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UNIQUENESS FOR DIFFUSIONS DEGENERATING AT THE
BOUNDARY OF A SMOOTH BOUNDED SET

BY DANTE DEBLASSIE

Texas A&M University

For continuousγ , g : [0,1] → (0,∞), consider the degenerate stochastic
differential equation

dXt = [1− |Xt |2]1/2γ (|Xt |) dBt − g(|Xt |)Xt dt

in the closed unit ball ofRn. We introduce a new idea to show pathwise
uniqueness holds whenγ andg are Lipschitz andg(1)

γ 2(1)
>

√
2 − 1. When

specialized to a case studied by Swart [Stochastic Process. Appl. 98 (2002)
131–149] withγ = √

2 andg ≡ c, this gives an improvement of his result.
Our method applies to more general contexts as well. LetD be a bounded
open set withC3 boundary and supposeh : �D → R Lipschitz on�D, as well
asC2 on a neighborhood of∂D with Lipschitz second partials there. Also
assumeh > 0 onD, h = 0 on∂D and|∇h| > 0 on∂D. An example of such
a function ish(x) = d(x, ∂D). We give conditions which ensure pathwise
uniqueness holds for

dXt = h(Xt )
1/2σ(Xt ) dBt + b(Xt ) dt

in �D.

1. Introduction. For a long time much has been known about uniqueness
for one-dimensional stochastic differential equations (SDEs) with singular coeffi-
cients. The diffusion coefficient can be non-Lipschitz and degenerate; the drift can
be singular and involve local time. See the survey (in Section 4) of Engelbert and
Schmidt (1991), as well as the references there. In contrast, the higher-dimensional
situation is understood less. Recent work in this direction includes the articles of
Athreya, Barlow, Bass and Perkins (2002), Bass and Perkins (2002) and Swart
(2001, 2002).

Athreya, Barlow, Bass and Perkins (2002) and Bass and Perkins (2002) study
weak uniqueness for

dXi
t = ∑

k

√
2Xi

t σik(Xt ) dBk
t + bi(Xt ) dt, i = 1, . . . , n,

in the positive orthant inRn, whereb andσ satisfy suitable nonnegativity and
regularity conditions. This problem is interesting because the diffusion matrix is
degenerate and non-Lipschitz and the boundary of the state space is not smooth.
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Swart (2002) addressed both weak uniqueness and pathwise uniqueness for
the SDE

dXt =
√

2(1− |Xt |2) dBt − cXt dt(1.1)

in the closed unit ballE in R
n. As above, the diffusion matrix is degenerate and

non-Lipschitz. He proved weak uniqueness holds whenc ≥ 0 andn ≥ 1. Standard
methods yield pathwise uniqueness in dimensionn = 1 for all c ≥ 0 and also
in dimensionsn ≥ 2, providedc = 0 or c ≥ 2. The case 0< c < 2 for n ≥ 2 is
much trickier. Swart used a clever method to prove pathwise uniqueness forc ≥ 1.
Rotational invariance of (1.1) played a large role in the argument. Also, with the
explicit form of the coefficients, Swart was able to exploit the resulting explicit
form of the local time on the boundary. In this article we study a slightly more
general form of (1.1) in the closed unit ballE of R

n:

dXt = [1− |Xt |2]1/2γ (|Xt |) dBt − g(|Xt |)Xt dt,(1.2)

whereγ,g : [0,1] → (0,∞).
We introduce a new technique yielding a theorem, which specialized to (1.1),

improves Swart’s result.

THEOREM 1.1. Suppose γ,g : [0,1] → (0,∞) are Lipschitz continuous with
g(1)

γ (1)2 >
√

2− 1. Then pathwise uniqueness holds for (1.2).

REMARK 1.1. In the context of (1.1), we haveγ (1) = √
2 andg(1) = c.

Hence, the conditiong(1)

γ (1)2 >
√

2 − 1 becomesc > 2(
√

2 − 1) ≈ 0.828. This
improves Swart’s conditionc ≥ 1.

REMARK 1.2. Since the process 1−|Xt |2 is an autonomous one-dimensional
diffusion, a change of space and time can be used to prove existence of a solution
to (1.2). The idea is much like that used in the proof of Theorem 1.2.

It is natural to ask if the power12 in (1.2) can be changed tor > 0. Whenr ≥ 1,
the coefficients are Lipschitz and it is well known that pathwise uniqueness holds.
Whenr ∈ (1

2,1), if the process starts within the open unit ball, then the boundary
is unattainable [see the last chapter in Breiman (1968)] and, again, standard results
yield pathwise uniqueness. If the process starts on the boundary, our method can
be used to show pathwise uniqueness holds in this case too; more on this at the end
of Section 3. Finally, whenr ∈ (0, 1

2), our method does not seem to work and we
do not know if pathwise uniqueness holds. To see thatpathwise uniqueness is the
issue, in Section 4 we outline the proof of the following theorem. The technique is
standard.



UNIQUENESS FOR DIFFUSIONS 3169

THEOREM 1.2. If γ,g : [0,1] → (0,∞) are continuous, then for any
r ∈ (0, 1

2), weak uniqueness holds for

dXt = [1− |Xt |2]rγ (|Xt |) dBt − g(|Xt |)Xt dt,

X0 = x ∈ E

in the closed unit ball E of R
n.

Now we explain the idea behind the proof of Theorem 1.1. For solutionsX

andX̃ to (1.2) with the same Brownian motion, the usual idea for proving pathwise
uniqueness is to computed|X − X̃|2, show the integrands of the resulting terms
involving dt are bounded by|X − X̃|2, then appeal to Gronwall’s inequality. But
due to the non-Lipschitz nature of the diffusion coefficient in (1.2),d|X − X̃|2
has adt term whose integrandI is positive and singular in the sense thatI|X−X̃|2
is unbounded. This precludes the use of Gronwall’s inequality. Swart’s idea is to
look at

W = (Y 1/2 − Ỹ 1/2)2 + |X − X̃|2,
whereY = 1 − |X|2 and Ỹ = 1 − |X̃|2. Here d(Y 1/2 − Ỹ 1/2)2 gives rise to a
negative singular term which, under the conditionc ≥ 1, compensates for the
positive singular term ind|X − X̃|2. Our idea is to use

W = (Y p − Ỹ p)2 + |X − X̃|2
for suitablep ∈ (1

2,1). For this choice ofp there will be an extra positive singular

term in d(Yp − Ỹ p)2 not occurring in Swart’s work. The critical observation is
under the condition g(1)

γ 2(1)
>

√
2 − 1, this new positive singular term can also be

absorbed into the negative singular term. This is a bit surprising because creating
more positive singular terms does not seem to be a good idea initially.

To simplify the exposition, we have chosen to concentrate on (1.2) in the closed
unit ball. But our technique applies to more general situations, since we do not
rely on explicit properties of the local time on the boundary to prove Theorem 1.1.
Indeed, we now state a more general version of the theorem.

Let D ⊆ R
n (n ≥ 2) be a bounded open set such that for someϕ ∈ C3(Rn),

D = {x ∈ R
n :ϕ(x) > 0},

∂D = {x ∈ R
n :ϕ(x) = 0},

|∇ϕ| > 0 on∂D.

Supposeh: �D → R satisfies

h > 0 onD,

h = 0, |∇h| > 0 on∂D,
(1.3)

h is Lipschitz onD,

h is C2 with Lipschitz second derivatives, all on a neighborhood of∂D.
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An example of such a function ish(x) = d(x, ∂D).
Consider the SDE

dXt = [h(Xt)]1/2σ(Xt) dBt + b(Xt) dt(1.4)

in the closed set�D, whereBt is a Brownian motion inRn, σ = (σij ) is ann × n

matrix andb is ann-dimensional vector, both Lipschitz on�D. Assume

a(x) = σ(x)σ ∗(x)(1.5)

is strictly positive definite forx ∈ �D:

〈a(x)ξ, ξ 〉 > 0, x ∈ �D,ξ ∈ R
n\{0},(1.6)

where 〈·, ·〉 is the usual Euclidean inner product. We also assume there is a
neighborhoodN of ∂D such that

b = g
∇h

|∇h| + β onN,(1.7)

where

g > 0 and Lipschitz onN,

β is Lipschitz onN,(1.8)

〈β,∇h〉 = 0 onN.

Theng is uniformly bounded below away from 0. We sayf (x) is a Lipschitz
function ofh if for some constantC > 0,

|f (x) − f (y)| ≤ C|h(x) − h(y)|.
Equivalently,f = f̄ ◦ h for some Lipschitzf̄ .

THEOREM 1.3. In addition to conditions (1.3) and (1.5)–(1.8), suppose
g|∇h| and 〈a∇h,∇h〉 are Lipschitz functions of h on a neighborhood of ∂D.
Then automatically α = 2g∇h

〈a∇h,∇h〉 |∂D is constant. If α >
√

2 − 1, then pathwise
uniqueness holds for (1.4).

The method of proof is like that for Theorem 1.1. Please note the condition
requiringg|∇h| and〈a∇h,∇h〉 to be Lipschitz functions ofh is rather restrictive.
For instance, the hypotheses do not cover a simple nonrotationally symmetric
equation proposed by Swart:

dXt =
√

2(1− |Xt |2) dBt + c(θ − Xt) dt

in E, whereθ ∈ R
n is constant.

The article is organized as follows. In Section 2 we computed[1 − |X|2]p for
p ∈ (1

2,1) and showX spends zero Lebesgue time on the boundary; the latter is
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needed for the proof of Theorem 1.1. In Section 3 we prove Theorem 1.1 and
discuss the proof of Theorem 1.3, as well as the caser > 1

2 mentioned after
Remark 1.2. The proof of Theorem 1.2 is outlined in Section 4; the proof consists
of standard methods. In Section 5 we present some open questions. The last section
consists of the proof of a technical result used in the proof of Theorem 1.1.

2. The differential of powers of 1 − |Xt |2. Let X be any solution to (1.2),
whereg and γ are continuous. For anyp > 1 − g(1)

γ 2(1)
, by continuity, choose

ε(p) > 0 such that

p > 1− g(u)

γ 2(u)
, u ∈ (

1− ε(p),1
]
.(2.1)

For any processR andδ > 0, define

τδ(R) = inf{t ≥ 0 :Rt = δ}.

NOTATION. In the sequel we will write

dR = a dB + b dt,

for t ≤ η, to mean

Rt∧η = R0 +
∫ t∧η

0
a(s) dB(s) +

∫ t∧η

0
b(s) ds.

Here is our result on powers of 1−|X|2. We suppress the explicit dependence ofγ

andg on |X|. Notice no boundary local time terms appear—this is why we require
p > g(1)/γ 2(1).

LEMMA 2.1. Let p ∈ (1
2,1) satisfy p >

g(1)

γ 2(1)
and suppose ε = ε(p) is

from (2.1).Then for τ = τε(1−|X|2) and |X0|2 > 1− ε, the process Y = 1−|X|2
satisfies

dYp = −2pYp−1/2γ
∑
j

Xj dBj

+ 2p|X|2Yp−1IY>0[g + (p − 1)γ 2]dt − npγ 2Yp dt

for t ≤ τ .

PROOF. Form ≥ 1, choose
m ∈ C(R) with 
m ≥ 0, supp
m ⊆ [ 1
m+1, 1

m
] and∫


m(t) dt = 1. Then

km(t) =
∫ t

0

∫ s

0

m(u) duds
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satisfieskm ∈ C2(R),

km(t) → t ∨ 0 asm → ∞, uniformly onR,

km ≡ 0 on a neighborhood of 0,

0 ≤ k′
m ≤ 1,

k′
m → I(0,∞) asm → ∞,

k′′
m ≥ 0.

Now for y = 1− |x|2,

∂

∂xi

km(yp) = −2pxiy
p−1k′

m(yp),

∂2

∂x2
i

km(yp) = −2pyp−1k′
m(yp) + 4p(p − 1)x2

i y
p−2k′

m(yp)

+ 4p2x2
i y2p−2k′′

m(yp).

Hence, fort ≤ τ ,

d[km(Yp)] = −2pYp−1/2γ k′
m(Yp)

∑
j

Xj dBj

+ 2p|X|2Yp−1k′
m(Yp)[g + (p − 1)γ 2]dt

(2.2)
− pnγ 2Ypk′

m(Yp) dt

+ 2p2|X|2Y 2p−1γ 2k′′
m(Yp) dt.

We are going to show the integrated forms of the first three terms on the right-hand
side converge to their analogs withk′

m(Yp) replaced byIY>0 and the integrated
form of the last term converges to 0. To this end, for anyt > 0,

E

[∣∣∣∣∣
∫ t∧τ

0
2pYp−1/2γ [k′

m(Yp) − IY>0]
∑
j

Xj dBj

∣∣∣∣∣
2]

= 4p2E

[∫ t∧τ

0
Y 2p−1γ 2[k′

m(Yp) − IY>0]2|X|2 ds

]
(2.3)

≤ 4p2 sup(γ 2)ε2p−1E

[∫ t∧τ

0
[k′

m(Yp) − IY>0]2ds

]
(since t ≤ τ and |X0|2 > 1 − ε imply Yt ≤ ε). Properties ofkm and dominated
convergence show

left-hand side (2.3)→ 0 asm → ∞.(2.4)
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Also,

E

[∣∣∣∣∫ t∧τ

0
pnγ 2Yp[k′

m(Yp) − IY>0]ds

∣∣∣∣]
≤ pnεp sup(γ 2)E

[∫ t∧τ

0
|k′

m(Yp) − IY>0|ds

]
(2.5)

→ 0 asm → ∞,

by dominated convergence. Finally,

E[|km(Y
p
t∧τ ) − Y

p
t∧τ |] → 0 asm → ∞(2.6)

by uniform convergence ofkm(t) to t ∨ 0.
Looking at the integrated form of (2.2) and using (2.4)–(2.6), we see∫ t∧τ

0
2p|X|2Yp−1k′

m(Yp)[g + (p −1)γ 2]ds +
∫ t∧τ

0
2p2|X|2Y 2p−1γ 2k′′

m(Yp) ds

must converge inL1 asm → ∞. Clearly, the second integrand is nonnegative and
by (2.1), the first integrand is too. Hence, Fatou’s lemma yields

E

[∫ t∧τ

0
2p|X|2Yp−1IY>0[g + (p − 1)γ 2]ds

]
< ∞,

and then, by dominated convergence,

E

[∣∣∣∣∫ t∧τ

0
2p|X|2Yp−1[k′

m(Yp) − IY>0][g + (p − 1)γ 2]ds

∣∣∣∣]
(2.7)

→ 0 asm → ∞.

Now we can letm → ∞ in the integrated form of (2.2) and use (2.4)–(2.7) to end
up with

dYp = −2pYp−1/2γ
∑
j

Xj dBj

+ 2p|X|2Yp−1IY>0[g + (p − 1)γ 2]dt
(2.8)

− pnγ 2Yp dt

+ dϕ
(p)
t ,

for t ≤ τ , whereϕ
(p)
t is continuous and nondecreasing int . The conclusion of the

lemma will follow once we proveϕ(p)
t ≡ 0.

First we showϕ
(p)
t can change only whenYt = 0:∫ t∧τ

0
IY>0dϕ(p) = 0.(2.9)
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By (2.8) and Itô’s formula [sincekm(0) = 0],

dkm(Yp) = −k′
m(Yp)2pYp−1/2γ

∑
j

Xj dBj

+ k′
m(Yp)2p|X|2Yp−1[g + (p − 1)γ 2]dt

− k′
m(Yp)pnγ 2Yp dt

+ k′
m(Yp) dϕ

(p)
t

+ k′′
m(Yp)2p2Y 2p−1γ 2|X|2 dt.

Compare with (2.2) to see we must have∫ t∧τ

0
k′
m(Yp) dϕ(p) = 0.

Let m → ∞ and use dominated convergence to get∫ t∧τ

0
IY>0dϕ(p) = 0,

as claimed.
To finish, chooseq > 1

2 such thatq < p and

q > 1− g(u)

γ 2(u)
, u ∈ (

1− ε(p),1
]
.

Then the derivation leading to (2.8) holds withp replaced byq and the analogue
of (2.8) is valid. By an extension of Itô’s formula toC′ functions [Rogers and
Williams (1987), Theorem IV.45.9 on page 105] applied tof (x) = xp/q , for t ≤ τ ,
we have

dYp = d
(
(Y q)p/q

) = p

q
Yp−q dY q + 1

2

p

q

(
p

q
− 1

)
Yp−2qIY>0d[Y q]

= p

q
Yp−q

[
−2qY q−1/2γ

∑
j

Xj dBj

+ 2q|X|2Y q−1IY>0[g + (q − 1)γ 2]dt − qnγ 2Y q dt + dϕ
(q)
t

]

+ 1

2

p

q

(
p

q
− 1

)
Yp−2qIY>0[4q2Y 2q−1γ 2|X|2]dt

= −2pYp−1/2γ
∑
j

Xj dBj

+ 2p|X|2Yp−1IY>0[g + (q − 1)γ 2]dt
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− pnγ 2Yp dt + 0

+ 2p(p − q)Yp−1IY>0γ
2|X|2 dt

= dYp − dϕ(p) [by (2.8)].

Thus,ϕ(p)
t ≡ 0, as claimed. �

The last result of this section is needed in the proof of Theorem 1.1.

LEMMA 2.2. Any solution X of (1.2) spends zero Lebesgue time on the
boundary: ∫ t

0
I|Xs |=1 ds = 0 a.s.

PROOF. With τ from Lemma 2.1, it suffices to show∫ τ

0
I|Xs |=1ds = 0.

Applying the extension of Itô’s formula toC1 functions (cited above) to
f (x) = x1/p, for t ≤ τ , using Lemma 2.1,

dY = d
(
(Y p)1/p

) = 1

p
Y 1−p dYp + 1

2

1

p

(
1

p
− 1

)
Y 1−2pIY>0d[Yp]

= −2γ Y 1/2
∑
j

Xj dBj

+ 2|X|2IY>0[g + (p − 1)γ 2]dt
(2.10)

− nγ 2Y dt

+ 2(1− p)γ 2IY>0|X|2 dt

= −2γ Y 1/2
∑
j

Xj dBj + 2|X|2IY>0g dt − nγ 2Y dt.

On the other hand,

dY = d[1− |X|2]
= −2Y 1/2γ

∑
j

Xj dBj + 2g|X|2dt − nYγ 2dt.

Upon comparison with (2.10), we must have

2g|X|2IY=0dt = 0,

which is equivalent to

2g(1)I|X|=1dt = 0,

sinceY = 0 ⇔ |X| = 1. The desired conclusion follows becauseg(1) > 0. �
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3. Proof of Theorem 1.1. Let X, X̃ be solutions of (1.2) with the same
underlying Brownian motion. Supposep ∈ (1

2,1) satisfiesp > 1 − g(1)

γ 2(1)
and

chooseε = ε(p) as in (2.1). It is no loss to assumeε < 1
2. Let Y = 1 − |X|2,

Ỹ = 1− |X̃|2 and

W = (Y p − Ỹ p)2 + |X − X̃|2,(3.1)

as in the Introduction.
Since the coefficients of (1.2) are locally Lipschitz on the interior of the unit

ball E, pathwise uniqueness holds up to the first hit of the boundary. Hence,
it suffices by a restart argument to consider starting points on the boundary. By
makingε smaller if necessary, it suffices to show forτ = min(τε(Y ), τε(Ỹ )),

Xt = X̃t , t ≤ τ, a.s.

Below we will use the fact

Yt ∨ Ỹt ≤ ε, t ≤ τ.(3.2)

Writing

G(u) = g(u) + (p − 1)γ 2(u),

by Lemma 2.1,

d(Yp − Ỹ p) = −2p
∑
j

[γ (|X|)Y p−1/2Xj − γ (|X̃|)Ỹ p−1/2X̃j ]dBj

+ 2p[|X|2Yp−1IY>0G(|X|) − |X̃|2Ỹ p−1IỸ>0G(|X̃|)]dt
(3.3)

− np[γ 2(|X|)Y p − γ 2(|X̃|)Ỹ p]dt

= dM + I1 dt + I2dt say.

Then

d(Yp − Ỹ p)2 = 2(Y p − Ỹ p)[dM + I1dt + I2dt]
+ 4p2

∑
j

[γ (|X|)Y p−1/2Xj − γ (|X̃|)Ỹ p−1/2X̃j ]2 dt(3.4)

= 2(Y p − Ỹ p)[dM + I1dt + I2dt] + I3dt say.

The term (Y p − Ỹ p)I1dt is the “good” negative singular term that will
compensate for the “bad” positive singular termI3 dt . Note I3 is “singular” in
the sense thatI3/W is unbounded. It turns out the term involvingI2 is not singular
in this sense. In Swart’s article (i.e.,p = 1

2) the term involvingI3 is not singular in
thatI3/W is bounded in this case.
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We also have

d|X − X̃|2 = 2[Y 1/2γ (|X|) − Ỹ 1/2γ (|X̃|)]∑
j

(Xj − X̃j ) dBj

− 2
∑
j

(Xj − X̃j )[g(|X|)Xj − g(|X̃|)X̃j ]dt

(3.5)
+ n[Y 1/2γ (|X|) − Ỹ 1/2γ (|X̃|)]2 dt

= dR + I4 dt + I5dt say.

Exactly as in Swart, the termI4 dt is nonsingular and the termI5 dt is positive and
singular.

Now we estimate the individual terms. For notational convenience write

Z = (Y p − Ỹ p)(Ỹ p−1 − Yp−1).(3.6)

NoteZ ≥ 0 and it will turn out all the singular terms involveZ.

LEMMA 3.1. For Y and Ỹ positive and t ≤ τ ,

(Y p − Ỹ p)I1 ≤ −2pZ|X|2G(|X|) + CεZ,

where C is independent of ε.

PROOF. By (3.3),

(Y p − Ỹ p)I1 = (Y p − Ỹ p)2p[|X|2Yp−1G(|X|) − |X̃|2Ỹ p−1G(|X̃|)]
= 2p(Yp − Ỹ p){(Y p−1 − Ỹ p−1)|X|2G(|X|)

+ Ỹ p−1[|X|2G(|X|) − |X̃|2G(|X̃|)]}(3.7)

= −2pZ|X|2G(|X|)
+ 2p(Yp − Ỹ p)Ỹ p−1[|X|2G(|X|) − |X̃|2G(|X̃|)].

Thus, we need only estimate the last term.
Recall we are assumingε < 1

2. Then, fort ≤ τ , by (3.2),

|Xt | =
√

1− Yt ≥ √
1− ε ≥

√
1
2

and this holds for|X̃t | too. Thus,

∣∣|X| − |X̃|∣∣ = ||X|2 − |X̃|2|
|X| + |X̃|

≤
√

2
2

∣∣|X|2 − |X̃|2∣∣(3.8)

=
√

2
2 |Y − Ỹ |.
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Now u2G(u) is Lipschitz, hence, for some constantC independent ofε, the last
term in (3.7) is bounded by

C|Yp − Ỹ p|Ỹ p−1∣∣|X| − |X̃|∣∣ ≤ C|Yp − Ỹ p|Ỹ p−1
√

2
2 |Y − Ỹ |.

SinceY ∨ Ỹ ≤ ε, we just need to show for someC > 0 independent ofε,

Ỹ p−1|Yp − Ỹ p||Y − Ỹ | ≤ C max(Y, Ỹ )|Yp − Ỹ p||Yp−1 − Ỹ p−1|
[ = C max(Y, Ỹ )Z].

To this end, sincep − 1 < 0, the worst case occurs if̃Y ≤ Y . Thus, it is enough to
show

Ỹ p−1(Y − Ỹ ) ≤ CY(Ỹ p−1 − Yp−1),

which after division bỹYp−1Y is equivalent to

1− Ỹ

Y
≤ C

[
1−

(
Ỹ

Y

)1−p]
.

It is easy to see sup0<u<1
1−u

1−u1−p < ∞, and so takingC to be the supremum does
the trick. �

LEMMA 3.2. For Y and Ỹ positive and t ≤ τ ,

|I2| ≤ C[|Yp − Ỹ p| + |X − X̃|],
where C is independent of ε.

PROOF. From (3.3),

|I2| ≤ np
[|Yp − Ỹ p|γ 2(|X|) + Ỹ p

∣∣γ 2(|X|) − γ 2(|X̃|)∣∣].
SinceỸ < ε < 1

2 andγ is bounded and Lipschitz, the latter is bounded by

np|Yp − Ỹ p|supγ 2 + C
∣∣|X| − |X̃|∣∣,

whereC is independent ofε. �

In order to bound the singular termI3, we need the following lemma.

LEMMA 3.3. Let x, y > 0, p ∈ (1
2,1) and set z = (xp − yp)(yp−1 − xp−1).

Then, for some constant C depending only on p,

|xp−1/2 − yp−1/2||x − y| ≤ C max(x1/2y1−p, y1/2x1−p)z.
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PROOF. It is no loss to assumey < x. Then

(xp−1/2 − yp−1/2)(x − y)

z
= (xp−1/2 − yp−1/2)(x − y)x1−py1−p

(xp − yp)(x1−p − y1−p)

= x1/2y1−p (1− (y/x)p−1/2)(1− y/x)

(1− (y/x)p)(1− (y/x)1−p)

≤ x1/2y1−p sup
0<u<1

(1− wp−1/2)(1− w)

(1− wp)(1− w1−p)
.

The supremum is finite becausep ∈ (1
2,1). Taking C as this value yields the

desired conclusion.�

LEMMA 3.4. For Y and Ỹ positive and t ≤ τ ,

I3 ≤ p(2p − 1)2

(1− p)
γ 2(|X|)|X|2Z + C|X − X̃|2 + CεZ,

where C is independent of ε.

PROOF. To ease eye strain, write

a = Yp−1/2,

b = Ỹ p−1/2,

U = γ (|X|)X,

V = γ (|X̃|)X̃.

Then from (3.4),

I3 = 4p2|aU − bV |2
anda, b ∈ (0,1). Sinceab < 1,

I3 − 4p2|U − V |2

= 4p2

[
(a2 − 1)|U |2 − 2(ab − 1)

∑
i

UiVi + (b2 − 1)|V |2
]

≤ 4p2[(a2 − 1)|U |2 − 2(ab − 1)|U ||V | + (b2 − 1)|V |2]
= 4p2[(a|U | − b|V |)2 − (|U | − |V |)2](3.9)

≤ 4p2[a|U | − b|V |]2
= 4p2[(a − b)|U | + b(|U | − |V |)]2
= 4p2[(a − b)2|U |2 + 2b(a − b)|U |(|U | − |V |) + b2(|U | − |V |)2].
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Sincerγ (r) is Lipschitz inr , for someC > 0 independent ofε,∣∣|U | − |V |∣∣ ≤ C
∣∣|X| − |X̃|∣∣.

Hence, the last term on left-hand side of (3.9) is bounded by 4p2C|X − X̃|2 and
the middle term is bounded by

8p2Cb|a − b|∣∣|X| − |X̃|∣∣
= 8p2CỸ p−1/2|Yp−1/2 − Ỹ p−1/2|∣∣|X| − |X̃|∣∣
≤ CỸ p−1/2|Yp−1/2 − Ỹ p−1/2||Y − Ỹ | [by (3.8)]

≤ Cεp−1/2ε1/2ε1−pZ [by Lemma 3.3 and (3.6)]

= CεZ.

Also, sinceγ is bounded and Lipschitz,

|U − V | ≤ |γ (|X|)(X − X̃)| + ∣∣X̃(
γ (|X|) − γ̃ (|X|))∣∣

≤ C
[|X − X̃| + ∣∣|X| − |X̃|∣∣]

≤ C|X − X̃|.
Thus, to finish the proof we just need to show the first term on right-hand side
of (3.9) satisfies

4p2(a − b)2|U |2 ≤ p(2p − 1)2

1− p
γ 2(|X|)|X|2Z.

But, by Lemma A.1,

(a − b)2 = (Y p−1/2 − Ỹ p−1/2)2

≤ (2p − 1)2

4p(1− p)
Z

and since|U |2 = γ 2(|X|)|X|2, we get the desired bound.�

LEMMA 3.5. For Y and Ỹ positive and t ≤ τ ,

|I4| ≤ C|X − X̃|2,
where C is independent of ε.

PROOF. Sinceg is Lipschitz, the bound is clear from the definition (3.5) ofI4.
�

Finally, we bound the last singular termI5.
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LEMMA 3.6. For positive Y and Ỹ and t ≤ τ ,

I5 ≤ C[ε2−2pZ + |X − X̃|2],
where C is independent of ε.

PROOF. By (3.5),

I5 = n
[
(Y 1/2 − Ỹ 1/2)γ (|X|) + Ỹ 1/2(γ (|X|) − γ (|X̃|))]2

≤ 2n(supγ 2)(Y 1/2 − Ỹ 1/2)2 + 2nỸ
(
γ (|X|) − γ (|X̃|))2

.

Sinceγ is Lipschitz and̃Y ≤ 1, for someC > 0 independent ofε, the second term
is bounded by

C|X − X̃|2.
Hence, we need only show

(Y 1/2 − Ỹ 1/2)2 ≤ Cε2−2p(Y p − Ỹ p)(Ỹ p−1 − Yp−1)

(since the latter isCε2−2pZ) whereC is independent ofε. To this end, write
x = Y 1/2 andy = Ỹ 1/2 and without loss of generality, assumey < x. Then since
x, y <

√
ε [by (3.2)], it is enough to show

(x − y)2 ≤ Cx2−2py2−2p(x2p − y2p)(y2p−2 − x2p−2)

or, equivalently,

(x − y)2 ≤ C(x2p − y2p)(x2−2p − y2−2p).

By dividing byx2, this is equivalent to(
1− y

x

)2

≤ C

(
1−

(
y

x

)2p)(
1−

(
y

x

)2−2p)
.

Sincep < 1, it is easy to see

C := sup
0<u<1

(1− w)2

(1− w2p)(1− w2−2p)
< ∞

does the trick. �

Now we can show how the hypothesisg(1)

γ 2(1)
>

√
2 − 1 implies the negative

singular term(Y p − Ỹ p)I1 compensates for the positive singular termsI3 andI5.

LEMMA 3.7. Let Y and Ỹ be positive and suppose g(1)

γ 2(1)
>

√
2− 1. Then, for

p = 1−
√

2
4 , by making ε smaller if necessary, for t ≤ τ , we have

2(Y p − Ỹ p)I1 + I3 + I5 ≤ C|X − X̃|2,
where C > 0 is independent of ε.
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PROOF. First note the valuep = 1−
√

2
4 ∈ (1

2,1) minimizes the function

−(p − 1) + (2p − 1)2

4(1− p)

on (1
2,1) and the minimum value is

√
2− 1. As shown below, this is what leads to

the hypothesisg(1)

γ 2(1)
>

√
2−1. Note too that this choice ofp satisfiesp > 1− g(1)

γ (1)2

(so Lemma 2.1 is applicable).
By Lemmas 3.1, 3.4 and 3.6,

2(Y p − Ỹ p)I1 + I3 + I5

≤ −4pZ|X|2G(|X|) + CεZ

+ p(2p − 1)2

1− p
γ 2(|X|)|X|2Z + C|X − X̃|2 + CεZ

(3.10)
+ C[ε2−2pZ + |X − X̃|2]

= 4pZ|X|2
[
−G(|X|) + (2p − 1)2

4(1− p)
γ 2(|X|)

]
+ C[ε + ε2−p]Z + C|X − X̃|2.

To finish, we show the coefficient ofZ is negative forε sufficiently small. Recall
G(u) = g(u) + (p − 1)γ 2(u), hence,

−G(u) + (2p − 1)2

4(1− p)
γ 2(u) = γ 2(u)

[
− g(u)

γ 2(u)
− (p − 1) + (2p − 1)2

4(1− p)

]

= γ 2(u)

[
− g(u)

γ 2(u)
+ √

2− 1
]

by choice ofp.

This is where we see the reason for choosingp to minimize−(p − 1) + (2p−1)2

4(1−p)
.

Then the coefficientK of Z in (3.10) is

K = 4p|X|2γ 2(|X|)
[
− g(|X|)

γ 2(|X|) + √
2− 1

]
+ C(ε + ε2−p),

which by (3.2) (and that|X| = √
1− Y ) is bounded by

4p|X|2γ 2(|X|)
[
− inf

u2≥1−ε

g(u)

γ 2(u)
+ √

2− 1
]

+ C(ε + ε2−p).

By our hypothesesg(1)

γ 2(1)
>

√
2 − 1 and continuity ofg andγ , and by makingε

smaller if necessary, the quantity in square brackets is negative, hence,

K ≤ 4p (1− ε)[inf γ 2]
[
− inf

u2≥1−ε

g(u)

γ 2(u)
+ √

2− 1
]

+ C(ε + ε2−p).
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Then for the same reason, makingε smaller if necessary,K < 0. �

Now we prove Theorem 1.1. WithW from (3.1) andp from Lemma 3.7, forY
andỸ positive, by (3.4) and (3.5),

dW = 2(Y p − Ỹ p)[dM + I1dt + I2dt] + I3dt

+ dR + I4dt + I5 dt.

Hence, upon integrating and using Lemma 2.2, we can apply Lemmas 3.2,
3.5 and 3.7 to get

E[Wt∧τ ] ≤ CE

[∫ t∧τ

0
{|Xs − X̃s |2 + (Y p

s − Ỹ p
s )2 + |Yp

s − Ỹ p
s ||Xs − X̃s |}ds

]
≤ 2CE

[∫ t∧τ

0
Ws ds

]
.

Then Gronwall’s inequality yieldsWt∧τ = 0 a.s., which forcesXt∧τ = X̃t∧τ a.s.,
as desired.

REMARK 3.1. We have written the proof of Theorem 1.1 in such a way that
it is easy to change to the situation of Theorem 1.3. One usesY = h(X) in place
of 1 − |X|2 in the argument and computes the differential of powers ofh(X) to
obtain the analog of Lemma 2.1. Again, our proofs in Section 2 are given with this
in mind. The notation is more complex, but the basic ideas are the same.

REMARK 3.2. If one replaces the power1
2 in (1.2) by r ∈ (1

2,1), then, as
pointed out in the Introduction, our method can be used to show pathwise unique-
ness holds for starting points on the boundary (recall the boundary is unattainable
for all other starting points and pathwise uniqueness follows from standard re-
sults). In this case there will be no restriction such asg(1)/γ 2(1) >

√
2− 1. This

is due to the unattainable nature of the boundary previously mentioned. The analog
of Lemma 2.1 exemplifies this: one can take anyp ∈ (1− r,1). Consequently, the
proofs of the analogs of Lemmas 3.4 and 3.7 are simpler. The remaining details
are similar to those furnished above.

REMARK 3.3. There is the question ofexistence of a solution to the
equation (1.4) considered in Theorem 1.3. Basically, it is necessary to verify the
positive maximum principle holds for the operator

1

2

∑
i,j

h1/2aij

∂2

∂xi ∂xj

+ ∑
i

bi

∂

∂xi

.

See Theorem 4.5.4 (page 199) in Ethier and Kurtz (1986) where this is done for
the martingale problem. By problem 19 (page 265) from the same chapter and
Theorem 5.3.3 (page 293), this can be translated into existence of weak solutions
to SDEs. This argument is due to the referee.
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4. Proof of Theorem 1.2. We prove the equivalent statement that weak
uniqueness holds for the SDE

dXt = [1− |Xt |2]rγ (1− |Xt |2) dBt − g(1− |Xt |2)Xt dt,

X0 = x

in E, whereγ and g are continuous and strictly positive on [0,1]. Since the
diffusion matrix is uniformly positive definite on compact subsets contained in
the interior ofE, it is well known that weak uniqueness holds up to the first hitting
time of the boundary. Thus, it suffices to show weak uniqueness holds for starting
points on the boundary, and by rotational invariance, it is no loss to take

X0 = (0, . . . ,0,1).

First, transform the state space. The mapping

v = v(x) = 1− |x|2,
(4.1)

y = y(x) =
(

x1

|x| , . . . ,
xn−1

|x|
)
, x ∈ B1(1) ∩ E,

is one-to-one. We want to compute the differentials of

Vt = v(Xt ),
(4.2)

Yt = y(Xt ).

To this end, fory ∈ R
n−1 andi, j ∈ {1, . . . , n − 1}, define

Aij (y) =
{

1− y2
i , i = j ,

−yiyj , i �= j .
(4.3)

LEMMA 4.1. For |y| ≤ 1
2, A(y) is uniformly positive definite: for some

constant λ > 0,

〈A(y)ξ, ξ 〉 ≥ λ|ξ |2, ξ ∈ R
n−1.

PROOF. Fory, ξ ∈ R
n−1 with |y| ≤ 1

2,

〈A(y)ξ, ξ 〉 =
n−1∑
i,j=1

Aij (y)ξiξj

= ∑
i

(1− y2
i )ξ2

i − 2
∑
i<j

yiyj ξiξj

= |ξ |2 − 〈ξ, y〉2

≥ |ξ |2 − |ξ |2|y|2
≥ 3

4|ξ |2. �
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Using the formulas

∂yi

∂xj

=


|x|2 − x2

i

|x|3 , i = j ,

−xixj

|x|3 , i �= j ,

∂2yi

∂x2
j

=


−3xi(|x|2 − x2

i )

|x|5 , i = j ,

−xi(|x|2 − 3x2
j )

|x|5 , i �= j ,

Itô’s formula can be used to show that

dV = −2V rγ (V )
√

1− V dβ + [2g(V )(1− V ) − nV 2rγ 2(V )]dt

dY = V rγ (V )(1− V )−1/2A1/2(Y ) dM(4.4)

− n − 1

2
(1− V )−1V 2rγ 2(V )Y dt,

where(β,M) ∈ R×R
n−1 is ann-dimensional Brownian motion. Hence, it suffices

to show weak uniqueness holds for (4.4), with(V0, Y0) = (0,0).
In what follows, we use the last chapter in Breiman (1968) as our basic reference

for one-dimensional diffusions. NoticeV is an autonomous one-dimensional
diffusion process with state space[0,1]. Since the processX never hits 0 when
X0 �= 0 (sincen ≥ 2), the state space will actually be[0,1) since we are taking
V0 = 0. Transform the state space using the scale functions(v) given bys(0) = 0
and

s′(v) = exp
(
−

∫ v

0

2g(w)(1− w) − nw2rγ 2(w)

2w2rγ 2(w)(1− w)
dw

)
, v ∈ [0,1).

Sincer < 1
2, the integral

∫ v
0 is finite (again, usingn ≥ 2) and, therefore, it turns

outs(V ) is a diffusion in the natural scale with state space[0,∞), and 0 is a slowly
reflecting boundary point (i.e., the process spends positive Lebesgue time there).
By a time change we can converts(V ) into a one-dimensional Brownian motion
in [0,∞) with slow reflection at 0.

Using this time change on(s(V ),Y ), weak uniqueness for (4.4), with(V0, Y0) =
(0,0), comes down to proving weak uniqueness for

dU = dβ + 1
2
0

t (U),

dN = 1

2
A1/2(N)H(U)IU>0dM − n − 1

8
H 2(U)NIU>0dt,

(4.5)
IU=0 dt = c d
0

t (U),

(U0,N0) = (0,0)
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in R+ × R
n−1, wheres−1 is the inverse ofs,

H(U) = [s′ ◦ s−1(U)]−1(
1− s−1(U)

)−1
,

c > 0 and
0
t (U) is the local time ofU at 0.

To prove that weak uniqueness holds for (4.5) we introduce a certain stopped
submartingale problem. Let� = C([0,∞),R

n) be the space of continuous paths
in R

n and equip it with the cylindrical Borelσ -algebra. Denote byZt(ω) the
coordinate processZt(ω) = ω(t), ω ∈ �, and let Ft = σ(Zs : s ≤ t), F =
σ(Zs : s ≥ 0). For (u, y) ∈ R

n with y = (y1, . . . , yn−1), set

L = 1

2

[
∂2

∂u2
+ 1

4

n−1∑
i,j=1

Aij (y)H 2(U)
∂2

∂yi ∂yj

]
− n − 1

8
H 2(U)

n−1∑
i=1

yi

∂

∂yi

,

whereA is from (4.3). A probability measureP on (�,F ) solves thestopped
submartingale problem if for the first exit timeτ of Z from a small neighborhood
of (0,0) in R+ × R

n−1, we have

P (Z0 = 0) = 1,

P (Zt∧τ ∈ R+ × R
n−1) = 1

and for allf ∈ C1,2([0,∞) × R
n) satisfying

c
∂f

∂t
+ 1

2

∂f

∂u
≥ 0 on[0,∞) × {(u, y) :u = 0, y ∈ R

n−1},(4.6)

we have

f (t ∧ τ,Zt∧τ ) −
∫ t∧τ

0
IUs>0

[
∂f

∂s
+ Lf

]
(s,Zs) ds

is aP -submartingale.
The matrix of coefficients of second-order terms inL is bounded, continuous

and uniformly elliptic in a neighborhood of(0,0) in R+ × R
n−1 (using

Lemma 4.1), and the first-order term coefficients are continuous there. The
boundary operator in (4.6) has the form

ρ
∂

∂t
+ γ · ∇,

whereρ is continuous and positive andγ is Lipschitz continuous. Moreover, ifn
is the unit inward normal to∂(R+ × R

n−1), thenγ · n > 0. Thus, by Theorem 5.8
on page 196 of Stroock and Varadhan (1971), uniqueness holds for the stopped
submartingale problem.

A routine use of Itô’s formula shows any solution to (4.5) yields a solution of
the stopped submartingale problem. Hence, weak uniqueness holds for (4.5), as
desired.
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5. Open questions.

1. Our method slightly improved Swart’s conditionc ≥ 1 for (1.1), but is still
remains to resolve the case 0< c ≤ 2(

√
2 − 1) for n ≥ 2. This seems quite

difficult.
2. Is the assumption in Theorem 1.3 thatg|∇h| and 〈a∇h,∇h〉 are Lipschitz

functions ofh really needed? Our proof breaks down without it.
3. The question of pathwise uniqueness for

dXt = [1− |Xt |2]rγ (|Xt |) dBt − g(|Xt |)Xt dt,

with r < 1
2 and Lipschitzγ,g : [0,1] → (0,1), remains open.

4. With reference to the equation studied by Athreya, Barlow, Bass and Perkins
(2002) and Bass and Perkins (2002) mentioned in the Introduction, decide
whether or not pathwise uniqueness holds for

dX
j
t = ∑

k

(2Xi
t )

1/2σik(Xt ) dBk
t + bi(Xt ) dt, i = 1, . . . , n,

in the positive orthant.

APPENDIX: A TECHNICAL RESULT

LEMMA A.1. For positive x and y and p ∈ (1
2,1),

[xp−1/2 − yp−1/2]2 ≤ (2p − 1)2

4p(1− p)
(xp − yp)(yp−1 − xp−1).

PROOF. It is no loss to assumey < x. Then

(xp−1/2 − yp−1/2)2

(xp − yp)(yp−1 − xp−1)
= (y/x)p−1(1− (y/x)p−1/2)2

(1− (y/x)p)(1− (y/x)1−p)
.

Thus, we must show

sup
0<w<1

w1−p(1− wp−1/2)2

(1− wp)(1− w1−p)
= (2p − 1)2

4p(1− p)

and replacingw by z2 and then 2p by q, this comes down to showing

sup
0<z<1

z2−q(1− zq−1)2

(1− zq)(1− z2−q)
= (q − 1)2

q(2− q)
, 1< q < 2.(A.1)

If we show

f (z) = (1− zq)(1− z2−q)

z2−q(1− zq−1)2
, 0 < z < 1,
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is decreasing, then since

lim
z→1− f (z) = q(2− q)

(q − 1)2 ,

(A.1) will hold. The proof is elementary, but a bit involved. Define

f1(z) = (q + 1)z − q − z1−q, z > 0.

Sincef ′
1(z) = q + 1+ (q − 1)z−q > 0, we have

f1(z) ≤ f1(1) = 0, z ∈ (0,1].(A.2)

If

f2(z) = −(q + 1)(2− q)zq − q(q − 1)zq−1 + q(3− q)z − (q − 1)(2− q),

z ≥ 0,

then

f ′
2(z) = qzq−2[−(q + 1)(2− q)z − (q − 1)2 + (3− q)z2−q], z > 0.

If there isz0 ∈ (0,1) such thatf ′
2(z0) = 0, then

−(q + 1)(2− q)z0 − (q − 1)2 + (3− q)z
2−q
0 = 0

and this yields

(3− q)z
2−q
0 = (q + 1)(2− q)z0 + (q − 1)2.

Hence,

f2(z0) = −(q + 1)(2− q)z
q
0 − q(q − 1)z

q−1
0 + q(3− q)z0 − (q − 1)(2− q)

= z
q−1
0 [−(q + 1)(2− q)z0 − q(q − 1)

+ q(3− q)z
2−q
0 − (q − 1)(2− q)z

1−q
0 ]

= z
q−1
0

[−(q + 1)(2− q)z0 − q(q − 1)

+ (
q(q + 1)(2− q)z0 + q(q − 1)2) − (q − 1)(2− q)z

1−q
0

]
= z

q−1
0 [(q − 1)(q + 1)(2− q)z0

+ q(q − 1)(q − 2) − (q − 1)(2− q)z
1−q
0 ]

= (q − 1)(2− q)z
q−1
0 [(q + 1)z0 − q − z

1−q
0 ]

= (q − 1)(2− q)z
q−1
0 f1(z0)

≤ 0 by (A.2) and that 1< q < 2.
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Thus,

sup
0≤z≤1

f2(z) ≤ max[f2(0), f2(1),0] = 0.(A.3)

Now define

f3(z) = −(q + 1)(2− q)z2 − 2q(q − 1)z + q(q − 1)

+ 2qz3−q − 2(q − 1)z2−q, z ≥ 0.

Then

f ′
3(z) = 2z1−q[−(q + 1)(2− q)zq − q(q − 1)zq−1

+ q(3− q)z − (2− q)(q − 1)]
= 2z1−qf2(z).

By (A.3),

f ′
3(z) ≤ 0 on(0,1).

Thus,

inf
0≤z≤1

f3(z) = f3(1) = 0.(A.4)

Finally, define

f4(z) = −(2− q)zq+1 − 2(q − 1)zq

+ qzq−1 + qz2 − 2(q − 1)z − (2− q), z ≥ 0.

Then

f ′
4(z) = zq−2f3(z) ≥ 0 for z ∈ (0,1), by (A.4).

This implies

sup
0≤z≤1

f4(z) ≤ f4(1) = 0.(A.5)

Routine computation shows

f ′(z) = f4(z)

z3−q(1− zq−1)3 ≤ 0 for z ∈ (0,1), by (A.5).

Thus,f is decreasing on(0,1), as desired. �
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