The Annals of Probability

2004, Vol. 32, No. 4, 3167-3190

DOI 10.1214/009117904000000810

© Institute of Mathematical Statistics, 2004

UNIQUENESS FOR DIFFUSIONS DEGENERATING AT THE
BOUNDARY OF A SMOOTH BOUNDED SET

By DANTE DEBLASSIE
Texas A&M University

For continuouy, g : [0, 1] — (0, 00), consider the degenerate stochastic
differential equation
dX; =[1— X112y (1X,1)dB; — g(1X: ) Xy dt
in the closed unit ball ofR”. We introduce a new idea to show pathwise
uniqueness holds whepn and g are Lipschitz andygz(—(ll)) > /2 —1. When

specialized to a case studied by Sw&bghastic Process. Appl. 98 (2002)
131-149] withy = +/2 andg = ¢, this gives an improvement of his result.
Our method applies to more general contexts as well.lbdte a bounded
open set withC3 boundary and suppose D — R Lipschitz onD, as well
asC2 on a neighborhood of D with Lipschitz second partials there. Also
assumé: >0 onD, h=00ndD and|Vk| > 0 ondD. An example of such
a function ish(x) = d(x, dD). We give conditions which ensure pathwise
uniqueness holds for

dX; =h(X)Y% (X)) dB, + b(X;)dt

in D.

1. Introduction. For a long time much has been known about uniqueness
for one-dimensional stochastic differential equations (SDESs) with singular coeffi-
cients. The diffusion coefficient can be non-Lipschitz and degenerate; the drift can
be singular and involve local time. See the survey (in Section 4) of Engelbert and
Schmidt (1991), as well as the references there. In contrast, the higher-dimensional
situation is understood less. Recent work in this direction includes the articles of
Athreya, Barlow, Bass and Perkins (2002), Bass and Perkins (2002) and Swart
(2001, 2002).

Athreya, Barlow, Bass and Perkins (2002) and Bass and Perkins (2002) study
weak uniqueness for

dX! =Y "\/2Xloi(X,)dBf + b (X)) dt, i=1,...,n,
k

in the positive orthant irR"”, whereb ando satisfy suitable nonnegativity and
regularity conditions. This problem is interesting because the diffusion matrix is
degenerate and non-Lipschitz and the boundary of the state space is not smooth.
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Swart (2002) addressed both weak uniqueness and pathwise uniqueness for
the SDE

(1.1) dX, =v2(1—|X,1% dB, — cX,dt

in the closed unit balE in R". As above, the diffusion matrix is degenerate and
non-Lipschitz. He proved weak uniqueness holds wher0 andn > 1. Standard
methods yield pathwise uniqueness in dimensiog 1 for all ¢ > 0 and also

in dimensions: > 2, providedc =0 orc¢ > 2. The case &k c <2 forn>2is
much trickier. Swart used a clever method to prove pathwise uniqueness for
Rotational invariance of (1.1) played a large role in the argument. Also, with the
explicit form of the coefficients, Swart was able to exploit the resulting explicit
form of the local time on the boundary. In this article we study a slightly more
general form of (1.1) in the closed unit ballof R”:

(1.2) dX, =[1— X, 1Y%y (1X,1)d B, — g(|1 X, X, dt,

wherey, g:[0, 1] — (0, c0).
We introduce a new technique yielding a theorem, which specialized to (1.1),
improves Swart’s result.

THEOREM 1.1. Supposey, g:[0, 1] — (0, oo) are Lipschitz continuous with

£ ((11))2 > +/2 — 1. Then pathwise uniqueness holds for (1.2).

REMARK 1.1. In the context of (1.1), we have(l) = v/2 andg(1) = c.
Hence, the condition)% > /2 — 1 becomes: > 2(+/2 — 1) ~ 0.828. This
improves Swart’s condition > 1.

REMARK 1.2. Since the process-1| X, |2 is an autonomous one-dimensional
diffusion, a change of space and time can be used to prove existence of a solution
to (1.2). The idea is much like that used in the proof of Theorem 1.2.

It is natural to ask if the powe} in (1.2) can be changed to> 0. Whenr > 1,
the coefficients are Lipschitz and it is well known that pathwise uniqueness holds.
Whenr ¢ (%, 1), if the process starts within the open unit ball, then the boundary
is unattainable [see the last chapter in Breiman (1968)] and, again, standard results
yield pathwise uniqueness. If the process starts on the boundary, our method can
be used to show pathwise uniqueness holds in this case too; more on this at the end
of Section 3. Finally, when € (0, %), our method does not seem to work and we
do not know if pathwise uniqueness holds. To see pa#iwise uniguenessis the
issue, in Section 4 we outline the proof of the following theorem. The technique is
standard.
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THEOREM 1.2. If y,g:[0,1] — (0,00) are continuous, then for any
r € (0, 3), weak uniqueness holds for

dX; =[1- IXzIZ]’J/(IXtI)de —g(X: DX, dt,
Xo=x€eFE
in the closed unit ball E of R".

Now we explain the idea behind the proof of Theorem 1.1. For solutions
andX to (1.2) with the same Brownian motion, the usual idea for proving pathwise
uniqueness is to computdX — X |2, show the integrands of the resulting terms

involving dr are bounded byx — X |2, then appeal to Gronwall’s inequality. But
due to the non-Lipschitz nature of the diffusion coefficient in (18X — X|?

has adr term whose integrand is positive and singular in the sense t%

is unbounded. This precludes the use of Gronwall’s inequality. Swart’s idea is to
look at

whereY =1 — |X|2 andY =1 — |X|2. Hered(YY2 — Y1/2)2 gives rise to a
negative singular term which, under the condition- 1, compensates for the
positive singular term i@|X — X|2. Our idea is to use

W=x"-7Y"?+|X - X)?
for suitablep € (%, 1). For this choice op there will be an extra positive singular
term ind(Y? — Y7)2 not occurring in Swart’s work. The critical observation is
under the ondition 52((11)) > /2 — 1, this new positive singular term can also be
absorbed into the negative singular term. This is a bit surprising because creating
more positive singular terms does not seem to be a good idea initially.

To simplify the exposition, we have chosen to concentrate on (1.2) in the closed
unit ball. But our technique applies to more general situations, since we do not
rely on explicit properties of the local time on the boundary to prove Theorem 1.1.
Indeed, we now state a more general version of the theorem.

Let D CR" (n > 2) be a bounded open set such that for sgmneeC3(R"),

D={xeR":pkx) >0},
0D ={x e R":¢p(x) =0},
[Vp| >0o0nadD.
Supposé:: D — R satisfies
h>0onD,

h=0, |Vh|>00naD,
(1.3)
h is Lipschitz onD,

h is C? with Lipschitz second derivatives, all on a neighborhood bf
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An example of such a function is(x) = d(x, 0 D).
Consider the SDE

(1.4) dX, = [h(X) Y26 (X;)d B, + b(X;) dt

in the closed seD, whereB, is a Brownian motion ifR” , 0= (0j;) isann x n
matrix andb is ann-dimensional vector, both Lipschitz dp. Assume

(1.5) a(x) =o0(x)o™(x)
is strictly positive definite fox € D:
(1.6) (a(x)E,€) > 0, x € D, & e R"\{0},

where (-, -) is the usual Euclidean inner product. We also assume there is a
neighborhoodv of 9 D such that

Vh
2.7) b=g——+8 onN,

where
g > 0 and Lipschitz onv,
(1.8) B is Lipschitz onN,
(B,Vh)=0o0nN.

Then g is uniformly bounded below away from 0. We s&yx) is a Lipschitz
function of if for some constan€ > O,

If(x) = f] = Clh(x) — h(y)l.
Equivalently, f = f o h for some Lipschitzf.

THEOREM 1.3. In addition to conditions (1.3) and (1.5)}(1.8), suppose
g|Vh| and (aVh, Vh) are Lipschitz functions of 4 on a neighborhood of aD.
Then automatically o = mlap is constant. If @ > +/2 — 1, then pathwise
unigueness holds for (1.4).

The method of proof is like that for Theorem 1.1. Please note the condition
requiringg|Vh| and{aVh, Vh) to be Lipschitz functions of is rather restrictive.
For instance, the hypotheses do not cover a simple nonrotationally symmetric
equation proposed by Swart:

dX,=vV2(1—|X,1*)dB; +c(0 — X,)dt

in E, whereg € R" is constant.
The article is organized as follows. In Section 2 we complife— |X|2]? for
pE (%, 1) and showX spends zero Lebesgue time on the boundary; the latter is
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needed for the proof of Theorem 1.1. In Section 3 we prove Theorem 1.1 and
discuss the proof of Theorem 1.3, as well as the oase% mentioned after
Remark 1.2. The proof of Theorem 1.2 is outlined in Section 4; the proof consists
of standard methods. In Section 5 we present some open questions. The last section
consists of the proof of a technical result used in the proof of Theorem 1.1.

2. The differential of powersof 1 — |X;|2. Let X be any solution to (1.2),

where g and y are continuous. For any > 1 — ;”2((11)) by continuity, choose
e(p) > 0 such that
g(u)
2.1 >1— =——, ue(l—e(p),l.
(2.1) P 20) ( P, 1]

For any proces® ands > 0, define

5(R) = inf{r > 0: R, = §}.

NOTATION. In the sequel we will write
dR=adB + bdt,

forr < n, to mean
IAn tAn
Rmn:R0+/o a(s)dB(s)+/0 b(s)ds.

Here is our result on powers of-1| X |2. We suppress the explicit dependence of
andg on|X]|. Notice no boundary local time terms appear—this is why we require

p>g)/y3(1).

LEMMA 2.1. Let p e (3,1) satisfy p > 52((11)) and suppose ¢ = &(p) is

from(2.1). Thenfor t = 7,(1— |X|%) and | Xo|? > 1—¢, theprocess Y =1 — | X|?
satisfies

dyP = —2py? Y2y 3" X, dB;
j

+2pIX12YP Yy olg + (p — Ly A dt —npy?yP di

fort <.

PROOF  Form > 1, choose,, € C(R) with £,, > 0, SUPE,y, < [527. =] and
[Lm(t)dt =1.Then

o (1) = /0 ’ /O o) duds
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satisfiesk,, € C2(R),

kn(t) —>tVvO0 asm — oo, uniformly onR,

kn=0 on a neighborhood of,0
0<k, <1,

K, — 10.00) asm — oo,

k! > 0.

Now for y =1 — |x|?,

_8 Py — vP=1r (P
ki (yP) = =2px;yP "7k, (y"),

8x,-

2

0
—kn(07) = —2py? 7Y, (yP) + 4p(p — DxZyP 2k, (»7)

l
+4pP2y? 2 (yP).
Hence, forr < 7,
dlkn(YP)] = —2pY P~ Y2k (YP) Y X ; dB;
J

02 +2pIX1PY P Y, (Y[ + (p — DyPldi
' — pny2Y Pk (YP)dt
+2p%|X Py~ Yy 2k (Y P) dt.
We are going to show the integrated forms of the first three terms on the right-hand
side converge to their analogs witf) (Y”) replaced byly.o and the integrated
form of the last term converges to 0. To this end, for any0,
2
INT
E[ / 2pY? Y2y [k, (YP) — Iy=0] ) X;dB; }
0 . ‘
J

INT
2.3) _ 4p2E[ [ vy, o - 1Y>o]2|X|2ds}

INT
- 4p2sup(y2>eZP—1E[ fo K. (¥7) - IY>o]2ds]

(sincet <t and|Xg|?2 > 1 — ¢ imply ¥; < ¢). Properties ok,, and dominated
convergence show

(2.4) left-hand side (2.3}~ 0 asm — o0.
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]

INT
(2.5) < pnepsup(y2>E[ [ W0 = 1y ds]

—0 asm — oo,

Also,

INT
EH/O pny?Y?Plk, (Y?) = Iy=olds

by dominated convergence. Finally,
(2.6) Ellkn(Y0 ) =Y . 1—- 0  asm — oo

by uniform convergence df, (¢) to¢ v 0.
Looking at the integrated form of (2.2) and using (2.4)—(2.6), we see

INT INT
f 2pIX 12y P (YP) g+ (p — D)y ?lds + / 2p21X 12Y2P~Yy 2k (YP) ds
0 0

must converge i1 asm — oco. Clearly, the second integrand is nonnegative and
by (2.1), the first integrand is too. Hence, Fatou’s lemma yields

17,%4
E[/ 2P|X|2Yp_11Y>0[g+(p—1)y2]ds] < 00,
0
and then, by dominated convergence,

INT
EH/O 2pIX Y Pk}, (YP) — Iy=ollg + (p — Dy?lds

}

Now we can letn — oo in the integrated form of (2.2) and use (2.4)—(2.7) to end
up with

(2.7)
-0 asm — oo.

dyP = —2py? Y2y N "X, dB;
J
+2p1X12Y Py oolg + (p — D)y ?ldr

(2.8)
— pny?YPdt

+dg?,

fortr <, wherewt(p) is continuous and nondecreasing ifThe conclusion of the

lemma will follow once we prove»,(p) =0.

First we shovvp,(”) can change only whel} = 0:

INT
2.9) / Iy-0dp® =0,
0
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By (2.8) and It6’s formula [sincé,, (0) = 0],

dkw(YP) = —k},(YP)2pYP~Y2y 3" X ; dB;
j

+ K, (YP)2p| X [PY P g + (p — Dy?ldt
— k! (YP)pny?YP dt

+ K, (YP) dg?

+ k(Y P)2p2Y2P Yy 2 X 2 dt.

Compare with (2.2) to see we must have
INT
[ kg <o
0
Let m — oo and use dominated convergence to get

INT
/0 IY>0d(p(p) :0,

as claimed.
To finish, choose > % such thayy < p and

&)
y2u)’
Then the derivation leading to (2.8) holds withreplaced by and the analogue
of (2.8) is valid. By an extension of Ité’s formula 6’ functions [Rogers and

Williams (1987), Theorem IV.45.9 on page 105] appliedia) = x?/4, forr <,
we have

ue(l-e(p)1].

1
dy?P = d((le)P/lI) _Pyr—q dyd + §£<£ — 1>yp—2qu>od[yq]
q

q\q
= gyl’—q [—2411/4—1/2;/ Y X;dB;
j

+2q1X PV Uy olg + (g — Dy2ldt — gny?Y?di + dqof”}

1
+52 (£ - 1) YP2 Iy o[4g?Y? 1y 2| X 2] dt
2q\q
=—2pY"" Y%y Y X, dB,
j

+2p|X12YP  y_olg + (¢ — D)y?ldt
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— pny?YPdt +0
+2p(p — Y " y.oy?|X |2 dr
=dY? —de®  [by (2.8)].

Thus,e!”’ =0, as claimed. O

The last result of this section is needed in the proof of Theorem 1.1.

LEMMA 2.2. Any solution X of (1.2) spends zero Lebesgue time on the
boundary:

t
/ I‘XS|:1dS =0 a.s.
0

PrRooOFE With T from Lemma 2.1, it suffices to show
T
/ I‘XS‘:]_dS =0.
0

Applying the extension of Itd’s formula tac! functions (cited above) to
f(x)=xP fort <, using Lemma 2.1,
1 1 . 11/1 1-2
Ay =d((YP)'P) ==y PdyP+ === -1 Ply-od[Y"]
p 2p\p

=-2yYY?) " X;dB;
j

+ 21X Iy=olg + (p — Dy?dt

(2.10)
- nyZY dt
+2(1— p)y2ly=olX|*dt
=—2yYY?Y " X;dB; +2|X*Iy-ogdt —ny?Y dt.
j
On the other hand,

dY =d[1—|X|?]

=—2vY2y Y " X;dB; + 2g|X|%dt — nYy?dt.
J
Upon comparison with (2.10), we must have

281X PIy=odt =0,
which is equivalent to
2g(D)1x|=1dt =0,
sinceY =0« |X| = 1. The desired conclusion follows becaysg) > 0. O
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3. Proof of Theorem 1.1. Let X, X be solutions of (1.2) with the same
underlying Brownian motion. Suppose € (%,1) satisfiesp > 1 — 52((11)) and
chooses = ¢(p) as in (2.1). It is no loss to assume< % LetY =1— |X|3

Y=1-|X|?and

(3.1) W=x?-Y"?+|X - X

as in the Introduction.

Since the coefficients of (1.2) are locally Lipschitz on the interior of the unit
ball E, pathwise uniqueness holds up to the first hit of the boundary. Hence,
it suffices by a restart argument to consider starting points on the boundary. By
makinge smaller if necessary, it suffices to show o= min(z.(Y), (Y)),

X, =X,, { <71, as.
Below we will use the fact
(3.2) Y, VY <e, t<rt.
Writing
Gu) =gw) + (p— Ly,
by Lemma 2.1,

d(YP =¥y =-2pY [y(XDY""Y2x; — y(1X)Y?"V2X;1dB;
J

+2p[|X1PY Py oG (IX ) — |X 12V P~y oG (1X))]dt

(3.3) ) ) oo
—nply“(IXDY? — y=(IX)YP]dt
=dM + 11 dt + I dt say.
Then
d(YP —YP)2 =2(YP — YP)[dM + I1dt + I»dt]
(3.4) +a4p2 > [y (IXDYPTY2X; — y (1XDYPY2X 2 dr

J
=2(Y? —YP)dM + I dt + I di] + Izdtr  say.

The term (Y? — YP)I1dt is the “good” negative singular term that will
compensate for the “bad” positive singular tefgds. Note I3 is “singular” in
the sense thag/ W is unbounded. It turns out the term involvidgis not singular
in this sense. In Swart’s article (i.e2,= %) the term involving/s is not singular in
that I3/ W is bounded in this case.
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We also have
dIX — X1 =2[y"?y (X)) - Y2y (1XD1>(X; — X ;) dB;
J

—2Y (X; - X)lg(XDX; — g(IXDX;1dt
J
(3.5) 1/2 51/2 SN2
+n[YY2y (X)) - Y2y (1XD1%dt
=dR + I4dt + Isdt say.

Exactly as in Swart, the terrfy d¢ is nonsingular and the teriig dt is positive and

singular.
Now we estimate the individual terms. For notational convenience write
(3.6) Z=(P—yPyyr-l_yr.

Note Z > 0 and it will turn out all the singular terms invohz.

LEMMA 3.1. For Y and ¥ positiveandr < T,
(Y? —¥YP)I1 < —2pZ|X[*G(IX|) + CeZ,

where C isindependent of ¢.

PROOFE By (3.3),
(YP —YP) Iy =(Y? —YP)2p[IX1PYP~1G(1X)) — IX PV P~ G (X))
=2p(YP —YP){(¥P7L - VP H X126 (X))
(3.7) +YPHIXIPG(X)) — IXPG(XD)
=—2pZ|X[?G(|X))
+2p(Y? —YPYPHIXIPG (X)) — IXPG(X D).

Thus, we need only estimate the last term.
Recall we are assuming< % Then, fort < 7, by (3.2),

X =vI—¥, =vI—s=/}
and this holds fotX,| too. Thus,

I1X12— X
1X| + | X|
(3.8) < X - 1X}

1X] - 1X|| =

=2y - 7).
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Now uzG(u) is Lipschitz, hence, for some constantindependent o, the last
termin (3.7) is bounded by

ClY? — VP |¥P7Y|X| — X|| < ClYP — TP|FP1L2)y — 7).
SinceY v Y < e, we just need to show for songe> 0 independent of,
YPHy? —YP|ly — Y| < Cmaxy, Y)|Y? — YP||yP~1 - yr
[=Cmaxy,Y)Z].

To this end, since — 1 < 0, the worst case occurs¥f < Y. Thus, it is enough to
show

Yyrly-v)<cyyrt-yr,

which after division byY ?~1Y is equivalent to

Y Y\l
=y ()]
Y Y
It is easy to see sygp, 1 1_1;—1”_p < oo, and so taking to be the supremum does
the trick. O

LEMMA 3.2. ForY andY positiveand ¢ < t,
|L| <ClIY? —YP| +|X — X]],

where C isindependent of ¢.

PrROOF From (3.3),
T2l < np[|Y? = Y71y 21X D) + Y2y 2(1X]) — y2(XD]].
SinceY < e < 3 andy is bounded and Lipschitz, the latter is bounded by

np|Y? — YP|supy? + C||X| — |X|

’

whereC is independentof. [J
In order to bound the singular terfg, we need the following lemma.

LEMMA 3.3. Letx,y>0,pe (3,1 andsetz = (x? — y?)(yP~1 —xP7 1.
Then, for some constant C depending only on p,
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PROOF Itis noloss to assume< x. Then
(P72 =y —y) P2y -yt Pyt
z S =y —yh)
_ L2 1-p a- (y/x)p_l/z)(l —y/x)
(1= (/)P (A= (y/x)1=P)

<2y gy - w2 (A —w)
N O<u<1 (1 - wp)(l - wl—p)

The supremum is finite becaugec (%, 1). Taking C as this value yields the
desired conclusion.

LEMMA 3.4. For Y and Y positiveandr < T,
12

\ < p(2p—1)

1-p

where C isindependent of ¢.

V2(XDIXPPZ+C1X = X[>+CeZ,

PROOFE To ease eye strain, write

a=yr4?
b=Yr 12
U=y(XDX,
V=y(XDX.

Then from (3.4),
I3 =4p?|laU — bV |?
anda, b € (0,1). Sinceab < 1,
I3 —4p?|U — V|2
=4p2[<a2 —DIUR-2(ab-1)Y UV + (b* - 1>|V|2}

<4p”[(a® — D|UJ? — 2(ab — DIU||V| + (b* — D|V|?]
(3.9) =4p?[(a|lU| - b|V)* = (IU] — [V )]
<4p*la|U| - b|V|]?
=4p?[(a — b)|U| +b(IU| — |V ]]?
=4p?[(a — b)?|U|* + 2b(a — H)|U|(IU| — [V]) + B2(U| — [V])2].
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Sincery (r) is Lipschitz inr, for someC > 0 independent of,
\UI=1vI|<Clix|—IX]].

Hence, the last term on left-hand side of (3.9) is boundedRAC4x — X|? and
the middle term is bounded by

8p*Cbla — bl[|X| - IX]|
=8p2Ccy P2 )yr=Y2 _yr=12)| x| - |X||
<Cyryr=t2_yrU2 )y —¥|  [by (3.8)]
< CePY2121=r 7 [by Lemma 3.3 and (3.6)]
=CeZ.
Also, sincey is bounded and Lipschitz,
U= VI<ly(XDX = X)| + [X(y (XD — 7(XD)|
< C[IX — X[ +1X| - IX][]
<C|X - X|.

Thus, to finish the proof we just need to show the first term on right-hand side
of (3.9) satisfies

p(2p — 1)2

T (IXDIXPZ.

4p*(a—b)*|UI* <
But, by Lemma A.1,
(Cl _ b)2 — (Yp—l/z _ ?p—l/Z)Z

_(@p- 1)?
“4p(1-p)

and sincaU|? = y2(]1X|)| X |, we get the desired boundd

LEMMA 3.5. For Y and Y positiveand s < ,
|[1al < C|X — X2,

where C isindependent of ¢.

PROOF  Sinceg is Lipschitz, the bound is clear from the definition (3.5¥gf
O

Finally, we bound the last singular terfg.
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LEMMA 3.6. For positive Y and Y and ¢ <rt,
Is<Cle*2PZ +1X — X|?,

where C isindependent of ¢.

PROOF By (3.5),
Is =n[(YY2 = Y2y (X)) + FY2(y (X)) — v (X))
< 2n(supyH(Y Y2 — ¥Y22 L on¥ (y (X)) — y (1X])%

Sincey is Lipschitz and’ <1, for someC > 0 independent of, the second term
is bounded by

ClX — X2
Hence, we need only show
(Yl/2 _ ?1/2)2 S CSZ_ZP(YP _ ?p)(?p—l _ Yp—l)

(since the latter igCeZ—ZPZ) where C is independent ot. To this end, write
x =YVY2 andy = Y2 and without loss of generality, assumex x. Then since
x,y < /¢ [by (3.2)], it is enough to show

(x = )% < CxZ7 2P y2720 (20 — y20) (y2P 2 — 2072
or, equivalently,
(x — )2 < C(x? — y2Py(x272P — y272p),

By dividing by x2, this is equivalent to

(-3 ()6 )

Sincep < 1, itis easy to see

C:= su (1 —w)?
= < X
ool (T— w2r)(1— w2-2r)

does the trick. O

Now we can show how the hypothesy%% > /2 — 1 implies the negative
singular termY? — YHn compensates for the positive singular termand Is.

LEMMA 3.7. LetY and Y be positive and suppose ;’2((11)) > +/2— 1. Then, for
p=1— @, by making ¢ smaller if necessary, for ¢ < 7, we have
207 =Y+ I3+ Is < C|X — X|%,

where C > 0 isindependent of ¢.
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PROOF First note the valug =1 — */E € (2, 1) minimizes the function

2p —1)?

41-p)

on (%, 1) and the minimum value is/2 — 1. As shown below, this is what leads to

the hypothesi ),z((ll)) > +/2— 1. Note too that this choice of satisfiep > 1— £

y(D)?
(so Lemma 2.1 is applicable).
By Lemmas 3.1, 3.4 and 3.6,

207 —YP)[1 + I3+ I
< —4pZ|X[*G(|X|) + CeZ

p(2p — 1)
i,

+C[eT?Z+1X - X4

—-(p—-D+

V2UXDIX1PZ +C1X — X2+ CeZ
(3.10)

(2p —1)?
=4 ZXZ[—GX T ZX]
PZIXI?| ~GUXD) + = v (XD

+Cle 4+ P1Z+C|X — X2

To finish, we show the coefficient &f is negative fore sufficiently small. Recall
Gu)=g) + (p — Dy*u), hence,

@2p—-172 , o g(u) (2p — 1)?
—G(l/l)"‘my w)y=y (u)|:_ 2 ) —(p-D+ 41— p) i|
V2 (u )[ g(() } by choice ofp.

This is where we see the reason for chooging minimize—(p — 1) + (f(’ij))z.
Then the coefficienkK of Z in (3.10) is

g(1X
2(IXI)

which by (3.2) (and thatX| = /1 — Y ) is bounded by
g(u)
2(u

K=4p|X|2y2<|X|>[ ) V2 1]+c<g+82 »),

4p|X|2y2<|X|)[— inf _ } L Ce 4 2P,
ul>1—s¢

By our hypothese yz((ll)) > +/2 — 1 and continuity ofg andy, and by making

smaller if necessary, the quantity in square brackets is negative, hence,

K <4p (1—8)[infy2][ inf gz( u)
u2>1—e Y “(u)

+42— 1} + C(e + £%7P).
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Then for the same reason, makinngmaller if necessar < 0. O

Now we prove Theorem 1.1. Wit from (3.1) andp from Lemma 3.7, foly
andY positive, by (3.4) and (3.5),

dW =2(Y? — YP)[dM + L dt + I dt] + Izdt
+dR + I4dt + Isdt.

Hence, upon integrating and using Lemma 2.2, we can apply Lemmas 3.2,
3.5and 3.7 to get

INT ~ ~ ~ ~
E[Wine] < CEUO (X, — B2 4 (Y7 — T2+ |¥P — TP 1X, — Xsl}ds}

INT

SZCE|: Wsds]

0
Then Gronwall’s inequality yield$; ., = 0 a.s., which forceX; ., = X7 A.S.,
as desired.

REMARK 3.1. We have written the proof of Theorem 1.1 in such a way that
it is easy to change to the situation of Theorem 1.3. One Hses:(X) in place
of 1 — |X|2 in the argument and computes the differential of powers&f) to
obtain the analog of Lemma 2.1. Again, our proofs in Section 2 are given with this
in mind. The notation is more complex, but the basic ideas are the same.

REMARK 3.2. If one replaces the powerin (1.2) by r € (3, 1), then, as
pointed out in the Introduction, our method can be used to show pathwise unique-
ness holds for starting points on the boundary (recall the boundary is unattainable
for all other starting points and pathwise uniqueness follows from standard re-
sults). In this case there will be no restriction suclxéb/y?(1) > +/2 — 1. This
is due to the unattainable nature of the boundary previously mentioned. The analog
of Lemma 2.1 exemplifies this: one can take gy (1 — r, 1). Consequently, the
proofs of the analogs of Lemmas 3.4 and 3.7 are simpler. The remaining details
are similar to those furnished above.

REMARK 3.3. There is the question adxistence of a solution to the
equation (1.4) considered in Theorem 1.3. Basically, it is necessary to verify the
positive maximum principle holds for the operator

3 Ty 4 Y b
i,j i

Xi
See Theorem 4.5.4 (page 199) in Ethier and Kurtz (1986) where this is done for
the martingale problem. By problem 19 (page 265) from the same chapter and
Theorem 5.3.3 (page 293), this can be translated into existence of weak solutions
to SDEs. This argument is due to the referee.

ax,- axj
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4. Proof of Theorem 1.2. We prove the equivalent statement that weak
uniqueness holds for the SDE

dX, =[1—|X,2TyQ—|X,PdB; —g(1— |X,D X, dt,
Xo=x
in E, wherey and g are continuous and strictly positive on [0,1]. Since the
diffusion matrix is uniformly positive definite on compact subsets contained in
the interior of E, it is well known that weak uniqueness holds up to the first hitting

time of the boundary. Thus, it suffices to show weak uniqueness holds for starting
points on the boundary, and by rotational invariance, it is no loss to take

Xo=(0,...,0,1).
First, transform the state space. The mapping

v=0(x)=1—|x|?
(4.2)

y=yx) = (ﬂ,...,x"‘1>, xeBIDNE,
x| |x]

is one-to-one. We want to compute the differentials of

‘/ZZU(X[),
(4.2)
Y = y(Xy).
To this end, fory e R"~1 andi, j € {1,...,n — 1}, define
1—y2,  i=,
(4.3) Aij<y>={ Yoot
—Yiyj i #].

LEMMA 4.1. For |y| < 3, A(y) is uniformly positive definite: for some
constant A > 0,

(A(E &) > AlE]2,  teRL

PROOF  Fory,¢ e R" Y with |y| < 3,

n—1
(AE. &)=Y Aij(»EE;
i,j=1
=Y (- yHEE -2 yivjkik;
i i<j
=612 — (£, )2

> [£]% — |£1%|y)?

> 3|2 O



UNIQUENESS FOR DIFFUSIONS 3185

Using the formulas

x2—x2
oyi _ | 0 TS
8x,- o xl-x]~ . .
’ - ) 14 i
ME #J
3n(x2 = xP) iy
2y xfs 7 ’
axJZ xi (|x[? — 3x%) o
TS L],
|x|

Ité’s formula can be used to show that
dV = =2V"'y(V)N1=VdB +[2g(V)(L— V) —nVZy2(V)]dt
(4.4) dy =V'y(V)A-V)Y2AY2(yyam
n [e—
2
where(B8, M) € R x R"~1is ann-dimensional Brownian motion. Hence, it suffices
to show weak uniqueness holds for (4.4), witf, Yo) = (0, 0).
In what follows, we use the last chapter in Breiman (1968) as our basic reference
for one-dimensional diffusions. Notic& is an autonomous one-dimensional
diffusion process with state spaf@ 1]. Since the proces¥ never hits 0 when

Xo # 0 (sincen > 2), the state space will actually 18, 1) since we are taking
Vo = 0. Transform the state space using the scale funetiongiven bys(0) =0

and
v _ _ 2r.,2
s =exf - [ Zg(wz);lby;‘zzu)(’ﬁ 2 Caw).  veo,

1
A- V)" tv¥y2v)y dr,

Sincer < % the integralfy is finite (again, using: > 2) and, therefore, it turns
outs (V) is adiffusion in the natural scale with state spLeo), and 0 is a slowly
reflecting boundary point (i.e., the process spends positive Lebesgue time there).
By a time change we can convelV) into a one-dimensional Brownian motion
in [0, oo) with slow reflection at 0.

Using this time change o@ (V), Y), weak uniqueness for (4.4), witivg, Yo) =
(0, 0), comes down to proving weak unigqueness for

dU =dp + 3e2(U),

1 1/2 n—1 2
dN:EA (N)H(U)IU>0dM—TH (U)NIU>0dt7

(4.5) .
Iy—odt = cdeO(U),

(Uo, No) =(0,0)
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in Ry x R"~1 wheres—1 is the inverse of,
HWU) =[5 os {1 (1-s"1W)) ™,

¢ > 0anded(U) is the local time oU at 0.

To prove that weak uniqueness holds for (4.5) we introduce a certain stopped
submartingale problem. L& = C([0, co), R") be the space of continuous paths
in R"” and equip it with the cylindrical Borek-algebra. Denote by, (w) the
coordinate proces¥;(w) = w(t), w € 2, and letF =o(Z;:s <1t), F =
0(Zs:s >0). For(u,y) e R" with y = (y1, ..., yp—1), Set

1[ 92 172 2 1 n-1 , I 9
A H? H i—
2[32+ Z yOH W) 5 o, 5 (U)izzly’a"

Vi

L=

where A is from (4.3). A probability measur@ on (2, ) solves thestopped
submartingale problemif for the first exit timer of Z from a small neighborhood
of (0,0) in R4 x R*~1, we have

P(Zo=0)=1,
P(Zipr eRe xR =1
and for all f € C12([0, 0o) x R") satisfying

(4.6) %—l—%z—f >0 on[0, 00) x {(u,y):u=0,yeR" 1},

we have
tAT af
f(l/\‘f, Zt/\r)_/o IU_;>O|:¥ +Lf:|(s’ Zs)ds

is a P-submartingale.

The matrix of coefficients of second-order termslins bounded, continuous
and uniformly elliptic in a neighborhood 0f0,0) in R, x R"™1 (using
Lemma 4.1), and the first-order term coefficients are continuous there. The
boundary operator in (4.6) has the form

9 V,
iy +tv:
wherep is continuous and positive andis Lipschitz continuous. Moreover, if
is the unit inward normal td (R, x R*~1), theny - n > 0. Thus, by Theorem 5.8
on page 196 of Stroock and Varadhan (1971), uniqueness holds for the stopped
submartingale problem.

A routine use of Itd’s formula shows any solution to (4.5) yields a solution of
the stopped submartingale problem. Hence, weak uniqueness holds for (4.5), as
desired.
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5. Open questions.

1. Our method slightly improved Swart’'s conditier> 1 for (1.1), but is still
remains to resolve the case<Oc < 2(+/2 — 1) for n > 2. This seems quite
difficult.

2. Is the assumption in Theorem 1.3 thd¥Vh| and (aVh, Vh) are Lipschitz
functions ofx really needed? Our proof breaks down without it.

3. The question of pathwise uniqueness for

dX, =[1—|X, 2y (X.])dB, — g(|1X,) X, dt,

with r < % and Lipschitzy, g: [0, 1] — (0, 1), remains open.

4. With reference to the equation studied by Athreya, Barlow, Bass and Perkins
(2002) and Bass and Perkins (2002) mentioned in the Introduction, decide
whether or not pathwise uniqueness holds for

dXt/ = Z(ZX;)I/ZUlk(Xt)dBtk + bi(Xt)dt’ l = 1’ RRER(T
k

in the positive orthant.
APPENDIX: A TECHNICAL RESULT
LEMMA A.1. For positivex and y and p € (3, 1),

2
o2y < BPZ D et ey,
“4p1-p)
PROOFE Itis nolossto assumeg< x. Then
(xP7M2—yp 22y )P = (p/x) P32
(xP —yP)(yP~L—xP=1) (1= (y/x)P)(A— (y/x)1=P)
Thus, we must show

sup wiPA—wP?)2 (2p—1)?
0<w<1 (1 —wP)(1—wl=P) 4p(1l- p)
and replacingy by z2 and then 2 by ¢, this comes down to showing
i1 -217H? (¢ -1?

A.l su = , l<g<?2.
(A1) 0<zfl(1—z‘f)(1—zz_‘1) q92—q) 1

If we show
(1—z9)(1—2z279)

Za(l_gaD2 O<z<1,

f@)=
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is decreasing, then since

, _q92—gq)
Jim_ @)= 12’

(A.1) will hold. The proof is elementary, but a bit involved. Define
AR =(q+Dz—q -z, z>0.

Sincef{(z) =g+ 14 (¢ — Dz~ ¢ >0, we have
(A.2) f1(@) < f1(1) =0, z€(0,1].
If

L@ ==(@+DR-9) —q(q - D" +9B-9)z— (¢ - DH2-9g),

z>0,
then
H@ =g~ +D2-z— (g -D*+B—9)z" . z>0.
If there iszg € (0, 1) such thatf;(zo) =0, then
~(@+D@-q0—(q-D*+B-q)z5 1 =0
and this yields
B-q)z5 =@ +D2—q)z0+ (g - D2

Hence,

f2z0) = —(q + D@2~ )z§ — q(q — Dz " +9@—zo— (@ - D2~ q)

=2 @+ D@~ —q@ -1
+qB-q)z5 @ - D2z ]
A -@+D@-9—q@q -1
+(q(g + D@ - z20+4q(q — D) — (g — D2 - q)z5 ‘]
=207 - D@ + D2~ 9)z0
+q@ -1 -2 (g -D2-qz5 ]

= -D2- 9z Mg +Dzo—q —z5 ]

= (¢ - DR- 5 fizo)
<0 by (A.2) and that kx ¢ < 2.
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Thus,
(A.3) oiipl f2(z) <max f2(0), f2(1),0]=0.
Now define
£@)=—@+DR-9)z*—29(g — Dz+4q(g— 1)
+292%71 = 2(q — 1)z% 71, z>0.
Then
f352)=2"-(g + D2 - @)z? —q(g — D!
+9@—q)z—(2—¢q)(g— D]
= 22179 fo(2).
By (A.3),
f4(z) <00n(0,1).
Thus,
(A.4) oIt fa(2) = fa(h =0.

Finally, define

fa(2) = =2 — )20 — 2(g — D)7

+qzq_1+qz2—2(q—1)2—(2—61), z>0.

Then

fa@)=21"2f3)=0  forze(0,1), by (A.4).
This implies
(A.5) sup fa(z) < fa(1) =0.

0<z<1

Routine computation shows

ZS—q({4£Z;q—1)3 <0  forze(0.1), by (A.5).

fl@)=

Thus, f is decreasing or0, 1), as desired. (I
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