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ADAPTIVE ESTIMATION OF AND ORACLE INEQUALITIES FOR
PROBABILITY DENSITIES AND CHARACTERISTIC FUNCTIONS1

BY SAM EFROMOVICH

University of Texas at Dallas

The theory of adaptive estimation and oracle inequalities for the case
of Gaussian-shift–finite-interval experiments has made significant progress
in recent years. In particular, sharp-minimax adaptive estimators and exact
exponential-type oracle inequalities have been suggested for a vast set of
functions including analytic and Sobolev with any positive index as well
as for Efromovich–Pinsker and Stein blockwise-shrinkage estimators. Is it
possible to obtain similar results for a more interesting applied problem of
density estimation and/or the dual problem of characteristic function esti-
mation? The answer is “yes.” In particular, the obtained results include ex-
act exponential-type oracle inequalities which allow to consider, for the first
time in the literature, a simultaneous sharp-minimax estimation of Sobolev
densities with any positive index (not necessarily larger than 1/2), infinitely
differentiable densities (including analytic, entire and stable), as well as of
not absolutely integrable characteristic functions. The same adaptive estima-
tor is also rate minimax over a familiar class of distributions with bounded
spectrum where the density and the characteristic function can be estimated
with the parametric rate.

1. Introduction. Univariate probability density estimation is one of the fun-
damental topics in applied and mathematical statistics, and it is not surprising that
first theoretical results about rate-optimal estimation of nonparametric functions
were obtained for this statistical model; the interested reader is referred to a dis-
cussion in books [9, 14, 45, 49, 51]. An important step in the theory of a non-
parametric density estimation was made by Nussbaum [42] who established that,
for the case of a finite-support density and a bounded loss function, there existed
an asymptotic equivalence between the density model and a Gaussian-shift–finite-
interval experiment; the interested reader can find more about the equivalence and
a review of latest results in [5]. Because a Gaussian-shift model is simpler to work
with, over the last decade the nonparametric research has been primarily devoted
to a Gaussian-shift experiment and a vast set of pioneering results, specifically in
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the area of adaptive estimation and oracle inequalities, has been obtained; see a
discussion in [6, 8, 15, 21, 24, 37, 39, 44, 54].

Due to Nussbaum’s equivalence paradigm, there is a belief in the nonparametric
literature that known adaptive estimators and oracle inequalities for a Gaussian-
shift–finite-interval experiment may guide a creation of similar results for density
estimation. This article shows that this belief is valid, and it develops a theory of
adaptive estimation of and oracle inequalities for the probability density which
matches recently obtained results for Gaussian-shift models. Moreover, it is possi-
ble to consider densities with both finite and infinite supports while the equivalence
theory exists only for the density with a finite support, and the article also explores
estimation of characteristic functions.

There are many applications of the obtained results. In particular, exponential-
type oracle inequalities allow the statistician to consider a vast portfolio of blocks
and thresholds including the smaller blocks suggested in the Gaussian-shift lit-
erature. The article also solves a long (more than two decades) standing prob-
lem of adaptive-sharp-minimax estimation of densities with a positive Sobolev
index. Let us recall that, under mean integrated squared error (MISE) criteria, so
far only densities with Sobolev index larger than 1/2 have been studied in the
sharp-minimax literature; see a discussion in [3, 16, 18, 19, 23, 29, 32, 46–48,
50]. Note that, according to [17], no such restriction exists for a Gaussian-shift
experiment. Interestingly, the asymptotic nonequivalence between the two mod-
els is valid whenever the index is at most 1/2, and for years this fact has served
as a pleasing justification of the absence of the theory of a sharp adaptive esti-
mation of those rougher densities; see a discussion in [4, 19]. This article shows
that, fortunately, the nonequivalence does not affect the studied adaptive density
estimation under the MISE criteria. Another important application is the possibil-
ity to consider distributions with not absolutely integrable (but square-integrable)
characteristic functions which never before have been studied in the literature, and
then suggest oracle inequalities for and sharp-minimax estimators of such charac-
teristic functions. Further, for the first time in the literature a data-driven procedure
for estimation of densities supported on a real line is suggested which is simulta-
neously sharp minimax over Sobolev (of any order) and infinitely differentiable
densities (including entire densities like normal and their mixtures or analytic den-
sities like Cauchy and their mixtures). Moreover, the suggested estimator implies
the parametric rate of convergence for classical distributions with bounded spec-
trum (whose Fourier transform has a finite support).

The content of the article is as follows. To make the paper shorter, results are
presented for densities supported on a real line (technical report [22] contains re-
sults for the finite support). Section 2 presents a short review of relevant results
for the case of a Gaussian-shift experiment; these are the results to match. Sec-
tion 3 presents the EP estimators for density and characteristic functions. Section 4
presents new oracle inequalities. Section 5 explores minimaxity of the estimator.
The Stein density estimator, based on the famous Stein shrinkage procedure, is
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explored in Section 6; it is shown that, under a mild assumption, Stein and EP es-
timators have similar asymptotic properties. Discussion of results is deferred until
Section 7. Section 8 contains proofs; some of its technically involved parts, includ-
ing new moment and exponential inequalities for Sobolev statistics, are placed in
the Appendix.

In what follows C’s denote generic positive constants and os(1)’s denote generic
finite sequences which vanish as s → ∞.

2. Review of relevant results for a Gaussian-shift experiment. Consider a
Gaussian-shift–finite-interval experiment dY (t) = f (t) + n−1/2 dB(t), 0 ≤ t ≤ 1,
where Y(t) is an observed signal, f is an unknown square-integrable signal/shift
of interest, B(t) is a standard Brownian motion and n is a positive integer which
later will denote the sample size in a density model. Note that another customarily
used name for the problem is the filtering a signal from a white Gaussian noise.
Traditionally the model is rewritten in Fourier, wavelet or any other orthogonal
basis domain; then an equivalent sequence model is considered:

yj = θj + n−1/2ξj , j = 1,2, . . . ,(2.1)

where ξk are independent standard Gaussian random variables, θ = {θ1, θ2, . . .} is
an unknown vector-parameter of interest, and

∫ 1
0 f 2(t) dt = ∑∞

j=1 θ2
j =: ‖θ‖2 <

∞. The interested reader can find a comprehensive discussion of the sequence
model (2.1) in [36]. The Efromovich–Pinsker (EP) blockwise-shrinkage estimator
is defined as

θ̃j :=
K∑

k=1

μ̃kyj I (j ∈ Bk),(2.2)

where the shrinkage (smoothing) coefficients/weights are

μ̃k := ‖y‖2
k − Lkn

−1

‖y‖2
k

I
(‖y‖2

k ≥ (1 + tk)Lkn
−1)

,(2.3)

I (·) is the indicator, {1 = b1 < b2 < · · ·} is a given sequence of positive integers
and then Bk := {bk, bk + 1, . . . , bk+1 − 1} and Lk := bk+1 − bk are corresponding
blocks and their lengths, tk > 0 are thresholds (some authors refer to 1 + tk as
a penalty), ‖y‖2

k := ∑
j∈Bk

y2
j and this statistic is often referred to as a Sobolev

statistic, and an integer K = K(n) is a cutoff defined from the relation
∑K

k=1 Lk <

n1−1/ ln(n+1) ≤ ∑K+1
k=1 Lk (see a comment on this choice in Section 7). The risk

E‖μky − θ‖2
k is minimized by a shrinkage coefficient (oracle)

μk := ‖θ‖2
k

‖θ‖2
k + Lkn−1

,(2.4)

which depends on a quantity ‖θ‖2
k := ∑

j∈Bk
θ2
j (so-called Sobolev functional) un-

available to the statistician. Then θ̃∗ := (θ̃∗
1 , θ̃∗

2 , . . .) with θ̃∗
j := μkyj , j ∈ Bk can
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serve as a (linear) blockwise-shrinkage oracle which, in its turn, is a blockwise ver-
sion of the famous Wiener filter. The oracle has excellent minimax properties; in
particular under a mild assumption on blocks and thresholds this oracle is simulta-
neously sharp minimax over Sobolev and analytic function classes; the interested
reader can find a discussion in [17, 19, 36, 52, 53]. Then it is natural to use the
mean squared error [or mean integrated squared error (MISE) for the dual filtering
problem] of this oracle as a benchmark for the risk of any blockwise-shrinkage
estimator. A simple calculation yields that the oracle’s risk is

E‖θ̃∗ − θ‖2 =
K∑

k=1

∑
j∈Bk

E(μkyj − θj )
2 + ∑

k>K

‖θ‖2
k

(2.5)

= n−1
K∑

k=1

Lkμk + ∑
k>K

‖θ‖2
k.

Now we can formulate a known technical result which will imply oracle in-
equalities of interest. To do this, let us recall the Stirling formula for the Gamma
function �(L/2), L = 1,2, . . . (see [1]),

1 < s∗
L ≤ �(L/2)

(2π)1/2e−L/2(L/2)(L/2)−1/2 ≤ s∗∗
L < ∞,

(2.6)
s∗∗
L → 1 as L → ∞.

LEMMA 2.1 ([21]). Consider a particular block Bk and assume that 0 <

tk ≤ 1. Then there exists an absolute constant C0 such that for any qk ∈
[1/4,min(1,1/4tk)) and any νk > 0 the EP estimator satisfies

E‖θ̃ − θ‖2
k ≤ E‖θ̃∗ − θ‖2

k + n−1Lk[μkD
∗
k + D∗∗

k ],(2.7)

where E‖θ̃∗ − θ‖2
k = n−1μkLk ,

D∗
k := νk + (1 + ν−1

k )
[
C

1/2
0 L−1

k

(
1 + (1 − q

1/2
k )−2t−1

k

)
+ C0μk(Lkt

2
k )−2(1 + 2tk)

3(2.8)

+ min
(
μk(1 + tk),2tk

)
I (‖θ‖2

k < 2Lktkn
−1)

]
and

D∗∗
k := (1 + ν−1

k )L−1
k

[
L

1/2
k /s∗

Lk
+ 8

(
(Lktk)

−1/4 + (Lkt
2
k )−1/2)]

× exp{−Lk[qktk − ln(1 + qktk)]/2}(2.9)

× I
(‖θ‖2

k < (1 − q
1/2
k )2Lktkn

−1)
.

REMARK 2.1. The condition tk → 0, k → ∞ is necessary for the estimate to
sharply mimic the oracle’s risk; this explains why only the case tk ≤ 1 is consid-
ered in Lemma 2.1; see [24]. Further, it is easy to recognize that in (2.7) the term
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D∗∗
k plays more important role than the D∗

k ; indeed D∗∗
k defines the remainder in

the oracle inequality while D∗
k defines the multiplicative factor. As a result, for

mimicking the oracle’s risk the term D∗∗
k should vanish with an appropriate rate

while the term D∗
k may vanish with any rate as k → ∞. Further, the following

lower bound of [21]:

E‖θ̃ − θ‖2
k ≥ tk

s∗∗
Lk

(1 + tk)
n−1L

1/2
k

(2.10)
× exp{−Lk[tk − ln(1 + tk)]/2}, ‖θ‖k = 0,

allows one to appreciate the accuracy of the exponential factor in D∗∗
k [compare

exponential factors in (2.9) and (2.10)]. The exponential factor in D∗∗
k is critical

because it allows one to use smaller blocks; see a discussion in [6–8, 12, 19].

Now we can formulate several types of oracle inequalities suggested in the lit-
erature and based on Lemma 2.1. These are the results to match for density esti-
mation.

THEOREM 2.1 ([21]). Suppose that the assumption of Lemma 2.1 holds for
all k ∈ {1,2, . . . ,K}. Then:

(a) Risk of the EP estimate is bounded from above by the following oracle in-
equality:

E‖θ̃ − θ‖2 ≤ E‖θ̃∗ − θ‖2 + n−1
K∑

k=1

Lk[μkD
∗
k + D∗∗

k ].(2.11)

(b) Denote �m := maxm≤k≤K D∗
k , Sm := ∑K

k=m LkD
∗∗
k and ϒ0 := {k :μkD

∗
k +

D∗∗
k ≥ 1}. Then

E‖θ̃ − θ‖2 ≤ min
1≤m≤K

[
(1 + �m)E‖θ̃∗ − θ‖2 + n−1

(
Sm +

m−1∑
k=1

Lk

)]

(2.12)
+ n−1

∑
k∈ϒ0

Lk[μkD
∗
k + D∗∗

k ],

where by convention
∑0

j=1 = 0.

(c) Set ϒ̄0 := {k : D̄∗
k + D̄∗∗

k ≥ 1} with D̄∗
k and D̄∗∗

k defined as in (2.8) and (2.9)
only with μk and indicator functions replaced by 1, and then, following part (b),
define corresponding �̄m, S̄m and ϒ̄0. Also, let us modify the EP estimator θ̃j by
considering θ̌j := yj for j ∈ Bk , k ∈ ϒ̄0 and θ̌j := θ̃j otherwise. Then

E‖θ̌ − θ‖2 ≤ min
1≤m≤K

[
(1 + �̄m)E‖θ̃∗ − θ‖2 + n−1

(
S̄m +

m−1∑
k=1

Lk

)]

(2.13)
+ n−1

∑
k∈ϒ̄0

Lk.
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3. EP density and characteristic function estimators. Suppose that X1, . . . ,

Xn, n > 3 are i.i.d. realizations according to an unknown square-integrable on a
real line density f (x), x ∈ (−∞,∞); it is not assumed that the density is positive
on a real line. Let us recall that

f (x) = (2π)−1
∫ ∞
−∞

h(u)e−iux du, x ∈ (−∞,∞),(3.1)

where

h(u) := E{eiuX} =
∫ ∞
−∞

eiuxf (x) dx, u ∈ (−∞,∞)(3.2)

is the characteristic function corresponding to f . If the characteristic function is
not absolutely integrable, then the inverse formula (3.1) is understood in the sense
of Plancherel’s theorem. The problem is to estimate the density and the character-
istic function under the MISE criterion.

Recall that the characteristic function satisfies h(−u) = h(u), the complex con-
jugate of h(u). Thus we can consider only h(u), u ∈ [0,∞) and then f (x) =
π−1 ∫ ∞

0 Re{h(u)e−iux}du. Now we are following the construction of the EP es-
timator for the Gaussian-shift case. We divide a half-line [0,∞) into a sequence
of nonoverlapping blocks (intervals) Bk := [b′

k, b
′
k+1), 0 = b′

1 < b′
2 < · · · with the

corresponding lengths Lk := b′
k+1 − b′

k = ∫
Bk

du. Then the following abuse of the
previous notation will be handy. Set

‖y‖2
k :=

∫
Bk

|ĥ(u)|2 du,(3.3)

where

ĥ(u) := n−1
n∑

l=1

exp{iuXl}(3.4)

is the empirical characteristic function estimator. Then we define an EP density
estimator as

f̃ (x) := π−1
∫ ∞

0
Re{h̃(u)e−iux}du, x ∈ (−∞,∞).(3.5)

Here

h̃(u) :=
K∑

k=1

μ̃kĥ(u)I (u ∈ Bk), u ≥ 0(3.6)

is the EP characteristic function estimator, and μ̃k is defined in (2.3). To make the
similarity complete, we denote

‖θ‖2
k :=

∫
Bk

|h(u)|2 du, ‖θ̃‖2
k :=

∫
Bk

|h̃(u)|2 du(3.7)
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and

‖θ̃ − θ‖2
k :=

∫
Bk

|h̃(u) − h(u)|2 du.(3.8)

To shed light on the above-introduced notation, note that according to Plancherel’s
identity the MISE of EP density estimator (3.5) can be written as

E

∫ ∞
−∞

(
f̃ (x) − f (x)

)2
dx = π−1E

∫ ∞
0

|h̃(u) − h(u)|2 du

(3.9)

= π−1E

∞∑
k=1

‖θ̃ − θ‖2
k.

Further, using (2.4) we define the corresponding oracles f̃ ∗(x) and h̃∗(u) as

f̃ ∗(x) := π−1
K∑

k=1

μk

∫
Bk

Re{ĥ(u)e−iux}du, x ∈ (−∞,∞),(3.10)

h̃∗(u) :=
K∑

k=1

μkĥ(u)I (u ∈ Bk), u ≥ 0.(3.11)

Also we set ‖θ̃∗‖2
k := ∫

Bk
|h̃∗(u)|2 du and ‖θ̃∗ − θ‖2

k := ∫
Bk

|h̃∗(u) − h(u)|2 du.
Finally, if an EP density estimate (or the oracle) takes on negative values, then

its nonnegative projection may be considered; see Section 3.1 in [19]. Further, if a
monotonicity assumption is known, then methods of Efromovich [20] can be used.

REMARK 3.1. According to (3.9), for both the density and characteristic func-
tion settings, it suffices to present bounds on their MISEs via E‖θ̃ − θ‖2 :=
E

∑∞
k=1 ‖θ̃ − θ‖2

k . This approach will be used in Section 4. Also, to avoid any
confusion with the Gaussian-shift case, we shall refer to the above-introduced θ̃ as
the EP density-model estimator.

4. Exponential-type oracle inequality for EP estimator. In what follows c1
denotes the universal positive constant C2 of de la Peña and Montgomery-
Smith [13], c2 denotes the universal positive constant K in the Bernstein-type
inequality (3.18) of Giné, Latala and Zinn [27], d := d(f ) := ∫ ∞

−∞ |h(u)|2 du =
2π

∫ ∞
−∞ f 2(x) dx, d∗ := d∗(f,L) := minz>0(z + Lz−1 ∫

{x : f (x)≥z} f 2(x) dx), and
for a kth block

λ1 := λ1(Lk, tk, d, d∗)

:= (dc2
1c2)

−1(
1 − min(1/2, t

1/4
k )

)2(
1 − (Lk + 1)−1/2)2

× min
(

1

[1 + 4n−1tk(2d−1/2 + 3n−1d−1tk)] ,(4.1)
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c1d

tk[8d∗(f,Lk) + 3(n−1Lktk)1/2] ,

d[nc4
1t

−4
k L

−5/2
k ]1/3

[(2d)1/2 + 20n−1tk]1/3 ,
c

3/2
1 dn1/2

2t
3/2
k Lk

)
,

λ2 := λ2(Lk, tk, d)(4.2)

:= nmin(1/4, t
1/2
k )

Lktkc
2
1

(1 − min(1/2, t
1/4
k ))2(1 − (Lk + 1)−1/2)2

3c−1
1 + 2dL−1

k t−1
k + 8n−1(2d1/2 + tk)

,

λ3 := λ3(Lk, tk, d) := min(1/4, t
1/2
k )

6tkd1/2

(1 − (Lk + 1)−1/2)2

1 + (n−1tkL
3/2
k d−1)1/2

.(4.3)

THEOREM 4.1. Suppose that X1, . . . ,Xn, n > 3 are i.i.d. according to a
square-integrable density f ∈ L2(−∞,∞). Consider a particular block Bk with
length Lk > 0 and a particular threshold level tk > 0. Then for any νk ∈ (0,1)

the following oracle inequality holds for the EP density-model estimator defined
in Section 3:

E‖θ̃ − θ‖2
k ≤ E‖θ̃∗ − θ‖2

k + n−1Lk[μkD
′
k + D′′

k ],(4.4)

where

E‖θ̃∗ − θ‖2
k = n−1Lkμk[1 − μkL

−1
k ‖θ‖2

k],(4.5)

D′
k := νk(1 − μkL

−1
k ‖θ‖2

k) + (1 + ν−1
k )

× [
L

−1/2
k

(
15d1/2 + 3d(1 + L

−1/2
k )(1 + t−1

k )
)

(4.6)

+ min
(
μk(1 + tk),2tk

)
I (‖θ‖2

k < 2Lktkn
−1)

]
,

D′′
k := (1 + ν−1

k )[L−1
k (d + 3d1/2tk)]1/2

(4.7)
× G(Lk, tk, d, d∗)I (‖θ‖2

k < L
1/2
k tkn

−1),

G(Lk, tk, d, d∗) := [c1c2 exp{−t2
k Lkλ1}

(4.8)
+ 2c1 exp{−t2

k Lkλ2} + exp{−t2
k Lkλ3}]1/2.

Theorem 4.1 implies a result which matches Theorem 2.1.

COROLLARY 4.1. Let the assumption of Theorem 4.1 hold for all k ∈
{1,2, . . . ,K}. Then assertions (a)–(c) of Theorem 2.1 are valid for the EP density-
model estimator with D∗

k and D∗∗
k replaced by D′

k and D′′
k , respectively.
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These results yield two important conclusions: (i) It is possible to suggest iden-
tical blockwise-shrinkage estimators for the Gaussian-shift, density and character-
istic function estimation models. (ii) The MISEs of those data-driven estimators
satisfy similar exponential-type oracle inequalities.

REMARK 4.1. While there is a difference between the density-model oracle’s
error E‖θ̃∗−θ‖2

k , presented in (4.5), and the corresponding Gaussian-shift oracle’s
error E‖θ̃∗ − θ‖2

k = n−1Lkμk , this difference bears no consequences for nonpara-
metric cases where the MISE vanishes more slowly than n−1. The latter is based
on a plain observation that for any square-integrable density the term μkL

−1
k ‖θ‖2

k

vanishes as k → ∞; further, note that μkL
−1
k ‖θ‖2

k ≤ L−1
k πd and if the statisti-

cian uses blocks satisfying Lk ≥ L(n) → ∞, n → ∞, then this term vanishes
uniformly over the blocks as n → ∞.

REMARK 4.2. In a majority of asymptotic applications of Theorem 4.1 the
main exponential term in (4.8) is the one containing λ1. Further, let us note that
d∗(f,L) ≤ 2 min(supx f (x), (dL)1/2). This inequality allows one to analyze λ1
for bounded and unbounded densities.

5. Sharp minimaxity. In this section the above-established oracle inequality
is used to prove a simultaneous sharp minimaxity of the EP density estimate for
Sobolev and infinitely differentiable distribution classes as well as its rate mini-
maxity for distribution classes with bounded spectrum where the MISE converges
with the parametric rate n−1. The interested reader can find a thorough discus-
sion of these classes in [3, 19, 30–36, 38, 40, 51, 55]. Below these distribution
classes are defined via corresponding characteristic functions which are assumed
to be square integrable, and let us recall that if the characteristic function h be-
longs to L2(−∞,∞), then the corresponding cumulative distribution function is
absolutely continuous and its density f belongs to La(−∞,∞) for any 1 ≤ a ≤ 2;
see Theorem 11.6.1 in [38].

We consider those distribution classes in turn. Let α and Q be positive real
numbers; then a Sobolev class (of order α) is defined as

S(α,Q) :=
{
f (x) :π−1

∫ ∞
0

(1 + |u|2α)|h(u)|2 du ≤ Q,

(5.1)
h(u) =

∫ ∞
−∞

f (x)eiux dx

}
.

THEOREM 5.1 (Sobolev class). Let a sample X1,X2, . . . ,Xn of n i.i.d. obser-
vations with a square-integrable density f ∈ L2(−∞,∞) be given. Suppose that
blocks and thresholds of EP estimator f̃ , defined in (3.5), satisfy

Lk+1/Lk → 1 and sup
f

D′
k → 0

(5.2)
as k → ∞, supf

K∑
k=1

LkD
′′
k < δn,
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where the supremums are taken over f ∈ S(α,Q) and δn = non(1). Then

sup
f ∈S(α,Q)

{
E

∫ ∞
−∞

(
f̃ (x) − f (x)

)2
dx

}(
1 + on(1)

)
(5.3)

= inf
f̌

sup
f ∈S(α,Q)

E

∫ ∞
∞

(
f̌ (x) − f (x)

)2
dx

(5.4)
= P(α,Q)n−2α/(2α+1)(1 + on(1)

)
,

where in (5.4) the infimum is taken over all possible density estimates f̌ based on
the sample and parameters α and Q, and P(α,Q) := (2α + 1)[π(2α + 1)(α +
1)α−1]−2α/(2α+1)Q1/(2α+1) is the Pinsker constant.

Let us recall that only Sobolev classes of order α > 1/2 have been considered
in the literature so far; see a discussion in [11, 19, 29, 46, 50].

Now let us consider another popular (specifically in the literature devoted to
characteristic functions and stable distributions) class of infinitely differentiable
distributions

A(r, γ,Q)
(5.5)

:=
{
f :π−1

∫ ∞
0

|eγur

h(u)|2 du ≤ Q, h(u) =
∫ ∞
−∞

f (x)eiux dx

}
.

Here γ and Q are positive real numbers and r ∈ (0,2]. A thorough discussion of
this class can be found in the classical books [38, 40, 55] as well as in [2, 19,
33–35, 39]. This class includes analytic, stable and entire distributions with more
familiar particular examples being Cauchy mixtures (where r = 1) and Normal
mixtures (where r = 2).

THEOREM 5.2 (Infinitely differentiable class). Let the assumption of Theo-
rem 5.1 hold with the supremums in (5.2) taken over f ∈ A(r, γ,Q) and δn =
on(1)[ln(n)]1/2. Then

sup
f ∈A(r,γ,Q)

{
E

∫ ∞
−∞

(
f̃ (x) − f (x)

)2
dx

}(
1 + on(1)

)
(5.6)

= inf
f̌

sup
f ∈A(r,γ,Q)

E

∫ ∞
−∞

(
f̌ (x) − f (x)

)2
dx

(5.7)
= π−1n−1[ln(n)/(2γ )]1/r (1 + on(1)

)
,

where the infimum in (5.7) is taken over all estimates f̌ based on the sample and
parameters (r, γ,Q).
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Finally, let s denote a positive real number, and consider a familiar class of
distributions with bounded spectrum

B(s) =
{
f :h(u) = 0, |u| > s, h(u) =

∫ ∞
−∞

f (x)eiux dx

}
.(5.8)

According to Theorem 11.12.1 in [38], a distribution with bounded spectrum,
which is not from a uniform family, is an entire order of 1 and of exponential
type. Then, as it is emphasized by Ibragimov and Khasminskii [33, 34], we are
dealing with essentially infinite-dimensional class. Nonetheless, they were the first
to recognize that the sharp-minimax MISE is π−1sn−1(1 + on(1)), that is, the
MISE’s convergence is parametric! The parametric convergence is too fast for the
essentially nonparametric adaptive EP estimator; however, the following result still
holds.

THEOREM 5.3 (Bounded spectrum class). Let the assumption of Theorem 5.1
hold with the supremums in (5.2) taken over f ∈ B(s) and δn = os(1)s. Then

sup
f ∈B(s)

{
E

∫ ∞
−∞

(
f̃ (x) − f (x)

)2
dx

}(
1 + on(1) + os(1)

)
(5.9)

= inf
f̌

sup
f ∈B(s)

E

∫ ∞
−∞

(
f̌ (x) − f (x)

)2
dx = π−1sn−1(

1 + on(1)
)
,(5.10)

where the infimum in (5.10) is taken over all estimates f̌ based on the sample and
parameter s.

REMARK 5.1. Using Remark 4.2, it is plain to verify that a majority of known
portfolios of blocks and thresholds, suggested in the sharp-minimax Gaussian-shift
literature, simultaneously satisfy conditions of Theorems 5.1–5.3. Just to point to
a specific and simple example with relatively “small” logarithmic blocks, consider
{(Lk = ln3(k + 3), tk = 1/ ln(ln(k + 3))), k = 1,2, . . .}. This portfolio simultane-
ously satisfies assumptions of Theorems 5.1–5.3.

We may conclude that the adaptive EP density (or characteristic function) esti-
mator is simultaneously sharp minimax over Sobolev and infinitely differentiable
classes of distributions. On top of this nice property, the adaptive estimator is also
rate minimax over distributions with bounded spectrum, and its MISE attains the
parametric-minimax MISE when the spectrum band increases. To the best of the
author’s knowledge, this is the first known example of such simultaneous adaptive
density estimation, as well as the first example of a simultaneous adaptive sharp-
minimax estimation for classes of distributions which include both absolutely in-
tegrable and not absolutely integrable characteristic functions.

REMARK 5.2. Let us note that due to Plancherel’s identity, results of The-
orems 5.1–5.3, except for using an extra factor 2π in the formulas for minimax
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MISEs, hold for the dual problem of characteristic function estimation. As a re-
sult, the EP characteristic function estimator (3.6) is simultaneously sharp mini-
max over Sobolev and infinitely differentiable distribution classes, and it is also
rate minimax over classes of distributions with bounded spectrum.

6. Stein estimator. The blockwise-shrinkage literature, devoted to Gaussian-
shift experiments, also explores a Stein (blockwise-shrinkage) estimator which,
using notation of Section 2, can be written as

θ̄j := ‖y‖2
k − (1 + tk)Lkn

−1

‖y‖2
k

I
(‖y‖2

k ≥ (1 + tk)Lkn
−1)

yj , j ∈ Bk.(6.1)

Note that if the EP estimator uses a hard block-thresholding, a Stein estimator
uses a soft one. Then, according to the paradigm of Section 3, the Stein density
estimator can be defined as

f̄S(x) := π−1
∫ ∞

0
Re{h̄S(u)e−iux}du,(6.2)

where the Stein characteristic function estimator is

h̄S(u) :=
K∑

k=1

μ̄kĥ(u)I (u ∈ Bk), u ≥ 0(6.3)

and, recalling notation (3.3),

μ̄k := ‖y‖2
k − (1 + tk)Lkn

−1

‖y‖2
k

I
(‖y‖2

k ≥ (1 + tk)Lkn
−1)

.(6.4)

The following proposition allows one to explore the Stein density (or characteristic
function) estimator via its EP counterpart. Recall that G(L, t, d, d∗) was defined
in (4.8).

THEOREM 6.1. Let f̃ and f̄S denote EP and Stein estimators which use the
same blocks, thresholds and K . Suppose that the assumption of Theorem 4.1 holds.
Then

E

∫ ∞
−∞

(
f̄S(x) − f̃ (x)

)2
dx

≤ π−1n−1
K∑

k=1

Lkμk

× [
12L

−1/2
k

(
1 − (Lk + 1)−1/2)−2(

d1/2 + dt−1
k (1 + L

−1/2
k )

)
(6.5)

+ 2tkI
(‖θ‖2

k ≥ (1/2)Lktkn
−1)]
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+ π−1n−1
K∑

k=1

Lkt
2
k (1 + tk)

−1G2(Lk, tk/2, d, d∗)

× I
(‖θ‖2

k < (1/2)L
1/2
k tkn

−1)
.

This result implies that, under the MISE criteria and for the portfolios of blocks
and thresholds discussed in Section 5, the two estimators perform similarly.

7. Discussion.

7.1. Parameter K in EP estimator. In the theory of oracle inequalities this pa-
rameter is assumed to be given; see [8, 21]. For a minimax (or adaptive) setting
it should be chosen in such a way that the squared bias of the oracle is negligible
with respect to its variance. For instance, for a Sobolev class with index α this
is achieved if h̃∗(u) is zero on frequencies larger than γnn

−1/(2α+1) where γn in-
creases to infinity as slowly as desired; this remark explains how K := K(n) was
chosen in Section 2. At the same time, for infinitely differentiable distributions
K(n) may be logarithmic, that is, dramatically smaller than for Sobolev functions.
Further, for distributions with bounded spectrum K(n) may be any increasing-to-
infinity sequence.

7.2. Sobolev classes with index α ≤ 1/2. This is a new addition to the set of
distributions covered by the theory of minimax estimation and oracle inequalities.
Obviously there were serious technical difficulties in dealing with such Sobolev
densities. Also, the case of Sobolev densities with index larger than 1/2 is very
nice and appealing because it implies that the characteristic function is absolutely
integrable, the corresponding density is defined by Fourier inverse formula (3.1)
and it is bounded and uniformly continuous. Sobolev characteristic functions with
index α ≤ 1/2 do not have these nice properties and, moreover, the inverse formula
(3.1) is understood, according to Plancherel’s theorem, as a limit in L2(−∞,∞)-
norm of (2π)−1 ∫ A

−A e−iuxh(u)du, A → ∞. At the same time, it is important to
note that the characteristic function is not necessarily absolutely integrable and,
for instance, there is a vast class of Pólya-type characteristic functions that are not
absolutely integrable. Namely, according to the famous Pólya condition, a real-
valued and continuous function g(u), u ∈ (−∞,∞) is the characteristic function
of an absolutely continuous distribution if g(0) = 1, g(−u) = g(u), g(u) is convex
for positive u and g(u) → 0 as u → ∞; see [40], page 70. Note that the condi-
tion involves no restriction on how fast g(u) must vanish. Characteristic functions
h(u) = [1 + |u|β]−1, 1/2 < β ≤ 1 from the Linnik distribution family as well as
h(u) = [1 + |u|2]−ρ , 1/4 < ρ ≤ 1/2, studied by Karl Pearson, are particular ex-
amples of characteristic functions which are square integrable but not absolutely
integrable; see [2, 43].
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7.3. Why MISE? A choice of the loss function in the density estimation liter-
ature has been always a source of hot debates thanks to statisticians passionately
devoted to L1-distance, different Lp-distances with p > 1, Hellinger distances,
distances based upon Kullback–Leibler numbers, etc. The interested reader can
find a discussion of these approaches in [9, 14, 19]. Until now, there was no ob-
jective argument in favor of the L2-distance/MISE because it was always assumed
that underlying characteristic functions were absolutely integrable. The inclusion
of not absolutely integrable characteristic functions changes the situation because
now Plancherel’s theorem (and correspondingly L2-norm) is the necessary tool.
This remark, at least partially, may serve as a justification for using the MISE
criteria.

7.4. Distributions with finite support. In many applied problems the statis-
tician knows support of the density; circular data is a familiar example. Suppose
that the support is [0,1]. Then, following the Gaussian-shift approach of Section 2,
the density can be written in Fourier domain as f (x) = [1 + ∑∞

j=1 θjϕj (x)]I (x ∈
[0,1]), θj := ∫ 1

0 f (x)ϕj (x) where {1, ϕj (x) := 21/2 cos(πjx), j = 1,2, . . .} is a
classical cosine basis on [0,1]. Further, ‖y‖2

k := ∑
j∈Bk

y2
j , yj := n−1 ∑n

l=1 ϕj (Xl)

may serve as an analogue of ‖y‖2
k in the Gaussian-shift and probability settings of

Sections 2 and 3 (note that here we again intentionally use the same notation).
Then the EP finite-support density estimator is defined as

f̃ (x) :=
[

1 +
K∑

k=1

μ̃k

∑
j∈Bk

yjϕj (x)

]
I (x ∈ [0,1]),(7.1)

where K and μ̃k are the same as in Sections 2 and 3. Corresponding exponential
inequalities and minimax results can be found in the technical report [22].

7.5. Different types of oracle inequalities. Corollary 4.1 (or Theorem 2.1)
presents three different types of oracle inequalities, and each may be useful on its
own. Inequality (2.13) is useful because all its components, apart from the oracle’s
MISE, depend only on blocks and thresholds but not on an estimated function. This
type of oracle inequalities can be found in [6–8]. The other types of inequalities,
originated in [18], are more complicated because the remainder depends on an es-
timated function; but this complexity may be useful. As an example, let us present
a discussion of the, phenomenon, mentioned in Remark 2.1, of the necessity for
thresholds to vanish for sharp mimicking of the oracle’s MISE. The nonparamet-
ric blockwise-shrinkage literature contains results of intensive numerical studies
which indicate excellent performance of estimates with nonvanishing thresholds;
see a discussion in [6, 7, 10, 12]. Do these studies contradict the theory? To answer
this question, let us examine oracle inequalities in Theorem 2.1. Oracle inequal-
ity (2.13) cannot shed light on the phenomenon because tk must vanish for the
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right-hand side of (2.13) to converge to the oracle’s MISE. On the other hand, or-
acle inequalities (2.11) and (2.12) can explain the phenomenon. Indeed, we can
relax the assumption on thresholds by assuming that an estimated density (or shift
function) satisfies∑K

k=1 Lkμk min(μk(1 + tk),2tk)I (‖θ‖2
k < 2Lktkn

−1)∑K
k=1 Lkμk

= on(1).

It is not difficult to check numerically that this assumption often holds for functions
used in numerical studies. Thus, oracle inequalities (2.11) and (2.12) have allowed
us to shed a new light on the above-mentioned numerical results.

Further, let us note that an assumption like (5.2), by including terms depending
on an estimated density, bears the same flavor as the oracle inequalities (2.11)
and (2.12) because it allows the statistician to justify/explain a special portfolio of
blocks and thresholds for a targeted class of functions.

7.6. Possible applications in related problems. There are many related ap-
plied problems where the obtained results may motivate new research and inno-
vative procedures, with particular examples being survival analysis, deconvolu-
tion, biased data, error density estimation, time series analysis, etc. The developed
methodology can be of special interest for the analysis of wavelet estimators. A dis-
cussion of possible extensions can be found in [5, 22, 25, 26, 28, 41, 45].

8. Proofs. In what follows �̂k := L−1
k ‖y‖2

k − n−1 and �k := L−1
k ‖θ‖2

k .

PROOF OF THEOREM 4.1. A direct calculation implies that

Eĥ(u) = h(u), E|ĥ(u) − h(u)|2 = n−1(
1 − |h(u)|2)

.(8.1)

Recall that E‖θ̃∗ − θ‖2
k = E

∫
Bk

|μkĥ(u) − h(u)|2 du and write for any ν ∈ (0,1),

E‖θ̃ − θ‖2
k = E

∫
Bk

∣∣h̃(u) − h(u)
∣∣2 du

= E

∫
Bk

|μ̃kĥ(u) − h(u)|2 du

= E

∫
Bk

∣∣(μkĥ(u) − h(u)
) + (μ̃k − μk)ĥ(u)

∣∣2 du(8.2)

≤ (1 + ν)E

∫
Bk

|μkĥ(u) − h(u)|2 du

+ (1 + ν−1)E

∫
Bk

|(μ̃k − μk)ĥ(u)|2 du.
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Using (8.1) we get

E

∫
Bk

|μkĥ(u) − h(u)|2 du

= E

∫
Bk

∣∣μk

(
ĥ(u) − h(u)

) − (1 − μk)h(u)
∣∣2 du

= μ2
kE

∫
Bk

|ĥ(u) − h(u)|2 du + (1 − μk)
2
∫
Bk

|h(u)|2 du

(8.3)
= n−1μ2

k

∫
Bk

(
1 − |h(u)|2)

du + (1 − μk)
2Lk�k

= Lk

[
�2

kn
−1

(�k + n−1)2 + n−2�k

(�k + n−1)2

]
− n−1μ2

kLk�k

= n−1Lkμk − n−1μ2
kLk�k.

In particular, this verifies (4.5). The second expectation in the right-hand side of
(8.2) can be written as

E

{∫
Bk

|(μ̃k − μk)ĥ(u)|2 du

}
= E{(μ̃k − μk)

2Lk(�̂k + n−1)} =: E{A}.

Let us evaluate the term A. Note that (2.3) can be rewritten as μ̃k = �̂k(�̂k +
n−1)−1I (�̂k ≥ tkn

−1). In what follows we skip subscripts whenever no confusion
may occur. Write

A = n−2(�̂ − �)2I (�̂ ≥ tn−1)L

(�̂ + n−1)(� + n−1)2
+ μ2L(�̂ + n−1)I (�̂ < tn−1) =: A1 + A2.

Set q := 1 − (L + 1)−1/2 and evaluate A1:

A1 = n−2(�̂ − �)2I (�̂ ≥ tn−1)L

(�̂ + n−1)(� + n−1)2

[
I
(
� < (1 − q)tn−1) + I

(
� ≥ (1 − q)tn−1)]

≤ n−2(�̂ − �)2L

(�̂ + n−1)(� + n−1)2
I (�̂ − � > qtn−1)I

(
� < (1 − q)tn−1)

+ n−1(�̂ − �)2L

(� + n−1)2 I
(
� ≥ (1 − q)tn−1) =: A11 + A12.

Plainly A11 ≤ L(�̂ − �)I (�̂ − � > qtn−1)I (� < (1 − q)tn−1), and using the
Cauchy–Schwarz inequality we get

E{A11} ≤ LE1/2{(�̂ − �)2}Pr1/2{�̂ − � > qtn−1}I (
� < (1 − q)tn−1)

.

To continue we need a result that will be proved in the Appendix.
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LEMMA 8.1. Let the assumption of Theorem 4.1 hold. Set d :=∫ ∞
−∞ |h(u)|2 du, dj := maxv∈B

∫
B(|h(u−v)|j +|h(u+v)|j ) du, d∗ := minz>0(z+

Lz−1 ∫
{x:f (x)≥z} f 2(x) dx). Then:

(a) The moment inequality holds:

E(�̂ − �)2 ≤ L−1n−1[2d1� + d2n
−1].(8.4)

(b) For q = 1 − (L + 1)−1/2,

Pr{�̂ − � > qtn−1}I (
� < (1 − q)tn−1) ≤ G2(L, t, d, d∗),(8.5)

where G(L, t, d, d∗) is defined in (4.8).
(c) The following relations between d1, d2 and d hold:

d1 ≤ [2Ld2]1/2 and d2 ≤ d.(8.6)

Using Lemma 8.1 we get

E{A11}
(8.7)

≤ n−1L[L−1(d + 23/2d1/2t)]1/2G(L, t, d, d∗)I
(
� < (1 − q)tn−1)

.

Note that (1 − q)−1 = (L + 1)1/2, and then using (8.4) and (8.6) we get

E{A12} ≤ n−1L(� + n−1)−2L−1n−1[2d1� + d2n
−1]I (

� ≥ (1 − q)tn−1)
≤ n−1L[L−1(μ2d1 + d2)]I (

� ≥ (1 − q)tn−1)
≤ n−1μL

[
L−1(

23/2L1/2d1/2 + d[1 + (L + 1)1/2t−1])]
≤ n−1μL

[
L−1/2(

23/2d1/2 + d
(
L−1/2 + (1 + L−1/2)t−1))]

.

Further,

A2 = μ2L(�̂ + n−1)I (�̂ < tn−1)[I (� ≥ 2tn−1) + I (� < 2tn−1)]
≤ μ2Ln−1(1 + t)I (� − �̂ ≥ �/2)I (� ≥ 2tn−1)

+ μ2Ln−1(1 + t)I (� < 2tn−1) =: A21 + A22.

Using the Chebyshev inequality and (8.4) we get

E{A21} ≤ n−1μL

[
(1 + t)μ

n−1L−1(2d1� + d2n
−1)

(�/2)2 I (� ≥ 2tn−1)

]

≤ n−1μL
[
2L−1(

4(2Ld2)
1/2 + d2t

−1)]
≤ n−1μL[12d1/2L−1/2 + 2dL−1t−1].

To evaluate A22 we note that (1 + t)μI (� < 2tn−1) ≤ 2tI (� < 2tn−1), and
then

A22 ≤ n−1μL
[
min

(
μ(1 + t),2t

)
I (� < 2tn−1)

]
.
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Combining the obtained results we conclude that

E‖θ̃ − θ‖2
k ≤ E‖θ̃∗ − θ‖2

k

+ n−1Lkμk

[
νk

(
1 − μk�k + (1 + ν−1

k )
)

× [
L

−1/2
k

(
15d1/2 + 3d(1 + L

−1/2
k )(1 + t−1

k )
)

(8.8)
+ min

(
μk(1 + tk),2tk

)
I (�k < 2tkn

−1)
]]

+ n−1Lk(1 + ν−1
k )[L−1

k (d + 3d1/2tk)]1/2

× G(Lk, tk, d, d∗)I (�k < L
−1/2
k tkn

−1).

This verifies (4.4). �

PROOF OF THEOREM 5.1. Relation (5.4) is known for the case of α > 1/2;
see [23, 46, 50]. Consider the case α ≤ 1/2. The lower minimax bound (5.4) is
established in [22]; the proof is too lengthy to reproduce it here and the interested
reader is referred to [22]. The upper minimax bound (5.4), as well as the validity
of upper bound (5.3) for any α, is established with the help of the oracle inequality.
We begin with the analysis of oracle f̃ ∗ defined in (3.10). Following [17], a direct
calculation, based on using (4.5), yields that whenever Lk+1/Lk → 1, k → ∞ the
oracle’s MISE satisfies

sup
f ∈S(α,Q)

E

∫ ∞
−∞

(
f̃ ∗(x) − f (x)

)2
dx

= P(α,Q)n−2α/(2α+1)(1 + on(1)
)
.

In other words, the oracle is sharp minimax.
Then oracle inequality (4.4), together with assumption (5.2), yields

sup
f ∈S(α,Q)

E

∫ ∞
−∞

(
f̃ (x) − f (x)

)2
dx

(
1 + on(1)

)

= sup
f ∈S(α,Q)

E

∫ ∞
−∞

(
f̃ ∗(x) − f (x)

)2
dx

= P(α,Q)n−2α/(2α+1)(1 + on(1)
)
.

This result shows that for Sobolev classes the EP estimator is sharp minimax and
matches performance of the oracle. �

Theorems 5.2 and 5.3 are verified identically.
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PROOF OF THEOREM 6.1. Write∫ ∞
−∞

(
f̄S(x) − f̃ (x)

)2
dx

= π−1
∫ ∞

0
|h̄S(u) − h̃(u)|2 du = π−1

K∑
k=1

(μ̄k − μ̃k)
2‖y‖2

k

= π−1
K∑

k=1

(Lktkn
−1)2

‖y‖2
k

I
(‖y‖2

k ≥ (1 + tk)Lkn
−1)

(8.9)

≤ π−1n−1
K∑

k=1

Lkt
2
k (1 + tk)

−1I (�̂k ≥ tkn
−1)

× [
I
(
�k < (tk/2)n−1) + I

(
�k ≥ (tk/2)n−1)]

.

Now let us make several preliminary calculations. First of all, set q := 1 − (1 +
Lk)

−1/2, and write

I (�̂k ≥ tkn
−1)I

(
�k < (tk/2)n−1)

≤ I
(
�̂k − �k > (tk/2)n−1)

I
(
�k < (tk/2)n−1)

≤ I
(
�̂k − �k > q(tk/2)n−1)

× [
I
(
�k < (1 − q)(tk/2)n−1)

+ I
(
(1 − q)(tk/2)n−1 ≤ �k < (tk/2)n−1)]

.

Using (8.5) we get

E
{
I
(
�̂k − �k > q(tk/2)n−1)}

I
(
�k < (1 − q)(tk/2)n−1)

≤ G2(Lk, tk/2, d, d∗)I
(
�k < (1 + Lk)

−1/2(tk/2)n−1)
.

Using (8.4), (8.6) and a plain inequality I (�k ≥ bn−1) ≤ μk(1 + b−1) we get

E
{
I
(
�̂k − �k > q(tk/2)n−1)}

× I
(
(1 − q)(tk/2)n−1 ≤ � < (tk/2)n−1)

≤ 4L−1
k n−1[2d1�k + d2n

−1][q2t2
k n−2]−1

× I
(
(1 − q)(tk/2)n−1 ≤ �k < (tk/2)n−1)

≤ 4q−2t−2
k L−1

k

[
2μk(�k + n−1)n(2Lkd)1/2

+ dμk

(
1 + 2(1 + Lk)

1/2t−1
k

)]
I
(
�k < (tk/2)n−1)

≤ 4q−2t−2
k μkL

−1/2
k

[
3(1 + tk)d

1/2 + d
(
L

−1/2
k + 2t−1

k

(
1 + L

−1/2
k

))]
× I

(
�k < (tk/2)n−1)

.
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Combining these results we get

π−1n−1
K∑

k=1

Lkt
2
k (1 + tk)

−1E{I (�̂k ≥ tkn
−1)}I (

�k < (tk/2)n−1)

≤ π−1n−1
K∑

k=1

Lkt
2
k (1 + tk)

−1G2(Lk, tk/2, d, d∗)

× I
(
�k < (Lk + 1)−1/2(tk/2)n−1)

+ π−1n−1
K∑

k=1

Lkμk

[
12L

−1/2
k

(
1 − (Lk + 1)−1/2)−2

× (
d1/2 + dt−1

k (1 + L
−1/2
k )

)]
.

Further, we note that I (�k ≥ (tk/2)n−1) ≤ μk(1 + 2t−1
k ), and that

π−1n−1
K∑

k=1

Lkt
2
k (1 + tk)

−1I
(
�k ≥ (tk/2)n−1)

≤ π−1n−1
K∑

k=1

Lkμk

[
2tkI

(
�k ≥ (tk/2)n−1)]

.

Combining results verifies (6.5). �

APPENDIX

PROOF OF LEMMA 8.1. The first part of (8.6) is based on the Cauchy–
Schwarz inequality, the second on the remark that −(u + v) ≤ u − v for any
u, v ∈ B and |h(u)| = |h(−u)| (let us also note that d2 → d as L → ∞). Let
us now verify (8.4). Write

E(�̂ − �)2 = L−2E

[∫
B

(|ĥ(u)|2 − |h(u)|2 − n−1)
du

]2

= L−2E

∫
B

∫
B

(|ĥ(u)|2 − |h(u)|2 − n−1)
× (|ĥ(v)|2 − |h(v)|2 − n−1)

dudv
(A.1)

= L−2
∫
B

∫
B

E{|ĥ(u)|2|ĥ(v)|2}dudv

− 2L−2
∫
B

E{|ĥ(u)|2}du

∫
B

(|h(v)|2 + n−1)
dv

+ L−2
[∫

B

(|h(u)|2 + n−1)
du

]2

=: A1 + A2 + A3.
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Consider these three addends in turn. In what follows lk 
= lm 
= · · · 
= lq means
that all these parameters are different, and recall the assumption n > 3. Write

n4E{|ĥ(u)|2|ĥ(v)|2}

=
n∑

l1,l2,l3,l4=1

E{exp(iuXl1 − iuXl2 + ivXl3 − ivXl4)}

≤
n∑

l1 
=l2 
=l3 
=l4=1

|h(u)|2|h(v)|2

+
n∑

l1 
=l2 
=l3=l4=1

|h(u)|2 +
n∑

l1=l2 
=l3 
=l4=1

|h(v)|2

+ 2
n∑

l1 
=l2=l3 
=l4=1

|h(u)||h(v)|(|h(u − v)| + |h(u + v)|)

+ 2
n∑

l1 
=l2=l3=l4=1

|h(u)|2

+ 2
n∑

l1=l2=l3 
=l4=1

|h(v)|2 +
n∑

l1=l4 
=l2=l3=1

(|h(u − v)|2 + |h(u + v)|2)

+
n∑

l1=l2 
=l3=l4=1

1 +
n∑

l1=l2=l3=l4=1

1.

Then, using 2|h(u)||h(v)| ≤ |h(u)|2 +|h(v)|2, |h(u)| ≤ 1, (n−1)(n−2)(n−3) =
n3 − 6n2 + 11n − 6, (n − 1)(n − 2) = n2 − 3n + 2 and simple algebra, we get

A1 ≤ �2[1 − 6n−1 + 11n−2 − 6n−3] + 2n−1�[1 − 3n−1 + 2n−2]
+ 2L−1n−1d1� + 4n−2�[1 − n−1] + n−2L−1d2 + n−2

= �2 − 2n−1�2 + �2[−4n−1 + 11n−12 − 6n−3]
+ 2n−1� − 2n−2� + L−1n−1[2d1� + d2n

−1] + n−2.

Further, (8.1) implies E|ĥ(u)|2 = |h(u)|2 + n−1(1 − |h(u)|2), and we get

A2 = −2L−2
∫
B

(|h(u)|2 + n−1(
1 − |h(u)|2))

du

∫
B

(|h(v)|2 + n−1)
dv

= −2[� + n−1(1 − �)][� + n−1]
= −2�2 − 4n−1� − 2n−2 + 2n−1�2 + 2n−2�.

Also A3 = (n−1 +�)2 = n−2 + 2n−1�+�2. Combining the results in (A.1) and
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using −4n−1 + 11n−2 − 6n−3 ≤ 0 for n > 1 we verify (8.4).
Let us check (8.5). Write

L�̂ =
∫
B

|ĥ(u)|2 du − Ln−1 = n−2
∑

1≤l,m≤n

∫
B

exp{iu(Xl − Xm)}du − Ln−1

=
[
n−2

n∑
l=1

∫
B

du − Ln−1

]
+ n−2

∑
1≤l 
=m≤n

∫
B

exp{iu(Xl − Xm)}du

= n−22
∑

1≤l<m≤n

∫
B

cos
(
u(Xl − Xm)

)
du =: n−22

∑
1≤l<m≤n

g(Xl − Xm).

Note that g(x, y) := g(x − y) is a symmetric function in (x, y) which can be
viewed as a kernel of U -statistics. Thus we can use known exponential inequalities
for U -statistics to analyze �̂. In what follows X,X1, . . . ,Xn,Y,Y1, . . . , Yn are
i.i.d. random variables according to an underlying density f . Using Hoeffding’s
decomposition we continue:

L�̂ = 2n−2
∑

1≤l<m≤n

H(Xl,Xm)

+ 2(n − 1)n−2
n∑

l=1

(
E{g(Xl − Y)|Xl} − E{g(X − Y)})(A.2)

+ (n − 1)n−1E{g(X − Y)} =: Ã1 + Ã2 + Ã3,

where H(X,Y ) := g(X−Y)−E{g(X−Y)|X}−E{g(X−Y)|Y }+E{g(X−Y)}.
A direct calculation shows that

E{g(X − Y)} = Re
{∫

B
Eeiu(X−Y ) du

}
=

∫
B

|h(u)|2 du = L�(A.3)

and

E{g(X − Y)|Y } = Re
{∫

B
eiuY h(−u)du

}
.(A.4)

This implies

H(X,Y ) =
∫
B

cos
(
u(X − Y)

)
du

(A.5)

− Re
{∫

B
(eiuX + eiuY )h(−u)du

}
+ L�.

According to Theorem 1 in [13], for all z > 0 there exists a universal constant c1
such that

Pr{|Ã1| > z} ≤ c1Pr{|Ã∗
1| > z/c1},(A.6)
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where Ã∗
1 := n−2 ∑

1≤l 
=m≤n H(Xl, Ym) = n−2 ∑
1≤l,m≤n H(Xl, Ym) −

n−2 ∑n
l=1 H(Xl,Yl) is a decoupled version of Ã1. Using (A.2)–(A.6) we write

for any q, γ ∈ (0,1),

Pr{�̂ − � > qtn−1}
= Pr{Ã1 + Ã2 + [(n − 1)/n]L� − L� > qtLn−1}
≤ Pr{Ã1 + Ã2 > qtLn−1} ≤ Pr{Ã1 > γqtLn−1}

+ Pr{Ã2 > (1 − γ )qtLn−1}
(A.7)

≤ c1Pr{|Ã∗
1| > γqtLn−1/c1} + Pr{Ã2 > (1 − γ )qtLn−1}

≤ c1Pr

{
n−2

∣∣∣∣∣
∑

1≤l,m≤n

H(Xl, Ym)

∣∣∣∣∣ > γ 2qtLn−1/c1

}

+ c1Pr

{
n−2

∣∣∣∣∣
n∑

l=1

H(Xl,Yl)

∣∣∣∣∣ > γ (1 − γ )qtLn−1/c1

}

+ Pr{Ã2 > (1 − γ )qtLn−1}.
Consider the first probability. H(x,y) is symmetric in (x, y) and it is a com-

pletely degenerated kernel in the sense that E{H(X,Y )|X} = 0. Thus we can use
the following exponential inequality (3.18) of [27].

LEMMA A.1. Let X,X1, . . . ,Xn,Y,Y1, . . . , Yn be i.i.d. Consider a symmetric
and completely degenerated kernel H(x,y). Then there exists a universal constant
c2 such that for any z > 0

Pr

{∣∣∣∣∣
∑

1≤l,m≤n

H(Xl, Ym)

∣∣∣∣∣ > z

}

≤ c2 exp
{
− 1

c2
min

(
z2

n2E{H 2(X,Y )} ,
z

n‖H‖∗
,(A.8)

z2/3

[n‖E{H 2(X,Y )|X}‖∞]1/3 ,
z1/2

‖H‖1/2∞

)}
,

where

‖H‖∗ := sup
ψ1,ψ2

{
E{H(X,Y )ψ1(X)ψ2(Y )} :E{ψ2

1 (X)} ≤ 1,E{ψ2
2 (Y )} ≤ 1

}
,

‖E{H 2(X,Y )|X}‖∞ := supx E{H 2(x,Y )} and ‖H‖∞ := supx,y H(x, y).
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Let us evaluate in turn the four components of the minimum in (A.8). Us-
ing (A.5) and (a + b + c)2 ≤ 2a2 + 4(b2 + c2) we get

E{H 2(X,Y )}
≤ E

{∫
B

∫
B

(
cos[(u − v)(X − Y)] + cos[(u + v)(X − Y)])dudv

}

+ 4E

∣∣∣∣
∫
B
(eiuX + eiuY )h(−u)du

∣∣∣∣
2

+ 4(L�)2

=
∫
B

∫
B

(|h(u − v)|2 + |h(u + v)|2)
dudv

+ 4E

∫
B

∫
B
(eiuX + eiuY )(e−ivX + e−ivY )h(−u)h(v) dudv + 4(L�)2

≤ Ld2 + 8
∫
B

∫
B
[h(u − v) + h(u)h(−v)]h(−u)h(v) dudv + 4(L�)2

≤ Ld2 + 8[d2L
3]1/2� + 12(L�)2.

In the last inequality we used
∫
B |h(u − v)|du ≤ [Ld2]1/2. Recall that we are con-

sidering only � < (1 − q)tn−1, q ∈ (0,1), and get

E{H 2(X,Y )} ≤ L
[
d2 + 4L1/2(1 − q)tn−1(

2d
1/2
2 + 3L1/2(1 − q)tn−1)]

.(A.9)

Now we are considering ‖H‖∗. In what follows the supremum is taken over ψ1
and ψ2 such that Eψ2

j (X) ≤ 1, j = 1,2. Write

‖H‖∗ = supE{H(X,Y )ψ1(X)ψ2(Y )}
≤ supE{g(X − Y)ψ1(X)ψ2(Y )} + 2 supE

{
E{g(X − Y)|X}ψ1(X)

} + L�

=: D1 + 2D2 + L�.

Introduce A := {x :f (x) < z}, γ ∈ (0,1), and write

D1 = supE

{∫
B
(1/2)

[
eiu(X−Y ) + e−iu(X−Y )]ψ1(X)ψ2(Y ) du

}

= sup
∫
B

|E{eiuXψ1(X)}|2 du

≤ (1 + γ ) sup
∫
B

|E{I (X ∈ A)eiuXψ1(X)}|2 du

+ (1 + γ −1) sup
∫
B

|E{I (X ∈ Ac)ψ1(X)}|2 du

=: D11 + D12.

Using the Plancherel identity we get

D11 ≤ (1 + γ )(2π) sup
∫
A

f 2(x)ψ2
1 (x) dx ≤ (1 + γ )2πz.
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Further, using the Cauchy–Schwarz inequality we get

D12 ≤ (1 + γ −1)L

∫
Ac

f (x) dx sup
∫ ∞
−∞

f (x)ψ2
1 (x) dx

≤ (1 + γ −1)Lz−1
∫
Ac

f 2(x) dx.

Set γ = 0.2 and get D1 ≤ 8d∗.
Further, D2 = supE{Re{∫B eiuXh(−u)du}ψ1(X)} ≤ ∫

B |h(u)|du ≤ 2L�1/2.

Plainly � ≤ min((1 − q)tn−1,1), and this yields that

‖H‖∗ ≤ 8d∗ + 2L�1/2 + L� ≤ 8d∗ + 3L(1 − q)1/2t1/2n−1/2.

Further, let us consider ‖E{H 2(X,Y )|X}‖∞. Using (a + b + c + d)2 ≤ 2a2 +
4b2 + 8(c2 + d2) we get

E{H 2(x,Y )} ≤ 2E{g2(x − Y)} + 4E2{g(x − Y)}
+ 8E

{
E2{g(X − Y)|Y }} + 8L2�2

= 2E

{[∫
B

cos
(
u(x − Y)

)
du

]2}
+ 4

[
Re

{∫
B

eiuxh(−u)du

}]2

+ 8E

[
Re

{∫
B

eiuY h(−u)du

}]2

+ 8L2�2

≤ (1/2)E

∫
B

∫
B

(
eiu(x−Y ) + e−iu(x−Y ))
× (

eiv(x−Y ) + e−iv(x−Y ))dudv + 20L2�

≤
∫
B

∫
B

(|h(u − v)| + |h(u + v)|)dudv + 20L2�

≤ L[d1 + 20(1 − q)tLn−1].
Finally, we have a plain inequality supx,y |H(x,y)| ≤ 4L. Using these results and
Lemma A.1 we get

Pr

{∣∣∣∣∣
∑

1≤l,m≤n

H(Xl, Ym)

∣∣∣∣∣ > γ 2qtnL/c1

}
≤ c2 exp

{
−γ 4q2t2L

dc2
1c2

ν1

}
,(A.10)

where

ν1 := min
(

1

[1 + 4L1/2(1 − q)tn−1(2d−1/2 + 3d−1L1/2(1 − q)tn−1)] ,

c1d

t[8d∗ + 3L((1 − q)t/n)1/2] ,
d[c4

1nt−4L−2]1/3

[d1 + 20(1 − q)Ltn−1]1/3 ,(A.11)

c
3/2
1 dn1/2

2t3/2L

)
.
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To evaluate the second probability in (A.7), let us recall Bernstein’s inequality.

LEMMA A.2. Let Z1, . . . ,Zn be i.i.d., |Z1| < M a.e., E{Z1} = 0 and
Var(Z1) = σ 2 < ∞. Then for any z > 0

max

(
Pr

{
n∑

l=1

Zl < −z

}
,Pr

{
n∑

l=1

Zl > z

})

(A.12)

≤ exp
{
− z2

2nσ 2 + (2/3)Mz

}
.

This implies

Pr

{∣∣∣∣∣
n∑

l=1

H(Xl,Yl)

∣∣∣∣∣ > γ (1 − γ )qtnL/c1

}

≤ 2 exp
{
− γ 2(1 − γ )2q2t2L

n−1Ltc2
1[3c−1

1 + 2dL−1t−1 + 8n−1(2d1/2 + t)]
}
.

Let us consider the third probability in (A.7). Write

Ã2 = 2(n − 1)

n2

n∑
l=1

(
Re

{∫
B

eiuXlh(−u)du

}
− L�

)
=: 2(n − 1)

n2

n∑
l=1

Vl.

Plainly |Vl| ≤ ∫
B |h(u)|du + L� ≤ 2L�1/2. Also, E{Vl} = 0 and

Var(Vl) ≤ E

∫
B

∫
B
(1/4)[eiuXh(−u) + e−iuXh(u)]

× [eivXh(−v) + e−ivXh(v)]dudv

≤ (1/2)d1L�.

Then Lemma A.2, n > 3 and � < (1 − q)tn−1 imply that

Pr{Ã2 > (1 − γ )qtLn−1}

= Pr

{
n∑

l=1

Vl > 2−1(1 − γ )qtLn(n − 1)−1

}

≤ exp
{
− 2−2(1 − γ )2q2t2L2[n/(n − 1)]2

nd1L� + (2/3)2L�1/22−1(1 − γ )qtL[n/(n − 1)]
}

≤ exp
{
− (1 − γ )2q2t2L

4[(1 − q)d1t + (1 − q)1/2t3/2Ln−1/2]
}
.
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Combining the obtained inequalities in (A.7) implies [ν1 is defined in (A.11)]

Pr{�̂ − � > qtn−1}I (
� < (1 − q)tn−1)

≤ c1c2 exp{−γ 2q2t2Lν1/(dc2
1c2)}

(A.13)

+ 2c1 exp
{
− γ 2(1 − γ )2q2t2L

n−1Ltc2
1[3c−1

1 + 2dL−1t−1 + 8n−1(2d1/2 + t)]
}

+ exp
{
− (1 − γ )2q2t2L

4[(1 − q)d1t + (1 − q)1/2t3/2Ln−1/2]
}
.

Set q = 1 − (L + 1)−1/2, γ = 1 − min(1/2, t1/4), and this, together with (8.6),
verifies (8.5). �
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