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Consider a uniform expanders familyGn with a uniform bound on
the degrees. It is shown that for anyp and c > 0, a random subgraph
of Gn obtained by retaining each edge, randomly and independently, with
probability p, will have at most one cluster of size at leastc|Gn|, with
probability going to one, uniformly inp. The method from Ajtai, Komlós
and Szemerédi [Combinatorica 2 (1982) 1–7] is applied to obtain some new
results about the critical probability for the emergence of a giant component
in random subgraphs of finite regular expanding graphs of high girth, as well
as a simple proof of a result of Kesten about the criticalprobability for bond
percolation in high dimensions. Several problems and conjectures regarding
percolation on finite transitive graphs are presented.

1. Introduction. In this paper we primarily consider percolation on finite
graphs and, in particular, the existence and uniqueness of large components,
typically meaning components whose size is proportional to the number of vertices
in the graph. Our main results in this context apply to expanders, which are graphs
satisfying a particular isoperimetric inequality, although we conjecture that these
results hold somewhat more generally. The techniques we use can also be used to
give a significantly shorter proof than those previously known for the fact that the
critical probability for percolation onZd is asymptotically 1/(2d) asd → ∞.

Given a graphG, we shall useG(p) to denote the spanning subgraph ofG

obtained by retaining each edge ofG independently with probabilityp. This has
been very extensively studied in the case whenG is a complete graph, and this
is known as the standard random graph model or the mean field model; see, for
example, the books [9] and [17]. Percolation on general infinite graphs has been
studied (see [7] or [21] for background) and there, as in this paper, isoperimetric
inequalities play a key role. Most other studies of percolation on finite graphs
concern specific graphs, such as the torus, which are closely related to percolation
on corresponding infinite graphs such asZ

d . Another example of this phenomenon
is the study of the contact process on finite trees [25]; the contact process on a
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graphG is loosely analogous to percolation on the Cartesian productG × Z; and
both the contact process onT and percolation onT×Z, whereT is a homogeneous
tree, have been widely studied.

In light of the above it is, perhaps, surprising that there has been little work
regarding percolation on general classes of finite graphs. In this paper we hope
to demonstrate that there are interesting questions in this area. The questions
asked and methods used draw on the theories of both random (finite) graphs and
percolation on infinite graphs.

In two widely studied cases, whereG is either the complete graph or resembles
a finite subset ofZd (either a larged-dimensionaln × · · · × n torus or box),
uniqueness results for the giant component are known. Very precise results are
known for the complete graph (see [17] for a recent account). For the torus or
box, results can be deduced from information about the corresponding infinite
graph; see, for example, Lemma 2 of [11]. It seems natural to conjecture that this
uniqueness is a much more general phenomenon.

CONJECTURE 1.1. Let Gn = (Vn,En) be a sequence of connected finite
transitive graphs with a uniformly bounded maximum degree and with|Vn| ↗ ∞.
Suppose that diameter(Gn) = o(|Vn|/ log|Vn|). Then for anya > 0,

sup
p

Pp(there is more than one connected component of size at leasta|Gn|) → 0

asn → ∞, wherePp denotes the probability with respect to the measureG(p).

It is easily seen, by considering cycles or the Cartesian product of a large
cycle with a small transitive graph, that the conjecture fails with the condition
on the diameter dropped. These examples fail only for values ofp approaching 1,
and slightly more sophisticated examples show that it fails without the diameter
condition even withp bounded away from 1. Indeed, the product of a regular
expander of orderc logn and a cycle of ordern/(c logn) forms such a family of
examples. Similarly, the product of a complete graph and a triangle shows that the
assumption on the bounded degrees is also essential.

Our first result, in Section 2, establishes uniqueness of the giant component for
expanders. This holds even without vertex transitivity since the expansion property
gives sufficient uniform control over the geometry of the graph. In fact, slightly
more can be shown: the uniqueness holds in this case even for clusters of sublinear
size; see Theorem 2.8 for a detailed statement.

In [1], Ajtai, Komlós and Szemerédi proved that the critical probability for
the emergence of the giant component in bond percolation on the hypercube
{0,1}d is 1/d . The strategy of the proof is twofold. First, one uses the very
local geometry of the hypercube in a neighborhood of a vertex to obtain (based
on a basic branching process argument) that percolation withp > 1/d will have
many clusters of polylogarithmic size. These clusters cover a constant fraction of
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the hypercube. In the second step one uses the isoperimetric inequality for the
hypercube to prove that by adding additional independentε/d percolation, most
of these polylogarithmic clusters join to form a giant component. In Section 3
we remark on how this approach can be naturally used to determine the critical
probability for percolation on some other graphs, including regular expanders with
large girth. This technique also enables us to present, in Section 4, a rather simple
proof for the fact [18] that the critical probability for bond percolation inZ

d is
1+o(1)

2d
, asd → ∞.

1.1. Expanders and other definitions. Expanders are defined in terms of
a certain isoperimetric inequality. Such inequalities have wide applications in
graph theory and in percolation in particular. They play a crucial role in the
study of percolation on general infinite graphs; for a few natural conjectures
relating isoperimetric inequalities to percolation in this context see [7], especially
Conjecture 1, Question 2. Although considerable progress has been made in
recent years, there is scope for further work in understanding the relation between
properties of percolation processes and the isoperimetric profile of the underlying
graph (in the spirit in which the behavior of the simple random walk is directly
linked to isoperimetric inequalities, see, e.g., [13]).

Another important example of the use of isoperimetric inequalities in the area
of graph theory is the role played byconductance, an isoperimetrically-defined
quantity, in showing that Markov chains are rapidly mixing. See, for example, [6].

We now turn to the precise definitions. Thegirth g(G) of a graphG = (V,E) is
the minimum length of a cycle inG. For any two sets of vertices inG, A,B ⊆ V ,
the setE(A,B) consists of all those edges with one endpoint inA and the other
in B. For a finite graphG its edge-isoperimetric number,c(G), (also called its
Cheeger constant) is given by

min
A⊂V

0<|A|≤|V |/2

|E(A,V \ A)|
|A| .

We will also make use of the vertex isoperimetric constant,ι(G), which we now
define similarly. Given a set of verticesA ⊆ V , define the external boundary ofA,
∂A, to consist of those vertices outsideA which have a neighbor inA. Then define

ι(G) = min
A⊂V

0<|A|≤|V |/2

|∂A|
|A| .

We shall be interested in families of graphs whose isoperimetric constants are
bounded away from 0. Givenb > 0, we say that a graph,G, is anedge b-expander
if c(G) ≥ b and avertex b-expander if ι(G) ≥ b. We shall also refer, with a slight
abuse of notation, to a set of graphs, or a sequence of graphs(Gn), as anedge (resp.
vertex) b-expander if each graph in the set is an edge (resp. vertex)b-expander.
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A sequence of graphs is called simply anedge (resp.vertex) expander if it is an
edge (resp. vertex)b-expander for someb > 0. Most sequences we consider will
have a uniform bound,�, say, on the degrees of the vertices, and in that case it is
clear that the sequence is a vertex expander if and only if it is an edge expander;
we refer to such sequences simply asexpanders.

Expanders received a considerable amount of attention in the literature in recent
years, mostly because these graphs have numerous applications in theoretical
computer science; see, for example, [4, 20]. It is well known that for any
fixed d > 2, randomd-regular graphs of sizen are asymptotically almost surely
expanders, asn grows. The problem of constructing infinite families of bounded
degree expanders is more difficult, and there are several known constructions of
this type. Most of these constructions are Cayley graphs, and are therefore vertex
transitive.

The distance between two vertices of a graph is the length of the shortest path
between them. Given a vertexv, the set of vertices within distancer from v (or
the subgraph they induce) will be denoted byB(v, r). Also, for a set of verticesA,
B(A, r) will denote the set of all vertices which are within distancer of some
vertex inA.

2. Uniqueness of the giant component. The aim of this section is to establish
Conjecture 1.1 with the condition of vertex transitivity replaced by the condition
of expansion.

THEOREM 2.1. Let b > 0 and let � ∈ N. Let Gn = (Vn,En) be a sequence
of graphs with maximum degree at most � which are vertex b-expanders, with
|Vn| → ∞. Let 0≤ pn ≤ 1 and let c > 0. Then

P
(
Gn(pn) contains more than one component of order at least c|Vn|) → 0(1)

as n → ∞.

The statement of this theorem holds for any family of expanders, such as
the ones described in [4, 20, 24] and their references. Various applications of
expanders rely on their fault-tolerance as networks that imply that even after
deleting an appropriate constant fraction of their edges (arbitrarily), the remaining
graphs still contain some linear size connected components or some linear size
paths; see, for example, [3, 26]. The theorem above provides more information in
the case when the edges are deleted by a random process.

We will refer to components of order at leastc|Vn| aslarge. Note that ifpn ≤ a

for somea < 1/�, then standard branching process arguments (see, e.g., [16])
show that the probability of the existence of any large component tends to zero as
n → ∞. We use the following lemma to deal with the case whenp is close to 1.

LEMMA 2.2. Let b > 0 and let Gn = (Vn,En) be a sequence of graphs
with maximum degree at most � which are edge b-expanders, with |Vn| → ∞.
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Let A > 0 be such that (�e)Ab < 1 and let 1 − A ≤ pn ≤ 1 for each n. Then for
any c > 0,

P
(
Gn(pn) contains a component of size between c|Vn| and (1/2)|Vn|) → 0(2)

as n → ∞.

PROOF. There are various ways to see this, but simple counting turns out to
be the most useful in what follows. We shall say that a subset of the vertices of
a graphG is connected (in G) if the subgraph ofG it induces is connected. We
shall make use of the fact (see, e.g., [2]) that in a graphG = (V,E) of maximum
degree�, the number of connected subsets ofV of sizer , containing some given
vertex, is at most(�e)r . Summing over all the vertices counts each such subsetr

times, so the total number of connected (inGn) subsets ofVn of orderr is at most

|Vn|
r

(�e)r .

Now for any subset,U , of Vn of sizer , wherer ≤ |Vn|/2, the expansion property
gives that|E(U,Uc)| ≥ br , so the probability that all the edges ofE(U,Uc) are
absent fromGn(pn) is at most(1−pn)

br ; this is an upper bound on the probability
thatU is the vertex set of some connected component ofGn(pn). Therefore, the
probability there is a component of size betweenc|Vn| and|Vn|/2 is at most

	|Vn|/2
∑
r=�c|Vn|�

|Vn|
r

(�e)r(1− pn)
br ≤ 1

c

((�e)Ab)c|Vn|

1− (�e)Ab
,(3)

using the fact that(�e)Ab < 1. The upper bound in (3) clearly tends to 0 as
|Vn| → ∞ and establishes the lemma.�

Turning back to Theorem 2.1, the vertexb-expanders in the statement of the
theorem must also be edgeb-expanders (with the same value ofb). TakingA as
in Lemma 2.2, and using the fact that if there are two components of size at least
c|Vn|, one of them must contain no more than half the vertices, we see that if
pn ≥ 1− A, then the probability there is more than one large component is small
whenn is large. Combining this with the observation about smallpn made after
the statement of Theorem 2.1, we may assume thatpn ∈ [x,1− x] for all n, where
x = min(1/(2�),1− A).

In the following very useful lemma (which we do not claim is new), recall that a
subset,X, of P (E) is anup-set if, wheneverA ∈ X andA ⊂ B ⊆ E, thenB ∈ X.

LEMMA 2.3. Let x > 0. Then there exists α > 0 so that the following
holds. Let E be a finite set and let A ⊆ P (E) be an up-set. Given A ⊆ E

and e ∈ E, say that e ∈ E is A-pivotal (for A) if Ae = A ∪ {e} ∈ A and Ae =
A \ {e} /∈ A. Let A ⊆ E be obtained by selecting each element of E independently
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with probability p, where p ∈ [x,1 − x], and let e ∈ E be chosen uniformly at
random and independently of the choice of A. Then

P(e is A-pivotal for A) ≤ α√|E| .(4)

PROOF. GivenE andp ∈ [x,1 − x], we construct a pair(A, e) as follows.
Order the elements ofE randomly,e1 < e2 < · · · < ek, with each of thek! possible
orderings equally likely (withk = |E|). Let X ∼ B(k,p) be a binomial random
variable, independent of this ordering, and letA be the firstX elements in the
ordering, A = {e1, . . . , eX}. Now, with probability X/k, let e = eX and with
probability (k − X)/k, let e = eX+1. We now see why this construction yields
a pair(A, e) with the distribution given in the statement of the lemma. The fact
that the marginal distribution ofA is correct is immediate. Now, for anyA that
arises in this way, it is equally likely to have arisen from any of the|A|!(k − |A|)!
orderings which place the elements ofA in the first|A| places; the proportion of
these orderings in which any given element ofA is in the |A|th place is exactly
1/|A|, so the chance that any given element ofA turns out to be the random
elemente is exactly(1/|A|)(|A|/k) or 1/k. Similarly, again conditional on the
choice ofA, any element outsideA also has chance 1/k to be equal toe.

This apparently peculiar way of constructing(A, e) is useful in estimating the
probability thate is A-pivotal. Having chosen the ordering, letAl = {e1, . . . , el},
for 0 ≤ l ≤ k. SinceA is an up-set there will be precisely onel with the property
that Al /∈ A andAl+1 ∈ A. We see thate is A-pivotal precisely ife = el+1 and
X = l or X = l + 1. This happens with probability (conditional on the ordering)

k − l

k
Pp(X = l) + l + 1

k
Pp(X = l + 1) ≤ k + 1

k
max
p,m

Pp(X = m),

where the maximum is taken over allp ∈ [x,1− x] and allm. Since this bound is
independent of the ordering, it is also a bound on the unconditional probability than
e is A-pivotal. However, it is well known (it follows fairly easily, e.g., from bounds
on binomial coefficients given by (1.5) in [9]) that this maximum is bounded above
by a constant over

√
k, the precise constant depending on the value ofx. �

Given a subgraph,H , of Gn, we say that an edgee ∈ E(Gn) is anL-bridge
if He contains two large components which are connected bye. Recall that the
definition of large depends on the choice of some constantc > 0.

COROLLARY 2.4. Let x > 0, b > 0, c > 0 and � ∈ N be given. Then there
exists β > 0 so that the following holds. Let Gn be a graph satisfying the conditions
of Theorem 2.1,and let pn ∈ [x,1− x]. For e ∈ En let S(e, c, n) be the event that
e is an L-bridge in Gn(pn). Let S(c,n) be the event that S(en, c, n) occurs for an
edge en chosen uniformly at random. Then

P
(
S(c,n)

) ≤ β/
√|Vn|.(5)
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PROOF. We could proceed by adapting the proof of Lemma 2.3, noting that
given any ordering on the edges as in that proof, at most	1/c
 edges,el , can
be L-bridges for the corresponding configurationAl or Al+1. However, since
Lemma 2.3 is an attractive general result we prefer to proceed by applying this
lemma directly. We do this by constructing up-sets in such a way that anyL-bridge
is pivotal for one of these up-sets.

Given any configuration of edges,F ⊆ En, let Y (F ) count the number of
vertices which belong to large components, and letC(F ) count the number of
large components. Now set

Z(F ) = Y (F )

c|Vn| − C(F ).

It is not hard to see thatZ is an increasing function ofF : all we have to note is
that if the addition of an edge increasesC(F ) by 1, then at the same timeY (F )

must increase by at leastc|Vn|. Therefore, for anyt , the set of configurations,F ,
satisfyingZ(F ) ≥ t is an up-set.

Now let Ai = {F :Z(F ) ≥ i} for i = 1,2, . . . , 	1/c
 − 1 [noting that the
maximum value ofZ(F ) is 1/c − 1]. Then anyL-bridge is pivotal for someAi .
Hence, applying Lemma 2.3 and summing overi,

P
(
S(c,n)

) ≤ (	1/c
 − 1)
α√|En| ;(6)

but since any expander is connected,|En| ≥ |Vn| − 1, giving (5). �

COROLLARY 2.5. Let x > 0, b > 0, c > 0, r > 0 and � ∈ N be given. Then
there exists γ > 0 so that the following holds. Let Gn be a graph satisfying the
conditions of Theorem 2.1, and let pn ∈ [x,1 − x]. Let wn be a vertex chosen
uniformly at random from Vn and let S′(c, n, r) be the event that there is an edge e,
contained in the ball B(wn, r), for which the event S(e, c, n) occurs. Then

P
(
S′(c, n, r)

) ≤ γ/
√|Vn|.(7)

PROOF.

P
(
S′(c, n, r)

) ≤ ∑
e

P
(
e ∈ B(wn, r)

)
P

(
S(e, c, n)

)

≤ max
e

P
(
e ∈ B(wn, r)

)∑
e

P
(
S(e, c, n)

)
= max

e
P

(
e ∈ B(wn, r)

)|En|P(
S(c,n)

)

≤ �r

|Vn| |En|P(
S(c,n)

)
.

However,|En| ≤ |Vn|�/2, so applying Corollary 2.4 we see that (7) holds with
γ = �r+1β/2. �



1734 N. ALON, I. BENJAMINI AND A. STACEY

We now work towards establishing a lower bound for the probability in (7) in
terms of the probability of the existence of two or more large components.

LEMMA 2.6. Given b > 0, c > 0 and k < 1, there exists r ∈ N with the
following property. Let G = (V,E) be a vertex b-expander with |V | = n. Suppose
that A ⊆ V with |A| ≥ cn. Then |B(A, r)| ≥ kn.

PROOF. For a givenr , let C = V \ B(A, r), and suppose that|B(A, r)| <

kn so |C| > (1 − k)n. Without loss of generality suppose thatc < 1/2 and
k > 1/2. By the expansion property,|B(C, �log1+b(1/2(1 − k))�)| > n/2 and
|B(A, �log1+b(1/2c)�)| ≥ n/2 so these two balls have a vertex in common.
Therefore,A andC are within distance�− log1+b(2(1 − k))� + �− log1+b(2c)�,
giving a contradiction ifr is greater than this value.�

LEMMA 2.7. Let x > 0, b > 0, c > 0 and � ∈ N, and take r as in Lemma 2.6
corresponding to the case k = 3/4. Let Gn be as in the statement of Theorem 2.1
and let x ≤ pn ≤ 1− x. Let

δn = P
(
Gn(pn) contains more than one large component

)
.

Let S′(c, n, r) be as in the statement of Corollary 2.5.Then

P
(
S′(c, n, r)

) ≥ 1
2x2r�−2r2

δn.(8)

PROOF. Let Gn = (Vn,En), so bond percolation onGn simply assigns
probabilities to subsets ofEn, which we refer to asconfigurations. For each
w ∈ Vn, let D(w, r) be the event that the ballB(w, r) contains two vertices
belonging to different large components; we shall regardD(w, r) as a subset of the
configurations. We shall letD(r) be the event thatD(w, r) occurs for a vertexw
chosen uniformly at random, so

P(D(r)) = 1

|Vn|
∑

w∈Vn

P
(
D(w, r)

)
.(9)

Let S′(w, c,n, r) be the event thatB(w, r) contains anL-bridge for the graph
Gn(p). SoS′(c, n, r) is the event thatS′(w, c,n, r) occurs for a vertexw chosen
at random. For eachw, a configuration inD(w, r) can be transformed into a
configuration lying inS′(w, c,n, r) by the addition of some edges lying within
B(w, r): indeed, ifD(w, r) occurs, then pick two large components which have
vertices lying inB(w, r) and choose a shortest path between them; add edges from
this path to the configuration until there is a path of edges in the configuration
between the two components; the last edge added is then anL-bridge. This
procedure gives us a function,f say, from D(w, r) (regarded as a set of
configurations) toS′(w, c,n, r). Since the function adds at most 2r edges, all
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taken fromB(w, r) which contains at most�r edges, the inverse image of any
set inS′(w, c,n, r) contains at most

(�r

2r

) + ( �r

2r−1

) + · · · + (�r

1

) ≤ (�r)2r elements
of D(w, r). For any elementA of D(w, r), the probability off (A) differs from
that ofA by a factor of at mostx2r . Hence, we have

P
(
S′(w, c, n, r)

) ≥ x2r�−2r2
P

(
D(w, r)

)
.(10)

Summing overw and dividing by|Vn| yields

P
(
S′(c, n, r)

) ≥ x2r�−2r2

P(D(r)).(11)

However, the choice ofr (via Lemma 2.6) implies that if there are two large
components, then at least 3/4 of the vertices lie within distancer of each one, so
at least 1/2 the vertices lie within distancer of both. Hence,P(D(r)) ≥ (1/2)δn.
Combining this with (11) yields (8). �

PROOF OFTHEOREM 2.1. By earlier remarks we may assume there is some
x > 0 so thatx ≤ pn ≤ 1 − x for all n. Now by Corollary 2.5,P(S′(c, n, r)) → 0

since |Vn| → ∞. However, by Lemma 2.7,δn ≤ 2x−2r�2r2 × P(S′(c, n, r)).
Sincex, � and r are independent ofn, it follows that δn → 0, precisely as we
require. �

2.1. Remarks.

• For bond percolation on the complete graph withn vertices,G(n,p), it is known
(see [8] or [17]) that for a suitable choice ofp (close to 1/n) there are (roughly
speaking) typically several components of ordern2/3; but whatever the choice
of p, there is at most one component larger than this. It may be reasonable to
strengthen Conjecture 1.1 in accordance with this.

• It turns out that we can strengthen Theorem 2.1 to give uniqueness of
components of order|Vn|ω for someω < 1. We need to allow the value ofr
in the proof to vary withn, and we need to be considerably more careful in
specifying how a configuration inD(w, r), that is, one in which two large
components intersect the ballB(w, r), is transformed into a configuration
containing anL-bridge. The details are given as Theorem 2.8.

• The value ofω implied by the proof of Theorem 2.8 can almost certainly be
improved with more care; more difficult would be to establish the best possible
value. Furthermore, one might expect rather more to be true, much as in the case
of G(n,p): roughly speaking, once the components become significantly larger
than logarithmic in the number of vertices, they quickly agglomerate to form a
single giant component. Therefore, except in a small window of values ofpn,
one would expect at most one component of bigger than logarithmic size. In the
case ofd-regular expanders of high girth (see Section 3) we expect this window
to be aroundpn = 1/(d − 1). Note that we do know that forp sufficiently
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close to 1 (independent ofn), there is at most one component of greater than
logarithmic size; see the remark after equation (13).

• The condition of expansion is a very strong one and it seems reasonable to
conjecture that Theorem 2.1 holds under rather weaker conditions, such as some
sublinear lower bound on the edge-boundary of subsets of the vertices. In fact,
our proof does enable us to slightly weaken the expansion assumption, since
the distancer in the proof is allowed to grow (slowly) withn. In the context of
vertex-transitive graphs, such a variant is Conjecture 1.1.

• See [22] for a proof using somewhat related ideas in a different context.

2.2. A stronger uniqueness result. In this section we show how to adapt our
methods to establish the following stronger result.

THEOREM 2.8. Given b > 0 and � ∈ N, there exists ω < 1 such that
the following holds for a sequence of vertex b-expanders Gn = (Vn,En) with
maximum degree at most �, with |Vn| → ∞. Let 0 ≤ pn ≤ 1. Then

P
(
Gn(pn) contains more than one component of order at least |Vn|ω) → 0(12)

as n → ∞.

PROOF. We say that a component ofGn(pn) is large if it contains at least
|Vn|ω vertices; let un = �|Vn|ω�. We now imitate the arguments leading to
Theorem 2.1 and see for whatω the proof still holds.

Lemma 2.2 is essentially unchanged: the probability that there is a component
of size betweenun and|Vn|/2 is bounded above by

	|Vn|/2
∑
r=un

|Vn|
r

(�e)r(1− pn)
br ≤ |Vn|

|Vn|ω
((�e)Ab)|Vn|ω

1− (�e)Ab
,(13)

for 1−A ≤ pn ≤ 1 much as in (3). This tends to 0 for anyω > 0 (indeed, this even
holds providedun grows at least as fast as some particular multiple of log|Vn|).
Much as before, there are no large components for smallp, so we can restrict to
p ∈ [x,1− x].

The equivalent of Lemma 2.6 requires choosingrn so that if |A| ≥ un, then
|B(A, rn)| ≥ (3/4)n. Much the same argument as before shows that it is sufficient
to choose

rn = �log1+b(|Vn|/un)� = �(1− ω) log1+b |Vn|�.(14)

Now the definition of anL-bridge depends on the definition of a large component,
which now depends on the choice ofω. Much as in Corollary 2.4, we letS(e,ω,n)

be the event thate is anL-bridge inGn(pn), and letS(ω,n) be the event that
S(en,ω,n) occurs for an edgeen chosen uniformly at random. Then (6) becomes

P
(
S(ω,n)

) ≤ |Vn|
|Vn|ω

α√|En| .(15)
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The proof of Corollary 2.5 is much unchanged, but sincern is no longer a constant
the conclusion becomes

P
(
S′(ω,n, rn)

) ≤ �rn+1

2
P

(
S(ω,n)

)
which, using (15), becomes

≤ γ�rn |Vn|1/2−ω,(16)

for someγ independent ofn.
Greater care is needed in adapting Lemma 2.7. We need to reduce ther2

appearing as an exponent in (8) to some multiple ofrn. In order to do this, we
must be more precise about how we transform a configuration lying inD(w, rn)

to one lying inS′(w,ω,n, rn). Recall that a configuration is a subset,F say, of the
edge setEn; we identify configurations with the corresponding spanning subgraph
(Vn,F ), and a percolation process onGn is just a probability measure on the set of
configurations. Recall also that the ballB(w, rn) is defined in terms of the original
graph(Vn,En).

Now, for eachw ∈ Vn and each unordered pair of verticesx, y ∈ B(w, rn),
we fix one arbitrarily chosen path fromx to y, of length at most 2rn, lying
entirely insideD(w, rn). Call this thecanonical path P (w, {x, y}). Then, given
a configuration,F , lying in D(w, rn), [i.e., a configuration such that at least two
large components of(Vn,F ) intersect the ballB(w, rn)] we obtain a configuration
lying in S′(w,ω,n, rn) as follows. Take two vertices,x and y say, that lie in
B(w, rn), but which lie in different large components of(Vn,F ). Consider the
process of adding, successively, the edges of the canonical pathP (w, {x, y}) to
the configurationF . (Note that some of these edges may already belong toF , and
these are ignored in this process.) At some point the addition of one of these edges
must join two large components. Stopping at this point (it does not matter whether
before or after) makes this edge anL-bridge: this gives us our configuration lying
in S′(w,ω,n, rn).

As in the proof of Lemma 2.7, we have obtained a function,f say, from
D(w, rn) to S′(w,ω,n, rn), but we have been more careful about the number
of preimages each point can have. SinceB(w, rn) contains at most�(� − 1)rn/

(� − 2) vertices, it is not hard to see that it contains at most 5(�−1)2rn unordered
pairs of vertices. Each such pair of vertices has a canonical path containing at
most 2rn edges and ifA ∈ D(w, rn), thenA can be obtained fromf (A) by the
deletion of some subset of the edges of some canonical path. Since a set of size no
more than 2rn has at most 22rn subsets, we see that each configuration has at most
5(�−1)2rn22rn preimages. Just as in the proof of Lemma 2.7, the probability ofA

differs from the probability off (A) by a factor of at mostx2rn , so (10) becomes

P
(
S′(w,ω,n, rn)

) ≥ 1
5x2rn(� − 1)−2rn2−2rnP

(
D(w, r)

)
,
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and, hence, (8) becomes

P
(
S′(ω,n, rn)

) ≥ x2rn(� − 1)−2rn2−2rnδn/10.(17)

Combining (16) and (17) and simplifying a little gives

δn ≤ 10γ�3rnx−2rn22rn|Vn|1/2−ω.(18)

Recalling the choice ofrn, (14), we obtain

δn ≤ 10γ (4�3x−2)(1−ω) log1+b |Vn|+1|Vn|1/2−ω

= 10γ (4�3x−2)|Vn|(1−ω) log1+b(4�3x−2)|Vn|1/2−ω.

So we see thatδn → 0 asn → ∞ provided

(1− ω) log1+b(4�3x−2) + (1
2 − ω

)
< 0.(19)

Since (19) clearly holds forω sufficiently close to 1, this establishes thatδn—
the probability of two or more large components—tends to 0 asn → ∞ for such
values ofω, exactly as we require.�

3. High girth expanders. In this section we show that when we consider
d-regular expanders of girth tending to infinity, we can identify the critical value
of p above which a (unique) giant component appears, namely, 1/(d − 1).

PROPOSITION 3.1. For every ε > 0, there is an a = a(ε) > 0 and a δ =
δ(ε) > 0 such that the following holds. Let G = (V,E) be a finite, d-regular graph
on a set V of n vertices, let g = g(G) denote its girth and let c = c(G) denote its
isoperimetric number. If

C = c

2

(
ε

2d

)d/ca

− 3 ln2

(1+ ε/3)g/2
> 0,

then, for p = 1+ε
d−1, the random graph G(p) has, with probability that exceeds

1− e−Can − e−δn, a connected component with at least an vertices.

PROOF. It is convenient to consider the random subgraphG(p) as a union of
two independently chosen random subgraphsG(p1) andG(p2), wherep1 = 1+ε/2

d−1
andp2 (≥ ε

2d
) is chosen such that(1−p1)(1−p2) = 1−p. Seen from any vertex,

the graphG out to a distanceg/2 looks just like ad-regular tree. By standard
results from the theory of branching processes (see, e.g., [16]), with probability at
least 1− e−δ(ε)n, at leasta′ = a′(ε)n vertices ofG(p1) lie in components of size
at leastm, wherem = (1+ ε/3)g/2. Conditional on this, definea = a′/3 and fix a
set of at mosta

′n
m

such components that contain together at leasta′n vertices. We
claim that with probability at least 1− e−Can, in the random graphG(p2) there
is no way to split these components into two partsA andB, each containing at
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leasta′n/3 vertices, with no path ofG(p2) connecting the two parts. This will
imply that with the required probability, the union of the two graphsG(p1) and
G(p2) contains a connected component consisting of at leasta′n/3= an vertices,
as needed.

To prove the claim notice first that there are at most 2a′n/m possible ways to
split the components into two setsA andB as required. For each such fixed choice,
the fact thatc = c(G) and Menger’s theorem imply that there are at leastca′n/3
pairwise edge-disjoint paths inG from A to B. As G hasdn/2 edges, at least half
of these paths are of length at most 3d/(ca′) each. The probability that none of
those paths belongs toG(p2) is at most

(
1− p

3d/(ca′)
2

)ca′n/6 ≤
[

1−
(

ε

2d

)3d/(ca′)]ca′n/6

≤ exp

(
−ca′n

6

(
ε

2d

)3d/(ca′))
.

It follows that the probability that there is some partition into setsA andB as
above, with no paths ofG(p2) between them, is at most

2a′n/m exp

(
−ca′n

6

(
ε

2d

)3d/(ca′))
= e−Can,

which completes the proof.�

Simple branching process comparisons show that on anyd-regular graph,G,
if p < 1/(d − 1), then the probability thatG(p) has a large component is small.
Combining this fact with the above proposition easily gives the following theorem,
which can be loosely described as saying that the critical probability for the
emergence of a giant component, in a sequence ofd-regular expanders with girth
tending to infinity, is 1/(d − 1).

THEOREM 3.2. Let d ≥ 2 and let (Gn) be a sequence of d-regular expanders
with girth (Gn) → ∞.

If p > 1/(d − 1), then there exists c > 0 such that:

P
(
Gn(p) contains a component of order at least c|V (Gn)|) → 1 as n → ∞.

If p < 1/(d − 1), then for any c > 0,

P
(
Gn(p) contains a component of order at least c|V (Gn)|) → 0 as n → ∞.

REMARKS.

• The arguments above imply that for every fixedd , the critical probability for the
emergence of a linear size connected component in arandom d-regular graph
on n vertices is almost surely 1/(d − 1) + o(1). Indeed, these graphs do have
some constant size cycles, but their number is, almost surely, small enough that
they can be ignored, including near critical behavior.
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• It might be possible to apply the techniques above and show that vertex transitive
graphs of degreed in which the girth is proportional to the diameter also have
the same critical probability, since it is known (see, e.g., [5]) that such graphs
are good expanders. A rigorous proof may require some care, as the proposition
itself does not suffice here. On the other hand, there are simple examples
showing that without the assumption of vertex transitivity, the conclusion fails.
A counterexample can be constructed by taking some logn 3-regular expanders,
each onn vertices and each of logarithmic girth, by omitting an edge from each
of them, and then by joining them all along a cycle keeping the resulting graph
3-regular.

• One can use the approach above to prove that the giant component in the Erdős–
Rényi random graphG(n,p) emerges atp = 1/n.

As we remarked in Section 2, the condition of expansion is rather strong, and
one would expect similar results to hold under weaker conditions. In the context
of transitive graphs, we suggest the following conjecture.

CONJECTURE3.3. Let{Gn}n∈N be a sequence ofd-regular connected finite
transitive graphs,|Vn| ↗ ∞, and suppose that diameter(Gn) = o (|Vn|/ log|Vn|).
Then the threshold for the existence of a connected component of size|Vn|/10,
with probability 1/2, is uniformly bounded away from 1.

By [12] the threshold is sharp. Note that the conjecture is true for tori; see, for
example, the section on percolation in a wedge in [14]. Recently the conjecture has
been shown to hold for certain Cayley graphs [23]. However, for general graphs,
even if we make a stronger assumption that

diameter(Gn) < |Vn|ε,
for someε < 1, we do not know how to show that the threshold for a giant
component is bounded away from 1.

4. Percolation in Z
d . In 1990 Kesten [18] proved that the critical probability

for bond percolation inZd is 1+o(1)
2d

, where theo(1) error term tends to zero as
d tends to infinity. Hara and Slade [15] obtained a better estimate for the error
term, and Bollobás and Kohayakawa [10] gave a somewhat simpler proof. Here
we sketch a simpler argument giving the result of Kesten, following the method
of [1].

The fact that 1/(2d − 1) is a lower bound for the critical probability is obvious,
hence, we only sketch the proof of the upper bound. It will be convenient to
prove the upper bound for the subgraphG of Z

d induced onZ2 × [d]d−2, where
[d] = {1,2, . . . , d}. We assume, from now on, thatd is sufficiently large. Let
ε > 0 be small, and putp = 1+ε

2d
. It is convenient to first consider, in phase one,
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the random subgraphG(p) of G obtained by taking each edge, randomly and
independently, with probabilityp, and take, in phases two and three, its union
with two additional randomly chosen subgraphsG(pi) with, say,pi = 1

d2 for each
of them.

Split the vertex set ofG into d-dimensional boxes, each isomorphic to[d]d .
Each two neighboring boxes havedd−1 edges connecting them. The basic
approach is to show that in each fixed box, after the first two phases our random
subgraph will have, with high probability, a linear size component with lots of
neighbors in the boundary. The result can then be obtained by taking the additional
fresh random edges of phase three and by using some very rough estimates on
percolation inZ2.

We first need some (known) expansion properties of[d]d . Since what we need
is extremely simple, we include a proof.

LEMMA 4.1. The edge-isoperimetric number of the graph [d]d is at least
1/(2d). That is, for every set A of at most half the vertices of [d]d , there are at
least |A|

2d
edges connecting A to its complement.

PROOF. For every pair of verticesa ∈ A and b /∈ A, take a canonical path
from a to b obtained by changing the coordinates in whicha andb differ one
by one, from left to right, where each coordinate is being changed monotonically.
Each such path must contain an edge connecting a vertex ofA with one in its
complement, and every edge appears in at mostdd+1 paths. Therefore, there are at
least|A|(dd − |A|)/dd+1 edges connectingA to its complement. �

Consider, now, a random subgraphH(p) with p as above, whereH is the
subgraph ofG induced by[d]d . Let δ > 0 be a fixed small real (smaller thanε/2,
say). Call a vertex ofH good if it has at mostδd/10 coordinates which are either
1 or d . Note that each such vertex has at least(2 − 2δ/10)d neighbors insideH .
Putn = dd . Call a connected component ofH(p) an atom if it has at least, say,
d100 vertices. We first claim that with high probability, by the end of phase one,
every vertex ofH(p), besides at most somen/2c1d , has at least one neighbor
which lies inH(p) in an atom, where herec1 = c1(δ) > 0. Indeed, all vertices
but somen/2c2d are good. Each such vertex has at least(1 − δ

10)d coordinates
that are neither 1 nord . Without loss of generality assume these are the first
coordinates. Letv = (v1, . . . , vd) be the vertex. For eachi ≤ δd/5 (say), consider
the connected component of the neighbor(v1, v2, . . . , vi−1, vi + 1, vi+1, . . . , vd)

of v obtained by considering the (forward) branching process only on vertices of
the form(v1, v2, . . . , vi + 1, ui+1, ui+2, . . . ) with eachuj for j > i being in the
set {vj , vj − 1, vj + 1}. In this process we always move from a vertex to ones
with bigger Hamming distance fromv, and if a vertex is obtained more than
once as a child, we omit it. This is done somec(δ) logd generations. An easy
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calculation shows that with probability tending to 1 (asd → ∞), there are no
vertices obtained more than once as a child (and thereby omitted); then, standard
results on branching processes imply that for each fixed neighbor, we manage to
grow an atom with probability bounded away from zero. As the events for distinct
neighbors we are considering are independent, the desired claim follows.

Consider, now, the set of all atoms obtained. These cover together a constant
fraction, sayc3n, of then vertices ofH [with c3 = c3(δ)]. Now add, in phase two,
edges ofH randomly, with probability 1

d2 . We claim that in the resulting graph,

with high probability, no union of atomsA covering at least, say,n/d5 vertices can
be separated from the unionB of all other atoms, when this union also covers at
leastn/d5 vertices. To prove this claim, denote, for any setX of vertices ofH , by
N(X) the set of all its neighbors inH . Consider two possible cases.

CASE 1. |N(A) ∩ N(B)| ≥ n
d10 . In this case there are at leastn

d10 pairwise
edge disjoint paths of length 2 connectingA andB, and the probability none of
them is chosen is at most (

1− 1

d4

)n/d10

.

Even when multiplied by the number of possibilities for choosingA andB, which
is smaller than 2n/d100

, this is negligible.

CASE 2. |N(A)∩N(B)| < n
d10 . Assume, without loss of generality, that|B| ≥

|A|. SinceA ∪ N(A) misses most ofB, it is not very large, and by Lemma 4.1
we get that there are at least somec4n/d7 distinct vertices ofH of distance 2
(in H ) from A [because there are at leastc4n/d6 edges connectingA∪N(A) to its
complement]. Most of these vertices have neighbors that are atoms and, hence, lie
in B. This gives many paths of length 3 betweenA andB, and it is easily seen this
construction gives
(n/d8) pairwise edge disjoint paths fromA to B. As before,
with high probability, all the edges of at least one of those will be chosen in phase
two.

The preceding argument establishes the claim. Moreover, it implies that with
high probability, by the end of the second phase there is a connected component
of the resulting graph that contains all the vertices that were in atoms by the end
of the first phase, besides at mostn/d5 of them. Let us call this component the
distinguished component. Note also that with high probability, all vertices ofH ,
besides at most someO(n/d4), have at least one neighbor in this component.

We can now consider each copy ofH among the ones that split the vertices
of G as a site which, with probability very close to 1, is present; where we make it
present if on each face of its boundary at least 3/4 of the vertices have neighbors
in the distinguished component. By the above discussion this happens with high
probability, and each copy ofH behaves independently in this respect. Taking
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now, in phase three, fresh edges with probability1
d2 , we get that with extremely

high probability, every twosuch neighboring sites become connected, as there are
at leastdd−1/2 potential pairwise disjoint paths of length 2 that connect the two
corresponding distinguished components, and with (very) high probability, at least
one of those will be chosen in the third phase. Call a copy ofH , regarded as a site
in its own right,active if it is present and it is connected to all its present neighbors
in the way just described; so ford sufficiently large the probability that a site is
active is arbitrarily close to 1. Sets of sites at (l∞) distance greater than 1 behave
independently, and it is well known that 1-dependent bond percolation onZ

2 with
a sufficiently high marginal percolates (for much stronger results see [19]); hence,
for d sufficiently large the active sites connect up to form an infinite component.

5. Concluding remarks. It seems plausible that ifG = (V,E) is an expander
with n vertices, andp is above the critical probability for the emergence of a giant
component, then the giant component ofG(p) will have, itself, reasonably strong
expansion properties. The proof of Lemma 2.2 can be easily modified to prove that
this is, indeed, the case at least whenp is close to 1.

PROPOSITION5.1. Let b > 0 and let Gn = (Vn,En) be a sequence of graphs
with maximum degree at most � which are edge b-expanders, with |Vn| → ∞. Let
A > 0 be such that (�e)2bAb/2 < 1/2 and let 1− A ≤ pn ≤ 1 for each n. Then

P

(
Gn(pn) is not a

1

log2 n
edge expander

)
→ 0(20)

as n → ∞.

SKETCH OF PROOF. A simple modification of the proof of Lemma 2.2 shows
that the probability that there is a connected induced subgraph ofGn(pn), whose
sizer is at least log2 n and at mostn/2, which has at mostbr/2 edges emanating
from it to the rest of the graph is at most

n/2∑
r=log2 n

n

r
(�e)r

(
br

br/2

)
(1− pn)

br/2 ≤ n

log2n

∑
r≥log2 n

(�e2bAb/2)r <
2

2 log2 n
.

The desired result follows.�

Consider an infinite transitive graphG. It is believed that uniqueness of the
infinite cluster holds at allp iff G is amenable, see [7]. For the product of an
infinite regular tree andZ, and certain other nonamenable graphs, nonuniqueness
of the infinite cluster at some values ofp is known to hold. We suspect that on
finite transitive graphs this is not the case in the following sense.
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CONJECTURE5.2. Let{Gn}n∈N be a sequence ofd-regular connected finite
transitive graphs,|Vn| ↗ ∞. Givenδ > 0, there isC > 0 so that if for anyn and
v ∈ Gn,

Pp

(
v is in a component of diameter≥ diam(Gn)/2

)
> δ,

then

lim
n

Pp(there is a connected component of size≥ C|Vn|) = 1.

That is, once a fixed vertex is with positive probability in a large cluster in the
sense of diameter, it will be in a cluster which is large in the sense of volume. Note
that the conjecture is true for Euclidean lattice tori and, by the discussion above,
for expanders with growing girth. A useful fact that supports the conjecture is that
finite transitive graphs do not admit bottle necks. The Cheeger constant of a finite
transitive graph is at least the reciprocal of the diameter (see [5]).
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