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STABILITY OF THE GIBBS SAMPLER FOR BAYESIAN
HIERARCHICAL MODELS
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We characterize the convergence of the Gibbs sampler which samples
from the joint posterior distribution of parameters and missing data in hier-
archical linear models with arbitrary symmetric error distributions. We show
that the convergence can be uniform, geometric or subgeometric depending
on the relative tail behavior of the error distributions, and on the parame-
trization chosen. Our theory is applied to characterize the convergence of the
Gibbs sampler on latent Gaussian process models. We indicate how the the-
oretical framework we introduce will be useful in analyzing more complex
models.

1. Introduction. Hierarchical modeling is a widely adopted approach to con-
structing complex statistical models. The appeal of the method lies in the simplic-
ity in specifying a highly multivariate model by joining many simple and tractable
models, the foundational justification based on the ideas of partial exchangeabil-
ity, the flexibility to extend or simplify the model in the light of new information,
and the ease of inference using powerful Markov chain Monte Carlo (MCMC)
methods which have been developed to this end during the last two decades. Thus,
hierarchical models have been used in many areas of applied statistics such as geo-
statistics [8], longitudinal analysis [9], disease mapping [3] and financial econo-
metrics [23], to name just a few.

A rather general form of a two-level hierarchical model is

Y ∼ L(Y |X),
(1)

X ∼ L(X|�),

where L(X) and L(Y |X) denote the distribution of X and the conditional distrib-
ution of Y given X, respectively. We will refer to Y as the data, X as the missing
data and � as the parameters. In a Bayesian context the model is completed by
specifying a prior distribution for �. Typically the dimension of X is much larger
than that of � and it can increase with the size of the data set. Most of the applica-
tions cited above fit into (1) by imposing the appropriate structure on L(Y |X) and
L(X|�). It is straightforward to construct models with more levels.
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Bayesian inference for (1) involves the posterior distribution L(X,�|Y = y).
This is typically analytically intractable, but it can be sampled relatively easily
using the Gibbs sampler [28], by simulating iteratively from the two conditional
distributions L(X|�,Y = y) and L(�|X,Y = y). It has been demonstrated both
theoretically and empirically that the convergence (to be formally defined in Sec-
tion 3) of the Gibbs sampler relates to the structure of the hierarchical model and
particularly to the dependence between the updated components, X and �. Never-
theless, the exact way in which the model structure interferes with the convergence
remains largely unresolved. Concrete theoretical results exist only for Gaussian hi-
erarchical models, but we will see that these results do not extend to more general
cases. Although interesting characterizations of the convergence rate in terms of
the dependence between X and � exist when the Gibbs sampler is geometrically
ergodic [1], there exist no general results which establish geometric ergodicity for
the Gibbs sampler. The difficulty in obtaining such general results lies in the intrin-
sic dependence of the convergence of the Gibbs sampler on the model structure.

In this paper we show explicitly how the relative tail behavior of L(Y |X) and
L(X|�) determines the stability of the Gibbs sampler, that is, whether the conver-
gence is uniform, geometric or subgeometric. Moreover, we show that the relative
tail behavior dictates the type of parametrization that should be adopted. In order
to retain tractability and formulate interpretable and easy to check conditions we
restrict attention to the class of linear hierarchical models with general error distri-
butions; the precise model structure is given in Section 2.1. Nevertheless, our main
theoretical results, in particular Theorems 3.3, 3.4, 3.5 and 6.3, and the method-
ology for proving them are expected to be useful in a much more general context
than the one considered here.

Consideration of the class of linear non-Gaussian hierarchical models is not
merely motivated by mathematical convenience. These models are very useful in
real applications, for example, in longitudinal random effects modeling [9, 13],
time series analysis [4, 12, 27] and spatial modeling [8]. They also are a funda-
mental tool in the robust Bayesian analysis [7, 20, 22, 29]. Furthermore, we will
see that the stability of the Gibbs sampler for linear non-Gaussian models is very
different compared to the Gaussian case, the local dependence between X and
� being crucial in the non-Gaussian case. Notice that several other models can
be approximately written as linear non-Gaussian models. Actually, this work has
been motivated by the behavior of MCMC for non-Gaussian Ornstein–Uhlenbeck
stochastic volatility models [23].

The paper is organized as follows. Section 2.1 specifies the models we will be
concerned with and it establishes some basic notation. Section 2.2 discusses Gibbs
sampling under different parametrizations of the model and Section 2.3 motivates
the theory and the methodology developed in this paper by a simple example. Sec-
tion 3 is the theoretical core of this paper; the section commences with a short
review of stability concepts for the Gibbs sampler; Section 3.1 recalls the exist-
ing results for Gaussian linear models; Section 3.2 develops stability theory for
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hierarchical models and states three main theorems for the stability of the Gibbs
sampler; based on these theorems Section 3.3 provides the characterization of the
stability of the Gibbs sampler under different parametrizations for a broad class
of linear hierarchical models; Section 3.4 considers an alternative augmentation
scheme when one of the error distributions is a scale mixture of normals and com-
pares the convergence of a three-component Gibbs sampler with that of its col-
lapsed two-component counterpart. Section 4 extends the theory to hierarchical
models which involve latent Gaussian processes. Section 5 discusses extensions
and contains some practical guidelines. Section 6 contains the proofs of all theo-
rems and propositions. The proofs are based on establishing geometric drift condi-
tions and minorization conditions and using capacitance arguments in conjunction
with Cheeger’s inequality.

2. Models, parametrizations and motivation.

2.1. Linear hierarchical models. The models we consider in this paper are of
the following form, where Yi is mi × 1, Ci is mi × p, Xi is p × 1, D is p × 1 and
� is a scalar:

Yi = CiXi + Z1i , i = 1, . . . ,m,
(2)

Xi = D� + Z2i .

Z1i , i = 1, . . . ,m, are i.i.d. with distribution L(Z1), Z2i , i = 1, . . . ,m, are
i.i.d. with distribution L(Z2), and L(Z1) and L(Z2) are symmetric distributions
around 0 (a vector of 0’s with the appropriate dimension). In the sequel, boldface
letters will correspond to vectors and matrices, capital letters to random variables
and lowercase letters to their realizations. In this setting Y = (Y1, . . . ,Ym) and
X = (X1, . . . ,Xm). The first equation in (2) will be termed the observation equa-
tion and the second the hidden equation.

It is often conveniently assumed that both L(Z1) and L(Z2) are Gaussian. How-
ever, there are several applications where this assumption is clearly inappropriate,
especially if we wish to make the inference about X robust in the presence of prior-
data conflict. It is known (see, e.g., [20, 22, 29] and references therein) that if the
tails of L(Z1) are heavier than the tails of L(Z2), then inference for X is robust
to outlying observations, whereas if L(Z2) has heavier tails than L(Z1), inference
for X is less influenced by the prior in case of data-prior conflict; this robustness is
absent from Gaussian models. This type of robust modeling has been undertaken
in time series analysis; see, for example, [12].

2.2. Gibbs sampling and parametrizations. As is common in this frame-
work, we place an improper flat prior on �, which in this context leads to a
proper posterior. Bayesian inference for (2) involves the joint posterior distrib-
ution L(X,�|Y = y), which will abbreviate to L(X,�|Y). Although it is often
analytically intractable, it can be sampled easily using the Gibbs sampler.
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The parametrization P0 := (X,�) is termed the centered parametrization. This
terminology was first used in the linear Gaussian context by [10]. Following [21]
we shall use the term more generally to refer to a parametrization where the para-
meters and the data are conditionally independent given the missing data. We can
use the Gibbs sampler to collect samples from L(U,�|Y) where U = h(X,�),
for some invertible transformation h, and then transform the draws to obtain sam-
ples from L(X,�|Y). In the rest of the paper we will use P to refer to a general
parametrization (U,�). It is known [16] that the convergence (to be formally in-
troduced in Section 3) of the Gibbs sampler improves as the dependence between
the updated components, U and �, decreases. Hence, the development of gen-
eral reparametrization strategies has been actively researched; see [21] for a recent
account. In that work, the authors introduce the noncentered reparametrization
P1 := (X̃,�), which replaces X with X̃ := h(X,�), where h is a transformation
which makes � and X̃ a priori independent. In the context of linear hierarchical
models X̃ = (X̃1, . . . , X̃m), where X̃i = h(Xi ,�), and h(x, θ) := x − Dθ . We will
see that P0 and P1 present two natural choices.

The prolific expansion in the use of Gibbs sampling for inference in hierarchical
models during the 1990s was fuelled by the apparent rapid convergence of the al-
gorithm in many cases. However, to date, there has been little theoretical analysis
linking the stability of the Gibbs sampler to the structure of hierarchical models.
A notable exception are the explicit convergence results for Gaussian linear hier-
archical models obtained in [24] and summarized in Section 3.1. The following
example is revealing as to what might go wrong when considering non-Gaussian
linear models, and motivates the methodology and theory developed in this article.

2.3. A motivating example. Consider a simplified version of (1) where m =
m1 = C1 = D = 1,

Y = X + Z1,
(3)

X = � + Z2.

Assume that L(Z1) = Ca(0,1), a standard Cauchy distribution, L(Z2) = N(0,5),
and y = 0 is observed. Figure 1(a) shows the sampled values of � after two inde-
pendent runs of the Gibbs sampler, each of 104 iterations. The top one is started
from the mode, �0 = 0, and superficially it appears to be mixing well: the auto-
correlation in the series becomes negligible after 10 lags, and most convergence
diagnostic tests would assess that the chain has converged. Nevertheless, the chain
never exits the set (−40,40), although this is an event with stationary probabil-
ity about 0.015. The second run, Figure 1(a) bottom, is started from �0 = 200,
and the chain spends more than 4000 iterations wandering around �0. The con-
tour plot of the joint posterior log-density of X and � in Figure 1(b) provides
an explanation: the contours look roughly spherical near the mode, but they be-
come asymptotically concentrated around x = θ as |θ | → ∞. Thus, restricted to
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FIG. 1. (a) Two runs of the Gibbs sampler under P0 for the model (3) started at �0 = 0 (top) and
�0 = 200 (bottom). (b) Contours of the joint posterior log-density of X and �.

an area around the mode, X and � look roughly independent, but in the tails they
are highly dependent. In fact, L(X − θ |Y,� = θ) → N(0,5) as |θ | → ∞, and we
show in Section 3.3 that the Gibbs sampler which updates X and � converges sub-
geometrically. In contrast, L(X̃|Y,� = θ) → L(X̃), as |θ | → ∞, and as we show
in Section 3.3 the Gibbs sampler which updates X̃ and � is uniformly ergodic.

3. Convergence of the Gibbs sampler for linear hierarchical models.
Given the parametrization P = (U,�), the two-component Gibbs sampler sim-
ulates iteratively from L(U|Y,� = �n−1) and L(�|Y,U = Un), where �0 is a
starting value and n ≥ 1 denotes the iteration number. This algorithm generates a
Markov chain {(Un,�n)} with stationary distribution L(U,�|Y). The marginal
chain {�n} is also Markov and reversible with respect to L(�|Y) (Lemma 3.1
of [16]). Moreover, it can be shown [25] that the convergence rate of the joint
chain coincides with the convergence rate of the marginal chain, {�n}. Notice that
this result does not hold for Gibbs samplers which update more than two compo-
nents. In the sequel, for any random variables W and V , and probability law μ, we
will use the short-hand notation

L(V |W ∼ μ) :=
∫

L(V |W = w)μ(dw).

We will consider the convergence of {�n} through the total variation norm,
defined as

‖Lh(�n|Y,�0) − L(�|Y)‖ = sup
|g|≤1

∣∣Eh{g(�n)|Y,�0} − E{g(�)|Y}∣∣.
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Lh(�n|Y,�0) is the distribution of the chain after n steps started from �0, and
Eh{g(�n)|Y,�0} is the expected value of a real bounded function g with respect
to this distribution. Lh(�n|Y,�0) clearly depends on the parametrization U =
h(X,�), since

Lh(�1|Y,�0) = L{�|Y,U ∼ L(U|Y,� = �0)}.
Under standard regularity conditions (Theorem 13.0.1 of [19]) the total variation
norm converges to 0 as n → ∞. We say that {�n} is geometrically ergodic when
there exist an r < 1 and some function M(·), such that

‖Lh(�n|Y,�0) − L(�|Y)‖ ≤ M(�0)r
n.(4)

The smallest r for which (4) holds, say rh, is known as the rate of convergence
of {�n}. However, the actual distance from stationarity will in general depend on
the starting point and this is represented by the term M(�0) in (4). When M(·) is
bounded above, {�n} is called uniformly ergodic. Uniform ergodicity is a valuable
property, since it ensures that the convergence of the chain does not depend criti-
cally on the initial value chosen. While this does not guarantee rapid convergence,
it ensures that the “burn-in” problem cannot become arbitrarily bad from certain
starting points.

Geometric ergodicity is a qualitative stability property, and geometrically er-
godic algorithms may still converge slowly and give Monte Carlo estimates with
high variance (e.g., when rh ≈ 1). However, algorithms which fail to be geometri-
cally ergodic can lead to various undesirable properties, including the breakdown
of the central limit theorem for ergodic average estimates. In this case the simu-
lation can be unreliable and the drawn samples might poorly represent the target
distribution.

To keep nomenclature simple we will identify a parametrization P = (U,�)

with the Gibbs sampler which updates U and �. Thus, we say that a parametriza-
tion P is geometrically (resp. uniformly) ergodic, if the Gibbs sampler imple-
mented using this parametrization is geometrically (resp. uniformly) ergodic.

3.1. Gaussian models. The Gibbs sampler for the Gaussian linear model is
geometrically ergodic with rate given in [24]. In the simplified model (3) assume
that L(Zi) = N(0, σ 2

i ), i = 1,2, and define κ = σ 2
2 /(σ 2

2 +σ 2
1 ). Then, [21] building

on the results of [24] showed that, when U = h(X,�) = X − ρ�,

rh := rρ = (ρ − (1 − κ))2

ρ2κ + (1 − ρ)2(1 − κ)
= {corr(U,�|Y)}2,(5)

which gives rise to the two special cases of interest, r0 = 1 − κ , r1 = κ . In this
setting, the dependence between U and � is appropriately quantified by the cor-
relation coefficient, and (5) shows that the larger the correlation the worse the
convergence. Many refinements and generalizations of these results can be found
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in [24], [21] and [17]. Notice that both P0 and P1 are geometrically ergodic. P0
converges rapidly when the observation equation is “more precise” than the hid-
den equation, that is, σ1 	 σ2, and it converges slowly when the hidden equation
is relatively precise. P1 converges rapidly when the hidden equation is relatively
more precise.

3.2. General theory for linear hierarchical models. This section gives general
results which can be used to characterize the stability of the Gibbs sampler on lin-
ear hierarchical models of the form (2) where the Xi’s are univariate and D = 1.
Our results are valid when m > 1 and mi > 1 (see Remark 1); however, in order
to keep the notation simple we will work with the simplified model (3), where all
Y,X and � are scalars. L(Z1) and L(Z2) are arbitrary symmetric distributions
with continuous bounded everywhere positive densities, f1 and f2, respectively;
common examples include the Gaussian, the Cauchy and the double exponential.
This section gives the general results, while Section 3.3 applies them to character-
ize the convergence of the Gibbs sampler for (a broad class of) linear non-Gaussian
hierarchical models. Section 4 deals with extensions where the Xi’s are vectors of
dependent variables, therefore covering state-space and spatial models. Neverthe-
less, the results even for the more structured models follow relatively easily from
the results of this section. All proofs are deferred to Section 6.

We begin by introducing a collection of posterior robustness concepts, which are
related with the behavior of the conditional posterior distribution L(U |Y,� = θ)

as |θ | → ∞. All these concepts have statistical interpretations but they turn out to
provide the required mathematical conditions for characterizing the stability of the
Gibbs sampler, as we show in Theorems 3.3, 3.4 and 3.5 below.

DEFINITION 3.1. The parametrization P = (U,�) is called:

1. partially tight in parameter (PTIP), if for all y, there is some k > 0 such that

lim sup
|θ |→∞

P(|U | > k|Y = y,� = θ) < 1,(6)

2. geometrically tight in parameter (GTIP), if there exist positive constants, a, b

(independent of θ ) such that for all θ ,

P(|U | > x|Y = y,� = θ) ≤ ae−bx.

GTIP implies not only that L(U |Y,� = θ) is a tight family of distributions, but
also that the tail probabilities are bounded exponentially. (We recall that a family
of distributions on the real line, say Fθ , indexed by a scalar θ , is called tight when
limk→∞ supθ Fθ ([−k, k]c) = 0.) Clearly, GTIP is a much stronger condition than
PTIP. We consider also the following model robustness concepts.

DEFINITION 3.2. We say that the linear hierarchical model (3) is:
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1. robust in parameter (RIP), if

lim|θ |→∞L(X|Y = y,� = θ) = L(Z1 + y),

2. robust in data (RID), if

lim|θ |→∞L(X̃|Y = y,� = θ) = L(X̃),

3. data uniformly relevant (DUR), if there exist positive constants d , k such that
for all |θ | > k, ∣∣E{X|Y = y,� = θ}∣∣ ≤ |θ | − d,

4. parameter uniformly relevant (PUR), if there exist positive constants d , k such
that for all |θ | > k,

sgn(θ)E{X − y|Y = y,� = θ} ≥ d.

These definitions characterize the hierarchical model according to how infer-
ence for X (conditionally on � = θ ) is affected by a large discrepancy between
the data y and the prior guess θ . When the model is RIP inference for X ignores θ ,
and it is symmetric around y. Conversely, when the model is RID inference for X

ignores the data and becomes symmetric around θ . When the model is DUR (PUR)
the data (the parameter) always influences the conditional expectation of X. Notice
that when the model is RIP P0 is PTIP (although not necessarily GTIP), and when
it is RID P1 is PTIP. The example in Section 2.3 describes a RID model. A model
can be both DUR and PUR (e.g., the Gaussian linear model).

THEOREM 3.3. Consider the linear hierarchical model (3) where the error
densities f1 and f2 are continuous, bounded and everywhere positive. If P0 (P1)
is PTIP, then it is uniformly ergodic.

THEOREM 3.4. Consider the linear hierarchical model (3) where the error
densities f1 and f2 are continuous, bounded and everywhere positive. If the model
is RID, then P0 is not geometrically ergodic, and if the model is RIP, then P1 is
not geometrically ergodic.

The proof of Theorem 3.4 is based on the general Theorem 6.3 about Markov
chains on the real line, which is stated and proved in Section 6.

THEOREM 3.5. (i) If the model is DUR, P1 is GTIP and L(Z2) has finite
moment generating function in a neighborhood of 0, then P0 is geometrically er-
godic.

(ii) If the model is PUR, P0 is GTIP and L(Z1) has finite moment generating
function in a neighborhood of 0, then P1 is geometrically ergodic.

The theorems are proved by establishing a geometric drift condition. The re-
quirements of GTIP for P1 (P0) and finite moment generating function for L(Z2)

[L(Z1)] are in order to tilt exponentially the linear drift condition provided by
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TABLE 1
Distributions for the error terms and their densities

Distribution Code Density g(x) up to proportionality

Cauchy C σ 2/(1 + x2)

Double exponential E exp{−|x|/σ }
Gaussian G exp{−(x/σ )2/2}
Exponential power distribution L exp{−|x/σ |β }, β > 2

In the paper they are coded according to the letter in the middle column.

DUR (PUR).

3.3. Characterizing the stability of the Gibbs sampler according to the distrib-
ution tails of the error terms. In this section, building upon the general theory of
Section 3.2, we characterize the stability of the Gibbs sampler on the linear hierar-
chical model (3) for different specifications of L(Z1),L(Z2). Although we con-
sider the error distributions in Table 1, our proofs remain valid for much broader
families of distributions (see Remark 2). Notice that the exponential power distri-
bution contains both the Gaussian (β = 2) and the double exponential (β = 1) as
special cases. Here we consider densities with tails lighter than Gaussian (β > 2).
For the use of this distribution in Bayesian robustness see [5].

We shall specify linear models giving first L(Z1) and then L(Z2); for instance,
the (C, E) model corresponds to (3) with Cauchy distribution for Z1, and double
exponential distribution for Z2. For each model we have two parametrizations,
thus two algorithms, P0 and P1. When we refer to the stability of an algorithm
we shall write U, G and N to refer to uniform, geometric and nongeometric (i.e.,
subgeometric) ergodicity, respectively.

THEOREM 3.6. The stability P0 and P1 is given in Table 2.

TABLE 2
Stability P0 (left) and P1 (right) for the linear hierarchical model (3) for specifications of the

distribution of the error terms as in Table 1

Stability of P0 Stability of P1

L(Z1) L(Z1)

C E G L C E G L

C U U U U C U N N N
L(Z2) E N G/U U U L(Z2) E U U/G G G

G N G G G G U U G G
L N G G G L U U G G



104 O. PAPASPILIOPOULOS AND G. ROBERTS

REMARK 1. The determining factor in classifying the stability of a parame-
trization is the tail behavior of L(Z1) and L(Z2). Thus, Theorem 3.6 generalizes
to the case of multiple random effects and observations:

Yij = Xi + Z1ij , j = 1, . . . ,mi,

Xi = � + Z2i , i = 1, . . . ,m,

where Z1· and Z2· are independently distributed identically to L(Z1) and L(Z2),
respectively. This extension is immediate where obvious sufficient statistics exist
(the C and N cases). However, since proving formally the full generalization would
be extremely tedious (although in the same lines as in Section 6), we do not attempt
it here.

REMARK 2. The same results can be obtained when any of the distributions
considered in Table 2 is replaced by another symmetric distribution with the same
tail behavior, which possesses a bounded continuous everywhere positive density.

REMARK 3. Different results hold when a proper prior for � is imposed. In
this case the convergence improves.

REMARK 4. The results of Theorem 3.6 are independent of the actual value
of y. This does not necessarily hold in other contexts.

REMARK 5. In the (E, E) model, the stability depends on the ratio of the scale
parameters in L(Z1) and L(Z2). Depending on this ratio, convergence can be
either geometric or uniform (see Section 6 for details).

REMARK 6. The following heuristic can be derived from Table 2: conver-
gence of P0 is best when L(Z1) has lighter tails than L(Z2), and worst when it
has heavier tails. The situation for P1 is the reverse. Both algorithms become more
stable the lighter the tails of L(Z1) and L(Z2) become.

3.4. Convergence of the grouped Gibbs sampler. An alternative augmentation
scheme and sampling algorithm can be adopted when one of the error distribu-
tions, say L(Z2) for convenience, is Gaussian and the other, say L(Z1), is a scale
mixture of Gaussian distributions. Several symmetric distributions belong in this
class, for instance, the Student-t (thus the Cauchy) and the double exponential [2].
In this case, Z1 can be represented as Z1 = V/Q, where V has a standard Gaussian
distribution and Q is positive and independent of V . We can treat Q as miss-
ing data and construct a three-component Gibbs sampler which updates iteratively
X, Q and � from their conditional distributions. [When X = (X1, . . . ,Xm), then
Q = (Q1, . . . ,Qm) where Qi is independent from Qj for every i 
= j .] A major
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computational advantage of this approach is that L(X|Y,�,Q) is Gaussian and
it can be easily sampled. Notice that Q and � are independent given X; thus we
can implement the Gibbs sampler using a grouped scheme [15] where � and Q

are updated in one block. It is of interest to know whether the convergence of this
grouped Gibbs sampler is better than the convergence of the collapsed Gibbs sam-
pler (as defined in [15]), where Q has been integrated out. The “Three-schemes
Theorem” of [15] states that the norm of the transition operator of the grouped
Gibbs sampler is larger than the one which corresponds to the collapsed Gibbs
sampler. This result, however, is not enough to guarantee that the collapsed sam-
pler will have better convergence rate.

In order to give a concrete answer, we consider the important special case, where
L(Z1) is the Cauchy distribution, therefore Q ∼ Ga(1/2,1/2). We have the fol-
lowing proposition, whose proof is based on Theorem 6.3.

PROPOSITION 3.7. The grouped Gibbs sampler is not geometrically ergodic.

This result remains true for a number of random effects m > 1, and it will hold
for more general Student-t distributions. This result has important practical im-
plications especially in algorithms for latent Gaussian models, considered in Sec-
tion 4. It is also significant that it contrasts the result obtained by [26], who estab-
lishes geometric ergodicity for variance component models (of which the model
considered here is a special case). However, the result in [26] is true when the
number of data Yij , mi , per random effect Xi is larger than some number bigger
than 1, whereas in Lemma 3.7 we take mi = 1.

4. Latent Gaussian process models. In this section we consider a rather spe-
cific though useful model and demonstrate that the results of Section 3.2 can be
extended quite readily to this context giving some clear-cut conclusions and advice
for practical implementation. The results below are certainly not the most general
possible, but it is hoped that the method of proof will indicate how analogous
models might be addressed.

THEOREM 4.1. Consider the latent Gaussian process model:

Y = X + Z1,

X = 1� + �1/2Z2,

where Z1 = {Z11, . . . ,Z1p} is a vector of independent and identically distributed
standard Cauchy random variables, Z2 = {Z21, . . . ,Z2p} is a vector of indepen-
dent and identically distributed standard Gaussian random variables, and 1 is a
vector of 1’s. � is assumed known and a flat prior is assigned to �. Then (1) P0
fails to be geometrically ergodic; (2) P1 is uniformly ergodic.
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As we remarked earlier, the result holds when the Cauchy is generalized to a
Student-t with any degrees of freedom. The MCMC for latent Gaussian process
models is often implemented using a different augmentation scheme. As in Sec-
tion 3.4, we can augment the model with Q = (Q1, . . . ,Qp), where L(Qi) =
Ga(1/2,1/2). However, a similar argument as in the proof of Proposition 3.7
shows that the Gibbs sampler which updates X,Q and � is not geometrically
ergodic.

As a numerical illustration we consider a linear non-Gaussian state-space
model: X1, . . . ,Xp are consecutive draws from an AR(1) model, which are ob-
served with Cauchy error. We have simulated p = 100 data from this model using
� = 0. The update of � given X is from a Gaussian distribution; however, the
update of X given � and Y is nontrivial. We update all the states together using
a highly efficient Langevin algorithm; see [6] for details. Moreover, we perform
several updates of X for every update of � so that our results are not critically
affected by not being able to simulate directly from L(X|Y,�). Figure 2 depicts
our theoretical findings. P0 has a random walk-like behavior in the tails, whereas
P1 returns rapidly to the modal area. On the other hand, P0 mixes better than P1
around the mode. Note that the instability of P0 in the tails is not due to lack of
information about � but due to the robustness properties of the model.

In this context it is definitely advisable to mix between P0 and P1, that is,
to use a hybrid sampler which at every iteration with some probability updates
(�,X) and with the remaining probability updates (�, X̃). This hybrid sampler

FIG. 2. Two runs of P0 (left) and P1 (right) with two different starting values: �0 = 0 (top) and
�0 = 500 (bottom).
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will inherit the uniform ergodicity from P1 but it will also mix well around the
modal area.

5. Discussion. We have obtained rigorous theoretical results for the stabil-
ity of the Gibbs sampler which explores the posterior distribution arising from
a broad class of linear hierarchical models. We have also proved results regarding
more complicated hierarchical models with latent Gaussian processes, and we have
compared different sampling schemes. We have shown how the model structure
dictates which parametrization should be adopted for improving the convergence
of the Gibbs sampler.

Our results are certainly not the most general possible, though the method of
proof we have used indicates clearly how analogous problems might be addressed.
As an example of this, it is easy to extend the conclusions of Table 2 to the case
where the light-tailed distributions are replaced by (say) uniform distributions on
finite ranges. The robustness concepts of PTIP, GTIP, RIP and RID are already
stated in a general form, while the concepts of DUR and PUR can be translated
in a natural way using Lyapunov drift conditions. Families of models to which we
are currently investigating extensions of our methods include stochastic volatility
models prevalent in finance. This is the subject of ongoing research by the authors.

The general heuristic is clear—the stability of the centered and noncentered
algorithms, P0 and P1 respectively, depends on the relative tail behavior of L(Z1)

and L(Z2), with the centered method being more stable when L(Z1) is relatively
light tailed, and the noncentered being more stable when L(Z2) is relatively light
tailed. An additional conclusion of Table 2 is that, as expected, both algorithms
possess comparatively more stable convergence properties the lighter the tails of
L(Z1) and L(Z2) become.

The main message of the paper for the MCMC practitioner is a positive one: the
competition between P0 and P1 works to the user’s benefit. Our results suggest
that a combination of P0 and P1 is often desirable. When the tails of the error
distributions are very different, we have found that one of the algorithms might be
very good for visiting the tails of the target distribution whereas the other might be
good for exploring the modal area (as, e.g., we demonstrate in Figure 2). Therefore,
it is advisable to use a hybrid Gibbs sampler which at every iteration with some
probability updates (�,X) and with the remaining probability updates (�, X̃).
Moreover, by linking the stability of the Gibbs sampler to the robustness proper-
ties of the hierarchical model we provide intuition which can be found useful for
models outside the scope of this paper.

Another interesting product of this work is that linear reparametrizations, which
can substantially improve the convergence rate in (approximately) Gaussian mod-
els, might be of little relevance when the tail behavior of L(Z1) is very different
from L(Z2). For example, in (C, G) model, where the observation error is Cauchy
and the prior for X is Gaussian, we can prove that the Gibbs sampler which up-
dates U = X − ρ� and � is subgeometrically ergodic for all ρ < 1, whereas it
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is uniformly ergodic for ρ = 1 as we already know from Theorem 3.6. This em-
phasizes the special role of P1, which differs because of the prior independence
it induces on X̃ and �. This result suggests that conditional augmentation (as in
[18]) algorithms might fail to be geometrically ergodic when P0 does.

All the results presented here are specific to the Gibbs sampler; however, our
findings are clearly relevant to contexts where certain direct simulation steps have
to be replaced by appropriate Metropolis–Hastings steps (as, e.g., in the simulation
illustration in Section 4).

It is worth mentioning that once we have established geometric ergodicity for an
algorithm, it is important to obtain computable bounds on the rate of convergence.
We have not attempted to do so, since it is outside the focus of this paper. For
advances in this direction see, for example, [11, 26].

One interesting feature resulting from this paper is that the marginal chain {�n}
of the Gibbs sampler on linear non-Gaussian models often behaves asymptotically
(i.e., in the tails) like a random autoregression of the form

�n = ρn�n−1 + εn,

where ρn is a random variable taking values in [0,1], and εn is an error term. For
instance, in the (G, G) case of Theorem 3.6 for P0 (P1), ρn is deterministically
equal to r0 (r1) defined in Section 3.1. The cases where we demonstrate that the
algorithm is random-walk-like correspond to taking ρn = 1 (almost surely). Fur-
thermore, in a number of cases, ρn is genuinely random. For instance, in the (E, E)
case with identical rates, ρn ∼ U[0,1]. In the (C, C) case, we find that ρn takes the
value 0 or 1 with probabilities determined by the scale parameters of the Cauchy
distributions involved.

An extension of our ideas is possible for hierarchical models with more levels.
For instance, consider the linear structure given by

Y = �1 + Z1,
(7)

�i = �i+1 + Zi+1, i = 1, . . . , d − 1,

with a flat prior on �d . Since Y is the only information available, the posterior
tails of �1,�2, . . . become progressively heavier. If at any stage, Zi has lighter
tails than Zi−1, then whenever �i−1 and �i+1 strongly disagree, the conditional
distribution of �i given Y,�−i will virtually ignore �i−1 and hence the data. This
will lead to potential instabilities in the chain in components �i,�i+1, . . . ,�d . We
call this phenomenon the quicksand principle, and this is the subject of ongoing
investigation by the authors.

6. Proofs of main results. In the sequel we will use π to denote the density of
any stationary measure; in particular, π(θ |y) and π(x|y, θ) will be the Lebesgue
densities of L(�|Y = y) and L(X|Y = y,� = θ), respectively. With p(·, ·) we
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denote the transition density of a Markov chain, and with �0 and �1 the consecu-
tive values of the marginal chain {�n}.

PROOF OF THEOREM 3.3. We show the result for P0, since the correspond-
ing result for P1 can be proved in an analogous way. In particular, we show that
when P0 is PTIP, the transition density of the marginal chain {�n} is such that
infθ0 p(θ0, θ1) > 0, and p is also continuous in θ1. This guarantees uniform ergod-
icity by Theorem 16.0.2 of [19]:

p(θ0, θ1) =
∫

f2(|x − θ1|)π(x|y, θ0) dx ≥
∫ k

−k
f2(|x − θ1|)π(x|y, θ0) dx

≥ inf|x|≤k
f2(|x − θ1|)P(|X| ≤ k|Y = y,� = θ0),

for k such that (6) holds. Since f1 and f2 are everywhere positive, bounded and
continuous, P(|X| ≤ k|Y = y,� = θ0) is also positive and continuous in θ0; there-
fore by the PTIP property it follows that infθ0 P(|X| ≤ k|Y = y,� = θ0) > 0.
Moreover, inf|x|≤k f2(|x − θ1|) is positive and continuous in θ1, thus the result
follows. �

The proof of Theorem 3.4 requires Theorem 6.3, hence it is proved after that
theorem. The proof of Theorem 3.5 requires the following lemmas.

LEMMA 6.1. (i) If (3) is DUR and the parametrization (X̃,�) is GTIP, then
for all sufficiently small α > 0,

E{eαX|Y,� = θ} ≤ eαθ (1 − αd/2) for θ > k,

E{e−αX|Y,� = θ} ≤ e−αθ (1 − αd/2) for θ < −k,

where k, d are defined in Definition 3.2.
(ii) If (3) is PUR and the parametrization (X,�) is GTIP, then for all sufficiently

small α > 0,

E
{
eα(y−X̃)|Y = y,� = θ

} ≤ eαθ (1 − αd/2) for θ > k,

E
{
e−α(y−X̃)|Y = y,� = θ

} ≤ e−αθ (1 − αd/2) for θ < −k,

PROOF. (i) We will prove only the first inequality, for θ > k, since the other
is proved in a similar fashion. We define Gθ(t) = E{et(X−θ)|Y,� = θ}, which is
finite for all sufficiently small t > 0, say 0 < t < t0 for some t0, and for all θ , since
by the GTIP assumption L(|X − θ ||Y,� = θ) has exponential or lighter tails. By
a second-order Taylor series expansion of Gθ(t) around t = 0, we obtain for some
0 < t1 < t0, and for θ > k,

Gθ(t) = 1 + tE{X − θ |Y,� = θ} + t2

2
E

{
(X − θ)2et1(X−θ)|Y,� = θ

}

≤ 1 − td + t2

2
E

{
(X − θ)2et1(X−θ)|Y,� = θ

}
.
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Now pick α < t1 small enough so that for all θ > k, αE{(X − θ)2et1(X−θ)|Y,� =
θ} < d . Such α exists due to the GTIP assumption. Then, Gθ(α) ≤ 1 − αd/2, and
the result follows. (ii) It is proved as (i), recognizing that X̃ = X − θ . �

LEMMA 6.2. (i) If (3) is DUR and the parametrization (X̃,�) is GTIP, then
for all sufficiently small α > 0,

E
{
eα|X||Y,� = θ

} ≤ eα|θ |(1 − αd/2) + K for |θ | > k,

where k, d are defined in Definition 3.2, and 0 < K < ∞.
(ii) If (3) is PUR and the parametrization (X,�) is GTIP, then for all sufficiently

small α > 0,

E
{
eα|y−X̃||Y = y,� = θ

} ≤ eα|θ |(1 − αd/2) + K for |θ | > k,

where k, d are defined in Definition 3.2, and 0 < K < ∞.

PROOF. (i) We prove the result for θ > 0 exploiting the first inequality given
in Lemma 6.1. The case θ < 0 is proved analogously but exploiting the second
inequality of Lemma 6.1. Notice that

E
{
eα|X||Y,� = θ

} ≤ E{eαX|Y,� = θ} +
∫ 0

−∞
e−αxπ(x|y, θ) dx,

thus, due to Lemma 6.1 we only need to show that the second term of the sum
above can be bounded above for all θ . Recall a, b from the GTIP Definition 3.2.
Choose α < b. Using integration by parts, we find that the second summand is
bounded above by e−bθ [a + α/(b − α)], which can easily be bounded above for
all θ > k.

(ii) It is proved as 1, recognizing that X̃ = X − �. �

PROOF OF THEOREM 3.5. (i) We prove the result establishing a geometric
drift condition for the marginal chain {�n}, using the function V (θ) = eα|θ |, for
appropriately chosen α > 0. Notice first that L(�|Y,X = x) ≡ L(�|X = x) is
symmetric around x and has a finite moment generating function in a neighbor-
hood of the origin. Thus, working as in Lemma 6.1 and Lemma 6.2, we can show
that for all sufficiently small α > 0, there exist K1 > 0 and ε > 0, such that

E
{
eα|�||X = x

} ≤ (1 + α2ε)eα|x| + K1.

Then, for |θ0| > k, and appropriate K1 > 0,K > 0,

E
{
eα|�1||Y,�0 = θ0

} = E
{
E

{
eα|�1||X1

}|Y,�0 = θ0
}

≤ E
{
(1 + α2ε)eα|X1| + K1|Y,�0 = θ0

}
≤ (1 + α2ε)(1 − αd/2)eα|θ0| + K

≤ (1 − αδ)eα|θ0| + K.
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Now since standard arguments show that compact sets are small for this problem,
the Gibbs sampler is shown to be geometrically ergodic by Theorem 15.0.1 of [19].

(ii) The second result is proved almost identically. Notice that L(�|Y = y,
X̃ = x) is symmetric around y − x and possesses finite moment generating func-
tion in a neighborhood of 0; thus as we showed above, for all sufficiently small
α > 0, there exists a K1 > 0 such that

E
{
eα|�||Y = y, X̃ = x

} ≤ (1 + α2ε)eα|y−x| + K1.

Using Lemma 6.2 and arguing as in 1 proves the theorem. �

Before proving Theorems 3.4 and 3.6 we need the following general result about
Markov chains on the real line.

THEOREM 6.3. Let {Wn} be an ergodic and reversible with respect to a den-
sity π , Markov chain on R with transition density p(x, y) which is random-walk-
like in the tails, in the sense that there is a continuous positive symmetric density
q such that

lim|x|→∞p(x, x + z) = q(z), z ∈ R.(8)

Then:
(i) π has heavy tails, in the sense that

lim
x→∞

log
∫ ∞
x π(u)du

x
= lim

x→∞
log

∫ −x
−∞ π(u)du

−x
= 0;(9)

(ii) {Wn} is not geometrically ergodic.

PROOF. (i) We will prove the result for x → ∞, since the case x → −∞ is
proved in the same way. Fix z, δ ∈ R+, and let W denote a random variable which
has density π . By (8), there exists k > 0 such that for x > k

p(x + z, x)

p(x, x + z)
≤ (1 + δ).

This uses the fact that q(z) > 0. Thus by reversibility, and for x > k,

π(x)

π(x + z)
= p(x + z, x)

p(x, x + z)
≤ (1 + δ),

so that

π(x + z) ≥ (1 + δ)−1π(x).(10)

Integrating (10) over x > k gives that

P(W > k + z) ≥ (1 + δ)−1P(W > k).(11)



112 O. PAPASPILIOPOULOS AND G. ROBERTS

Iterating this expression, and after some algebra, we get that

lim
n→∞

log P(W > k + nz)

n
≥ −δ,

which, since δ can be chosen arbitrarily small, proves the statement.
(ii) The second follows from the following standard capacitance argument;

see [14] for an introduction to Cheeger’s inequality using capacitance. Cheeger’s
inequality for reversible Markov chains implies that geometric ergodicity must fail
if we can find k > 0, such that the probability

P
(|W1| ≤ k|W0 ∼ π(−k,k)c

)
is arbitrarily small, where we use π(−k,k)c to denote the density π restricted and
renormalized to the set {|x| > k}. Notice that (11) implies that for sufficiently large
k, for |x| > k, and any l > 0,

P(|W1| > x + l|W0 > k) ≥ (1 + δ)−1 ≥ 1 − δ.

Now choose l sufficiently large that
∫ ∞
l q(u) du < δ; then for all |x| > k,

P(|W1| < k) ≤ P
(|W1| < k|W0 ∼ π(−k,k)c

) + P(|W1 − W0| > l),

which converges as |x| → ∞ to a limit bounded by 3δ. Since δ is arbitrary, the
result is proved. �

PROOF OF THEOREM 3.4. We prove the theorem for the case where the
model is RID, since the proof when the model is RIP is identical. We will show
that under the assumptions the marginal chain {�n} generated by the centered
Gibbs sampler is random-walk-like; thus by Theorem 6.3 P0 is not geometrically
ergodic. By assumption, lim|θ |→∞ L(X̃|Y,� = θ) = L(X̃), which is symmet-
ric around 0, and let F denote its corresponding distribution function. Therefore
P(X ≤ θ + z|Y,� = θ) → F(z), as |θ | → ∞. Notice that

p(θ0, θ0 + z) =
∫

f2(|x − θ0 − z|) dF (x|Y,� = θ0)

=
∫

f2(|u − z|) dF (u + θ0|Y,� = θ0);
therefore, since f2 is bounded, p(θ0, θ0 + z) → ∫

f2(|u − z|) dF (u) = q(z), as
|θ0| → ∞, where q is a symmetric density around 0. �

PROOF OF THEOREM 3.6. Throughout the proof we shall use the following
notation: f1 and f2 denote the density of Z1 and Z2, respectively (at least up to
proportionality), and we define

fθ (x) = f1(|y − x|)f2(|x − θ |);
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thus, π(x|y, θ) = fθ (x)/cθ , where cθ is the normalization constant. Any scale
parameter involved in fi will be denoted by σi, i = 1,2.

For each model, we first prove the result for P0 and subsequently for P1. We
will prove the statements corresponding to the upper triangular elements of the P0
and P1 tables. This is without loss of generality, since we can write (3) as

X̃ = Y − � − Z1,

X̃ = Z2.

Since the actual value of Y does not affect convergence (as can be verified by
our proofs below), we may as well set it to be 0, and since L(Z1),L(Z2) are
symmetric around 0, the model written above under a noncentered parametrization
coincides with (3) under a centered parametrization but with the error distributions
interchanged. We first prove the results concerning the diagonal elements.

The (C, C) model. We prove the result by verifying the PTIP property. The re-
sult then follows by Theorem 3.3. Notice that in this model, cθ = ∫ ∞

−∞ fθ (x) dx =
2

∫ (y+θ)/2
−∞ fθ (x) dx. We show that P0 is PTIP by demonstrating that for arbitrary

k > 0,

lim inf|θ |→∞

∫ y+k

y−k
fθ (x)/cθ dx > 0.

By symmetry, it is enough to prove this statement for large positive θ values, so
from now on we shall assume that θ > y.

For x < (y + θ)/2, 1 + (y − θ)2 ≤ 1 + 4(x − θ)2 ≤ 4(1 + (x − θ)2), so that
cθ ≤ 4/π(1 + (y − θ)2). Moreover, notice that when x ∈ (y − k, y + k), then there
exists a d > 0 (depending on k, y), such that for all θ > d ,

1 + (y − θ)2

1 + (x − θ)2 ≥ 1 + (y − θ)2

1 + (y + k − θ)2 ≥ 1

2
.

Therefore, for θ > d ,
∫ y+k

y−k
fθ (x)/cθ dx ≥

∫ y+k

y−k

1 + (y − θ)2

4π(1 + (y − x)2)(1 + (x − θ)2)
dx

≥ 1

8

∫ y+k

y−k

1

π(1 + (y − x)2)
> 0,

which proves the result. The result for P1 is proved identically.

The (E, E) model. Without loss of generality we assume that f1(x) ∝
exp{−|x|}, and f2(x) ∝ exp{−|x|/σ }, σ > 0. The stability of the Gibbs sam-
pler depends on whether σ < 1, σ = 1 or σ > 1, thus we consider these cases
separately. Again by symmetry it is enough to consider y < θ :
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1. σ = 1: here we can write

fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
4e2x−y−θ , x < y,
1
4e−(θ−y), y ≤ x ≤ θ ,
1
4ey+θ−2x, x > θ .

From this it is easy to demonstrate that E(�1|�0 = θ0) = (y + θ0)/2. Since all
compact sets are small for the Markov chain {�n}, this is enough to demonstrate
geometric ergodicity by Theorem 15.0.1 of [19].

2. σ > 1: here we can write

fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
4e(1+σ)x−y−σθ , x < y,
1
4ey−σθ+(σ−1)x, y ≤ x ≤ θ ,
1
4ey+σθ−(1+σ)x, x > θ .

Direct algebra shows that

E{X − θ |Y,� = θ} = p1(θ)(Y − 1) + [p2(θ) + p3(θ) − 1]θ
+ p2(θ)r(θ) + p3(θ)

σ + 1
− p2(θ)

σ − 1
,

where p1(θ) + p2(θ) + p3(θ) = 1, and as θ → ∞, p2(θ) → (σ + 1)/(2σ),

p1(θ) → 0, r(θ) → 0. Therefore,

lim
θ→∞ E{X − θ |Y,� = θ} ≤ −2

σ 2 − 1
,

and the model is DUR. Since P1 is easily seen to be GTIP, by part 1 of Theo-
rem 3.5, P0 is geometrically ergodic.

3. σ < 1: here, in an analogous way to the above, we can demonstrate that P0 is
RIP; therefore, by Theorem 3.3, P0 is uniformly ergodic.

Due to symmetry, the results for P1 are proved in a similar fashion; notice,
however, that P1 is uniformly ergodic when σ > 1.

The (G, G) model. This is covered in [21, 24] and reviewed in Section 3.1.

The (L, L) model. We assume that f1(x) ∝ exp{−|x/σ1|β}, f2(x) ∝
exp{−|x/σ2|β}, and we let a = β/(β − 1). Again by symmetry we just consider
the case y < θ . For large θ , L(X|Y,� = θ) converges weakly and in L1 to a point
mass at ρθ + (1 − ρ)y, where

ρ = σ−a
1

σ−a
2 + σ−a

1

.

As a result, neither P0 nor P1 is GTIP, so it is not possible to establish geometric
ergodicity using the DUR and PUR properties (which hold for this model) in con-
junction with Theorem 3.5. Instead, we have to construct directly a geometric drift
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condition. However, this is rather easy. Notice that since L(�|X = x) is symmet-
ric around x, we can find a b > 0 such that E{|�||X = x} ≤ |x| + b. Moreover, for
any ε > 0, there is some k > 0, such that for all |θ | > k, E{|X − y||Y = y,� =
θ} ≤ (1 + ε)ρ|θ − y|; thus

E{|�1 − y||�0 = θ0} ≤ b + ρ(1 + ε)|θ0 − y|,
which implies geometric ergodicity for P0 since compact sets can easily be seen
to be small. The result for P1 is proved identically.

The (C, G), (E, C) and (L, C) models. We show that the model is RIP; there-
fore, since P0 is PTIP, by Theorem 3.3 P0 is uniformly ergodic, and by The-
orem 3.4 P1 is not geometrically ergodic. Notice, however, that for any x, us-
ing dominated convergence we can show that cθ/f2(|x − θ |) → 1, as |θ | → ∞.
The argument is that, for any u, f2(|u − θ |)/f2(|x − θ |) → 1, and the ratio is
bounded above (as a function of θ ) by a function of u which is integrable with
respect to f1, as long as f1 has exponential tails or lighter, which is the case in
the models considered here. However, since fθ/cθ → f1(|y − x|), and this limit is
a proper density, it follows that the corresponding distribution functions converge
and L(X|Y = y,� = θ) → L(|Z1 − y|) as |θ | → ∞.

The (G, E) model. Calculations show that

lim
θ→∞L(X|Y,� = θ) = N(y + σ 2

1 /σ2, σ
2
1 )

and

lim
θ→−∞L(X|Y,� = θ) = N(y − σ 2

1 /σ2, σ
2
1 );

therefore P0 is PTIP (but not RIP) and by Theorem 3.3 uniformly ergodic. The
above result, however, shows that the model is PUR, and since all conditions of
Theorem 3.5 are satisfied, P1 is geometrically ergodic.

The (L, E) model. The result is proved as above.

The (L, G) model. Here (perhaps surprisingly) P0 is not PTIP but the model is
DUR and PUR, and both P0 and P1 are GTIP so that Theorem 3.5 can be applied.

�

PROOF OF LEMMA 3.7. Consider the Gibbs sampler with initial value X0
which updates (�,Q) first and then X. Direct calculation gives that L(Q|Y =
y,X = x,� = θ) = Ga(1, (y − x)2/2), L(X|Y = y,� = θ,Q = q) = N(θ/(q +
1) + qy/(q + 1),1/(q + 1)), therefore L(X1 − X0|Y = y,Q1 = q) = N(q(y −
X0)/(q + 1),1 + 1/(q + 1)). However, since q → 0 in probability, when X0 →
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∞, the algorithm is random-walk-like in the tails and by Theorem 6.3 fails to be
geometrically ergodic. �

PROOF OF THEOREM 4.1. It is easy to demonstrate that the model is RID,

lim|θ |→∞L(X̃|Y,� = θ) = Np(0,�).

Therefore, P1 is PTIP and by Theorem 3.3 is uniformly ergodic. Since

�|X ∼
(

1�−1X1
1�−11

,
1

1�−11

)
,

this implies that for the Gibbs sampler using P0,

lim|θn|→∞L(�n+1 − θn|�n = θn) = N
(

0,
2

1�−11

)
.

Therefore by Theorem 6.3, geometric ergodicity fails. �
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