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Consider a uniform expanders famity, with a uniform bound on
the degrees. It is shown that for any and ¢ > 0, a random subgraph
of G, obtained by retaining each edge, randomly and independently, with
probability p, will have at most one cluster of size at lea$G,|, with
probability going to one, uniformly irp. The method from Ajtai, Komlos
and SzemerédiJombinatorica 2 (1982) 1-7] is applied to obtain some new
results about the critical probability féhe emergence of a giant component
in random subgraphs of finite regular expanding graphs of high girth, as well
as a simple proof of a result of Kestabout the criticaprobability for bond
percolation in high dimensions. Several problems and conjectures regarding
percolation on finite transitive graphs are presented.

1. Introduction. In this paper we primarily consider percolation on finite
graphs and, in particular, the existence and uniqueness of large components,
typically meaning components whose size is proportional to the number of vertices
in the graph. Our main results in this context apply to expanders, which are graphs
satisfying a particular isoperimetric inequality, although we conjecture that these
results hold somewhat more generally. The techniques we use can also be used to
give a significantly shorter proof than those previously known for the fact that the
critical probability for percolation ofZ¢ is asymptotically ¥(2d) asd — oc.

Given a graphG, we shall useG(p) to denote the spanning subgraph®@f
obtained by retaining each edge @findependently with probability. This has
been very extensively studied in the case wiieis a complete graph, and this
is known as the standard random graph model or the mean field model; see, for
example, the books [9] and [17]. Percolation on general infinite graphs has been
studied (see [7] or [21] for background) and there, as in this paper, isoperimetric
inequalities play a key role. Most other studies of percolation on finite graphs
concern specific graphs, such as the torus, which are closely related to percolation
on corresponding infinite graphs suctzfs Another example of this phenomenon
is the study of the contact process on finite trees [25]; the contact process on a
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graphgG is loosely analogous to percolation on the Cartesian produetZ; and
both the contact process @and percolation offf x Z, whereT is a homogeneous
tree, have been widely studied.

In light of the above it is, perhaps, surprising that there has been little work
regarding percolation on general classes of finite graphs. In this paper we hope
to demonstrate that there are interesting questions in this area. The guestions
asked and methods used draw on the theories of both random (finite) graphs and
percolation on infinite graphs.

In two widely studied cases, whetgis either the complete graph or resembles
a finite subset ofZ¢ (either a larged-dimensionaln x --- x n torus or box),
uniqueness results for the giant component are known. Very precise results are
known for the complete graph (see [17] for a recent account). For the torus or
box, results can be deduced from information about the corresponding infinite
graph; see, for example, Lemma 2 of [11]. It seems natural to conjecture that this
unigueness is a much more general phenomenon.

CONJECTURE1l.l. LetG, = (V,, E,) be a sequence of connected finite
transitive graphs with a uniformly bounded maximum degree and Wjth ~ cc.
Suppose that diamet&r,) = o(|V,|/log|V,|). Then for any: > 0,

supP, (there is more than one connected component of size atdgasf) — 0
p
asn — oo, whereP, denotes the probability with respect to the measkifg).

It is easily seen, by considering cycles or the Cartesian product of a large
cycle with a small transitive graph, that the conjecture fails with the condition
on the diameter dropped. These examples fail only for valugsagproaching 1,
and slightly more sophisticated examples show that it fails without the diameter
condition even withp bounded away from 1. Indeed, the product of a regular
expander of ordetlogn and a cycle of ordet/(clogn) forms such a family of
examples. Similarly, the product of a complete graph and a triangle shows that the
assumption on the bounded degrees is also essential.

Our first result, in Section 2, establishes uniqueness of the giant component for
expanders. This holds even without vertex transitivity since the expansion property
gives sufficient uniform control over the geometry of the graph. In fact, slightly
more can be shown: the uniqueness holds in this case even for clusters of sublinear
size; see Theorem 2.8 for a detailed statement.

In [1], Ajtai, Komlés and Szemerédi proved that the critical probability for
the emergence of the giant component in bond percolation on the hypercube
(0,1} is 1/d. The strategy of the proof is twofold. First, one uses the very
local geometry of the hypercube in a neighborhood of a vertex to obtain (based
on a basic branching process argument) that percolation gvithl/d will have
many clusters of polylogarithmic size. These clusters cover a constant fraction of
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the hypercube. In the second step one uses the isoperimetric inequality for the
hypercube to prove that by adding additional independgstpercolation, most

of these polylogarithmic clusters join to form a giant component. In Section 3
we remark on how this approach can be naturally used to determine the critical
probability for percolation on some other graphs, including regular expanders with
large girth. This technique also enables us to present, in Section 4, a rather simple
proof for the fact [18] that the critical probability for bond percolationZfi is

1+0(1)
51 asd — oo.

1.1. Expanders and other definitions. Expanders are defined in terms of
a certain isoperimetric inequality. Such inequalities have wide applications in
graph theory and in percolation in particular. They play a crucial role in the
study of percolation on general infinite graphs; for a few natural conjectures
relating isoperimetric inequalities to percolation in this context see [7], especially
Conjecture 1, Question 2. Although considerable progress has been made in
recent years, there is scope for further work in understanding the relation between
properties of percolation processes and the isoperimetric profile of the underlying
graph (in the spirit in which the behavior of the simple random walk is directly
linked to isoperimetric inequalities, see, e.qg., [13]).

Another important example of the use of isoperimetric inequalities in the area
of graph theory is the role played lmpnductance, an isoperimetrically-defined
guantity, in showing that Markov chains are rapidly mixing. See, for example, [6].

We now turn to the precise definitions. Tgieth ¢g(G) of agraphG = (V, E) is
the minimum length of a cycle i&. For any two sets of vertices i, A, BC V,
the setE (A, B) consists of all those edges with one endpoindiand the other
in B. For a finite graphG its edge-isoperimetric number(G), (also called its
Cheeger constant) is given by

E(A
min [E(A,V\A)
ACV Al

0<[A|<|VI/2

We will also make use of the vertex isoperimetric consta(t,, which we now
define similarly. Given a set of verticesC V, define the external boundary 4f
0 A, to consist of those vertices outsidevhich have a neighbor id. Then define

(G) min [94]
2 = —_—.
ACV |A|
0<|A|=|V|/2

We shall be interested in families of graphs whose isoperimetric constants are
bounded away from 0. Givein> 0, we say that a graplds, is anedge b-expander
if ¢(G) > b and avertex b-expander if ((G) > b. We shall also refer, with a slight
abuse of notation, to a set of graphs, or a sequence of géaphsas aredge (resp.
vertex) b-expander if each graph in the set is an edge (resp. verteekpander.
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A sequence of graphs is called simply edge (resp.vertex) expander if it is an

edge (resp. vertex)-expander for somé > 0. Most sequences we consider will
have a uniform boundj, say, on the degrees of the vertices, and in that case it is
clear that the sequence is a vertex expander if and only if it is an edge expander;
we refer to such sequences simplyegganders.

Expanders received a considerable amount of attention in the literature in recent
years, mostly because these graphs have numerous applications in theoretical
computer science; see, for example, [4, 20]. It is well known that for any
fixed d > 2, randomd-regular graphs of size are asymptotically almost surely
expanders, as grows. The problem of constructing infinite families of bounded
degree expanders is more difficult, and there are several known constructions of
this type. Most of these constructions are Cayley graphs, and are therefore vertex
transitive.

The distance between two vertices of a graph is the length of the shortest path
between them. Given a vertex the set of vertices within distaneefrom v (or
the subgraph they induce) will be denoted®p, r). Also, for a set of verticed,

B(A, r) will denote the set of all vertices which are within distancef some
vertex inA.

2. Uniquenessof thegiant component. The aim of this section is to establish
Conjecture 1.1 with the condition of vertex transitivity replaced by the condition
of expansion.

THEOREM2.1. Letb>0andlet A eN. Let G, = (V,, E,) be a sequence
of graphs with maximum degree at most A which are vertex b-expanders, with
V| > oc0. Let0< p, <landletc > 0.Then

(1) P(G,(pn) contains more than one component of order at least ¢|V,,|) — 0

asn — oQ.

The statement of this theorem holds for any family of expanders, such as
the ones described in [4, 20, 24] and their references. Various applications of
expanders rely on their fault-tolerance as networks that imply that even after
deleting an appropriate constant fraction of their edges (arbitrarily), the remaining
graphs still contain some linear size connected components or some linear size
paths; see, for example, [3, 26]. The theorem above provides more information in
the case when the edges are deleted by a random process.

We will refer to components of order at lea$V, | aslarge. Note that ifp, < a
for somea < 1/A, then standard branching process arguments (see, e.g., [16])
show that the probability of the existence of any large component tends to zero as
n — oo. We use the following lemma to deal with the case whpes close to 1.

LEMMA 2.2. Let b > 0 and let G, = (V,, E,) be a sequence of graphs
with maximum degree at most A which are edge b-expanders, with |V,,| — oc.
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Let A > 0 be such that (Ae)A? <1 andlet 1 — A < p, < 1 for each n. Then for
any ¢ > 0,

(2) P(Gn(pn) containsa component of size between c|V,| and (1/2)|V,|) — 0

asn — 0.

PROOF There are various ways to see this, but simple counting turns out to
be the most useful in what follows. We shall say that a subset of the vertices of
a graphG is connected (in G) if the subgraph ofG it induces is connected. We
shall make use of the fact (see, e.g., [2]) that in a gr@ph (V, E) of maximum
degreeA, the number of connected subsets/0bf sizer, containing some given
vertex, is at mostAe)”. Summing over all the vertices counts each such subset
times, so the total number of connected@p) subsets of/,, of orderr is at most

|Val
r
Now for any subsetl/, of V,, of sizer, wherer < |V,|/2, the expansion property
gives that|E (U, U°)| = br, so the probability that all the edges B{U, U¢) are
absentfronG,(p,) is at mosi(1— p,)""; this is an upper bound on the probability

thatU is the vertex set of some connected componert ofp,,). Therefore, the
probability there is a component of size betweéW,| and|V,,|/2 is at most

LIVal/2] A

©) >

r=[c|Vall

(Ae)".

1((Ae)AP) Il

req br |y
(B (L= p)'" < TS (o

using the fact thatAe)A? < 1. The upper bound in (3) clearly tends to 0 as
|V,,| — oo and establishes the lemmal]

Turning back to Theorem 2.1, the vertéxexpanders in the statement of the
theorem must also be edg@eexpanders (with the same valueigf Taking A as
in Lemma 2.2, and using the fact that if there are two components of size at least
c|V,|, one of them must contain no more than half the vertices, we see that if
pn = 1— A, then the probability there is more than one large component is small
whenn is large. Combining this with the observation about smglimade after
the statement of Theorem 2.1, we may assumezhat[x, 1 — x] for all n, where
x =min(1/(2A),1— A).

In the following very useful lemma (which we do not claim is new), recall that a
subsetX, of P (E) is anup-set if, wheneverd € Xl andA c B C E, thenB € X.

LEMMA 2.3. Let x > 0. Then there exists @ > 0 so that the following
holds. Let E be a finite set and let A C P (E) be an up-set. Given A C E
and e € E, say that e € E is A-pivotal (for 4A) if A=A U{e} € A and A, =
A\ {e} ¢ A. Let A C E beobtained by selecting each element of £ independently
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with probability p, where p € [x,1 — x], and let ¢ € E be chosen uniformly at
random and independently of the choice of A. Then

(04
(4) P(e is A-pivotal for 4) < ——.
VIE]

PROOF GivenE andp € [x,1 — x], we construct a paifA, ¢) as follows.
Order the elements @& randomly,e; < e2 < - - - < ¢, with each of the&! possible
orderings equally likely (withk = |E|). Let X ~ B(k, p) be a binomial random
variable, independent of this ordering, and letbe the firstX elements in the
ordering, A = {e1, ..., ex}. Now, with probability X/k, let ¢ = ex and with
probability (k — X)/k, let e = ex,+1. We now see why this construction yields
a pair (A, e) with the distribution given in the statement of the lemma. The fact
that the marginal distribution of is correct is immediate. Now, for any that
arises in this way, it is equally likely to have arisen from any of[thg(k — |A])!
orderings which place the elementsAfin the first|A| places; the proportion of
these orderings in which any given elementAdfs in the |A|th place is exactly
1/|A|, so the chance that any given elementAdfurns out to be the random
elemente is exactly (1/|A|)(|A|/k) or 1/k. Similarly, again conditional on the
choice ofA, any element outsida also has chance/t to be equal te.

This apparently peculiar way of constructing, ¢) is useful in estimating the
probability thate is A-pivotal. Having chosen the ordering, 8t = {e1, ..., ¢},
for 0 <1 < k. SinceA is an up-set there will be precisely ohwith the property
thatA; ¢ A andA;+1 € A. We see that is A-pivotal precisely ife = ¢;+1 and
X =1or X =1+ 1. This happens with probability (conditional on the ordering)

k—1 I+1 k+1
TPP(X=1)+TPP(X=1+1)5 TT’%XPP(sz),

where the maximum is taken over alle [x, 1 — x] and allm. Since this bound is
independent of the ordering, it is also a bound on the unconditional probability than
e is A-pivotal. However, it is well known (it follows fairly easily, e.g., from bounds
on binomial coefficients given by (1.5) in [9]) that this maximum is bounded above
by a constant ovevk, the precise constant depending on the value. of ]

Given a subgraph#, of G,, we say that an edgee E(G,) is an L-bridge
if H, contains two large components which are connected.d¥ecall that the
definition of large depends on the choice of some congtand.

COROLLARY 2.4. Letx>0,b>0,c>0and A € N begiven. Then there
exists 8 > 0 sothat thefollowing holds. Let G,, be a graph satisfying the conditions
of Theorem2.1,and let p, € [x,1— x]. For e € E,, let S(e, ¢, n) be the event that
e isan L-bridgein G, (p,). Let S(c, n) bethe event that S(e,, ¢, n) occursfor an
edge ¢,, chosen uniformly at random. Then

(5) P(S(c,n)) < B/VIVal.
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PrROOF We could proceed by adapting the proof of Lemma 2.3, noting that
given any ordering on the edges as in that proof, at nibst]| edges,e;, can
be L-bridges for the corresponding configuratidn or A;,1. However, since
Lemma 2.3 is an attractive general result we prefer to proceed by applying this
lemma directly. We do this by constructing up-sets in such a way that ésnydge
is pivotal for one of these up-sets.

Given any configuration of edge$,; C E,,, let Y(F) count the number of
vertices which belong to large components, anddéf’) count the number of
large components. Now set

Y(F)

€| Val
It is not hard to see thaf is an increasing function af: all we have to note is
that if the addition of an edge increas€sF) by 1, then at the same tiné(F)
must increase by at leastV,,|. Therefore, for any, the set of configurationdy,
satisfyingZ(F) >t is an up-set.

Now let A; = {F:Z(F) > i} for i =1,2,...,|1/c] — 1 [noting that the

maximum value ofZ(F) is 1/¢ — 1]. Then anyL-bridge is pivotal for somex;.
Hence, applying Lemma 2.3 and summing oier

(6) P(S(c,n) = (11/c] = 1)

Z(F) =

- C(F).

o
VIE, T

but since any expander is connectdd,| > |V,,| — 1, giving (5). O

COROLLARY 2.5. Letx>0,b>0,¢c>0,r >0and A € N be given. Then
there exists y > 0 so that the following holds. Let G,, be a graph satisfying the
conditions of Theorem 2.1, and let p,, € [x,1 — x]. Let w,, be a vertex chosen
uniformly at randomfrom V,, andlet S’ (c, n, r) bethe event that thereisan edge e,
contained intheball B(w,, r), for which the event S(e, ¢, n) occurs. Then

(7) P(S'(c.n, 1) <y /VIVal.
PROOF
P(S'(c,n,r)) < Y _P(e € B(wy, r)P(S(e, ¢, n))

< meax]P’(e € B(wp, 1)) Z]P’(S(e, c,n))

= maxP(e € B(w,, )| Ex|P(S(c, n)

r

A

However,|E,| < |V,|A /2, so applying Corollary 2.4 we see that (7) holds with
y=A"t1g/2. O
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We now work towards establishing a lower bound for the probability in (7) in
terms of the probability of the existence of two or more large components.

LEMMA 2.6. Given b > 0, ¢ > 0 and k£ < 1, there exists r € N with the
following property. Let G = (V, E) be a vertex b-expander with |V| = n. Suppose
that A C V with |A| > cn. Then |B(A, r)| > kn.

PrROOF For a givenr, let C = V \ B(A,r), and suppose thaB(A,r)| <
kn so |C| > (1 — k)n. Without loss of generality suppose that< 1/2 and
k > 1/2. By the expansion propertyB(C, [log;,,(1/2(1 — k))1)| > n/2 and
|IB(A, [l0g;1,,(1/2¢)1)| = n/2 so these two balls have a vertex in common.
Therefore,A andC are within distancé—log,, ,(2(1 — k))1 + [—log,,(2c)1,
giving a contradiction if- is greater than this value [

LEMMA 2.7. Letx >0,b>0,c>0and A € N, andtaker asin Lemma 2.6
corresponding to the case k = 3/4. Let G, be asin the statement of Theorem 2.1
andletx < p, <1—x.Let

8n =P(G,(py) contains more than one large component).

Let S’'(c, n, r) be asin the statement of Corollary 2.5.Then

(8) P(S'(c,n,r)) > %xer_zrz(Sn.

PrROOF Let G, = (V,,, E;), SO bond percolation orGG, simply assigns
probabilities to subsets of,, which we refer to asonfigurations. For each
w € V,, let D(w,r) be the event that the baB(w, r) contains two vertices
belonging to different large components; we shall reda¢d, r) as a subset of the
configurations. We shall leb(r) be the event thab(w, ) occurs for a vertexv
chosen uniformly at random, so

1

) P(D(r)) = A

> P(D(w,r)).

weV,

Let S'(w, c,n,r) be the event thaB(w, r) contains anL-bridge for the graph
G,(p). SoS'(c,n,r) is the event thas’(w, c, n, r) occurs for a vertexv chosen

at random. For eacly, a configuration inD(w, r) can be transformed into a
configuration lying inS’(w, ¢, n, r) by the addition of some edges lying within
B(w, r): indeed, if D(w, r) occurs, then pick two large components which have
vertices lying inB(w, r) and choose a shortest path between them; add edges from
this path to the configuration until there is a path of edges in the configuration
between the two components; the last edge added is theh-laidge. This
procedure gives us a functiory, say, from D(w,r) (regarded as a set of
configurations) toS’(w, ¢, n, r). Since the function adds at most 2dges, all
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taken fromB(w, r) which contains at mosA” edges, the inverse image of any
setinS’(w, ¢, n, r) contains at mos@:) + (er:l) +ot (Alr) < (A" elements
of D(w,r). For any elemensA of D(w, r), the probability of f (A) differs from
that of A by a factor of at most? . Hence, we have

(10) P(S"(w,c,n,r)) > xer_zrz]P’(D(w, r)).

Summing oveiw and dividing by|V,,| yields

(11) P(S'(c,n,r)) > xer_Zrz]P’(D(r)).

However, the choice of (via Lemma 2.6) implies that if there are two large
components, then at least4of the vertices lie within distanceof each one, so
at least ¥2 the vertices lie within distanceof both. HenceP(D()) > (1/2)8,,.
Combining this with (11) yields (8).

PROOF OFTHEOREM 2.1. By earlier remarks we may assume there is some
x > 0 so thatx < p, <1 — x for all n. Now by Corollary 2.5P(S'(c,n,r)) — 0

r2
since |V,| — oo. However, by Lemma 2.7§, < 2x~ 2 A? x P(S'(c,n,r)).
Sincex, A andr are independent of, it follows thats, — 0, precisely as we
require. [

2.1. Remarks.

e Forbond percolation on the complete graph witkertices G (n, p), itis known
(see [8] or [17]) that for a suitable choice pf(close to ¥n) there are (roughly
speaking) typically several components of ordé#; but whatever the choice
of p, there is at most one component larger than this. It may be reasonable to
strengthen Conjecture 1.1 in accordance with this.

e It turns out that we can strengthen Theorem 2.1 to give uniqueness of
components of orde,|* for somew < 1. We need to allow the value of
in the proof to vary withn, and we need to be considerably more careful in
specifying how a configuration iD(w, r), that is, one in which two large
components intersect the bali(w,r), is transformed into a configuration
containing anL-bridge. The details are given as Theorem 2.8.

e The value ofw implied by the proof of Theorem 2.8 can almost certainly be
improved with more care; more difficult would be to establish the best possible
value. Furthermore, one might expect rather more to be true, much as in the case
of G(n, p): roughly speaking, once the components become significantly larger
than logarithmic in the number of vertices, they quickly agglomerate to form a
single giant component. Therefore, except in a small window of values of
one would expect at most one component of bigger than logarithmic size. In the
case ofi-regular expanders of high girth (see Section 3) we expect this window
to be aroundp, = 1/(d — 1). Note that we do know that fop sufficiently
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close to 1 (independent af), there is at most one component of greater than
logarithmic size; see the remark after equation (13).

e The condition of expansion is a very strong one and it seems reasonable to
conjecture that Theorem 2.1 holds under rather weaker conditions, such as some
sublinear lower bound on the edge-boundary of subsets of the vertices. In fact,
our proof does enable us to slightly weaken the expansion assumption, since
the distance in the proof is allowed to grow (slowly) with. In the context of
vertex-transitive graphs, such a variant is Conjecture 1.1.

e See [22] for a proof using somewhat related ideas in a different context.

2.2. A stronger uniqueness result.  In this section we show how to adapt our
methods to establish the following stronger result.

THEOREM 2.8. Given b > 0 and A € N, there exists w < 1 such that
the following holds for a sequence of vertex b-expanders G, = (V,, E,)) with
maximum degree at most A, with |V,,| - oco. Let0 < p, < 1.Then

(12) P(G,(p,) contains more than one component of order at least |V,,|”) — O

asn — o0.

PROOF We say that a component 6f,(p,) is large if it contains at least
|V,.|® vertices; letu, = [|V,]|®]. We now imitate the arguments leading to
Theorem 2.1 and see for whatthe proof still holds.

Lemma 2.2 is essentially unchangece trobability that there is a component
of size betweemn,, and|V,|/2 is bounded above by

LIVal/2] INAK
[Vl r br_ |Val ((Ae)A”)

(13) :Z (A A=) = T A
for1— A < p, <1 muchasin (3). This tends to O for amy> 0 (indeed, this even
holds provideds, grows at least as fast as some particular multiple of Q9.
Much as before, there are no large components for smalb we can restrict to
pelx,1—x].

The equivalent of Lemma 2.6 requires choosingso that if|A| > u,, then
|B(A, ;)| > (3/4n. Much the same argument as before shows that it is sufficient
to choose

(14) rn = 10911, (| Val/un)1=T(1 = w)logy 4 [Vall.

Now the definition of arl.-bridge depends on the definition of a large component,
which now depends on the choicewfMuch as in Corollary 2.4, we lek(e, w, n)

be the event that is an L-bridge in G, (p,), and letS(w, n) be the event that
S(en, w, n) occurs for an edge, chosen uniformly at random. Then (6) becomes

[Val o
(15) P(S(w,n)) < Ve JET
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The proof of Corollary 2.5 is much unchanged, but sincis no longer a constant
the conclusion becomes

rn+1

P(S'(w,n,ry)) < P(S(w, n))

which, using (15), becomes
(16) <y ATV, YR,

for somey independent of:.

Greater care is needed in adapting Lemma 2.7. We need to reducé the
appearing as an exponent in (8) to some multiple,ofin order to do this, we
must be more precise about how we transform a configuration lyidg(in, r;,)
to one lying inS’(w, w, n, r,). Recall that a configuration is a subsEtsay, of the
edge sef,; we identify configurations with the corresponding spanning subgraph
(V,, F), and a percolation process @ty is just a probability measure on the set of
configurations. Recall also that the b&lw, ,,) is defined in terms of the original
graph(V,, E,,).

Now, for eachw € V,, and each unordered pair of verticesy € B(w, ry,),
we fix one arbitrarily chosen path from to y, of length at most 2,, lying
entirely insideD(w, r,). Call this thecanonical path P(w, {x, y}). Then, given
a configurationF, lying in D(w, r,), [i.e., a configuration such that at least two
large components @iV, F) intersect the balB(w, r,,)] we obtain a configuration
lying in §’(w,w,n,r,) as follows. Take two vertices; and y say, that lie in
B(w, r,), but which lie in different large components ¢¥,,, F). Consider the
process of adding, successively, the edges of the canonicalPgath{x, y}) to
the configuratiorF'. (Note that some of these edges may already beloitg tind
these are ignored in this process.) At sopoint the additionfoone of these edges
must join two large components. Stopping at this point (it does not matter whether
before or after) makes this edge Arbridge: this gives us our configuration lying
inS(w,w,n,r,).

As in the proof of Lemma 2.7, we have obtained a functignsay, from
D(w,r,) to S'(w, w, n, r,), but we have been more careful about the number
of preimages each point can have. Silev, r,,) contains at most (A — 1)'»/

(A — 2) vertices, it is not hard to see that it contains at m@at 5 1)2» unordered

pairs of vertices. Each such pair of vertices has a canonical path containing at
most 2, edges and ifA € D(w, r,,), then A can be obtained fronf (A) by the
deletion of some subset of the edges of some canonical path. Since a set of size no
more than 2, has at most2» subsets, we see that each configuration has at most
5(A — 1)2» 22 preimages. Just as in the proof of Lemma 2.7, the probability of
differs from the probability off (A) by a factor of at most?™, so (10) becomes

P(S' (w, @, n,7y)) = 2x%" (A — 1)"2n 272 P(D(w, 1)),
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and, hence, (8) becomes

(17) P(S (@, 1, 1)) = x¥n(A — 1)~2n 272, /10.
Combining (16) and (17) and simplifying a little gives
(18) 8p <10y ABrnx—Zrn 22rn|Vn|1/2—a)'

Recalling the choice of,, (14), we obtain
5, < 10y (4A3x—2) A=) 10gyy; [Val+1)y 1 1/2-0
— 10y (4A3x_2) v, |(1—w) logy,,(4A3x~2) IV, |1/2—w'
So we see thaf,, — 0 asn — oo provided
(19) (1—w)logy ,(4A3% ) + (3 —w) <0.

Since (19) clearly holds fow sufficiently close to 1, this establishes ttigt—
the probability of two or moredrge components—tends to 0ras> oo for such
values ofw, exactly as we require.[J

3. High girth expanders. In this section we show that when we consider
d-regular expanders of girth tending to infinity, we can identify the critical value
of p above which a (unique) giant component appears, naméaly,11).

PrOPOSITION3.1. For every ¢ > 0, thereisana =a(e) >0 and a § =
8(e) > O suchthat the following holds. Let G = (V, E) beafinite, d-regular graph
onaset V of n vertices, let g = ¢(G) denoteits girth and let ¢ = ¢(G) denoteits
isoperimetric number. If

c c(s)d/ca 3In2 0
=—| = — = >0,
2\ 24 (1+¢/3)8/2
1

then, for p = 75, the random graph G(p) has, with probability that exceeds
1—e~Can _ =9 g connected component with at least an vertices.

PROOF Itis convenient to consider the random subgréfilp) as a union of
two independently chosen random subgra@lig:) andG (p2), wherep; = 1;_8/12
andpz (> 3) is chosen such thaél — p1)(1— p2) = 1— p. Seen from any vertex,
the graphG out to a distance/2 looks just like ad-regular tree. By standard
results from the theory of branching processes (see, e.g., [16]), with probability at
least 1— ¢ %" at leasts’ = a’(¢)n vertices ofG (p1) lie in components of size
at leasin, wherem = (1 + ¢/3)8/2. Conditional on this, define = 4’/3 and fix a
set of at mosf% such components that contain together at leasvertices. We
claim that with probability at least & ¢=€“", in the random grapi& (p,) there
is no way to split these components into two patteind B, each containing at
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leasta’n/3 vertices, with no path o (p2) connecting the two parts. This will
imply that with the required probability, the union of the two graghg1) and
G (p2) contains a connected component consisting of at l€ag8 = an vertices,
as needed.

To prove the claim notice first that there are at mast/? possible ways to
split the components into two setsandB as required. For each such fixed choice,
the fact thatt = ¢(G) and Menger’s theorem imply that there are at least /3
pairwise edge-disjoint paths @G from A to B. As G hasdn/2 edges, at least half
of these paths are of length at mogt/8ua’) each. The probability that none of
those paths belongs @(p») is at most

3d/(ca’)ca'n/6 / 3d/(cd’)
3d/(ca')\ca'n/6 & ) ca n( e )
1-— <[1-(— <exp| — — .
(L=p )7 s [ <2d } = p( 6 \24

It follows that the probability that there is some partition into sétand B as
above, with no paths ai (p2) between them, is at most

3d/(ca’
oa'n/m exp(_ca6/n (;_d) /( a)) _o-Can

which completes the proof..

Simple branching process comparisons show that ondarmegular graph(,
if p<1/(d— 1), then the probability that; (p) has a large component is small.
Combining this fact with te above proposition easily gives the following theorem,
which can be loosely described as saying that the critical probability for the
emergence of a giant component, in a sequenckrefjular expanders with girth
tending to infinity, is ¥(d — 1).

THEOREM3.2. Letd > 2andlet (G,) be a sequence of d-regular expanders
with girth (G,) — oo.
If p>1/(d — 1), then there exists ¢ > 0 such that:

P(G,(p) contains a component of order at least ¢|V (G,)|) — 1 asn — oo.
If p<1/(d — 1), then for any ¢ > O,

P(G,(p) contains a component of order at least c|V(G,)|) — 0 asn — oo.

REMARKS.

e The arguments above imply that for every fixédhe critical probability for the
emergence of a linear size connected componentrandom d-regular graph
onn vertices is almost surely/id — 1) + o(1). Indeed, these graphs do have
some constant size cycles, but their number is, almost surely, small enough that
they can be ignored, including near critical behavior.
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e It might be possible to apply the techniques above and show that vertex transitive
graphs of degreé in which the girth is proportional to the diameter also have
the same critical probability, since it is known (see, e.g., [5]) that such graphs
are good expanders. A rigorous proof may require some care, as the proposition
itself does not suffice here. On the other hand, there are simple examples
showing that without the assumption of vertex transitivity, the conclusion fails.
A counterexample can be constructed by taking some Bgegular expanders,
each om vertices and each obgarithmic girth, by omitting an edge from each
of them, and then by joining them all along a cycle keeping the resulting graph
3-regular.

e One can use the approach above to prove that the giant component inéise Erd
Rényi random grapl (n, p) emerges ap = 1/n.

As we remarked in Section 2, the condition of expansion is rather strong, and
one would expect similar results to hold under weaker conditions. In the context
of transitive graphs, we suggest the following conjecture.

CONJECTURE3.3. Let{G,},cny be a sequence af-regular connected finite
transitive graphs|,V,| /' oo, and suppose that diameiét,) = o (|V,,|/log|V,]).
Then the threshold for the existence of a connected component of4izd.0,
with probability 1/2, is uniformly bounded away from 1.

By [12] the threshold is sharp. Note that the conjecture is true for tori; see, for
example, the section on percolation in a wedge in [14]. Recently the conjecture has
been shown to hold for certain Cayley graphs [23]. However, for general graphs,
even if we make a stronger assumption that

diamete(G,) < |V, ¢,

for somees < 1, we do not know how to show that the threshold for a giant
component is bounded away from 1.

4. Percolationin Z¢. In 1990 Kesten [18] proved that the critical probability
for bond percolation irZ? is %, where theo(1) error term tends to zero as
d tends to infinity. Hara and Slade [15] obtained a better estimate for the error
term, and Bollobas and Kohayakawa [10] gave a somewhat simpler proof. Here
we sketch a simpler argument giving the result of Kesten, following the method
of [1].

The fact that (24 — 1) is a lower bound for the critical probability is obvious,
hence, we only sketch the proof of the upper bound. It will be convenient to
prove the upper bound for the subgraptof Z¢ induced orZ? x [d]9~2, where
[d]=1{1,2,...,d}. We assume, from now on, thdtis sufficiently large. Let
¢ > 0 be small, and pup = % It is convenient to first consider, in phase one,
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the random subgrapti(p) of G obtained by taking each edge, randomly and
independently, with probability, and take, in phases two and three, its union
with two additional randomly chosen subgrah&;) with, say,p; = d—lz for each
of them.

Split the vertex set o5 into d-dimensional boxes, each isomorphic[th?.
Each two neighboring boxes hav&/~! edges connecting them. The basic
approach is to show that in each fixed box, after the first two phases our random
subgraph will have, with high probability, a linear size component with lots of
neighbors in the boundary. The result can then be obtained by taking the additional
fresh random edges of phase three and by using some very rough estimates on
percolation inZ2.

We first need some (known) expansion propertieg/df. Since what we need
is extremely simple, we include a proof.

LEMMA 4.1. The edge-isoperimetric number of the graph [d]¢ is at least
1/(2d). That is, for every set A of at most half the vertices of [d]¢, there are at

least %‘ edges connecting A to its complement.

PROOF For every pair of verticea € A andb ¢ A, take a canonical path
from a to b obtained by changing the coordinates in whicland b differ one
by one, from left to right, where each coordinate is being changed monotonically.
Each such path must contain an edge connecting a vertéxwith one in its

complement, and every edge appears in at midst paths. Therefore, there are at
least|A|(d? — |A])/d*T! edges connecting to its complement. O

Consider, now, a random subgraph(p) with p as above, wherd? is the
subgraph ofG induced by{d]?. Let$ > 0 be a fixed small real (smaller thay2,
say). Call a vertex oH good if it has at mos#d /10 coordinates which are either
1 ord. Note that each such vertex has at le@st 25/10)d neighbors insidée{ .
Putn = d¢. Call a connected component &f(p) anatom if it has at least, say,
d'%0 vertices. We first claim that with high probability, by the end of phase one,
every vertex ofH (p), besides at most some/2¢1¢, has at least one neighbor
which lies in H(p) in an atom, where here; = ¢1(8) > 0. Indeed, all vertices
but somen/2°2? are good. Each such vertex has at ledst %o)d coordinates
that are neither 1 no#. Without loss of generality assume these are the first
coordinates. Let = (vy, ..., vg) be the vertex. For eaah< §d /5 (say), consider
the connected component of the neighbor, vo, ..., vi—1, v; + 1, vis1, ..., v9)
of v obtained by considering the (forward) branching process only on vertices of
the form (vy, vo, ..., vi + L, w41, u;42,...) With eachu; for j > i being in the
set{v;,v; — 1,v; 4+ 1}. In this process we always move from a vertex to ones
with bigger Hamming distance from, and if a vertex is obtained more than
once as a child, we omit it. This is done som@) logd generations. An easy
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calculation shows that with probability tending to 1 @s~> o), there are no
vertices obtained more than once as a child (and thereby omitted); then, standard
results on branching processes imply that for each fixed neighbor, we manage to
grow an atom with probability bounded away from zero. As the events for distinct
neighbors we are considering are independent, the desired claim follows.
Consider, now, the set of all atoms obtained. These cover together a constant
fraction, saycan, of then vertices ofH [with c3 = ¢3(8)]. Now add, in phase two,
edges ofH randomly, with probabilityd—lz. We claim that in the resulting graph,

with high probability, no union of atoma covering at least, say,/d° vertices can
be separated from the uniah of all other atoms, when this union also covers at
leastn /d° vertices. To prove this claim, denote, for any Xetf vertices ofH, by

N (X) the set of all its neighbors i. Consider two possible cases.

Casel. |[IN(A)NN(B)| > ﬁ. In this case there are at Ieaﬁ% pairwise
edge disjoint paths of length 2 connectidgand B, and the probability none of
them is chosen is at most

1 \n/d*°
(1 - _) .
d4

Even when multiplied by the number of possibilities for choostngnd B, which
is smaller than 24", this is negligible.

CASE2. |[N(A)NN(B)| < ﬁ. Assume, without loss of generality, tHd#t| >
|A|. SinceA U N(A) misses most oB, it is not very large, and by Lemma 4.1
we get that there are at least some/d’ distinct vertices ofH of distance 2
(in H) from A [because there are at leasi /d® edges connecting U N (A) to its
complement]. Most of these vertices have neighbors that are atoms and, hence, lie
in B. This gives many paths of length 3 betwegiandB, and it is easily seen this
construction gives2 (n/d®) pairwise edge disjoint paths from to B. As before,
with high probability, all the edges of at least one of those will be chosen in phase
two.

The preceding argument establishes the claim. Moreover, it implies that with
high probability, by the ed of the second phase there is a connected component
of the resulting graph that contains all the vertices that were in atoms by the end
of the first phase, besides at magi/® of them. Let us call this component the
distinguished component. Note also that with high probability, all verticestaf
besides at most som@(n/d*), have at least one neighbor in this component.

We can now consider each copy Hf among the ones that split the vertices
of G as a site which, with probability very close to 1, is present; where we make it
present if on each face of its boundary at leagtd3of the vertices have neighbors
in the distinguished component. By the above discussion this happens with high
probability, and each copy off behaves independently in this respect. Taking
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now, in phase three, fresh edges with probabiﬁgy we get that with extremely
high probability, every twauch neighboring sites become connected, as there are
at leastd?~1/2 potential pairwise disjoint paths of length 2 that connect the two
corresponding distinguished components, and with (very) high probability, at least
one of those will be chosen in the third phase. Call a copf pfegarded as a site

in its own right,activeif it is present and it is connected to all its present neighbors
in the way just described; so far sufficiently large the probability that a site is
active is arbitrarily close to 1. Sets of sites &t ) distance greater than 1 behave
independently, and it is well known that 1-dependent bond percolatié? evith

a sufficiently high marginal percolates (for much stronger results see [19]); hence,
for d sufficiently large the active sites connect up to form an infinite component.

5. Concludingremarks. It seems plausible that& = (V, E) is an expander
with n vertices, ang is above the critical probability for the emergence of a giant
component, then the giant componentifp) will have, itself, reasonably strong
expansion properties. The proof of Lemma 2.2 can be easily modified to prove that
this is, indeed, the case at least wheis close to 1.

PrROPOSITIONS.1. Letbh > O0andlet G, = (V,, E,) be a sequence of graphs
with maximumdegree at most A which are edge b-expanders, with |V,| — oo. Let
A > 0besuchthat (Ae)2°Ab/2 < 1/2 andlet 1 — A < p, < 1for eachn. Then

1
20 P( G, (py,) isnot
(20) (G (pn) isnota g

edge expander ) -0
on

asn — o0.

SKETCH OF PROOF A simple modification of the proof of Lemma 2.2 shows
that the probability that there is a connected induced subgraph @f,,), whose
sizer is at least logn and at mosi:/2, which has at modir/2 edges emanating
from it to the rest of the graph is at most

n/2
norf br N n b 4b/2yr
Z r(Ae) (br/Z)(l Pn) = log, n Z (Ae2”A7)" < 2logzn'
r=logyn r=logyn

The desired result follows.d

Consider an infinite transitive grapfi. It is believed that uniqueness of the
infinite cluster holds at alp iff G is amenable, see [7]. For the product of an
infinite regular tree an@, and certain other nonamenable graphs, nonuniqueness
of the infinite cluster at some values pfis known to hold. We suspect that on
finite transitive graphs this is not the case in the following sense.
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CONJECTURES.2. Let{G,},cn be a sequence af-regular connected finite
transitive graphs|V,| /' oc. Given$ > 0, there isC > 0 so that if for anyz and
veGy,,

P, (v is in @ component of diameterdiam(G,)/2) > 8,
then

Iirrln IP,(there is a connected component of siz€|V,|) = 1.

That is, once a fixed vertex is with positive probability in a large cluster in the
sense of diameter, it will be in a cluster which is large in the sense of volume. Note
that the conjecture is true for Euclidean lattice tori and, by the discussion above,
for expanders with growing girth. A useful fact that supports the conjecture is that
finite transitive graphs do not admit bottle necks. The Cheeger constant of a finite
transitive graph is at least the reciprocal of the diameter (see [5]).
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