M”F¢ dt — u" W, dr.

By Girsanov’s theorem (see [6], Theorem 10.14),

t .
Wen(t) = Welt) = [ (Weu(9) = 84(9) ds
is a cylindrical Wiener process for the probability measure
dP, = D, dP,

where
T . 1 T . 5
D, =exp[ [ e = 000 aWets) = § [ 1Wen) = 165 ds]
Clearly,u" is the solution of
(5.7) idu" — (Au" + "2 u"ydt = u" dW, — %M"Fd, dt,

with W, = ¢ W, ,. Since the law of the solution of the stochastic nonlinear
Schrédinger equation does not depend on the probability space nor on the Wiener
process, we deduce that the law:df is the same as the law af the solution

of (2.2). Therefore, for any Borelian s#,

P(T*(uo) > Tr andu(T>) € V) =P, (r:(uo) > To andu" (1) € 'V)

- /g Lir; (uo)>T2 andu” (Tz)v) Dn dP,

where we have denoted by (uo) the existence time for the solution of (5.7) with
initial dataug. It follows

P(t*(ug) > T2 andu(T2) € V) >0
if and only if P(,* (ug) > T> andu”(T2) € V) > 0.
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We prove in Section 6.2 that
: N B
(5.8) n“—>mooP(t” (up) <T2) =0
and

(5.9) Ve>0 lim P(rj(uo) >Trand sup [u"(t)—U@)|g > e) =0.
n—0o0 1€[0,T»]

Therefore, for anyy’ neighborhood irz of U (75),
P(z; (ug) > T2 andu” (T2) e V) -1 whenn — oo,

which clearly implies the result..J

5.4. Proof of Theorenb.L It is now easy to complete the argument sketched
in Section 5.1. Indeed, for any> 0 andug € 2, we choosey, > > 0 such that
11412 <t.We takeM, as in Proposition 5.2, and chooBesuch that Corollary 4.5
is satisfied withM, and7 = 7.

Then we takeTy = 11 in Proposition 5.2 and obtain the contrgl and the
solutionU on the intervall0, T>] with T» < r1. It follows from the statement of
Proposition 5.2 thal/ (T2) € Vj; 7.

We then use Proposition 5.?;, with = VM,Hi setting

Qp,={we Q|t*(uo) > To andu(T>) € V},

which is clearly an¥7,-measurable set, and which has positive probability
according to Proposition 5.3, we deduce by Corollary 4.5, that the solution starting
at time 0 with initial data«(7>) will blow-up beforer, with a positive probability.

But, if we denote this latter solution hy(z), then it is clear, by translating the
Brownian motions, that the solutianof (2.2) satisifies for > 7> :u(7> + -) and

1 (-) have the same law. Henaeblows up with positive probability befors + 5,

and the result follows.

6. Proofs of technical results.

6.1. Proof of Proposition3.2 The proof is based on a smoothing procedure,
as in [10], and on the use of a truncated form of the variance:

Ve(v) = /de—f‘xlz|x|2|v(x)|2dx, v e L%(RY).
R

The smoothing step is similar to the one in the proof of Proposition 3.1, which can
be found in [10]. Thus, we omit it, keeping in mind that the computation below
can be rigorously justified in this way.
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We apply I1td’s formula toV, (u(¢)) (see [6], Theorem 4.17 for the form of It6
formula used here):

AVe(u(t)) = (V. (), —i Au()) dt + (V. u(t)), —i [u(®)* u(r)) dt
— (VL)) u(t)Fy)dt — (V. (u()), iu(t) dW (@)
+ 3Tr(V/ (@) (iu()p) (iu()p)") dt.
Note that, forv € L2(R%),

(V. (u(t)),v) = 2Re</Rd e 1y 2u(s, x)a(x)dx).

Hence, this term cancelsifis a real-valued function multiplied by:(z). This is
the case of the second and fourth terms above.
We have

(Vi) =idu@) =4im [ o=@ eleP)(x - Vut.x)it, ) dx.
as follows after integrating by parts. Moreover,
LT (V) () (iu()9) (iu(1)¢)")
=2 /Rd e~ e (iut)der) (x) (—iit (1) per) (x) dx

keN
:/H;d e~ P L (e, x) 2 Fy (x) dx
and
1/y// _ —elx|?.2 2
Q(Vs(u(t)),u(t)F(p)dt—/Rde |x|“u(t, x)|“Fp(x)dx.

It follows that the contributions of these two terms cancel. (This cancellation is
natural. It reflects the fact that the noise is real and acts as a potential.) We obtain

dVe(u(r)) = 4|m/Rd e — elx?) (x - Vau(r, x))ii(t, x) dx dt

and forr < t*(up),

Ve(u(t)) = Ve (uo)

(6.1) ' )
—elx 01 112\ (x .
+4Im/(; /Rde (L —elx|?)(x - Vu(s, x))u(s, x) dx ds.

In particular, if

7 =inf{t € [0, T], |u(t)|y1 > k},
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we have by the Cauchy—-Schwarz inequality

Ve (u(t A 1)) < Ve(uo) + 4k /OMT]( Vgl/Z(u(s))ds

and by Gronwall's lemma

Ve(u(t A ) < (8K%T + Ve (ug))e’ .
Letting e — 0, this proves that, for < ¢, u(t) € ¥ and
(6.2) V(u(t A ) < (42T + V (ug))e” .

Thus,u has trajectories i.>° (0, t; X) for anyk € N. We now letk — +o0 and
deduce thai has trajectories i *° (0, t; X) for any stopping time < t*(ug). It
is now easy to let — 0in (6.1) and prove (3.4).

Similarly, we apply Ité’s formula tas («(¢)) and use the identity

(G’ (1)), —i (Aut) + [u(0)* u(r)))
= (2ix - Vu(t) + diu(t), —i(Au(t) + |u(t)|26u(t)))

d
:2[ Vit 0)Pdx — 2 [ u, )22 dx
]Rd d

o+1Jr
2—od -
=4H )+ u(®)12555.

We also have, after integration by parts,
(G'(u(t)), —iudW(t))
= ReZ A&d (2ix - Vu(t, x) +diu(t,x))ii(t, x)(pee) (x) dx dBe(t)

LeN

= 3 [, .00 - V(@er) ) dx dpio).

LeN
Finally, a similar computation shows that
(G'(u()), —3u(t)Fp) + 3Tr(G" (u(®)) (iu(t)p) (iu(t)¢)*) = 0.
Gathering these results and integrating in time yields (3.3).

6.2. Proof of (5.8)and(5.9). We first introduce a truncated form of (5.6). We
choose 32 < so < 2 and a cut-off functiond € C5°(R) such that

P (x) =1, x €0, 1],
?(x) €0, 1], x>0,
?(x) =0, x> 2.
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Then, for anyR > 1, we set

O (u) = ﬁ(%), u € HO(RY).
We then consider the following equation:
idus — Aulydt — Op (u's) (s uls + fou'y)dt
= O (W) u'y AW + AR s (u's) dt — O (u'k)u's W, dt,

with initial data

(6.3)

u's (0) = uo.
We have denoted by

2
|u| %50
R2

i 1
ARp(uy) = —59,%@/,3)12,,”’;e — = > eR(u’,;)ﬁ’(
LeN

)(u, iuder) pouder.

Note that, formally,

Or (u'l’g)u’;g dw + AR7¢(I/£’11€) dt = GR(u’;e)u';e odW.
It is not difficult to see that, for ang > 1, (6.3) has a unique solution with paths
in C([0, T]; H*([R?)).

Stepl. ForanyR > 1,there exists a constatt(R, T, ¢) such thatfor any
neN,

E( sup |u’;e<z>|§,2) <C(R,T, ).
t€[0,T]

PROOF In order to lighten the notation in this step, we omit to explicit the
dependence oR. All the constants appearing below are allowed to depend on
R, T or ¢, but not onn. We set

Mn:l/tr;g, QIQR, AZAR,¢.

We use the It6 formula witlF (u") = |u”|12112 =|(I — A)u"|? and we have
dlu"%; + 2Re[i /Rd O™ ((I — A)Za")(Ju™|u" + fnu”)dx] dt
= 2Re<—i A;{d 0™ ((I — A)?d™)u" dW dx)
+ 2Re<—i /Rd((l - A)zﬁ”)A(u”)dx> dt

+ 2Re<i /Rd O™ ((I — A" u" W, dx) dt +6%W™) > [u" e, dt.
£eN
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We integrate between 0 amdand estimate each term of the resulting identity. For
the second term of the left-hand side, we write
ds)

( sup
1€[0,T]
/Rdmu”)(l—mﬁ"u—m(w 2u" 4 fuu)dx

T
§E<
0

T
< cE(/ 9(u")|u"|H2(||u”|2“u”|H2 + | futd" | g2) ds).
0

(I — AZa")(Ju" 1 u" 4 fu") dx

0

We have used an integration by parts and Cauchy—Schwarz’s inequality. Now, we
use the inequality

w2 < vlzwlwlye + [wlpxlvlyz, v, we HARY,
and the Sobolev embeddirgo(R?) ¢ L>®(R?) to get that
(6.4)  Jvwlyz < [vlgsolwlgz + wlgolvlyz,  v.we HARY).
This gives
O@™)||u" 1% u " 2 <cR%|u" |2 < clu"| g2

for another constant which depends oR. By (5.5), f, is in C([0, T1; H3(R%))
and its norm in this space is bounded independently. dtherefore, by a similar
argument as above,

| fat" | g2 < clu”| g2

We deduce
( sup
te[0,T]

< cE(/(‘) lu" |H2ds>

In the same way, using e £g’2, we have

t

IE( sup/
t€[0,7]1/0

t

E sup/
te[0,71/0

— AZa")([u" | u" + fru™)dx

2

T
ds) < cE(/o |u"|12112 ds>
T
< CIE(/ |u”|§12 ds).
0

/Rd((l — A)Zi")A(u") dx

and

> 02" el ds

LeN
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Moreover, recalling that the noise is real valued and using a martingale inequality,

! e n _ 2-n\. .n )
E(tES[CL)J’g] Re/0 ./]I‘Qd 0™ ((I = A)u™)u" dxdW
=E< sup /tlmZ/ G(M")(I—A)ﬁ”([—A)(u”q&eZ)dxd,Bg)
tel0,71]/0 o R?
t
=K Im O — A"
(tes[gg]/o %/Rd "I — N

x [u" A(per) +2Vu" - V(der)]dx dpy

< c<E/OT Z(/];Qde(u")(l — A"

£eN

)

) 12
X [u" A(pe) +2Vu' - V(¢eg)]dx) dt)
T
< C<E/ O(u") Z(|u"|L°°|un|H2|¢€E|H2
0 £eN
12
+|u"|H2|Vu”|L3|V¢eg|Le)2ds> ,

by Hélder's inequality. We now use the embeddingso(R?Y) ¢ L®(RY),
HO LR ¢ HY2(R?) ¢ L3(R?) and HL(R?) ¢ L8(R?) to obtain

E( sup Re/ot(—i)/Rd@(u")((l - A)Zﬁ”)u” a’xdWD

te[0,T]

T 1/2
SC(E/O Ze(u")|u”|§,so|u”|§,z|¢ez|§,zdt)

£eN

§c+:—2L}E< sup |u”|i12>.
t€[0,T]

It remains to estimate the most difficult term which we denotebg). By similar
manipulations as above, we have

A1) = fot Re(i /Rd O™ ((I — A)?d™)u" W, dx) ds

t . .
= —/ Im(/d O™ — Au" (u" AW, +2Vu'" - VWn)dx) ds.
0 R

We need to introduce a further notation. sor 0 andk € N, we sets; = kAt
andu's(s, sk—1) = S(s — sk—D)u" (sk—1). Here(S(t)):er is the group of operators
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associated to the linear Schrodinger equati®@) = ¢~'2, ¢t € R. It is well
known that, for any, S(r) is an isometry on each Sobolev spa¢&R?), s € R.
Now we splitA”(¢) as follows:

t
—A" (1) :/0 Im(/Rd O(u"(s))(I — A)(@" (s) — u's(s, sk—1))

x (W"AW, +2Vu" - VWn)dx) ds

t
+/o Im(fRde(u"(s))(l — A)i's(s, sk—1)

x (2V(u" (s) — u’§(s, sg—1)) - VWn) dx) ds
t
+fo |m<fRde(u"(s))(1 — A)i (s, k-1
X (" (s) — u's(s, sk_l))AW,,) dx) ds
t
+/O Im(/Rd(Q(u”(s)) —0(u's(s, sk—1))) (I — A)it's(s, sg—1)

x (u'g(s, Sk—1) AW, + 2Vu's(s, sp—1) - VWn) dx) ds

t
+/o Im(/l;de(ug(s,sk_l))(l — A)is(s, sp—1)

x (Wi (s, sk—1) AWy, + 2Vi's(s, sk—1) - VW) dx) ds,

and in this expressiony_1 depends o and is chosen to satiskye [sg—1, sk[.
We use similar arguments as above to deduce

t .
A" (1)) < c/o (16" (5) — (s, sk—)] gl Wil 2

+ |5 (s, sk—1) | g2lu” (s) — w's(s, sk—1) | gso | Wal g2
+ [u" (s) — u'§(s, Sk—1) | oo lu's(s, sk—1)| g0

X |u(s, sk—D) | g2l Wil g2) ds

t
| [im( [ o se0)d - At

x (u's(s, sk—1) AW, + 2Vu's(s, sk—1) - VWn) dx) ds

= |AT(O)] + [AS(D)].
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The second ternd’ is a martingale and can be treated as the stochastic integral
above. We obtain

IE( sup A'}(t))

te[0,T]

1/2

T

< c(E /0 > 02 (s, sk—D)) s (s, sk—1) 0 Ut (s, k-1 21 Pee|% dr)
eN

§c+%E< sup |u"|12L12).
te[0,T]

The termA? is more difficult to treat sinci&(| W, I%2) is of order(Ar)~/2 for any
m € N. This factor is compensated by (s) — u's(s, sx—1), which we now estimate.
We write, using the integral form of (6.3) faf*, starting at = s;_1,

u (s) — u's(s, sg—1)

N

=i S(s — t)[@(u”(r))|u”(t)|2"u”(r) + fu(@u" (t) + A(u"(v))]dr

Sk—1
+i/‘ S(s — )0 (" (0))u (1) dW (7)
Sk—1
— i/ S(s — )0 (" (v))u" (t) W, d.
Sk—1
Since H*0(R%) is an algebra, we obtain
lu" (s) — u's(s, sk—1)| o

<c(s —sk-1) +

/s S(s — )0 (u"(v))u" () dW (7)
Sk—1 H*0
+ c(s — sk—1) | W ((k — D) AL)| 150
and, for anym € N,
(6.5) E(ju" () — (s, sk-1) o) < c(m)(s — sg-1)"/%.
Moreover, by (6.4),
lu" (s) — u's(s, sk—1)| g2

<c(s — sk—1) suplu”| 2 +
[0,s]

+ (s — sk—1) Soup|u”|Hz|Wn((k — DAL |2
[0,s]

/S S(s — 00 (" (T))u"(t) dW (7)
Sk—1 H?
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and, by Cauchy—Schwarz’s inequality,
_ 1/2
B () — (s, 55| g2l W (5) ] 2) < c(E([sou?m”ﬁ,z)) |
.S
On the other hand, it is easily seen from (6.3) that, foranyN,
E( sup |u”(t)|';’lxo) <C@m,T,R)<c
t€[0,T]
and we deduce
1/2
IE( sup Aﬁ(t)) 5c(E< sup |u”(t)|§12)) .
tel0,T1] 1€[0,T]

It is now easy to gather all the preceding estimates and to conclude the proof of
our claim. O

STEP2. ForanyR > 1, there exists a constait(R, T, ¢) such thatfor any
neN,

E( sup |u’,3(r)|§2) <C(R.T.9).
t€[0,T]

PROOF Thanks to the result of Step 1, it remains to estimiéta/; (1)) =
Jra |1X[4u’s (s, x)|2dx. We use the 1td formula, recalling as in Section 6.1 that the
computations can be justified by a smoothing argument. As above, we omit to write
the dependence aR. We obtain

AVa(u") = 2|mfd x4 Au" dx di = —8Imfd x|2id"x - Vu" dx dt.
R R

We have, by Cauchy—Schwarz’s inequality and integration by parts,

1/2

‘/d Ix|%d"x - Vu" dx Ix - Vu"|
R

< (Va(u™))
< c(Va@™) 2 (Vo) 117 + lu™))
< Vo) + clu" |35
We deduce
t
Va(u" (1)) Set[Vz(uo)Jr/O |u”|§{2ds].
We conclude thanks to Step 101

STEP 3. The laws of((u'y, W)),en are tight in C([0, T]; £7) x C([0, T1;
H/ (R%) foranyn < 2.
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PROOF. We use the integral form of the equation satisfieduljyto get an
estimate on its modulus of continuity. Again, we omit to write the dependence
on R and all the constants appearing below do not depend.dNe have, for
1,12 € [0, T] with 11 < 19,

S(=t)u" (1) — S(=t2)u" (t2)
= /lz S(—=)OWM U™ u™ + fou™ + A@W™))ds
1

12 2 .
—i S(—=$)0(uMu" dW(s) +i / S(—5)0(uMu" W, ds.
n

n

Using the fact that7*0(R¢) is an algebra and th&i(—s) is an isometry, we deduce

E(|S(—t)u" (1) — S(—12)u" (12)[%50)
2
o)

where again the constants allowed to depend oR. The last term is decomposed
asA” in the first step into the sum of a martingale term

2 .
S(—=)0(u"u" Wy, ds

41

<cltp —n|+ E(

12 .
t S(—sk—1)0 (u's(s, sk—1))u's(s, sk—1) Wy ds
1

and of a remaining term. It is not difficult to see that both have a second moment
which can be majorized by a constant titne— #1|. Therefore,

E(IS(—t)u" (1) — S(—t2)u" (1) %550) < clt2 — ta].
Now, sinceS(z) is an isometry and since, ferin H2(R%), we have
(6.6) [(S(=11) — S(—12))v] ;s < clt1 — 121770|0] 2,

as can be seen with the use of spatial Fourier transform and we easily obtain,
thanks to Step 1,

B — ) ) =i — 3.

Thus, the sequence:™),cn is bounded in probability inC ([0, T]; =2(R%)) N
CZ%([0, T]; H*(R?)). This space is compactly embedded in[0, T];
> (R%)) for n < 2 and the tightness @f"),,c follows.

We conclude thanks to the well-known identity

E(IW (1) = Wt2)l72) = 111 = t21 602
and the compactness of the embedding/étR?) into H,! .(RY). O

STEP4. Passage to the limit
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Let us fix a pair of subsequencég(n), v (n)),en. We infer from Step 3
and the Prokhorov and Skorokhod theorems that there is a subsequence of

(Li",‘;(”i, u}("), W) which we still denote by the same letters, a probability space
(22, ¥,P) and random variable§i], i, W"), n € N, (i1, iz, W) with values in
C(O0, T]; =M x C(0,T]; =" x C([O, T]; HIZC(R")) for anyn < 2, such that for
anyn e N,
LG, i, W = L, ul™, W)

and such that

i —ii;  asn— oo, Pa.s.inC([0,T]; " forn <2, j=12,

W"—>W  asn— +oo, Pas.inC([0, T]; H.(RY)) for n < 2.
Defining then

Fi=olij(s),W(s), 0<s<t, j=1,2)
and
F'=o{il}(s), W'(s), 0<s <t, j=1,2},

it is easily seen thaly and W" are Wiener processes associated, respectively, with

(F1)i=0 and(F,"),=0, with covariance operatap*.
It can be checked that fgr= 1, 2, we have

67) idil" — A" dt — O @) (10"} + foil"}) dt
= Or (@D dW" + Ag.g (@) dt — Og(@)id} W, dt

and
i’} (0) = uo,
whereWn is defined ad¥, but replacingw by W”. The difficulty now is to prove

that the right-hand side of (6.7) goes to zero. In fact, we have the following result
whose proof is very technical and is postponed to Step 6.

LEMMA 6.1. For j=1,2and anyr € [0, T],
t — t t ~
[ QR(ﬁ;f)zZ;?dW"(s)—l—f AR,¢(ﬁ’j")ds—/ QR(ﬁ’]?)zZ;?W,,ds—>O,
0 0 0
in LY(Q, H(RY)).

It is not difficult to letrn — oo in the left-hand side of (6.7) and, thanks to
Lemma 6.1, we deduce that, fp=1, 2,
{idaj — Aiijdt —Og(ii ;) (i ;1% a; + fiij)dt =0,
1u;(0) =uo.
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It can be seen that this equation has at most one solution so that the limits of
7 andi? coincide:

U1 =uy.
We deduce that for each pair of subsequenge:), v (n)),en, there is a
subsequence ofu®%™, u%"™) which converges in law to a random variable

(@1, 1). We now use the following elementary lemma, which was first used by
Gyongy and Krylov in [16]:

LEMMA 6.2. Let Z, be a sequence of random elements in a Polish space
E equipped with the Boreb-algebra Then Z, converges in probability to
an E-valued random element if and only if for every pair of subsequences
(Zon)> Zy ), there is a subsequence G, ,), Zy ) Which converges in law
to a random element supported on the diagojial y) € E x E, x = y}.

It follows that the sequence’,),cn converges in probability i€ ([0, 7], X)
to a random variable: . Moreover, proceeding as above, we canrdet> oo
in (6.3) and see thaty satisfies the equation

idug — Augdt —Orug)(lug|®ug + fug)dt =0,
iz (0) = uo.

STEP5. Conclusion

It is now important to emphasize the dependenceronet us definerg =
min{t € [0, T], |ugr(®)|gso > R} andtgy =min{r € [0, T], |uz()|gs0 > R}. On
[0, Tr], u g satisfies the deterministic nonlinear Schrédinger equation (5.2) whose
unique solution is given by/. Thus, if Ro = |U| .~ 0, 7,: msowd), @NAR > Ro, then
g > T2 andug = U on [0, T2]. Similarly, on [0, t¢], u’, andu”, the solution
of (5.6) coincide. Moreover;; andty increase withk and

g —>1t* and tp — 7, (uo) a.s.
whenR — oo, wherer* is the existence time df. It follows, sincer* > T, that
P(t;(ug) <T2) - 0

asn — o0o. Hence, (5.8) holds. Moreover, for aay< 1,

P(r;l"(uo) >Toand sup |u" —Ulg > e)
1€[0,T2]

< P(r,f(uo) > T» and sup  |u"—Ulg > e)

1€[0.T2ATh 4]

< IP( SUp [u'gyy1(1) — urg1 ()] > 6)’
t€[0,T]



STOCHASTIC NONLINEAR SCHRODINGER EQUATION 1105

where we have usetk,1 > 7>. Now, this last term goes to 0 asgoes to infinity
by Step 4. We deduce that (5.9) holds.

STEP6. Proof of Lemméab.1.

In order to lighten the notation, we omit writing the dependenc&oAlso we
write A instead ofAg 4, u" instead ofﬁ']’. and W" instead ofW”". Thus, we have
to prove

1,(t) =ft9(u”)u”dW”(s) +sz(u")ds — /te(u")u"Wn ds — 0,

whenn — oo for anyz € [0, 7] in LY($2, H*0(R%)). We split], as the sum of 1
and’?, where

!

I L) = Z/ u (s))u" (s) dW" (s) —/k+19(ug«(s,tk_l))ug(s,tk_l)Wn ds

Tk

and

1 .
12(r) = ka O, D)5, t1) — 0(u" (5))u" () Wy ds

T+l
+ Au"(s))ds
Tk
We have set; = kAr, k=0,...,N — 1,y =T, whereN is the integer part
of t/At, andr_; = 0. We have again used the notatiali(s, tx—1) = S(s —
tr—pu" (t—1). Note that, fork =0, ..., N — 1,

Tk+1 " " .
/ 6 (u's (s, tk—1))u's (s, tx—1) Wy ds
1

k

17 1

Te+1
— tk_1§<-/t‘k Q(MS(T,tk—l))us(f,tk—l)dt>d(¢Pan)(s),

whereW” = ¢~1W" is a cylindrical Wiener process. It follows

1) = Z/ lm([ (6" ()u" (s)

~ 0lus (r.ti-)us (7. 1-0) d | AW )

+ A O(u"(s))u"(s)dW"(s)

IN-1

+ Z / u"($))u" () d(@ (I — P)W).

fk—1
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Then, using similar arguments as in Step 1,

E(I11(1)|%5)
N-1

173
=2 (]
k=0 fie—1

1

l < ftktk“(e(u”(s))u"(s)

At

2
ds
DCO,SO

2

— O(us(r. tio)us (T 1)) dr)¢
6.8)

t

n n 2
+ [ BoWr @) )8 = Pas)ds

IN
+ ]E(|6(M"(s))u"(s)¢|ig,so) ds

IN-1
< (A +clp (I = Pl 050
and this latter term goes to 0 as— oo, sincep e ocg’m.
Now, estimate (6.5) is not sufficient to handf&(r). Let us define

R(s, tx—1) = —i s S(s = DO (u" 7 u" + fuu") — Au™)]dz

-1

—1 ' S(s —o)[0)u" dW"(1)]

Tk—1

+i /t Q(Ltg(s, tk_l))ursl(s, t—1) dW" (1)

k=1

+i/s S(s — )[OWu" W, dz)
f—1

S .
—1 /z Q(Ltgw(s, fk—l))ug(& i)W, dt

k=1

so that

u" (s) —u's(s, tk—1)

N

= R(s, tr—1) — i0(u's(s, tx—1))u's (s, tx—1) dw" (1)

fe—1

s,
+i0(u'(s, tk—1))u's(s, tr—1) Wydrt.

fr—1

We can prove, using Cauchy—Schwarz’s inequality, Step 1, (6.5) and (6.6), that for
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anysé < 2,

E(R(s, ti—1)|5s0) < cALP @502,
It follows
(6.9) E(IR(s, tk—1)| 50| Wa | rs0) < cA12750,

Next, we rewrite/ as

2 N-1 Te+1
=Y [0 ne0)ul - — 6" (5)a" )
k=0 * 'k

— o) (U (s, tr—1)) - (u(s, tr—1) — u"(s))) Wy ds
N-1

I+ .
— Z f oy (u's(s, ti—1)) - R(s, tx—1) Wy dss
k=0 "k
N-1 .4
+ 3 / AWs)) = Al(s, 7i-1)) ds
k=0 “
N-1 .,
+ Z fHl@(ug(s,tk_l))aé(u’é(s,tk_l))
k=0 “k
.(mg(s,zk_l) ' dW”(t))Wnds
fk—1
N1 ..
_ Z/ +19(u's’(s,tk_1))dé(u§(s,tk_l))
k=0 *

S . .
. (iug(s,tk_l) W, dr) W, ds

fr—1

N-1 Tk+1
Y [ AW o) ds,
k=0""

k

whereo (v) - w is the differential in the direction of the mappingv — 6 (v)v
which is C*° from H*° into itself with all derivatives bounded. By the Taylor
formula and (6.5), the first term clearly goes to zerali($2; H*) as (Ar)Y/2.
This is also the case for the third term. For the second term, we use (6.9) and see
that it goes to zero ilL1($2; H*) as(Ar)Z—%0,

Let us denote by () the sum of the remaining terms. Using that

Aw)=30(u) Y of(u) - (—iugey)der,

LeN



1108 A. bE BOUARD AND A. DEBUSSCHE

we get

N=1 g,
J@t) = Z/k 1G(I/t’_%(s,tk—l))
k=0 "%

X |:c79’ (u's(s, tr—1))

N

.(iu’s’(s,tk_l)</s aw') — | Wndr>>Wn
fr—1 k-1

+3 >0 (s, te—1)) - (—iu's(s, Ik1)¢€g)d)€[:| ds.
LeN

Now, recalling the definition of, we have

2 (I3, vI2
oé(v).wzﬁﬁ’( RI;())(v,w)Hsov-i—z?( Rg())w,

and we can write

J(@) = J1(t) + J2(1),

with
N-1 Tk+1
hn=Y / §02(us s, t—)u's (s 15 -1)
k=0 "%
S S . .
x [( dW" (v) — W,,dr)Wn—%F¢} ds
Tk—1 Tk—1
and
2 = e W% (s, =112
Bt = X [ 0o (ME )
R kIO l‘k R

X [(M'é(s, tk—1), iu's(s, tx—1)

s s, .

X ( dW"(z) — Wndr>> W,
fr—1 fe—1 H*0

1

5 Z(ug(s, tk—1), iu's(s, lk—1)¢e£)HSo¢€€]

£eN

X u's(s, ty—1) ds.
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Writing

< Cawra - [ Wndr>Wn(s)—%F¢

f—1 fk—1

:[( ’ dW”(t))Wn(s)—Fqg}—[( ' Wn(r)dr)Wn(S)—%E;b}

fe—1 Te—1

it is then the result of tedious—but standard—computations, based on the
independence of the increments of the Wiener process, that each bracket in the
right-hand side above gives, when inserted ifit@), a term which goes to 0 in
L2(Q; L?(R%)), hence, also inL.2(Q; H*(R¢))—since it is clearly bounded in
L2(Q; H?(RY)).

It can be proved in the same way thatr) goes to 0 inL2($2; H*0(R?)) asAt
goes to 0 (o goes to infinity).

Therefore,lnz(t) goes to zero irLl(Q; H*°) and, recalling (6.8), Lemma 6.1 is
proved.
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