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ANALYSIS OF BOOSTING ALGORITHMS USING THE
SMOOTH MARGIN FUNCTION
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Columbia University, Princeton University and Princeton University

We introduce a useful tool for analyzing boosting algorithms called the
“smooth margin function,” a differentiable approximation of the usual mar-
gin for boosting algorithms. We present two boosting algorithms based on
this smooth margin, “coordinate ascent boosting” and “approximate coordi-
nate ascent boosting,” which are similar to Freund and Schapire’s AdaBoost
algorithm and Breiman’s arc-gv algorithm. We give convergence rates to the
maximum margin solution for both of our algorithms and for arc-gv. We then
study AdaBoost’s convergence properties using the smooth margin function.
We precisely bound the margin attained by AdaBoost when the edges of
the weak classifiers fall within a specified range. This shows that a previ-
ous bound proved by Rätsch and Warmuth is exactly tight. Furthermore, we
use the smooth margin to capture explicit properties of AdaBoost in cases
where cyclic behavior occurs.

1. Introduction. Boosting algorithms, which construct a “strong” classifier
using only a training set and a “weak” learning algorithm, are currently among
the most popular and most successful algorithms for statistical learning (see, e.g.,
Caruana and Niculescu-Mizil’s recent empirical comparison of algorithms [3]).
Freund and Schapire’s AdaBoost algorithm [7] was the first practical boosting al-
gorithm. AdaBoost maintains a discrete distribution (set of weights) over the train-
ing examples, and selects a weak classifier via the weak learning algorithm at each
iteration. Training examples that were misclassified by the weak classifier at the
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current iteration then receive higher weights at the following iteration. The end
result is a final combined classifier, given by a thresholded linear combination of
the weak classifiers. See [13, 27] for an introduction to boosting.

Shortly after AdaBoost was introduced, it was observed that AdaBoost often
does not seem to suffer from overfitting, in the sense that the test error does not go
up even after a rather large number of iterations [1, 5, 14]. This lack of overfitting
was later explained by Schapire et al. [28] in terms of the margin theory. The
margin of a boosted classifier on a particular example is a number between −1
and +1 that can be interpreted as a measure of the classifier’s confidence on this
particular example. Further, the minimum margin over all examples in the training
set is often referred to simply as the margin of the training set, or simply the margin
when clear from context. Briefly, the margin theory states that AdaBoost tends to
increase the margins of the training examples, and that this increase in the margins
implies better generalization performance.

A complete analysis of AdaBoost’s margin is nontrivial. Until recently, it was
an open question whether or not AdaBoost always achieves the maximum pos-
sible margin. This question was settled (negatively) in [20, 22]; an example was
presented in which AdaBoost’s asymptotic margin was proved to be significantly
below the maximum value. This example exhibited “cyclic” behavior, where Ad-
aBoost’s parameter values repeat periodically. So AdaBoost does not generally
maximize the margin; furthermore, until the present work, the cyclic case was the
only case for which AdaBoost’s convergence was fully understood in the separable
setting. When it cannot be proved that the parameters will eventually settle down
into a cycle, AdaBoost’s convergence properties are more difficult to analyze. Yet
it seems essential to understand this convergence in order to study AdaBoost’s
generalization capabilities.

In this work, we introduce a new tool for analyzing AdaBoost and related algo-
rithms. This tool is a differentiable approximation of the usual margin called the
smooth margin function. We use it to provide the following main contributions.

• We identify an important new setting for which AdaBoost’s convergence can
be completely understood, called the case of bounded edges. A special case of
our proof shows that the margin bound of Rätsch and Warmuth [17] is tight,
closing what they allude to as a “gap in theory.” This special case answers the
question of how far below maximal AdaBoost’s margin can be. Furthermore,
this clarifies in sharp and precise terms the asymptotic relationship between the
“edges” achieved by the weak learning algorithm and the asymptotic margin of
AdaBoost.

• We derive two new algorithms similar to AdaBoost that are based directly on
the smooth margin. Unlike AdaBoost, these algorithms provably converge to a
maximum margin solution asymptotically; in addition, they possess a fast con-
vergence rate to a maximum margin solution. Similar convergence rates based
on the smooth margin are then presented for Breiman’s arc-gv algorithm [2]
answering what had been posed as an open problem by Meir and Rätsch [13].
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1.1. The case of bounded edges. There is a rich literature connecting Ad-
aBoost and margins. The margin theory of Schapire et al. [28] (later tightened by
Koltchinskii and Panchenko [10]) showed that the larger the margins on the train-
ing examples, the better an upper bound on the generalization error, suggesting
that, all else being equal, the generalization error can be reduced by systematically
increasing the margins on the training set. Furthermore, Schapire et al. showed that
AdaBoost has a tendency to increase the margins on the training examples. Thus,
though not entirely complete, their theory and experiments strongly supported the
notion that margins are highly relevant to the behavior and generalization perfor-
mance of AdaBoost.

These bounds can be reformulated (in a slightly weaker form) in terms of the
minimum margin; this was the focus of previous work by Breiman [2], Grove
and Schuurmans [9] and Rätsch and Warmuth [17]. It is natural, given such an
analysis, to pursue algorithms that will attempt to maximize this minimum margin.
Such algorithms included Breiman’s arc-gv algorithm [2] and Grove and Schuur-
mans’ LP-AdaBoost [9] algorithm. However, in apparent contradiction of the mar-
gins theory, Breiman’s experiments indicated that his algorithm achieved higher
margins than AdaBoost, and yet performed worse on test data. Although this
would seem to indicate serious trouble for the margins theory, recently, Reyzin
and Schapire [18] revisited Breiman’s experiments and were able to reconcile his
results with the margins explanation, noting that the weak classifiers found by arc-
gv are more complex than those found by AdaBoost. When this complexity is
controlled, arc-gv continues to achieve larger minimum margins, but AdaBoost
achieves much higher margins overall (and generally better test performance).
Years earlier, Grove and Schuurmans [9] observed the same phenomenon; highly
controlled experiments showed that AdaBoost achieved smaller minimum mar-
gins, overall larger margins, and often better test performance than LP-AdaBoost.

Taken together, these results indicate that there is a delicate and complex bal-
ance between the performance of the weak learning algorithm, the margins, the
problem domain, the specific boosting algorithm being used, and the test error.
It is the goal of the current work to improve our understanding of the intricate
relationships between these various factors.

In considering these complex relationships, a piece of the puzzle may be de-
termined theoretically by understanding AdaBoost’s convergence. AdaBoost has
been shown to achieve large margins, but not maximal margins. To be precise,
Schapire et al. [28] showed that AdaBoost achieves at least half of the maximum
margin, that is, if the maximum margin is ρ > 0, AdaBoost will achieve a mar-
gin of at least ρ/2. This bound was tightened by Rätsch and Warmuth [17] who
showed that AdaBoost asymptotically achieves a margin of at least ϒ(ρ) > ρ/2,
where ϒ : (0,1) → (0,∞) is the monotonically increasing function shown in Fig-
ure 1, namely,

ϒ(r) := − ln(1 − r2)

ln((1 + r)/(1 − r))
.(1.1)
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FIG. 1. Plot of ϒ(r) versus r (lower curve), along with the function f (r) = r (upper curve).

However there is still a large gap between ϒ(ρ) and the maximum margin ρ.
Our contribution is from the other direction; we have just described theoretical

lower bounds for the margin, whereas we are now interested in upper bounds.
Previously, we showed that it is possible for AdaBoost to achieve a margin that
is significantly below the maximal value [22]. In this work, we show that Rätsch
and Warmuth’s bound is actually tight. In other words, we prove that it is possible
for AdaBoost to achieve an asymptotic margin arbitrarily close to ϒ(ρ). More
generally, our theorem regarding the case of “bounded edges” says the following,
where the “edge” measures the performance of the weak learning algorithm at each
iteration:

• If AdaBoost’s edge values are within a range [ρ̄, ρ̄ + σ ] for some ρ̄ ≥ ρ, then
AdaBoost’s margin asymptotically lies within the interval [ϒ(ρ̄),ϒ(ρ̄ + σ)].

Hence there is a fundamental connection between the performance of the weak
learning algorithm and AdaBoost’s asymptotic margin; if AdaBoost’s edges fall
within a given interval, we can find a corresponding interval for its asymptotic
margin.

Now, since we have proven that we can more or less predetermine the value
of AdaBoost’s margin simply by specifying the edge values, we can perform a
new experiment. Since the studies of Breiman [2] and Grove and Schuurmans [9]
suggest that the margin theory cannot be easily tested using multiple algorithms,
we now perform a controlled study with only one algorithm. The experiment in
Section 7.2 consists of many trials with the same algorithm (AdaBoost) achieving
different values of the margin on the same dataset. We find that as the (predeter-
mined) margin increases, the probability of error on test data decreases dramati-
cally. Our experiment supports the margin theory; in at least some cases, a larger
margin does correlate with better generalization.

1.2. Convergence properties of new and old algorithms. Since AdaBoost may
achieve a margin as low as ϒ(ρ), and since it has the idiosyncratic (albeit fascinat-
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ing and possibly helpful) tendency to sometimes get stuck in cyclic patterns [11,
22, 23], we are inspired to find algorithms that are similar to AdaBoost that have
better convergence guarantees. We also study these cyclic patterns of AdaBoost as
a special case for understanding its general convergence properties.

Our first main focus is to analyze two algorithms designed to maximize the
smooth margin, called coordinate ascent boosting and approximate coordinate as-
cent boosting (presented in our previous work [23] without analysis). Coordinate
ascent/descent algorithms are optimization algorithms where a step is made along
only one coordinate at each iteration. The coordinate, which is also the choice of
weak classifier, is determined by the weak learning algorithm. AdaBoost is also a
coordinate descent algorithm [2, 6, 8, 12, 16], but its objective function need not
be directly related to the margin or smooth margin; in fact, AdaBoost’s objective
converges to zero whenever the asymptotic margin is any positive value.

There are other algorithms designed to maximize the margin, though not based
on coordinate ascent/descent of a fixed objective function. Here is a description
of the known convergence properties of the relevant algorithms: AdaBoost does
not converge to a maximum margin solution. Breiman’s arc-gv algorithm [2, 13]
has been proven to converge to the maximum margin asymptotically, but we are
not aware of any proven convergence rate prior to this work. (Note that Meir
and Rätsch [13] give a very simple asymptotic convergence proof for a variant
of arc-gv; however, they note that no convergence rate can be derived from the
proof.) Rätsch and Warmuth’s AdaBoost∗ algorithm [17] has a fast convergence
rate, namely, it yields a solution within ν̄ of the maximum margin in 2(log2 m)/

ν̄2 steps, where m is the number of training examples. However, the “greediness”
parameter ν̄ must be manually entered (and perhaps adjusted) by the user; the al-
gorithm is quite sensitive to ν̄. If it is estimated slightly too large or too small, the
algorithm either takes a long time to converge, or it will not achieve the desired
precision. (E.g., the experiments in [17] show that the algorithm performs well
only for ν̄ in a carefully chosen range. In [25], ν̄ was estimated slightly too small,
and the algorithm did not converge in a timely manner.) For any fixed value of ν̄,
asymptotic convergence is not guaranteed and will generally not be achieved.

In contrast to previous algorithms, the ones we introduce have a proven fast
convergence rate to the maximum margin, they have asymptotic convergence to the
maximum margin, they do not require a choice of greediness parameter since the
greediness is adaptively adjusted based on the progress of the algorithm, and they
are based on coordinate ascent of a sensible objective, namely the smooth margin.
The convergence rates for our algorithms and for arc-gv are custom-designed using
recursive equalities for the smooth margin; we know of no standard techniques that
would allow us to obtain such tight rates.

We also focus on the convergence properties of AdaBoost itself, using the
smooth margin as a helpful analytical tool. The usefulness of the smooth mar-
gin follows largely from an important theorem, which shows that the value of the
smooth margin increases if and only if AdaBoost takes a “large enough” step.
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Much previous work has focused on the statistical properties of AdaBoost indi-
rectly through generalization bounds [10, 28], whereas our goal is to explore the
way in which AdaBoost actually converges in order to produce a powerful classi-
fier.

In Section 7.1, we use the smooth margin function to prove general properties
of AdaBoost in cases where cyclic behavior occurs, extending previous work [22,
23]. “Cyclic behavior for AdaBoost” means that the weak learning algorithm re-
peatedly chooses the same sequence of weak classifiers, and the weight vectors
repeat with a given period. When the number of training examples is small, it is
likely that this behavior will be observed. Our first main result concerning cyclic
AdaBoost is a proof that the value of the smooth margin must decrease an infi-
nite number of times modulo one exception. Thus, a positive quality which holds
for our new algorithms does not hold for AdaBoost: our new algorithms always
increase the smooth margin at every iteration, whereas cyclic AdaBoost usually
cannot. The single exception is the case where all edge values are identical. Our
second result in this section concerns this exceptional case. We show that if all
edges in a cycle are identical, then all support vectors (examples nearest the de-
cision boundary) are misclassified by the same number of weak classifiers during
the cycle. Thus, in this exceptional case, a strong equivalence exists between sup-
port vectors; they are misclassified the same proportion of the time by the weak
learning algorithm.

Here is the outline for the full paper. In Section 2, we introduce our notation
and explain the AdaBoost algorithm. In Section 3, we describe the smooth margin
function that our algorithms are based on. In Section 4, we describe coordinate
ascent boosting (Algorithm 1) and approximate coordinate ascent boosting (Algo-
rithm 2), and in Section 5, the convergence of these algorithms is discussed, along
with the convergence of arc-gv in Section 6. In Section 7, we show connections
between AdaBoost and our smooth margin function. Specifically, in Section 7.1,
we focus on cyclic AdaBoost, and in Section 7.2, we discuss the case of bounded
edges, including the experiment described earlier. Sections 8, 9 and 10 contain
proofs from Sections 3, 5, 6 and 7. Preliminary and less detailed statements of
these results appear in [25, 26].

2. Notation and introduction to AdaBoost. Our notation is similar to that
of Collins, Schapire and Singer [4]. The training set consists of examples with la-
bels {(xi , yi)}i=1,...,m, m > 1, where (xi , yi) ∈ X × {−1,1}. The space X never
appears explicitly in our calculations. Let H = {h1, . . . , hn} be the set of all pos-
sible weak classifiers that can be produced by the weak learning algorithm, where
hj :X → {−1,1}. (The hj ’s are not assumed to be linearly independent; it is even
possible that both h and −h belong to H .) Since our classifiers are binary, and
since we restrict our attention to their behavior on a finite training set, we can as-
sume the number of weak classifiers n is finite. We typically think of n as being
large, m � n, which makes a gradient descent calculation impractical; when n is
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not large, the linear program can be solved directly using an algorithm such as
LP-AdaBoost [9]. The classification rule that AdaBoost outputs is fAda,λ where
sign(fAda,λ) indicates the predicted class. The form of fAda,λ is

fAda,λ :=
∑n

j=1 λjhj

‖λ‖1
,

where λ ∈ R
n+ is the (unnormalized) coefficient vector. We define the 1-norm ‖λ‖1

as usual: ‖λ‖1 := ∑n
j=1 λj . At iteration t of AdaBoost, the coefficient vector is λt ,

and the sum is denoted st := ‖λt‖1.
We define an m × n matrix M where Mij = yihj (xi ), that is, Mij = +1 if

training example i is classified correctly by weak classifier hj , and −1 otherwise.
We assume that no column of M has all +1’s, that is, no weak classifier can classify
all the training examples correctly. (Otherwise the learning problem is trivial.) This
notation is useful mathematically for our analysis; however, it is not generally
wise to explicitly construct large M in practice since the weak learning algorithm
provides the necessary column for each iteration. M acts as the only “input” to
AdaBoost in this notation, containing all the necessary information about the weak
learning algorithm and training examples.

The margin theory developed via a set of generalization bounds that are based
on the margin distribution of the training examples [10, 28], where the margin
of training example i with respect to classifier λ is defined to be yifAda,λ(xi ), or
equivalently, (Mλ)i/‖λ‖1. These bounds can be reformulated (in a slightly weaker
form) in terms of the minimum margin. We call the minimum margin over the
training examples the margin of the training set, denoted μ(λ), that is,

μ(λ) := min
i

(Mλ)i

‖λ‖1
.

Any training example i whose margin is equal to the minimum margin μ(λ) will
be called a support vector. (There is a technical remark about our definition of
AdaBoost. At iteration t , the (unnormalized) coefficient vector is denoted λt ; i.e.,
the coefficient of weak classifier hj determined by AdaBoost at iteration t is λt,j .
In the next iteration, all but one of the entries of λt+1 are the same as in λt ; the
only entry that is changed (for index j = jt ) is given a positive increment in our
description of AdaBoost, i.e., λt+1,jt > λt,jt . Starting from λ1 = 0, this means that
all the λt for t > 1 have nonnegative entries. We thus need to study the effect of
AdaBoost only on the positive cone R

n+ := {λ ∈ R
n; ∀jλj ≥ 0}. This same for-

malization was implicitly used in earlier works [17, 28]. Note that there are also
formalizations; e.g., see [19], where entries of λ are permitted to decrease. The
present formulation is also characterized by its focus on the coefficient vector λ
as the “fundamental object,” as opposed to the functional

∑
j λjhj defined by tak-

ing the λj as weights for the hj . This is expressed by our choice of the �1 norm:
‖λ‖1 = ∑

j |λj | to “measure” λ; if one focuses on the functional instead, then it is
necessary to take into account that (because of the possible linear dependence of
the hj ) several different choices of λ can give rise to the same functional. (E.g., if
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for some pair �, �′ we have h�′ = −h�, then adding α to both λ� and λ�′ does not
change

∑
j λjhj .) One must then use a norm that “quotients out” this ambiguity, as

in (for instance) ‖|λ‖| := min{‖a‖1;∑j ajhj = λjhj }. By restricting ourselves to
positive increments only, and using the �1-norm of λt , we avoid those nonunique
issues. For our new algorithms, we prove limt→∞[mini (Mλt )i/‖λt‖1] = ρ, and
where ρ is the maximum possible value of this quantity (defined later). Since
‖λt‖1 ≥ ‖|λt‖|, and ρ is an upper bound for these fractions, it follows automat-
ically that for our algorithms, limt→∞[mini (Mλt )i/‖|λ‖|] = ρ as well; i.e., we
prove convergence to a maximum margin solution even for the functional based
norm. AdaBoost itself cannot be guaranteed to reach the maximum margin solu-
tion in the limit, regardless of whether ‖λt‖1 or ‖|λt‖| is used in the denominator.)

A boosting algorithm maintains a distribution, or set of weights, over the train-
ing examples that is updated at each iteration t . This distribution is denoted
dt ∈ 	m, and dT

t is its transpose. Here, 	m denotes the simplex of m-dimensional
vectors with nonnegative entries that sum to 1. At each iteration t , a weak clas-
sifier hjt is selected by the weak learning algorithm. The probability of error at
iteration t , denoted d−, of the selected weak classifier hjt on the training examples
(weighted by the discrete distribution dt ) is d− := ∑

{i : Mijt =−1} dt,i . Also, denote
d+ := 1 − d−. Define I+ := {i :Mijt = +1}, the set of correctly classified exam-
ples at iteration t , and similarly define I− := {i :Mijt = −1}. Note that d+, d−,I+,
and I− depend on t ; although we have simplified the notation, the iteration number
will be clear from the context.

The edge of weak classifier jt at time t is rt := (dT
t M)jt = d+ − d− = 1 − 2d−,

with (·)k indicating the kth vector component. Thus, a larger edge indicates a lower
probability of error. Note that d+ = (1 + rt )/2 and d− = (1 − rt )/2. Also define

γt := tanh−1 rt = 1

2
ln

(
1 + rt

1 − rt

)
.

Due to the von Neumann Min–Max theorem for 2-player zero-sum games,

min
d∈	m

max
j

(dT M)j = max
λ̄∈	n

min
i

(Mλ̄)i .

That is, the minimum value of the maximum edge (left-hand side) corresponds to
the maximum value of the margin. We denote this value by ρ.

We wish our learning algorithms to have robust convergence, so we will not
generally require the weak learning algorithm to produce the weak classifier with
the largest possible edge value at each iteration. Rather, we only require a weak
classifier whose edge exceeds ρ, that is, jt ∈ {j : (dT

t M)j ≥ ρ}. This notion of
robustness has been previously used for the analysis of AdaBoost∗ and arc-gv.
Here, AdaBoost in the optimal case means that the best weak classifier is chosen
at every iteration: jt ∈ arg maxj (dT

t M)j , while AdaBoost in the nonoptimal case
means that any good enough weak classifier is chosen: jt ∈ {j : (dT

t M)j ≥ ρ}. The
case of bounded edges is a subset of the nonoptimal case for some ρ̄ ≥ ρ and
σ ≥ 0, namely jt ∈ {j : ρ̄ ≤ (dT

t M)j ≤ ρ̄ + σ }.
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We are interested in the separable case where ρ > 0 and the training error is
zero; the margin specifically allows us to distinguish between classifiers that have
zero training error. In the nonseparable case, AdaBoost’s objective function F is
an upper bound on the training error, and convergence is well understood [4]. Not
only does AdaBoost converge to the minimum of F , but it has recently been shown
that it converges to the solution of the “bipartite ranking problem” at the same time;
AdaBoost solves two problems for the price of one in the nonseparable case [21,
24]. However, in the separable case, where F cannot distinguish between classi-
fiers since it simply converges to zero, the margin theory suggests that we not only
minimize F , but also distinguish between classifiers by choosing one that max-
imizes the margin. Since one does not know in advance whether the problem is
separable, in this work we use AdaBoost until the problem becomes separable,
and then perhaps switch to a mode designed explicitly to maximize the margin.

Figure 2 shows the pseudocode for AdaBoost, coordinate ascent boosting, and
approximate coordinate ascent boosting. On each round of boosting, classifier jt

with sufficiently large edge is selected (Step 3a), the weight of that classifier is
updated (Step 3e), and the distribution dt is updated and renormalized (Step 3g).
Note that λt,j = ∑t

t̃=1 αt̃1jt̃=j , where 1jt̃=j is 1 if jt̃ = j and 0 otherwise. The
notation ejt means the vector that is 1 in position jt and 0 elsewhere.

2.1. AdaBoost is coordinate descent. AdaBoost is a coordinate descent algo-
rithm for minimizing F(λ) := ∑m

i=1 e−(Mλ)i . This has been shown many times
[2, 6, 8, 12, 16], so we will only sketch the proof to introduce our notation. The
direction AdaBoost chooses at iteration t (corresponding to the choice of weak
classifier jt ) in the optimal case is

jt ∈ arg max
j

[
−dF(λt + αej )

dα

∣∣∣
α=0

]
= arg max

j

m∑
i=1

e−(Mλt )iMij

= arg max
j

(dT
t M)j .

The step size AdaBoost chooses at iteration t is αt , where αt satisfies the following
equation, that is, the equation for the line search along direction jt :

0 = −dF(λt + αtejt )

dαt

=
m∑

i=1

e−(M(λt+αt ejt ))iMijt ,

0 = d+e−αt − d−eαt ,

αt = 1

2
ln

(
d+
d−

)
= 1

2
ln

(
1 + rt

1 − rt

)
= tanh−1 rt = γt .

Note that for both the optimal and nonoptimal cases, αt ≥ tanh−1 ρ > 0, by
monotonicity of tanh−1.
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1. Input: Matrix M, No. of iterations tmax

2. Initialize: λ1,j = 0 for j = 1, . . . , n, also d1,i = 1/m for i = 1, . . . ,m, and
s1 = 0.

3. Loop for t = 1, . . . , tmax

(a)
{

jt ∈ argmaxj (d
T
t M)j optimal case

jt ∈ {j : (dT
t M)j ≥ ρ} nonoptimal case

}

(b) rt = (dT
t M)jt

(c) gt = max[0,G(λt )] where G(λt ) is defined in (3.1), G(λt ) =
(− ln

∑m
i=1 e−(Mλt )i )/st .

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αt = 1

2
ln

(
1 + rt

1 − rt

)
AdaBoost

αt = 1

2
ln

(
1 + rt

1 − rt

)
− 1

2
ln

(
1 + gt

1 − gt

)
approx coord ascent boosting

If gt > 0, αt = argmax
α

G(λt + αejt ), coord ascent boosting

else use AdaBoost.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(e) λt+1 = λt + αtejt , where ejt is 1 in position jt and 0 elsewhere.

(f) st+1 = st + αt

(g) dt+1,i = dt,ie
−Mijt αt /zt where zt = ∑m

i=1 dt,ie
−Mijt αt

4. Output: λtmax/stmax

FIG. 2. Pseudocode for the AdaBoost algorithm, coordinate ascent boosting and approximate co-
ordinate ascent boosting.

In the nonseparable case, the dt ’s converge to a fixed vector [4]. In the sep-
arable case, the dt ’s cannot converge to a fixed vector, and the minimum value
of F is 0, occurring as ‖λ‖1 → ∞. It is important to appreciate that this tells us
nothing about the value of the margin achieved by AdaBoost or any other pro-
cedure designed to minimize F . In fact, an arbitrary algorithm that minimizes F

can achieve an arbitrarily bad (small) margin. [To see why, consider any λ̄ ∈ 	n

such that (Mλ̄)i > 0 for all i, assuming we are in the separable case so such a λ̄
exists. Then lima→∞ aλ̄ will produce a minimum value for F , but the original
normalized λ̄ need not yield a maximum margin.] So it must be the process of
coordinate descent that awards AdaBoost its ability to increase margins, not sim-
ply AdaBoost’s ability to minimize F . The value of the function F tells us very
little about the value of the margin; even asymptotically, it only tells us whether
the margin is positive or not.
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A helpful property of AdaBoost is that we can do the line search at each step
explicitly; that is, we have an analytical expression for the value of αt for each t .
Our second boosting algorithm, approximate coordinate ascent boosting, which
incorporates an approximate line search, also has an update that can be solved
explicitly.

3. The smooth margin function G(λ). We wish to consider a function that,
unlike F , actually tells us about the value of the margin. Our new function G has
the nice property that its maximum value corresponds to the maximum value of
the margin. Here, G is defined for λ ∈ R

n+, ‖λ‖1 > 0 by

G(λ) := − lnF(λ)

‖λ‖1
= − ln(

∑m
i=1 e−(Mλ)i )∑

j λj

.(3.1)

One can think of G as a smooth approximation of the margin, since it depends on
the entire margin distribution when ‖λ‖1 is small, and weights training examples
with small margins much more highly than examples with larger margins, espe-
cially as ‖λ‖1 grows. The function G also bears a resemblance to the objective
implicitly used for ε-boosting [19]. G has many nice properties that are useful for
understanding its geometry:

PROPOSITION 3.1 (Properties of the smooth margin [25]).

1. G(λ) is a concave function (but not necessarily strictly concave) in each “shell”
where ‖λ‖1 is fixed.

2. The value of G(λ) increases radially, that is, G(aλ) > G(λ) for a > 1.
3. As ‖λ‖1 becomes large, G(λ) tends to μ(λ). Specifically,

− lnm

‖λ‖1
+ μ(λ) ≤ G(λ) < μ(λ).

PROOF. It follows from properties 2 and 3 that the maximum value of G is the
maximum value of the margin.

The proofs of properties 1 and 2 are in Section 8. Oddly enough, a lack of con-
cavity does not affect our analysis, as our algorithms will iteratively maximize G,
whether or not it is concave. For the proof of property 3,

me−μ(λ)‖λ‖1 =
m∑

i=1

e−min�(Mλ)� ≥
m∑

i=1

e−(Mλ)i

> e−mini (Mλ)i = e−μ(λ)‖λ‖1,

and taking logarithms, dividing by ‖λ‖1 and negating yields the result. �
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Since all values of the edge (even in the nonoptimal case) are required to be
larger than the maximum margin ρ, we have for each iteration t , where recall
st := ‖λt‖1,

− lnm

st
+ μ(λt ) ≤ G(λt ) < μ(λt ) ≤ ρ ≤ rt .(3.2)

4. Derivation of algorithms. We now suggest two boosting algorithms that
aim to maximize the margin explicitly (like arc-gv and AdaBoost∗), are based on
coordinate ascent and adaptively adjust their step sizes (like AdaBoost). Before
we derive the algorithms, we will write recursive equations for F and G. This will
provide a method for computing the values of F and G at iteration t + 1 in terms
of their values at iteration t . The recursive equation for F is

F(λt + αejt )

=
m∑

i=1

e−(M(λt+αejt ))i = ∑
i∈I+

e−(Mλt )i e−α + ∑
i∈I−

e−(Mλt )i eα

= [d+e−α + d−eα]F(λt ) =
[

1 + rt

2
e−α + 1 − rt

2
eα

]
F(λt )

= [coshα − rt sinhα]F(λt ).

Here we remind the reader that coshx = (ex + e−x)/2, sinhx = (ex − e−x)/2, and
so cosh(tanh−1 x) = (1−x2)−1/2. Recall the definition γt := tanh−1 rt . Continuing
to reduce, we find the recursive equation for F ,

F(λt + αejt ) = coshγt coshα − sinhγt sinhα

coshγt

F (λt )

(4.1)

= cosh(γt − α)

coshγt

F (λt ).

Here we have used the identity cosh(x − y) = coshx coshy − sinhx sinhy. Now
we find a recursive equation for G. By definition of G, we know − lnF(λt ) =
stG(λt ). Taking the logarithm of (4.1) and negating,

(st + α)G(λt + αejt ) = − lnF(λt + αejt )

= − lnF(λt ) − ln
(

cosh(γt − α)

coshγt

)
(4.2)

= stG(λt ) + ln
(

coshγt

cosh(γt − α)

)

= stG(λt ) +
∫ γt

γt−α
tanhudu.



BOOSTING AND THE SMOOTH MARGIN 2735

Thus, we have a recursive equation for G. We will derive two algorithms; in the
first, we assign to αt the value α that maximizes G(λt +αejt ), which requires solv-
ing an implicit equation. In the second algorithm, we pick an approximate value
for the maximizer that can be computed in a straightforward way. In both cases,
since it is not known in advance whether the problem is separable, the algorithm
starts by running AdaBoost until G(λ) becomes positive, which eventually must
happen (in the separable case) by the following:

PROPOSITION 4.1. In the separable case (where ρ > 0), AdaBoost achieves
a positive value for G(λt ) for some iteration t .

PROOF. For the iteration defined by AdaBoost (i.e., αt = γt = tanh−1 rt ), we
have from (4.1)

F(λt+1) = F(λt + γtejt ) = 1

coshγt

F (λt ) = (1 − r2
t )1/2F(λt )

≤ (1 − ρ2)1/2F(λt ).

Hence, by this recursion, F(λt+1) ≤ (1 − ρ2)t/2F(λ1). It follows that exceeding
at most

2 lnF(λ1)

− ln(1 − ρ2)
+ 1

iterations, F(λt ) < 1 so that G(λt ) = (− lnF(λt ))/st > 0. �

For convenience in distinguishing the two algorithms defined below, we denote
λ

[1]
1 , . . . ,λ

[1]
t to be a sequence of coefficient vectors generated by Algorithm 1, and

λ
[2]
1 , . . . ,λ

[2]
t to be a sequence generated by Algorithm 2. Similarly, we distinguish

the sequences α
[1]
t from α

[2]
t , g

[1]
t := G(λ

[1]
t ), g

[2]
t := G(λ

[2]
t ), s

[1]
t := ∑

j λ
[1]
t,j and

s
[2]
t := ∑

j λ
[2]
t,j . Sometimes we compare the behavior of Algorithms 1 and 2 based

on one iteration (from t to t + 1) as if they had started from the same coefficient
vector at iteration t ; we denote this vector by λt . When an equation holds for
both Algorithm 1 and Algorithm 2, we will often drop the superscripts. Although
sequences such as jt , rt , γt , and dt are also different for Algorithms 1 and 2, we
leave the notation without the superscript.

Note that it is important to compute gt in a numerically stable way. The
pseudocode in Figure 2 might thus be replaced with

G(λt ) = μ(λt ) − ln
∑m

i=1 e−[(Mλt )i−mini′ (Mλ)i′ ]

st
,

where μ(λt ) = mini (Mλt )i

st
.
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4.1. Algorithm 1: coordinate ascent boosting. Let us consider coordinate as-
cent on G. In what follows, we will use only positive values of G, as we have
justified via Proposition 4.1. The choice of direction jt at iteration t (in the opti-
mal case) obeys

jt ∈ arg max
j

dG(λ
[1]
t + αej )

dα

∣∣∣
α=0

= arg max
j

[∑m
i=1 e−(Mλ

[1]
t )iMij

F (λ
[1]
t )

]
1

s
[1]
t

+ ln(F (λ
[1]
t ))

(s
[1]
t )2

.

Of the two terms on the right, the second term does not depend on j , and the first
term is simply a constant times (dT

t M)j . Thus the same direction will be chosen
here as for AdaBoost. The “nonoptimal” setting we define for this algorithm will be
the same as AdaBoost’s, so the weak learning algorithm (Step 3a) of Algorithm 1
will be the same as AdaBoost’s.

To determine the step size, ideally we would like to maximize G(λ
[1]
t + αejt )

with respect to α, that is, we would like to define the step size α
[1]
t to obey

dG(λ
[1]
t + αejt )/dα = 0 for α = α

[1]
t . Differentiating (4.2) gives

(
s
[1]
t + α

)dG(λ
[1]
t + αejt )

dα
+ G

(
λ

[1]
t + αejt

) = tanh(γt − α).

Thus, our ideal step size α
[1]
t satisfies

G
(
λ

[1]
t+1

) = G
(
λ

[1]
t + α

[1]
t ejt

) = tanh
(
γt − α

[1]
t

)
.(4.3)

There is not a nice analytical solution for α
[1]
t (as there is for AdaBoost), but min-

imization of G(λ
[1]
t + αejt ) is one-dimensional so it can be performed reasonably

quickly. Hence we have defined the first of our new boosting algorithms, coordi-
nate ascent on G, implementing a line search at each iteration. Furthermore:

PROPOSITION 4.2. The solution for α
[1]
t is unique, for some α

[1]
t > 0.

PROOF. First, we rewrite the line search equation (4.3) using (4.2),

s
[1]
t G

(
λ

[1]
t

) + ln
(

coshγt

cosh(γt − α
[1]
t )

)
= (

s
[1]
t + α

[1]
t

)
tanh

(
γt − α

[1]
t

)
.

Consider the function ft ,

ft (α) := s
[1]
t G

(
λ

[1]
t

) + ln
(

coshγt

cosh(γt − α)

)
− (

s
[1]
t + α

)
tanh(γt − α).

Now, dft (α)/dα = (α + s
[1]
t )sech2(γt − α) > 0 for α > 0. Thus ft is strictly in-

creasing, so there is at most one root. We also have ft (0) = s
[1]
t (G(λ

[1]
t ) − rt ) < 0
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and ft (γt ) = s
[1]
t G(λ

[1]
t ) − 1

2 ln(1 − r2
t ) > 0. Thus, by the intermediate value theo-

rem, there is at least one root. Hence, there is exactly one solution for α
[1]
t where

α
[1]
t > 0. �

Let us rearrange our equations slightly in order to study the update. Using the
notation g

[1]
t+1 := G(λ

[1]
t+1) in (4.3), we find that α

[1]
t satisfies the following (implic-

itly):

α
[1]
t = γt − tanh−1(g[1]

t+1

) = tanh−1 rt − tanh−1(g[1]
t+1

)
(4.4)

= 1

2
ln

[
1 + rt

1 − rt

1 − g
[1]
t+1

1 + g
[1]
t+1

]
.

Since G(λ
[1]
t+1) ≥ G(λ

[1]
t ), we again have G(λ

[1]
t+1) > 0, and thus α

[1]
t ≤ tanh rt =

γt . Hence, the step size for this new algorithm is always positive, and it is upper-
bounded by AdaBoost’s step size.

4.2. Algorithm 2: approximate coordinate ascent boosting. The second of our
two new boosting algorithms avoids the line search of Algorithm 1, and is even
slightly more aggressive. It seems to perform very similarly to Algorithm 1 in
our experiments. To define this algorithm, we consider the following approximate
solution to the maximization problem, by using an approximate solution to (4.3)
at each iteration in which λt+1 is replaced by λt for tractability:

G
(
λ

[2]
t

) = tanh
(
γt − α

[2]
t

)
,(4.5)

or more explicitly,

α
[2]
t = γt − tanh−1(g[2]

t

) = tanh−1 rt − tanh−1(g[2]
t

)
(4.6)

= 1

2
ln

[
1 + rt

1 − rt

1 − g
[2]
t

1 + g
[2]
t

]
.

The update α
[2]
t is also strictly positive, since g

[2]
t < ρ ≤ rt , by (3.2). Note that this

choice for α
[2]
t given by (4.5) implies, by (4.2), using the monotonicity of tanh to

take the lower endpoint on the integral,(
s
[2]
t + α

[2]
t

)
G

(
λ

[2]
t+1

)
> s

[2]
t G

(
λ

[2]
t

) + α
[2]
t tanh

(
γt − α

[2]
t

)
= (

s
[2]
t + α

[2]
t

)
G

(
λ

[2]
t

)
,

so that G(λ
[2]
t+1) > G(λ

[2]
t ). That is, Algorithm 2 still increases G at every iteration.

In particular, G(λ
[2]
t+1) is again strictly positive.

Algorithm 2 is slightly more aggressive than Algorithm 1, in the sense that it
picks a larger relative step size αt , albeit not as large as the step size defined by



2738 C. RUDIN, R. E. SCHAPIRE AND I. DAUBECHIES

AdaBoost itself. We can see this by comparing equations (4.4) and (4.6). If Algo-
rithms 1 and 2 were started at the same position λt , with gt := G(λt ), then Algo-
rithm 2 would always take a slightly larger step than Algorithm 1; since g

[1]
t+1 > gt ,

we have α
[1]
t < α

[2]
t .

5. Convergence of smooth margin algorithms. We will show convergence
of Algorithms 1 and 2 to a maximum margin solution. Although there are many
papers describing the convergence of specific classes of coordinate descent/ascent
algorithms, this problem did not fit into any of the existing categories. For example,
we were unable to fit our algorithms into any of the categories described by Zhang
and Yu [29], but we did use some of their key ideas as inspiration for our proofs
for this section, which can all be found in Section 9.

One of the main results of this analysis is that both algorithms make significant
progress at each iteration. In the next lemma, we are only considering one incre-
ment, so we fix λt at iteration t and let gt := G(λt ), st := ∑

j λt,j . Then, denote the

next values of G for Algorithms 1 and 2, respectively, as g
[1]
t+1 := G(λt + α

[1]
t ejt )

and g
[2]
t+1 := G(λt + α

[2]
t ejt ). Similarly, s

[1]
t+1 := st + α

[1]
t and s

[2]
t+1 := st + α

[2]
t .

LEMMA 5.1 (Progress at every iteration).

g
[1]
t+1 − gt ≥ α

[1]
t (rt − gt )

2s
[1]
t+1

and g
[2]
t+1 − gt ≥ α

[2]
t (rt − gt )

2s
[2]
t+1

.

Another important ingredient for our convergence proofs is that the step size
does not increase too quickly; this is the main content of the next lemma.

LEMMA 5.2 (Step size does not increase too quickly).

lim
t→∞

α
[1]
t

s
[1]
t+1

= 0 and lim
t→∞

α
[2]
t

s
[2]
t+1

= 0.

Lemmas 5.1 and 5.2 allow us to show convergence of Algorithms 1 and 2 to a
maximum margin solution. Recall that for convergence, it is sufficient to show that
limt→∞ gt = ρ since gt < μ(λt ) ≤ ρ.

THEOREM 5.1 (Asymptotic convergence). Algorithms 1 and 2 converge to a
maximum margin solution, that is, limt→∞ g

[1]
t = ρ and limt→∞ g

[2]
t = ρ. And

thus, limt→∞ μ(λ
[1]
t ) = ρ and limt→∞ μ(λ

[2]
t ) = ρ.

Theorem 5.1 guarantees asymptotic convergence, without providing any infor-
mation about a rate of convergence. In what follows, we shall state two different
results about the convergence rate. The first theorem gives an explicit a priori upper
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bound on the number of iterations needed to guarantee that g
[1]
t or g

[2]
t is within

ε > 0 of the maximum margin ρ. As is often the case for uniformly valid upper
bounds, the convergence rate provided by this theorem is not optimal, in the sense
that faster decay of ρ − gt can be proved for large t if one does not insist on
explicit constants. The second convergence rate theorem provides such a result,
stating that ρ − gt = O(t−1/(3+δ)), or equivalently ρ − gt ≤ ε after O(ε−(3+δ))

iterations, where δ > 0 can be arbitrarily small.
Both convergence rate theorems rely on estimates limiting the growth rate of αt .

Lemma 5.2 is one such estimate; because it is only an asymptotic estimate, our first
convergence rate theorem requires the following uniformly valid lemma.

LEMMA 5.3 (Step size bound).

α
[1]
t ≤ c1 + c2s

[1]
t and α

[2]
t ≤ c1 + c2s

[2]
t ,

where

c1 = ln 2

1 − ρ
and c2 = ρ

1 − ρ
.

We are now ready for a first convergence rate theorem. We leave off superscripts
when the statement is true for both algorithms.

THEOREM 5.2 (Convergence rate). Let 1̃ be the iteration at which G becomes
positive. Then both the margin μ(λt ) and the value of G(λt ) will be within ε of the
maximum margin ρ within at most

1̃ + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ)

iterations, for both Algorithms 1 and 2.

In practice ρ is unknown; this means one cannot use Theorem 5.2 directly in
order to get an explicit numerical upper bound on the number of iterations required
to achieve the given accuracy ε. However, if R is an explicit upper bound on ρ,
then the same argument can be used to prove that gt will exceed ρ − ε within at
most

1̃ + (s1̃ + ln 2)ε−(3−R)/(1−R)

iterations. If R is close to ρ, this bound becomes tighter. As we iterate, we can
obtain increasingly better upper bounds Rt on ρ as follows: since we have assumed
that the weak learning algorithm produces an edge of at least ρ, that is, r� ≥ ρ for
all �, it follows that Rt := min�≤t r� is an upper bound for ρ. Rt is known explicitly
at iteration t since the numerical values for all the r� where � ≤ t are known. We
thus obtain, as a corollary to the proof of Theorem 5.2, the following result, valid
for both algorithms.
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COROLLARY 5.1. Let 1̃ be the iteration at which G becomes positive. At any
later iteration t , if the algorithms are continued for at most

	t := 1̃ + (s1̃ + ln 2)ε−(3−Rt )/(1−Rt ) − t

additional iterations, where Rt = min�≤t r�, then gt+	t ∈ [ρ − ε,ρ].

That is, the value of G will be within ε of the maximum margin ρ in at most 	t

additional iterations. Note that if 	t is negative, then we have already achieved
gt ∈ [ρ − ε,ρ].

An important remark is that the technique of proof of Theorem 5.2 is much more
widely applicable. In fact, we later use this framework to prove a convergence rate
for arc-gv. The proof used only two main ingredients, Lemmas 5.1 and 5.3. Note
that AdaBoost itself obeys Lemma 5.3; in fact, a bound of the same form can be
seen solely from Lemma 5.3 and one additional fact, namely, starting from λt ,
the step size αt for AdaBoost only exceeds α

[1]
t and α

[2]
t by at most a constant,

specifically 1
2 ln(

1+ρ
1−ρ

). It is the condition of Lemma 5.1 that AdaBoost does not
obey; AdaBoost does not make progress with respect to G at each iteration as we
discuss in Section 7.

The convergence rate provided by Theorem 5.2 is not tight; in fact, Algorithms 1
and 2 often perform at a much faster rate of convergence in practice. The fact that
the step-size bound in Lemma 5.3 holds for all t allowed us to find an upper bound
on the number of iterations; however, we can find faster convergence rates in the
asymptotic regime by using Lemma 5.2 instead. The following lemma again holds
for both Algorithm 1 and Algorithm 2, and we drop the superscripts.

LEMMA 5.4. For any 0 < ν < 1/2, there exists a constant Cν such that for all
t ≥ 1̃,

ρ − gt ≤ Cνs
−ν
t .

Let us turn this into a convergence rate estimate. Note that the big-oh notation
in this theorem hides constants that depend on the matrix M.

THEOREM 5.3 (Faster convergence rate). For both Algorithms 1 and 2, and
for any δ > 0, a margin within ε of optimal is obtained after at most O(ε−(3+δ))

iterations from the iteration 1̃ where G becomes positive.

Although Theorem 5.3 gives a better convergence rate than Theorem 5.2 [since
3 < (3 − ρ)/(1 − ρ)], there is a constant factor that is not explicitly given. Hence,
this estimate cannot be translated into an a priori upper bound on the number of it-
erations after which ρ −gt < ε is guaranteed, unlike Theorem 5.2 or Corollary 5.1.

From our experiments with Algorithms 1 and 2, we have noticed that they con-
verge much faster than predicted (see [25]). This is especially true when the edges
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are large. Nevertheless, the asymptotic convergence rate of Theorem 5.3 is sharp
in the most extreme nonoptimal case where the weak learning algorithm always
achieves an edge of ρ, as shown in the following theorem. This theorem is proved
for Algorithm 2 only, as it conveys our point and eases notation.

THEOREM 5.4 (Convergence rate is sharp). Suppose rt = ρ for all t . Then,
there exists no C > 0, δ > 0, t0 > 0 so that ρ − g

[2]
t ≤ Ct−(1/3)−δ for all t ≥ t0.

Equivalently, for all δ > 0, lim supt→∞ t1+δ(ρ − g
[2]
t )3 = ∞, showing that Algo-

rithm 2 requires at least 
(ε−3) iterations to achieve a value of g
[2]
t within ε of

optimal. That is, the convergence rate of Theorem 5.3 is sharp.

6. Convergence of arc-gv. We have finished describing the smooth margin
algorithms. We will now alter our course; we will use the smooth margin function
to study well-known algorithms, first arc-gv and then AdaBoost. arc-gv is defined
as in Figure 2 except that the update in Step 3d is replaced by αarc

t ,

αarc
t = 1

2
ln

(
1 + rt

1 − rt

)
− 1

2
ln

(
1 + μt

1 − μt

)
, where μt := μ(λt ).

(Note that we are using Breiman’s original formulation of arc-gv, not Meir and
Rätsch’s variation.) Note that αarc

t is nonnegative since μt ≤ ρ ≤ rt . We directly
present a convergence rate for arc-gv; most of the important computations for this
bound have already been established in the proof of Theorem 5.2. As before, we
start from when the smooth margin is positive. For arc-gv, the smooth margin
increases at each iteration (and the margin does not necessarily increase). The
result we state is weaker than the bound for Algorithms 1 and 2, since it is in
terms of the maximum margin achieved up to time t rather than in terms of the
smooth margin at time t . However, we note that the smooth margin does increase
monotonically, and the true margin is never far from the smooth margin as we have
shown in Proposition 3.1. Here is our guaranteed convergence rate:

THEOREM 6.1 (Convergence rate for arc-gv). Let 1̃ be the iteration at which
G becomes positive. Then max{�=1̃,...,t} μ(λ�) will be within ε of the maximum
margin ρ within at most

1̃ + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ)

iterations, for arc-gv.

The proof is given in Section 9.

7. A new way to measure AdaBoost’s progress. In many ways, AdaBoost
is still a mysterious algorithm. Although it often seems to converge to a maximum
margin solution (at least in the optimal case), it was shown via some optimal case
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examples that it does not always do so [20, 22]. In fact, the difference between the
margin produced by AdaBoost and the maximum margin can be quite large; we
shall see below that this happens when the edges are forced to be somewhat small.
These and other results [2, 9, 22] suggest that the margin theory only provides a
significant piece of the puzzle of AdaBoost’s strong generalization properties; it is
not the whole story. In order to understand AdaBoost’s strong generalization abili-
ties, it is essential to understand how AdaBoost actually constructs its solutions. In
this section, we make use of new tools to help us understand how AdaBoost makes
progress. Namely, we measure the progress of AdaBoost according to a quantity
other than the margin, namely, the smooth margin function G. We focus on two
cases: the case where AdaBoost cycles, and the case of bounded edges, where Ad-
aBoost’s edges are required to be bounded strictly below 1. These are the only
cases for which AdaBoost’s convergence is understood for separable data.

First, we show that whenever AdaBoost takes a large step, it makes progress ac-
cording to G. This result will form the basis of all other results in this section. We
will use the superscript [A] for AdaBoost. Our analysis makes use of a monotoni-
cally increasing function ϒ : (0,1) → (0,∞), which is defined as

ϒ(r) := − ln(1 − r2)

ln(1 + r)/(1 − r)
.

One can show that ϒ is monotonically increasing by considering its derivative.
A plot of ϒ is shown in Figure 1.

THEOREM 7.1 (AdaBoost makes progress if and only if it takes a large step).

G
(
λ

[A]
t+1

) ≥ G
(
λ

[A]
t

) ⇐⇒ ϒ(rt ) ≥ G
(
λ

[A]
t

)
.

In other words, G(λ
[A]
t+1) ≥ G(λ

[A]
t ) if and only if the edge rt is sufficiently large.

PROOF OF THEOREM 7.1. Using the expression α
[A]
t = γt = tanh−1 rt cho-

sen by AdaBoost, the condition for G to increase (or at least stay constant) is
G(λ

[A]
t ) ≤ G(λ

[A]
t + α

[A]
t ejt ) = G(λ

[A]
t+1), which occurs if and only if

(
s
[A]
t + α

[A]
t

)
G

(
λ

[A]
t

) ≤ (
s
[A]
t + α

[A]
t

)
G

(
λ

[A]
t+1

) = s
[A]
t G

(
λ

[A]
t

) +
∫ α

[A]
t

0
tanhudu,

that is,

G
(
λ

[A]
t

) ≤
(∫ α

[A]
t

0
tanhudu

)/
α

[A]
t = ϒ(rt ),

where we have used the recursive equation (4.2) and the fact that α
[A]
t is a function

of rt . Thus, our statement is proved. �

Hence, AdaBoost makes progress (measured by G) if and only if it takes a
sufficiently large step. Figure 3 illustrates this point.
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FIG. 3. Value of the edge at each iteration t , for a run of AdaBoost using a 12 × 25 matrix M.
Whenever G increased from the current iteration to the following iteration, a small circle was plotted.
Whenever G decreased, a large circle was plotted. The fact that the larger circles are below the
smaller circles is a direct result of Theorem 7.1. In fact, one can visually track the progress of G

using the boundary between the larger and smaller circles. For further explanation of the interesting
dynamics in this plot, see [22].

7.1. Cyclic AdaBoost and the smooth margin. It has been shown that Ad-
aBoost’s weight vectors (d1,d2, . . .) may converge to a stable periodic cycle [22].
In fact, the existence of these periodic cycles has already been an important tool
for proving convergence properties of AdaBoost in the optimal case; thus far, they
have provided the only nontrivial cases in which AdaBoost’s convergence can be
completely understood. Additionally, they have been used to show that AdaBoost
may converge to a solution with margin significantly below maximum, even in the
optimal case. This mysterious and beautiful cyclic behavior for AdaBoost often
seems to occur when the number of training examples is small, although it has
been observed in larger cases as well. Since this cycling phenomenon has proven
so useful, we extend our earlier work [22] in this section.

While Algorithms 1 and 2 make progress with respect to G at every iteration, we
show that almost the opposite is true for AdaBoost when cycling occurs. Namely,
we show that AdaBoost cannot increase G at every iteration except under very
special circumstances. For this theorem, we assume that AdaBoost is in the process
of converging to a cycle, and not necessarily on the cycle itself. The edge values on
the cycle are denoted r

cyc
1 , . . . , r

cyc
T , where the cycle has length T . (E.g., an edge

close to r
cyc
1 is followed by an edge close to r

cyc
2 , an edge close to r

cyc
T −1 is followed
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by an edge close to r
cyc
T , which is followed by an edge close to r

cyc
1 . Note that

there are cases where the limiting edge values r
cyc
1 , . . . , r

cyc
T can be analytically

determined from AdaBoost’s dynamical formulas [22]. For our theorem, we do
not need to assume these values are known, only that they exist.)

THEOREM 7.2 (Cyclic AdaBoost and the smooth margin). Assume AdaBoost
is converging to a cycle of T iterations. Then one of the following conditions must
be obeyed:

1. the value of G decreases an infinite number of times, or
2. the edge values in the cycle r

cyc
1 , . . . , r

cyc
T are equal (i.e., r

cyc
1 = · · · = r

cyc
T = r

and thus rt → r), and G(λ
[A]
t ) → ϒ(r) as t → ∞.

Thus, the value of G cannot be strictly increasing except in this very special case
where AdaBoost’s edges, and thus its step sizes, are constant. This is in contrast to
our new algorithms, which make significant progress toward increasing G at each
iteration. The proof of Theorem 7.2 can be found in Section 10.

Note that some important previously studied cases fall under the exceptional
case 2 of Theorem 7.2 [22]. Hence we now look into case 2 further. In case 2,
the value of G is nondecreasing, and the values of r

cyc
t are identical. Let us sort

the training examples. Within a cycle, for training example i, either dt,i = 0 ∀t or
dt,i > 0 ∀t . The examples i such that dt,i > 0 ∀t are support vectors by definition. It
can be shown that the support vectors also attain the same (minimum) margin [22].
It turns out that the support vectors have a nice property in this case, namely, they
are treated equally by the weak learning algorithm in the following sense:

THEOREM 7.3 (Cyclic AdaBoost and the smooth margin—exceptional case).
Assume AdaBoost is within a cycle. If all edges in a cycle are the same, that is,
rt = r ∀t , then all support vectors are misclassified by the same number of weak
classifiers within the cycle.

PROOF. Consider support vectors i and i′. Since they are support vectors, they
must obey the cycle condition derived from AdaBoost’s dynamical equations [22,
23], namely:

∏T
t=1(1 + Mijt r) = 1 and

∏T
t=1(1 + Mi′jt

r) = 1. Here we have as-
sumed AdaBoost started on the cycle at iteration 1 without loss of generality.
Define τi := |{t : 1 ≤ t ≤ T ,Mijt = 1}|. Here, τi represents the number of times
example i is correctly classified during one cycle, 1 ≤ τi ≤ T .

1 =
T∏

t=1

(1 + Mijt r) = (1 + r)τi (1 − r)T −τi = (1 + r)τi′ (1 − r)T −τi′ .

Hence, τi = τi′ . Thus, example i is classified correctly the same number of times
that i′ is classified correctly. Since the choice of i and i ′ was arbitrary, this holds
for all support vectors. �



BOOSTING AND THE SMOOTH MARGIN 2745

This theorem shows that a stronger equivalence between support vectors exists
here; not only do the support vectors achieve the same margin, but they are all
“viewed” similarly by the weak learning algorithm, in that they are misclassified
the same proportion of the time. As we have found no substantial correlation be-
tween the number of support vectors, the number of iterations in the cycle, and the
number of rows or columns of M, this result is somewhat surprising, especially
since weak classifiers may appear more than once per cycle, so the number of
weak classifiers is not even directly related to the number of iterations in a cycle.

Another observation is that even if the value of G is nondecreasing for all itera-
tions in the cycle (i.e, the exceptional case we have just discussed), AdaBoost may
not converge to a maximum margin solution, as shown by an example analyzed in
earlier work [22].

7.2. Convergence of AdaBoost with bounded edges. We will now give the
direct relationship between edge values and margin values promised earlier. A
special case of this result yields a proof that Rätsch and Warmuth’s [17] bound
on the margin achieved by AdaBoost is tight. This fixes the “gap in theory” used as
the motivation for the development of AdaBoost∗. We will assume that throughout
the run of AdaBoost, our weak classifiers always have edges within a small inter-
val [ρ̄, ρ̄ + σ ] where ρ̄ ≥ ρ. As ρ̄ → ρ and σ → 0 we approach the most extreme
nonoptimal case. The justification for allowing a range of possible edge values is
practical rather than theoretical; a weak learning algorithm will probably not be
able to achieve an edge of exactly ρ̄ at every iteration since the number of training
examples is finite, and since the edge is a combinatorial quantity. Thus, we assume
only that the edge is within a given interval rather than an exact value. Later we
will give an example to show that we can force this interval to be arbitrarily small
as long as the number of training examples is large enough.

THEOREM 7.4 (Convergence of AdaBoost with bounded edges). Assume that
for each t , AdaBoost’s weak learning algorithm achieves an edge rt such that
rt ∈ [ρ̄, ρ̄ + σ ] for some ρ ≤ ρ̄ < 1 and for some σ > 0. Then,

lim sup
t→∞

g
[A]
t ≤ ϒ(ρ̄ + σ)

and

lim inf
t→∞ g

[A]
t ≥ ϒ(ρ̄).

For the special case limt→∞ rt = ρ, this implies

lim
t→∞g

[A]
t = lim

t→∞μ
(
λ

[A]
t

) = ϒ(ρ).

This result gives an explicit small range for the margin μ(λ
[A]
t ), since from (3.2)

and limt→∞ ‖λ[A]
t ‖1 → ∞, we have limt→∞(g

[A]
t −μ(λ

[A]
t )) = 0. (The statement
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limt→∞ ‖λ[A]
t ‖1 → ∞ always occurs for AdaBoost in the separable case since the

edge is bounded above zero.) The special case limt→∞ rt = ρ shows the tight-
ness of the bound of Rätsch and Warmuth [17] (see [15] for the proof). Their
result, which we summarize only for AdaBoost rather than for the slightly more
general AdaBoost�, states that lim inft→∞ μ(λ

[A]
t ) ≥ ϒ(rinf), where rinf = inft rt .

(The statement of their theorem seems to assume the existence of a combined
hypothesis and limiting margin, but we believe these strong assumptions are not
necessary, and that their proof of the lower bound holds without these assump-
tions.) Theorem 7.4 gives bounds from both above and below, so we now have a
much more explicit convergence property of the margin. The proof can be found
in Section 10.

Our next result is that Theorem 7.4 can be realized even for arbitrarily small
interval size σ . In other words, AdaBoost can achieve any margin with arbitrarily
high accuracy; that is, for a given margin value and precision, we can construct a
training set and weak learning algorithm where AdaBoost attains that margin with
that precision.

THEOREM 7.5 (Bound of Theorem 7.4 is nonvacuous). Say we are given
0 < ρ̄ < 1 and σ > 0 arbitrarily small. Then there is some matrix M for which
nonoptimal AdaBoost may choose an infinite sequence of weak classifiers with
edge values in the interval [ρ̄, ρ̄ + σ ]. Additionally for this matrix M, we have
ρ̄ ≥ ρ (where ρ is the maximum margin for M).

The proof, in Section 10, is by explicit construction, in which the number of
examples and weak classifiers increases as more precise bounds are required, that
is, as the precision width parameter σ decreases.

Let us see Theorem 7.4 in action. Now that one can more or less predeter-
mine the value of AdaBoost’s margin simply by choosing the edge values to be
within a small range, one might again consider the important question of whether
AdaBoost’s asymptotic margin matters for generalization. To study this empiri-
cally, we use AdaBoost only, several times on the same data set with the same
set of weak classifiers. Our results show that the choice of edge value (and thus
the asymptotic margin) does have a dramatic effect on the test error. Artificial test
data for Figure 4 was designed as follows: 300 examples were constructed ran-
domly such that each xi lies on a corner of the hypercube {−1,1}800. The labels
are: yi = sign(

∑51
k=1 xi (k)), where xi (k) indicates the kth component of xi . For

j = 1, . . . ,800, the j th weak classifier is hj (x) = x(j), thus Mij = yixi (j). For
801 ≤ j ≤ 1600, hj = −h(j−800). There were 10,000 identically distributed ran-
domly generated examples used for testing. The hypothesis space must be the same
for each trial as a control; we purposely did not restrict the space via regularization
(e.g., norm regulation, early stopping, or pruning). Hence we have a controlled ex-
periment where only the choice of weak classifier is different, and this directly de-
termines the margin via Theorem 7.4. AdaBoost was run nine times on this dataset,
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FIG. 4. AdaBoost’s probability of error on test data decreases as the margin increases. We com-
puted nine trials, namely, eight trials of nonoptimal AdaBoost, � = 1, . . . ,8, and one trial of optimal
AdaBoost (denoted via � = 0). For each nonoptimal trial �, a goal edge value r� was manually pre-
specified. For 3,000 iterations of each trial, we stored the edge values r�,t and margins μ�,t on the
training set, along with the probability of error on a randomly chosen test set e�,t . A—edge versus
margin. In each of the nine trials, we plot (μ�,t , r�,t ) for iterations t that fall within the plot domain.
Later iterations tend to give points nearer to the right in the plot. Additionally, dots have been placed
at the points (ϒ(r�), r�) for � = 1, . . . ,8. By Theorem 7.4, the asymptotic margin value for trial �

should be approximately ϒ(r�). Thus, AdaBoost’s margins μ�,t are converging to the prespecified
margins ϒ(r�). B—probability of error versus margins. The lower scattered curve represents opti-
mal AdaBoost; for optimal AdaBoost, we have plotted all (μ0,t , e0,t ) pairs falling within the plot
domain. For clarity, we plot only the last 250 iterations for each nonoptimal trial, that is, for trial
�, there is a clump of 250 points (μ�,t , e�,t ) with margin values μ�,t ≈ ϒ(r�). This plot shows that
the probability of error decreases as the prespecified margin increases. C—edges r0,t (top curve),
margins r0,t (middle curve) and smooth margins (lower curve) versus number of iterations t for only
the optimal AdaBoost trial.

each time for tmax = 3,000 iterations, the first time with standard optimal-case Ad-
aBoost, and eight times with nonoptimal AdaBoost. For each nonoptimal trial, we
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selected a “goal” edge value rgoal (the eight goal edge values were equally spaced).
The weak learning algorithm chooses the closest possible edge to that goal. In this
way, AdaBoost’s margin is close to ϒ(rgoal). The results are shown in Figure 4B,
which shows test error versus margins for the asymptotic regime of optimal Ad-
aBoost (lower scattered curve) and the last 250 iterations for each nonoptimal trial
(the eight clumps, each containing 250 points). It is very clear that as the margin
increases, the probability of error decreases, and optimal AdaBoost has the lowest
probability of error.

Note that the asymptotic margin is not the whole story; optimal AdaBoost yields
a lower probability of error even before the asymptotic regime was reached. Thus,
it is the degree of “optimal-ness” of the weak learning algorithm (directly con-
trolling the asymptotic margin) that is inversely correlated with the probability of
error for AdaBoost.

Now that we have finished describing the results, we move on to the proofs.

8. Proof of Proposition 3.1. To show property 1 given assumptions on M, we
will compute an arbitrary element of the Hessian H,

Hkj = ∂2G(λ)

∂λk ∂λj

= −
∂2F(λ)
∂λk ∂λj

F (λ)‖λ‖1
+

∂F (λ)
∂λj

F (λ)‖λ‖2
1

+
∂F (λ)
∂λj

∂F (λ)
∂λk

F (λ)2‖λ‖1

+
∂F (λ)
∂λk

F (λ)‖λ‖2
1

− 2 lnF(λ)

‖λ‖3
1

.

For G to be concave, we need wT Hw ≤ 0 for all vectors w. We are considering
the case where w obeys

∑
j wj = 0 so we are considering only directions in which

‖λ‖1 does not change. Thus, we are showing that G is concave on every “shell.”
Note that

∑
j,k wjwk

∂F(λ)
∂λj

= (
∑

j wj
∂F(λ)
∂λj

)(
∑

k wk) = 0, and thus∑
j,k

wjwkHkj

= −1

F(λ)‖λ‖1

∑
j,k

wjwk

∂2F(λ)

∂λk ∂λj

+ 0

+ 1

F(λ)2‖λ‖1

[∑
j

wj

∂F (λ)

∂λj

]2

+ 0 + 0(8.1)

= 1

F(λ)2‖λ‖1

[(
−

m∑
i=1

(Mw)2
i e

−(Mλ)i

)(
m∑

i=1

e−(Mλ)i

)

+
[

m∑
i=1

(Mw)ie
−(Mλ)i

]2]
.
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Let the vectors �1 and �2 be defined as �1,i := (Mw)ie
−(Mλ)i/2 and �2,i :=

e−(Mλ)i/2. The Cauchy–Schwarz inequality applied to �1 and �2 gives

−
(

m∑
i=1

�2
1,i

)(
m∑

i=1

�2
2,i

)
+

(
m∑

i=1

�1,i�2,i

)2

≤ 0.

Since this expression is identical to the one bracketed in (8.1),
∑

j,k wjwkHkj ≤ 0,
and thus we have shown that the function G(λ) is concave on each shell, but not
strictly. Equality in the Cauchy–Schwarz equation is achieved only when �1 is
parallel to �2, that is, when (Mw)i does not depend on i. There are some matrices
where such a w exists, for example, the matrix

M =
⎛
⎝−1 1 1 1

1 −1 1 −1
1 1 −1 −1

⎞
⎠

with vector w = (−1
2c, c, c,−3

2c), where c ∈ R. Here, (Mw)i = c for all i. We
have shown that the function G is concave for each “shell,” but not necessarily
strictly concave. (One can find out whether G is concave on each shell for a par-
ticular matrix M by solving Mw = c1 subject to

∑
j wj = 0, which can be added

as a row.) We have now finished the proof of property 1.
To show property 2, we compute the derivative in the radial direction,

dG(λ(1 + a))/da|a=0, and show that it is positive. We find, using the notation
di := e−(Mλ)i /F (λ),

dG(λ(1 + a))

da

∣∣∣
a=0

= 1

‖λ‖1

[
m∑

i=1

di(Mλ)i + lnF(λ)

]

≥ 1

‖λ‖1

[(
m∑

i=1

di

)
min

ĩ

(Mλ)
ĩ
+ ln

m∑
i=1

e−(Mλ)i

]

>
1

‖λ‖1

[
min

ĩ

(Mλ)
ĩ
+ ln e−min

ĩ
(Mλ)

ĩ

]
= 0.

The very last inequality follows since from our m > 1 terms, we took only one
term, and also since

∑
i di = 1.

9. Convergence proofs. Before we state the proofs, we must continue our
simplification of the recursive equations. From the recursive equation for G,
namely (4.2) applied to Algorithm 1,

s
[1]
t+1g

[1]
t+1 − s

[1]
t g

[1]
t = ln

(
coshγt

cosh(γt − α
[1]
t )

)
= 1

2
ln

(
1 − tanh2(γt − α

[1]
t )

1 − tanh2 γt

)

= 1

2
ln

[1 − tanh(γt − α
[1]
t )][1 + tanh(γt − α

[1]
t )]

(1 − tanhγt )(1 + tanhγt )
(9.1)
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= 1

2
ln

(1 − g
[1]
t+1)(1 + g

[1]
t+1)

(1 − rt )(1 + rt )
= α

[1]
t + ln

(1 + g
[1]
t+1

1 + rt

)
.

Here we have used both (4.3) and (4.4). We perform an analogous simplification
for Theorem 5.2. Starting from (4.2) and applying (4.5) and (4.6),

s
[2]
t+1g

[2]
t+1 − s

[2]
t g

[2]
t = 1

2
ln

(1 − g
[2]
t )(1 + g

[2]
t )

(1 − rt )(1 + rt )
(9.2)

= α
[2]
t + ln

(
1 + g

[2]
t

1 + rt

)
.

We will use equations (9.1) and (9.2) to help us with the proofs.

PROOF OF LEMMA 5.1. We start with Algorithm 2. First, we note that since
the function tanh is concave on R+, we can lower bound tanh on an interval
(a, b) ⊂ (0,∞) by the line connecting the points (a, tanh(a)) and (b, tanh(b)).
Thus, ∫ γt

γt−α
[2]
t

tanhudu ≥ 1
2α

[2]
t

[
tanhγt + tanh

(
γt − α

[2]
t

)]
(9.3)

= 1
2α

[2]
t (rt + gt ),

where the last equality is from (4.5). Combining (9.3) with (4.2) yields

s
[2]
t+1g

[2]
t+1 − stgt ≥ 1

2α
[2]
t (rt + gt ),

s
[2]
t+1

(
g

[2]
t+1 − gt

) + α
[2]
t gt ≥ 1

2α
[2]
t (rt + gt ),

g
[2]
t+1 − gt ≥ α

[2]
t (rt − gt )

2s
[2]
t+1

.

Thus, the statement of the lemma holds for Algorithm 2. By definition, g
[1]
t+1 is

the maximum value of G(λt + αejt ), so g
[1]
t+1 ≥ g

[2]
t+1. By (4.4) and (4.6), we know

α
[1]
t ≤ α

[2]
t . Because α/(s + α) = 1 − s/(α + s) increases with α,

g
[1]
t+1 − gt ≥ g

[2]
t+1 − gt ≥

(
α

[2]
t

s
[2]
t+1

)
(rt − gt )

2
≥

(
α

[1]
t

s
[1]
t+1

)
(rt − gt )

2
.

Thus, we have completed the proof of Lemma 5.1. �

PROOF OF LEMMA 5.2. The proof holds for both algorithms, so we have
dropped the superscripts. There are two possibilities; either limt→∞ st = ∞
or limt→∞ st < ∞. We handle these cases separately, starting with the case



BOOSTING AND THE SMOOTH MARGIN 2751

limt→∞ st = ∞. From (9.1) and (9.2), and recalling that gt ≤ gt+1 ≤ ρ ≤ rt we
know

st+1gt+1 − stgt ≥ αt + ln
1 + gt

1 + rt
,

so that

αt(1 − ρ) ≤ αt(1 − gt+1) ≤ st (gt+1 − gt ) + ln
1 + rt

1 + gt

.

We denote by 1̃ the first iteration where G is positive, so g1̃ > 0. Dividing by
(1 − ρ)st , recalling that rt < 1 and g1̃ ≤ gt ,

αt

st+1
≤ αt

st
≤ gt+1 − gt

1 − ρ
+ 1

1 − ρ

1

st
ln

1 + rt

1 + gt

≤ gt+1 − gt

1 − ρ
+ 1

1 − ρ

1

st
ln

2

1 + g1̃
.

We will take the limit of both sides as t → ∞. Since the values gt are monoton-
ically increasing and are bounded by 1, limt→∞(gt+1 − gt ) = 0. Hence, the first
term vanishes in the limit. Since limt→∞ st = ∞, the second term also vanishes in
the limit. Thus, the statement of the lemma holds when st → ∞.

Now for the case where limt→∞ st < ∞, consider

T∑
t=1̃

αt

st+1
=

T∑
t=1̃

st+1 − st

st+1
=

T∑
t=1̃

∫ st+1

st

1

st+1
du

≤
T∑

t=1̃

∫ st+1

st

1

u
du =

∫ sT +1

s1̃

1

u
du = ln

sT +1

s1̃
.

By our assumption that limt→∞ st < ∞, the above sequence is a bounded increas-
ing sequence. Thus,

∑∞
t=1̃

αt/st+1 converges. In particular, limt→∞ αt/st+1 = 0.
�

PROOF OF THEOREM 5.1. We choose to show convergence from the starting
position λ1̃, where λ1̃ is the coefficient vector at the first iteration where G is
positive. This is the iteration where we switch from AdaBoost to our new iteration
scheme; it suffices to show convergence from this point. For this proof, we drop
the superscripts [1] and [2]; each step in the proof holds for both algorithms.

The values of gt constitute a nondecreasing sequence that is uniformly bounded
by 1. Thus, a limit g∞ must exist, g∞ := limt→∞ gt . By (3.2), we know that gt ≤ ρ

for all t . Thus, g∞ ≤ ρ. Let us suppose that g∞ < ρ, that is, that ρ − g∞ �= 0. (We
will show this assumption is not true by contradiction.)



2752 C. RUDIN, R. E. SCHAPIRE AND I. DAUBECHIES

From Lemma 5.2, there exists a time t0 ∈ N such that, for all times t ≥ t0,
we have αt/st+1 ≤ 1/2, or equivalently, αt ≤ st+1/2, and thus st = st+1 − αt ≥
st+1/2, so that

αt

st
≤ 2αt

st+1
for t ≥ t0.(9.4)

From Lemma 5.1, since gt ≤ g∞ and rt ≥ ρ, we have

(ρ − g∞)
αt

2st+1
≤ αt

st+1

(rt − gt )

2
≤ gt+1 − gt .

Thus, for all T ∈ N,

(ρ − g∞)

T∑
t=1̃

αt

2st+1
≤

T∑
t=1̃

(gt+1 − gt ) = gT +1 − g1̃ < 1.(9.5)

Under our assumption ρ − g∞ �= 0, the inequality (9.5) implies that the se-
ries

∑∞
t=1̃

(αt/st+1) converges. This, combined with (9.4), implies that the series∑∞
t=1̃

(αt/st ) converges, since its tail is majorized, term by term, by the tail of a
converging series. Therefore, for all T ∈ N, T > 1,

∞ >

∞∑
t=1̃

αt

st
≥

T −1∑
t=1̃

αt

st
=

T −1∑
t=1̃

st+1 − st

st
=

T −1∑
t=1̃

∫ st+1

st

1

st
du

≥
T −1∑
t=1̃

∫ st+1

st

1

u
du =

∫ sT

s1̃

1

u
du = ln sT − ln s1̃.

Therefore, the st constitute a bounded, increasing sequence and must converge;
define s∞ := limT →∞ sT < ∞. The convergence of the st sequence implies that
αt = st+1 − st must converge to zero: limt→∞ αt = 0. Finally, we use the fact that
tanh is continuous and strictly increasing, together with (4.3) and (4.5), to derive

g∞ = lim
t→∞gt = lim inf

t→∞ gt = tanh
[
lim inf
t→∞ (γt − αt)

]

= tanh
[
lim inf
t→∞ γt − lim

t→∞αt

]
= tanh

[
lim inf
t→∞ γt

]
= lim inf

t→∞ [tanhγt ]
= lim inf

t→∞ rt ≥ ρ.

This is a contradiction with the original assumption that g∞ < ρ. It follows that
we have proved that g∞ = ρ, or limt→∞(ρ − gt ) = 0. �

PROOF OF LEMMA 5.3. The proof works for both algorithms, so we leave off
the superscripts. From (4.2),

st+1gt+1 − stgt = ln coshγt − ln cosh(γt − αt).(9.6)
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Because (1/2)eξ ≤ 1/2(eξ + e−ξ ) = cosh ξ ≤ eξ for ξ > 0, we have ξ − ln 2 ≤
ln cosh ξ ≤ ξ. Combining this with (9.6),

st+1gt+1 − stgt ≥ γt − ln 2 − (γt − αt),

so

αt(1 − ρ) ≤ αt(1 − gt+1) ≤ ln 2 + st (gt+1 − gt ) ≤ ln 2 + ρst .

The first and last inequalities of the last line use the fact that G is positive and
bounded by ρ, that is, 1 − ρ ≤ 1 − gt+1 and gt+1 − gt ≤ ρ. Thus, dividing both
sides by (1 − ρ), we find the statement of the lemma. �

PROOF OF THEOREM 5.2. Again the superscripts have been removed since
all statements are true for both algorithms. Define 	G(λ) := ρ −G(λ). Since (3.2)
states that gt ≤ μ(λt ), we know 0 ≤ ρ − μ(λt ) ≤ ρ − gt = 	G(λt ), and thus we
need only to control how fast 	G(λt ) → 0 as t → ∞. That is, if gt is within ε of
the maximum margin ρ, so is the margin μ(λt ). Starting from Lemma 5.1,

ρ − gt+1 ≤ ρ − gt − αt

2st+1
(rt − ρ + ρ − gt ),

thus

	G(λt+1) ≤ 	G(λt )

[
1 − αt

2st+1

]
− αt(rt − ρ)

2st+1
(9.7)

≤ 	G(λt )

[
1 − αt

2st+1

]
≤ 	G(λ1̃)

t∏
�=1̃

[
1 − α�

2s�+1

]
.

Here, the second inequality is due to the restriction rt ≥ ρ and the fact that αt > 0.
The last inequality of (9.7) is from the recursion. We stop the recursion at λ1̃,
where λ1̃ is the coefficient vector at the first iteration where G is positive. Before
we continue, we upper bound the product in (9.7),

t∏
�=1̃

[
1 − α�

2s�+1

]
=

t∏
�=1̃

[
1 − 1

2

s�+1 − s�

s�+1

]
≤ exp

[
−1

2

t∑
�=1̃

s�+1 − s�

s�+1

]

≤ exp

[
−1

2

t∑
�=1̃

s�+1 − s�

s� + ρ/(1 − ρ)s� + ln 2/(1 − ρ)

]

= exp

[
−1 − ρ

2

t∑
�=1̃

s�+1 − s�

s� + ln 2

]
(9.8)

≤ exp

[
−1 − ρ

2

∫ st+1

s1̃

dv

v + ln 2

]

=
[

s1̃ + ln 2

st+1 + ln 2

](1−ρ)/2

.
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Here, the first line holds since 1 −x ≤ e−x for all x, and the next line follows from
our bound on the size of αt in Lemma 5.3. Plugging back into (9.7), it follows that

	G(λt ) ≤ 	G(λ1̃)

[
s1̃ + ln 2

st + ln 2

](1−ρ)/2

,

or

st ≤ st + ln 2 ≤ (s1̃ + ln 2)

[
	G(λ1̃)

	G(λt )

]2/(1−ρ)

.(9.9)

On the other hand, we have (for Algorithm 2)

α
[2]
t ≥ tanhα

[2]
t = tanh

[
γt − (

γt − α
[2]
t

)] = tanhγt − tanh(γt − α
[2]
t )

1 − tanhγt tanh(γt − α
[2]
t )

= rt − g
[2]
t

1 − rtg
[2]
t

≥ ρ − g
[2]
t

1 − ρg1̃
= 	G(λ

[2]
t )

1 − ρg1̃
≥ 	G(λ

[2]
t+1)

1 − ρg1̃
.

A similar calculation for Algorithm 1 holds. Thus, for both algorithms we have
αt ≥ 	G(λt+1)/(1 − ρg1̃) which implies

st+1 = s1̃ +
t∑

�=1̃

α� ≥ s1̃ +
t∑

�=1̃

	G(λ�+1)

1 − ρg1̃
(9.10)

≥ s1̃ + (t − 1̃ + 1)
	G(λt+1)

1 − ρg1̃
.

Combining (9.9) with (9.10) leads to

t − 1̃ ≤ (1 − ρg1̃)st

	G(λt )
≤ (1 − ρg1̃)(s1̃ + ln 2)[	G(λ1̃)]2/(1−ρ)

[	G(λt )]1+[2/(1−ρ)]

≤ s1̃ + ln 2

[	G(λt )](3−ρ)/(1−ρ)
,

where we have used that (1−ρg1̃) ≤ 1, 	G(λ1̃) ≤ 1. This means that 	G(λt ) ≥ ε

is possible only if t ≤ 1̃ + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ). Therefore, if t exceeds 1̃ +
(s1̃ + ln 2)ε−(3−ρ)/(1−ρ), it follows that 	G(λt ) < ε. This concludes the proof of
Theorem 5.2. �

PROOF OF LEMMA 5.4. We show that there is a Tν such that after iteration
Tν , sν

t (ρ − gt ) is a decreasing sequence,

sν
t+1(ρ − gt+1) ≤ sν

t (ρ − gt ) for t ≥ Tν.

In this way, the value of Cν will be determined by

Cν = max
t∈{1̃,...,Tν}

sν
t (ρ − gt ).
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Let us examine our sufficient condition more closely. Using Lemma 5.1 we have,
for arbitrary t ,

sν
t (ρ − gt ) − sν

t+1(ρ − gt+1) = (sν
t − sν

t+1)(ρ − gt ) + sν
t+1(gt+1 − gt )

≥ (sν
t − sν

t+1)(ρ − gt ) + sν
t+1

αt(rt − gt )

2st+1
(9.11)

≥ (sν
t − sν

t+1)(ρ − gt ) + sν
t+1

αt(ρ − gt )

2st+1

= (ρ − gt )

[
sν
t − sν

t+1 + 1

2
sν−1
t+1 (st+1 − st )

]
.

Thus, it is sufficient to show that the bracketed term in (9.11) is positive for all
sufficiently large t .

From Lemma 5.2, we know that for an arbitrary choice of ε > 0, there exists
an iteration tε such that for all t ≥ tε , we have αt/st+1 ≤ ε. We will choose ε =
εν := 1 − (2ν)1/(1−ν), for reasons that will become clear later. The corresponding
iteration tεν will be the Tν we are looking for. For t ≥ Tν , we thus have

st = st+1 − αt = st+1(1 − τt ) for some 0 ≤ τt ≤ εν.

Using this to rewrite the bracketed terms of (9.11) yields

sν
t − sν

t+1 + 1
2sν−1

t+1 (st+1 − st ) = sν
t+1

[
(1 − τt )

ν − 1 + 1
2τt

]
,

so that the original claim will follow if we can prove that

f (τ) := (1 − τ)ν − 1 + 1
2τ ≥ 0 for τ ∈ [0, εν].

We have f (0) = 0, and also, f ′(τ ) = 1/2 − ν(1 − τ)ν−1. Because 1/2 < ν <

1, f ′(τ ) is a decreasing function of τ ; by the choice of εν , f ′(εν) = 0, so that
f ′(τ ) ≥ 0 for τ ∈ [0, εν]. Hence f (τ) is an increasing function, which is positive
for τ ∈ [0, εν]. We have finished the proof of the lemma. �

PROOF OF THEOREM 5.3. Most of the work has already been done in the
proof of Theorem 5.2. By (9.10), we have t − 1̃ ≤ (1 − ρg1̃)(ρ − gt )

−1(st − s1̃).
Combining this with Lemma 5.4 leads to

t − 1̃ ≤ (1 − ρg1̃)C
1/ν
ν (ρ − gt )

−(1+1/ν).

For δ > 0, we pick ν = νδ := 1/(2 + δ) < 1/2, and we can rewrite the last inequal-
ity as

(ρ − gt )
3+δ ≤ (1 − ρg1̃)C

2+δ
νδ

(t − 1̃)−1,

or more concisely, ρ − gt ≤ Cδ(t − 1̃)−1/(3+δ), where

Cδ = (1 − ρg1̃)
1/(3+δ)C(2+δ)/(3+δ)

νδ
.
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It follows that ρ − μ(λt ) ≤ ρ − gt < ε whenever t − 1̃ > (Cδε
−1)(3+δ), which

completes the proof of Theorem 5.3. �

PROOF OF THEOREM 5.4. We use the notation gt = g
[2]
t , st = s

[2]
t , and so

forth, since we are using only Algorithm 2. Since rt = ρ for all t , we automatically
have

st+1 = st + αt = st + 1

2
ln

(
1 + ρ

1 − ρ

1 − gt

1 + gt

)
,(9.12)

and from (9.2),

st+1gt+1 = stgt + 1

2
ln

(
1 + gt

1 + ρ

1 − gt

1 − ρ

)
.(9.13)

We will simplify these equations a number of times. For this proof only, we use
the notation xt := 	G(λ

[2]
t ) := ρ − gt to rewrite the quantities

1 + gt

1 + ρ
= 1 − xt

1 + ρ
and

1 − gt

1 − ρ
= 1 + xt

1 − ρ
.

Using this notation, we update (9.12) and (9.13),

st+1 = st + 1

2
ln

(
1 + xt

1 − ρ

)
− 1

2
ln

(
1 − xt

1 + ρ

)
,(9.14)

st+1gt+1 = stgt + 1

2
ln

(
1 + xt

1 − ρ

)
+ 1

2
ln

(
1 − xt

1 + ρ

)
.(9.15)

Let us simplify (9.15) further before proceeding. We subtract each side from st+1ρ,
using (9.14) to express st+1. This leads to

st+1xt+1 = st+1ρ − st+1gt+1

= stxt − 1

2
(1 − ρ) ln

(
1 + xt

1 − ρ

)
(9.16)

− 1

2
(1 + ρ) ln

(
1 − xt

1 + ρ

)
.

Now we update (9.14). For y ∈ [0,2ρ], we define

fρ(y) := 1

2
ln

(
1 + y

1 − ρ

)
− 1

2
ln

(
1 − y

1 + ρ

)
− y

1 − ρ2 ,

where the inequality fρ(y) ≤ 0 holds since fρ(0) = 0 and f ′
ρ(y) ≤ 0 for 0 ≤ y ≤

2ρ. Since we consider the algorithm for only gt ≥ 0, we have xt = ρ − gt ≤ ρ, so
that

st+1 = st + fρ(xt ) + xt

1 − ρ2

(9.17)

≤ st + xt

1 − ρ2 = st

(
1 + xt

(1 − ρ2)st

)
.
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We now update (9.16) similarly. We define, for y ∈ [0,2ρ],
f̃ρ(y) := −1

2
(1 − ρ) ln

(
1 + y

1 − ρ

)
− 1

2
(1 + ρ) ln

(
1 − y

1 + ρ

)

− y2

2(1 − ρ2)
+ 2

3

ρy3

(1 − ρ2)2 ,

where the inequality f̃ρ(y) ≥ 0 holds since f̃ρ(0) = 0 and since one can show
f̃

′
ρ(y) ≥ 0 for 0 ≤ y ≤ 2ρ. It thus follows from xt ≤ ρ that

xt+1st+1 = xt st + f̃ρ(xt ) + x2
t

2(1 − ρ2)
− 2

3

ρx3
t

(1 − ρ2)2

(9.18)

≥ xt st

[
1 + xt

2(1 − ρ2)st
− 2

3

ρx2
t

(1 − ρ2)2st

]
.

Suppose now that

xt ≤ Ct−(1/3)−δ,(9.19)

for t ≥ t0, with δ > 0. We can assume, without loss of generality, that δ < 2/3. By
(9.17) we then have, for all t ≥ t0,

st = st0 +
t−1∑
�=t0

(s�+1 − s�) ≤ st0 +
t−1∑
�=t0

x�

1 − ρ2 ≤ st0 + C

1 − ρ2

t−1∑
�=t0

�−(1/3)−δ

≤ st0 + C

1 − ρ2

∫ t−1

t0−1
u−(1/3)−δ du ≤ st0 + C

1 − ρ2

(t − 1)(2/3)−δ

2/3 − δ
.

It follows that we can define a finite C′ so that for all t ≥ t0,

st ≤ C′t (2/3)−δ.(9.20)

Consider now zt := x2−δ
t st . By (9.19) and (9.20) we have, again for t ≥ t0,

zt ≤ C2−δC′t (2−δ)(−(1/3)−δ)+(2/3)−δ = C′′t (δ/3)−2δ+δ2−δ

≤ C′′t (δ/3)−2δ+2(δ/3)−δ = C′′t−2δ,

where we have used that δ2 ≤ 2(δ/3) since δ < 2/3. It follows that

lim
t→∞ zt = 0.(9.21)

On the other hand, by (9.17) and (9.18), we have

zt+1 = x2−δ
t+1 st+1 = (xt+1st+1)

2−δs−1+δ
t+1

≥ (xt st )
2−δ

[
1 + xt

2(1 − ρ2)st
− 2

3

ρx2
t

(1 − ρ2)2st

]2−δ

× s−1+δ
t

(
1 + xt

(1 − ρ2)st

)−1+δ

.
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For sufficiently large t , xt will be small so that xt (2ρ/3(1 − ρ2)) ≤ δ/4. Thus,

zt+1 ≥ (xt st )
2−δ

[
1 + xt

2(1 − ρ2)st

(
1 − δ

2

)]2−δ

× s−1+δ
t

(
1 + xt

(1 − ρ2)st

)−1+δ

(9.22)

= zt

[
1 + xt

2(1 − ρ2)st

(
1 − δ

2

)]2−δ(
1 + xt

(1 − ρ2)st

)−1+δ

.

Now consider the function φδ(y) = [1+ y
2 (1− δ

2)]2−δ(1+y)−1+δ . Since φδ(0) = 1
and φ′

δ(y) = 4−2+δ[4 + y(2 − δ)]1−δ(1 + y)−2+δ[2y − yδ + δ2], it follows that,
for sufficiently small y,

φδ(y) ≥ 1 + 1

2
φ′

δ(0)y = 1 + δ2

8
y.

Since xt → 0, we have limt→∞ xt/st = 0. It then follows from (9.22) that

zt+1 ≥ zt

(
1 + δ2

8

(
xt

(1 − ρ2)st

))

for sufficiently large t . This implies zt+1 > zt if xt > 0, but we always have xt > 0
by (3.2). Consequently, there exists a threshold t1 so that zt is strictly increasing
for t ≥ t1. Together with zt1 = st1x

2−δ
t1

> 0 (again because xt1 must be nonzero),
this contradicts (9.21). It follows that the assumption (9.19) must be false, which
completes the proof. �

PROOF OF THEOREM 6.1. We drop the superscripts, since all variables (λt ,
gt , st , μt ) will be for arc-gv. In order to prove the convergence rate, we need
to show that versions of Lemmas 5.1 and 5.3 hold for arc-gv, starting with
Lemma 5.1. We have, since tanh can be lower bounded as before, and since for
arc-gv we have tanh(γt − αarc

t ) = μt ,∫ γt

γt−αarc
t

tanhudu ≥ 1
2αarc

t [tanhγt + tanh(γt − αarc
t )]

= 1
2αarc

t (rt + μt) ≥ 1
2αarc

t (rt + gt ).

Using the recursive equation (4.2) with arc-gv’s update and simplifying as in the
proof of Lemma 5.1 yields the analogous result

gt+1 − gt ≥ αarc
t (rt − gt )

2st+1
.

Since the right-hand side is nonnegative, the sequence of gt ’s is nonnegative and
nondecreasing; arc-gv makes progress according to the smooth margin. The proof
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of Lemma 5.3 follows from only the recursive equation (4.2) and the nonnegativity
of the gt ’s, so it also holds for arc-gv.

Now we adapt the proof of Theorem 5.2. Since we have just shown that the
statements of Lemmas 5.1 and 5.3 both hold for arc-gv, we can exactly use the
proof of Theorem 5.2 from the beginning through equation (9.9); we must then
specialize to arc-gv. We define 	μ(λt ) = ρ − μt ,

αarc
t ≥ tanhαarc

t = tanh[γt − (γt − αarc
t )] = tanhγt − tanh(γt − αarc

t )

1 − tanhγt tanh(γt − αarc
t )

= rt − μt

1 − rtμt

≥ ρ − μt

1
= 	μ(λt ).

Thus, we have

st+1 = s1̃ +
t∑

�=1̃

α� ≥ s1̃ +
t∑

�=1̃

	μ(λ�) ≥ s1̃ + (t − 1̃ + 1) min
�∈1,...,t

	μ(λ�),

or, changing the index and using min�∈1,...,t−1 	μ(λ�) ≥ min�∈1,...,t 	μ(λ�),

st ≥ s1̃ + (t − 1̃) min
�∈1,...,t

	μ(λ�).

Combining with (9.9), using 	G(λt ) ≥ 	μ(λt ) ≥ min�∈1,...,t 	μ(λ�),

t − 1̃ ≤ st

min�∈1,...,t 	μ(λ�)
≤ (s1̃ + ln 2)[	G(λ1̃)]2/(1−ρ)

[min�∈1,...,t 	μ(λ�)][1+2/(1−ρ)] ,

which means that min�∈1,...,t 	μ(λ�) ≥ ε is possible only if

t ≤ 1̃ + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ).

If t exceeds this value, min�∈1,...,t 	μ(λ�) < ε. This concludes the proof. �

10. Proofs from Section 7.

PROOF OF THEOREM 7.2. We drop the superscripts [A] during this proof. We
need to show that gt+1 ≥ gt for all t implies that rt → r and that gt → ϒ(r). Using
the argument of Theorem 7.1, an increase in G means that ϒ(rt ) = gt + ct where
ct > 0. Equivalently, by (4.2) and the definition of ϒ(rt ),

st+1gt+1 = ϒ(rt )αt + stgt = (gt + ct )αt + stgt = st+1gt + ctαt ,

and dividing by st+1 we have

gt+1 = gt + ctαt

st+1
.

We need to show that ct → 0.
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We are interested only in the later iterations, where AdaBoost is “close” to the
cycle. To ease notation, without loss of generality we will assume that at t = 1,
AdaBoost is already close to the cycle. More precisely, we assume that for some
εα > 0, for all integers a ≥ 0, for all 0 ≤ k < T (excluding a = 0, k = 0 since t

starts at 1),

αaT +k ≥ αlowerbd,k, where αlowerbd,k :=
(

lim
ā→∞αāT +k

)
− εα > 0.

Also, for some εs > 0, for all integers a ≥ 1, for all 0 ≤ k < T , we assume

saT +k ≤ asupperbd + sk, where supperbd ≥
T −1∑
k̄=0

(
lim

ā→∞αāT +k̄

)
+ εs.

Since AdaBoost is converging to a cycle, we know that rt is not much different
from its limiting value, that is, that for any arbitrarily small positive εϒ there ex-
ists Tεϒ such that t > Tεϒ implies∣∣∣∣ϒ(rt ) − lim

a→∞ϒ(rt+aT )

∣∣∣∣ < εϒ.

This implies ϒ(rt−T ) > ϒ(rt ) − 2εϒ for t > Tεϒ + T . This also implies
ϒ(rt−2T ) > ϒ(rt ) − 2εϒ for t > Tεϒ + 2T , and so on. Let us first choose an
arbitrarily small value for εϒ . Accordingly, find an iteration t̃ > Tεϒ + T so that
ct̃ > 2εϒ > 0. (If t̃ does not exist for any εϒ , the result is trivial since we automat-
ically have ct → 0, which we are trying to prove.)

First we will show that there is a strict increase in G at the same point in previous
cycles. Since G is nondecreasing by our assumption, we have gt̃ ≥ gt̃−T . Thus
ϒ(rt̃ ) = gt̃ + ct̃ ≥ gt̃−T + ct̃ . Hence,

ϒ(rt̃−T ) ≥ ϒ(rt̃ ) − 2εϒ = gt̃ + ct̃ − 2εϒ ≥ gt̃−T + ct̃ − 2εϒ.

Thus, a strict increase occurred at time t̃ −T as well, with ct̃−T ≥ ct̃ −2εϒ > 0. Let
us repeat exactly this argument for t̃ − 2T : since G is nondecreasing, gt̃ ≥ gt̃−2T .
Thus a strict increase in G at t̃ implies

ϒ(rt̃−2T ) ≥ ϒ(rt̃ ) − 2εϒ = gt̃ + ct̃ − 2εϒ ≥ gt̃−2T + ct̃ − 2εϒ.

So a strict increase occurred at time t̃ −2T with ct̃−2T ≥ ct̃ −2εϒ > 0. Continuing
to repeat this argument for past cycles shows that if ct̃ > 2εϒ > 0, then ct̃−T > 0,
ct̃−2T > 0, ct̃−3T > 0, for iterations at least as far back as Tεϒ . What we have
shown is that a strict increase in G implies a strict increase in G at the same
point in previous cycles. Let us show the theorem by contradiction. We make the
weakest possible assumption: for some large t , a strict increase in G occurs (hence
a strict increase occurs at the same point in a previous cycle). These iterations
where the increase occurs are assumed without loss of generality to be aT , where
a ∈ {1,2,3, . . .}. (If Tεϒ > 1, we simply renumber the iterations to ease notation.)
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For all other iterations, G is assumed only to be nondecreasing. We need to show
limā→∞ cāT = 0. We now have for a > 1,

gaT ≥ g(a−1)T +1 = g(a−1)T + c(a−1)T α(a−1)T

s(a−1)T +1
≥ gT +

a−1∑
ā=1

cāT αāT

sāT +1
.

Putting this together with saT +k ≤ asupperbd + sk and αaT +k ≥ αlowerbd,k , we
find that

gaT ≥ gT +
a−1∑
ā=1

cāT αlowerbd,0

āsupperbd + s1
.

Since supperbd and αlowerbd,0 are constants, the partial sums become arbitrarily large
if no infinite subsequence of the cāT ’s approaches zero. So, there exists a subse-
quence 1′,2′,3′, . . . such that lima′ ca′T = 0. Considering only this subsequence,
and taking the limits of both sides of the equation ϒ(ra′T ) = ga′T +ca′T , we obtain

lim
a′→∞ϒ(ra′T ) = lim

a′→∞ga′T .(10.1)

Since AdaBoost is assumed to be converging to a cycle and since 1′T ,2′T ,3′T , . . .

is a subsequence of T ,2T ,3T , . . . , then r := lima′→∞ ra′T exists. Thus,

lim
a′→∞ϒ(ra′T ) = ϒ(r) = lim

a→∞ϒ(raT ).(10.2)

Now, since G is a monotonically increasing sequence that is bounded by 1,

lim
t ′→∞ga′T = lim

t→∞gt = lim
a→∞gaT .(10.3)

Recall that by definition, ϒ(raT ) − gaT = caT . Taking the limit of both sides as
a → ∞, and using (10.1), (10.2) and (10.3), we find

0 = lim
a→∞[ϒ(raT ) − gaT ] = lim

a→∞ caT .

Thus, even if we make the weakest possible assumption, namely that there is a
strict increase even once per cycle, the increase goes to zero. In other words, our
initial assumption was that the caT ’s are strictly positive (not prohibiting other ct ’s
from being positive as well), and we have shown that their limit must be zero. So
we cannot have strict increases at all, ct → 0. Thus, we must have

0 = lim
t→∞ ct = lim

t→∞[ϒ(rt ) − gt ], so lim
t→∞gt = lim

t→∞ϒ(rt ) = ϒ(r).

This means all rt ’s in the cycle are identical, rt → r . We have finished the proof.
�

PROOF OF THEOREM 7.4. Again we drop superscripts [A]. Choose δ > 0 ar-
bitrarily small. We shall prove that lim supt gt ≤ ϒ(ρ̄ + σ) + δ and lim inft gt ≥
ϒ(ρ̄) − δ, which (since δ was arbitrarily small) would prove the theorem. We start
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with the recursive equation (4.2). Subtracting αtgt from both sides and simplifying
yields st+1(gt+1 − gt ) = ϒ(rt )αt − αtgt , and dividing by st+1,

gt+1 − gt = (
ϒ(rt ) − gt

) αt

st+1
.(10.4)

First we will show that, for some t , if gt is smaller than ϒ(ρ̄) − δ, then gt must
monotonically increase for t̃ ≥ t until gt̃ meets ϒ(ρ̄) − δ after a finite number
of steps. Suppose gt is smaller than ϒ(ρ̄) − δ, and moreover suppose this is true
for N iterations: ϒ(ρ̄)−gt̃ > δ > 0, for t̃ ∈ {t, t +1, t +2, . . . , t +N}. Then, since
ϒ(rt̃ ) ≥ ϒ(ρ̄), we have

gt̃+1 − gt̃ > δ
αt̃

st̃+1
≥ δ

tanh−1 ρ̄

tanh−1(ρ̄ + σ)

1

t̃ + 1
> 0,

where we have used that αt̃ = tanh−1 rt̃ ≥ tanh−1 ρ̄ and st̃+1 ≤ (t̃ + 1) tanh−1(ρ̄ +
σ), which are due to the restrictions on rt . Recursion yields

gt+N − gt ≥ δ
tanh−1 ρ̄

tanh−1(ρ̄ + σ)

[
1

t + 1
+ 1

t + 2
+ · · · + 1

t + N

]
,

≥ δ
tanh−1 ρ̄

tanh−1(ρ̄ + σ)

∫ t+N+1

t+1

1

x
dx

= δ
tanh−1 ρ̄

tanh−1(ρ̄ + σ)
ln

(
1 + N

t + 1

)
.

Because 1 ≥ gt+N − gt , this implies

N ≤ (t + 1) exp
[

1

δ

tanh−1(ρ̄ + σ)

tanh−1 ρ̄

]
=: Nt .

It follows that there must be at least one value N in {0,1,2, . . . ,Nt ,Nt + 1} such
that ϒ(ρ̄) − gt+N ≤ δ.

An identical argument can be made to show that if gt −ϒ(ρ̄ +σ) > δ > 0, then
the values of gt̃ , for t̃ ≥ t will monotonically decrease to meet ϒ(ρ̄ + σ) + δ. To
make this explicit, suppose that gt̃ −ϒ(ρ̄+σ) > δ > 0 for t̃ ∈ {t, t +1, . . . , t +M}.
Then, since −ϒ(rt̃ ) ≥ −ϒ(ρ̄ + σ),

gt̃ − gt̃+1 = (
gt̃ − ϒ(rt̃ )

) αt̃

st̃+1
≥ δ

tanh−1 ρ̄

tanh−1(ρ̄ + σ)

1

t̃ + 1
.

By the same reasoning as above, it follows that M cannot exceed some finite Mt .
Therefore, we must have, for some t̃ ∈ {t + 1, . . . , t + Mt, t + Mt + 1}, that gt̃ −
ϒ(ρ̄ + σ) ≤ δ, and that gt decreases monotonically until this condition is met.

To summarize, we have just shown that the sequence of values of gt cannot
remain below ϒ(ρ̄) − δ, and cannot remain above ϒ(ρ̄ + σ) + δ. Next we show
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that from some t0 onward, the gt ’s cannot even leave the interval [ϒ(ρ̄)−δ,ϒ(ρ̄ +
σ)+δ]. First of all, note that we can upper bound |gt+1 −gt |, regardless of its sign,
as follows:

|gt+1 − gt | = |ϒ(rt ) − gt | αt

st+1

≤ max
(
ϒ(ρ̄ + σ),1

) tanh−1(ρ̄ + σ)

tanh−1 ρ̄

1

t + 1
=: Cσ

1

t + 1
,

where we have used |ϒ(rt ) − gt | ≤ max(ϒ(rt ), gt ) ≤ max(ϒ(ρ̄ + σ),1), since
ϒ(rt ) and gt are both positive and bounded.

Now, if t ≥ Cσ [ϒ(ρ̄ + σ) − ϒ(ρ̄) + δ]−1 =: T1, then the bound we just proved
implies that the gt for t ≥ T1 cannot jump from values below ϒ(ρ̄) − δ to values
above ϒ(ρ̄ + σ) + δ in one time step. Since we know that the gt cannot remain
below ϒ(ρ̄) − δ or above ϒ(ρ̄) + δ for more than max(Nt ,Mt) consecutive steps,
it follows that for t ≥ T1, the gt must return to [ϒ(ρ̄)− δ,ϒ(ρ̄ +σ)+ δ] infinitely
often. Pick t0 ≥ T1 so that gt0 ∈ [ϒ(ρ̄) − δ,ϒ(ρ̄ + σ) + δ]. We distinguish three
cases: gt0 < ϒ(ρ̄), ϒ(ρ̄) ≤ gt0 ≤ ϒ(ρ̄ + σ) and gt0 > ϒ(ρ̄ + σ). In the first case,
we know from (10.4) that gt0+1 − gt0 > 0, so that

gt0 < gt0+1 ≤ gt0 + Cσ

1

t0 + 1
≤ ϒ(ρ̄) + ϒ(ρ̄ + σ) − ϒ(ρ̄) + δ,

that is, gt0+1 ∈ [ϒ(ρ̄) − δ,ϒ(ρ̄ + σ) + δ]. A similar argument applies to the third
case. In the middle case, we find that

dist
(
gt0+1, [ϒ(ρ̄),ϒ(ρ̄ + σ)]) := max

(
0, gt0+1 − ϒ(ρ̄ + σ),ϒ(ρ̄) − gt0+1

)
≤ |gt0+1 − gt0 | ≤

Cσ

t0 + 1
,

which does not exceed δ if t0 ≥ Cσδ−1 =: T2. It follows that if t0 ≥ T0 :=
max(T1, T2), and gt0 ∈ [ϒ(ρ̄) − δ,ϒ(ρ̄ + σ) + δ], then gt0+1 will likewise be in
[ϒ(ρ̄) − δ,ϒ(ρ̄ + σ) + δ]. By induction we obtain that gt ∈ [ϒ(ρ̄) − δ,ϒ(ρ̄ +
σ) + δ] for all t ≥ t0. This implies

lim inf
t→∞ gt ≥ ϒ(ρ̄) − δ and lim sup

t→∞
gt ≤ ϒ(ρ̄ + σ) + δ.

Since, at the start of this proof, δ > 0 could be chosen arbitrarily small, we obtain
lim inft→∞ gt ≥ ϒ(ρ̄) and lim supt→∞ gt ≤ ϒ(ρ̄ + σ).

Note that we do not really need uniform bounds on rt for this proof to work. In
fact, we need only bounds that hold “eventually,” so it is sufficient that lim supt rt ≤
ρ̄ + σ , lim inft rt ≥ ρ̄. In the special case where limt rt = ρ, that is, where σ = 0
and ρ̄ = ρ, it then follows that limt gt = ϒ(ρ). Hence we have completed the
proof. �
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PROOF OF THEOREM 7.5. For any given ρ̄ and σ , we will create a matrix M
such that edge values can always be chosen within [ρ̄, ρ̄ + σ ]. For this matrix M,
we must also have ρ̄ ≥ ρ. Choose a value for ρ̄, and choose σ arbitrarily small.
Also, for reasons that will become clear later, choose a constant φ such that

φ ≥ 1 + ρ̄ + σ

1 − ρ̄ − σ
,

and choose m ≥ 2φ/σ . As usual, m will be the number of training examples. Let M
contain only the set of possible columns that have at most m(ρ̄ + 1)/2 entries that
are +1. (We can assume m was chosen so that this is an integer.) This completes
our construction of M.

Before we continue, we need to prove that for ρ of this matrix M, we have
ρ ≤ ρ̄. For any column j ,

m∑
i=1

Mij ≤ (+1)
m(ρ̄ + 1)

2
+ (−1)

(
m − m(ρ̄ + 1)

2

)
= mρ̄.

Thus, for any λ̄ ∈ 	n, we upper bound the average margin (i.e., the average margin
over training examples),

1

m

m∑
i=1

n∑
j=1

λ̄jMij = ∑
j

λ̄j

(
1

m

m∑
i=1

Mij

)
≤ ∑

j

λ̄j

1

m
mρ̄ = ρ̄

∑
j

λ̄j = ρ̄.

We have just shown that the average margin is at most ρ̄. There must be at least
one training example that achieves a margin at or below the average margin; thus
mini (Mλ̄)i ≤ ρ̄, and since λ̄ is arbitrary, ρ = maxλ̄∈	n

mini (Mλ̄)i ≤ ρ̄, the maxi-
mum margin is at most ρ̄.

We will now describe our procedure for choosing weak classifiers, and then
prove that this procedure always chooses edge values rt within [ρ̄, ρ̄ + σ ]. As
usual, for t = 1 we set d1,i = 1/m for all i. Let us describe the procedure to choose
our weak classifier jt , for iteration t . Without loss of generality, we reorder the
training examples so that dt,1 ≥ dt,2 ≥ · · · ≥ dt,m, for convenience of notation in
describing the procedure. We choose a weak classifier jt that correctly classifies
the first ī training examples, where ī is the smallest index such that 2(

∑ī
i=1 dt,i)−

1 ≥ ρ̄. That is, we correctly classify enough examples so that the edge just exceeds
ρ̄. The maximum number of correctly classified examples, ī, will be at most m(ρ̄+
1)/2, corresponding to the case where dt,1 = · · · = dt,m = 1/m. Thus, the weak
classifier we choose thankfully corresponds to a column of M. The edge rt is
rt = 2(

∑ī
i=1 dt,i) − 1 ≥ ρ̄. We can now update AdaBoost’s weight vector using

the usual exponential rule. Thus, our description of the procedure is complete.
By definition, we have chosen the edge such that ρ̄ ≤ rt . We have only to show

that rt ≤ ρ̄ + σ for each t . The main step in our proof is to show that φ = K1 = Kt

for all t , where for each iteration t ,

Kt := max
{

max
i1,i2

dt,i1

dt,i2

, φ

}
.
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We will prove this by induction. For the base case t = 1, K1 = max{1, φ} = φ.
Now for the inductive step. In order to make calculations easier, we will write
AdaBoost’s weight update in a different way (this iterated map can be derived
from the usual exponential update) [23, 22]. Namely,

dt+1,i =

⎧⎪⎪⎨
⎪⎪⎩

dt,i

1 + rt
, for i ≤ ī,

dt,i

1 − rt
, for i > ī.

Assuming φ = Kt , we will show that Kt+1 = Kt . We can calculate the value of
Kt+1 using the update rule written above,

Kt+1 = max
{

max
i1,i2

dt+1,i1

dt+1,i2

, φ

}
=

{
maxi1 dt+1,i1

mini2 dt+1,i2

, φ

}

= max
{max{dt,1/(1 + rt ), dt,ī+1/(1 − rt )}

min{dt,ī/(1 + rt ), dt,m/(1 − rt )} , φ

}

= max
{
dt,1

dt,ī

,
dt,ī+1

dt,m

,
dt,1

dt,m

1 − rt

1 + rt
,
dt,ī+1

dt,ī

1 + rt

1 − rt
, φ

}
.

By our inductive assumption, the ratios of dt,i values are all nicely bounded, that

is, dt,1
dt,ī

≤ Kt = φ,
dt,ī+1
dt,m

≤ φ and dt,1
dt,m

≤ φ. Another bound we have automatically

is (1 − rt )/(1 + rt ) ≤ 1. We have now shown that none of the first three terms can
be greater than φ, thus they can be ignored. Consider just the fourth term. Since

we have ordered the training examples,
dt,ī+1
dt,ī

≤ 1. If we can bound (1 + rt )/(1 −
rt ) by φ, we will be done with the induction. We can bound the edge rt from
above, using our choice of ī. Namely, we chose ī so that the edge exceeds ρ̄ by the
influence of at most one extra training example,

rt ≤ ρ̄ + 2 max
i

dt,i = ρ̄ + 2dt,1.(10.5)

Let us now upper bound dt,1. By definition of Kt , we have dt,1
dt,m

≤ Kt , and thus
dt,1 ≤ Ktdt,m ≤ Kt/m. Here, we have used that dt,m = mini dt,i ≤ 1/m since the
dt vectors are normalized to 1. By our specification that m ≥ 2φ/σ and by our
induction principle, we have dt,1 ≤ Kt/m ≤ φσ/2φ = σ/2. Using (10.5), rt ≤
ρ̄ + 2σ/2 = ρ̄ + σ . (This is by design.) So,

1 + rt

1 − rt
≤ 1 + ρ̄ + σ

1 − ρ̄ − σ
≤ φ.

Thus, Kt+1 = φ. We have just shown that for this procedure, Kt = φ for all t .
Lastly, we note that since Kt = φ for all t , we will always have rt ≤ ρ̄ + σ , by

the upper bound for rt we have just calculated. �
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11. Conclusions. Our broad goal is to understand the generalization proper-
ties of boosting algorithms such as AdaBoost. This is a large and difficult problem
that has been studied for a decade. Yet, how are we to understand generaliza-
tion when even the most basic convergence properties of the most commonly used
boosting algorithm are not well understood? AdaBoost’s convergence properties
are understood in precisely two cases, namely the cyclic case, and the case of
bounded edges introduced here.

Our work consists of two main contributions, both of which use the smooth mar-
gin function as an important tool. First, from the smooth margin itself, we derive
and analyze the algorithms coordinate ascent boosting and approximate coordi-
nate ascent boosting. These algorithms are similar to AdaBoost in that they are
adaptive and based on coordinate ascent. However, their convergence can be un-
derstood, namely, both algorithms converge to a maximum margin solution with a
fast convergence rate. We also give an analogous convergence rate for Breiman’s
arc-gv algorithm. Our second contribution is an analysis of AdaBoost in terms of
the smooth margin. We analyze the case where AdaBoost exhibits cyclic behavior,
and we present the case of bounded edges. In the case of bounded edges, we are
able to derive a direct relationship between AdaBoost’s edge values (which mea-
sure the performance of the weak learning algorithm) and the asymptotic margin.

11.1. Open problems. We leave open a long list of relevant problems. We
have made much progress in understanding AdaBoost’s convergence in general
via the understanding of special cases, such as the cyclic setting and the setting
with bounded edges. The next interesting questions are even more general; for a
given matrix M, can we predict whether optimal-case AdaBoost will converge to
a maximum margin solution? Also, is there a procedure for choosing weak classi-
fiers in the nonoptimal case that would always force convergence to a maximum
margin solution? In this case, one would have to plan ahead in order to attain large
edge values.

Another open area involves numerical experiments; our new algorithms fall “in
between” AdaBoost and arc-gv in many ways; for example, our new algorithms
have step sizes that are in between arc-gv and AdaBoost. Can we determine which
problem domains match with which algorithms? From our experiments, we sus-
pect the answer to this is quite subtle, and in many domains, all of these algorithms
may be tied (within some error precision).

We have presented a controlled numerical experiment using only AdaBoost, to
show that the weak learning algorithm (and thus the margin) may have a large im-
pact on generalization. Other experiments along the same lines can be suggested;
for example, if the weak learning algorithm is simply bounded from above (cannot
choose an edge above c where 0 � c < 1), does this restriction limit the general-
ization ability of the algorithm? From our convergence analysis, it is clear that this
sort of limitation might yield clarity in convergence calculations, considering that
a significant portion of our convergence calculations are step-size bounds.
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