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CLOSED FORM EXPRESSIONS FOR BAYESIAN SAMPLE SIZE

BY B. CLARKE AND AO YUAN

University of British Columbia and Howard University

Sample size criteria are often expressed in terms of the concentration of
the posterior density, as controlled by some sort of error bound. Since this is
done pre-experimentally, one can regard the posterior density as a function
of the data. Thus, when a sample size criterion is formalized in terms of a
functional of the posterior, its value is a random variable. Generally, such
functionals have means under the true distribution.

We give asymptotic expressions for the expected value, under a fixed pa-
rameter, for certain types of functionals of the posterior density in a Bayesian
analysis. The generality of our treatment permits us to choose functionals that
encapsulate a variety of inference criteria and large ranges of error bounds.
Consequently, we get simple inequalities which can be solved to give mini-
mal sample sizes needed for various estimation goals. In several parametric
examples, we verify that our asymptotic bounds give good approximations to
the expected values of the functionals they approximate. Also, our numerical
computations suggest our treatment gives reasonable results.

1. Introduction. Suppose Xn = (X1, . . . ,Xn) is IID p(·|θ), where the
d-dimensional parameter θ ranging over � ⊂ Rd is equipped with a prior prob-
ability W(·) having density w(θ) with respect to Lebesgue measure. Given an
outcome xn = (x1, . . . , xn) of Xn, Bayesian inference is based on the posterior
density w(θ |xn) = w(θ)p(xn|θ)/m(xn), where m(xn) = ∫

w(θ)p(xn|θ) dθ is the
mixture density. Once a prior, likelihood and parametrization for θ are specified,
the main pre-experimental task is to choose the sample size n. The size of n will
depend on the degree of accuracy desired and on the sense in which that accuracy
is to be achieved.

Sample size determination in the Bayesian setting is an important and practi-
cal problem. As yet there is no general and accepted asymptotically valid closed
form expression, such as we give here, that can be readily used to give minimally
necessary sample sizes to achieve pre-specified inference objectives, even in seem-
ingly simple cases. For instance, it has taken a series of papers (see [19] and the
references therein) to provide a reasonable treatment for the difference of two pro-
portions with independent Beta densities under a variety of criteria.

The lack of general expressions may be, in part, because the inferential criteria
that have been used fall into three distinct classes. First, in the absence of a loss
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function, one often looks at properties of credibility sets—average length of the
highest posterior density regions for instance. While this is often reasonable, the
downside is that criteria that look for the worst case scenario often require over-
large sample sizes; see [14]. One way to correct for this is to include the cost of
sampling in the optimality criterion.

Second, when a loss function is available, the decision theoretic approach orig-
inated by Raiffa and Schlaifer [20] can be used. One benefit of this approach is
that it is easy to include the cost of sampling. The decision theoretic approach was
developed in [18]. See also [1] and [16] for an information perspective; Pham-Gia
and Turkkan ([19], Section 4) provided some general comments. Cheng, Su and
Berry [3] established asymptotic expressions for sample size computation in the
clinical trial context for dichotomous responses. A general discussion of the rela-
tive merits of decision theoretic approaches to sample size problems can be found
in [14, 17, 18].

A third class of treatments of the sample size problem is more “evidentiary”:
These techniques tend to be based on hypothesis testing criteria such as Bayes
factors (see [6, 7, 15]) or robustness; see [8]. The predictive probability crite-
rion of [9], the distance between the posterior predictive density and the density
updated on additional observations, and the direct evaluation of probabilities of
events in the mixture distribution (see [4]) fall into this conceptual class as well.
Since Bayesian testing can be framed as a decision problem, this third class can
be regarded as a special case of the second class. However, the emphasis is differ-
ent. Decision theoretic approaches tend to emphasize risks and expectations, while
evidentiary approaches tend to focus on conditional probabilities, often posterior
probabilities of hypotheses.

Because of this multiplicity of mathematically challenging criteria, it is not easy
to parallel frequentist formulations. Nevertheless, many of these criteria can be
represented as functionals F , not in general linear, of the posterior distribution
W(·|Xn). For such cases, we provide a unified framework, indicating how it can
be adapted to various settings.

Our overall goal is to give simple closed form asymptotic expressions in the
form of inequalities that can be solved to give sample sizes. The reader interested
primarily in these expressions can find four of them in Section 4, noted (APVC),
(ACC), (ALC) and (ES), to indicate the criteria. [Expressions for similar cases
are in Theorem 3.3 and in the Appendix; see (A.10), (A.11) and (A.13).] Infor-
mally, our central strategy for obtaining these expressions is the standard tech-
nique of approximating the leading term in an expansion of the expectation of a
functional. Recall that W(·|Xn) is asymptotically �

θ̂,(nI (θ))−1(·) under Pθ in an L1

sense. Here, �µ,�(·) is the distribution function for a Normal(µ,�), with density
denoted φµ,�(·), and θ̂ is the maximum likelihood estimator (MLE), with asymp-
totic variance at a value θ given by the positive definite inverse Fisher informa-
tion matrix I (θ)−1. If θ0 is the data generating parameter, adding and subtracting
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Eθ0F(�
θ̂,(nI (θ0))

−1(·)) gives

Eθ0F(W(·|Xn)) = Eθ0F
(
�

θ̂,(nI (θ0))
−1(·)) + Eθ0Rn(F ),(1.1)

where Rn(F ) = [Eθ0F(W(·|Xn)) − Eθ0F(�
θ̂,(nI (θ0))

−1(·))] is the remainder term
and F is a functional on distributions, that is, for any distribution Q, F(Q) ∈ R.
Our hope is that the remainder term will be small enough compared to the differ-
ence of the other two terms that (1.1) will permit asymptotically valid closed form
expressions for the sample size criterion encapsulated by F .

1.1. An example of the techniques. Our verification that the remainder term
in quantities like (1.1) is typically small rests on the foundational work of John-
son [10, 11], who developed Edgeworth style approximations for the posterior
and certain posterior derived quantities such as percentiles and moments. Indeed,
Edgeworth expansions and Johnson-style asymptotic expressions provide asymp-
totic control for the values of both terms on the right-hand side in (1.1), as n → ∞,
for various choices of F .

To see how these asymptotic expressions can be used to approximate the leading
term of (1.1), and that the remainder term can be small compared to it, consider
the following example. It is paradigmatic of our approach in its use of Johnson and
Edgeworth expansions. The specific result can be obtained more readily by other
techniques; however, our point is only to exemplify the reasoning informally.

Set F(W(·|Xn)) = Fα(W(·|Xn)) = W(Dn|Xn), where Dn = (−∞, an(α))

and an = an(α) = an(α,Xn) is the αth quantile under the posterior distribution
W(·|Xn). Next, set

D′
n =

(
−∞,

1√
nI (θ0)

�−1(α) + Zn

]
≡ (−∞, bn],

in which Zn is an asymptotically standard normal random sequence of ran-
dom variables. It is seen that D′

n is the region corresponding to Dn but under
�Zn,(nI (θ0))

−1(·), in which we have used Zn in place of θ̂ by asymptotic normal-
ity of the MLE. That is, D′

n approximates Dn. In this case, the first term on the
right-hand side of (1.1) is

Eθ0�Zn,(nI (θ0))
−1(D

′
n)

= Eθ0

(∫ �−1(α)/
√

nI (θ0)+Zn

−∞

√
nI 1/2(θ0)√

2π
e−(1/2n)I (θ0)(θ−Zn)2

dθ

)
(1.2)

= 1√
2π

∫ �−1(α)

−∞
e−t2/2 dt = α.

The remainder term in (1.1) is

Eθ0Rn = Eθ0χ(an∧bn,an∨bn)(·) = Eθ0 |an − bn|.(1.3)
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Posterior normality suggests (1.3) → 0, but we want a rate that is small relative
to the rate of convergence of the left-hand side of (1.1) to (1.2) which we take to
be o(1). We ignore details on this latter rate since it is not the point. Now, to get
a rate for (1.3) → 0, we use a modification of Johnson ([11], Theorem 5.1); it is
justified below in Theorem 2.1. Thus, we have that quantiles such as an satisfy

an = (nI (θ0))
−1/2

[
�−1(α) +

J∑
j=1

τj (α)n−j/2 + O
(
n−(J+1)/2)] + θ̂n,

where the τj ’s are polynomials with bounded coefficients that depend on the
data Xn, and J ≥ 1. Now, we can write

Eθ0 |an − bn| = Eθ0

∣∣∣∣∣n−1/2I−1/2(θ0)

[
�−1(α) +

J∑
j=1

τj (α)n−j/2

+ O
(
n−(J+1)/2)] + θ̂n

− (
n−1/2I−1/2(θ0)�

−1(α) + Zn

)∣∣∣∣∣
= Eθ0 |θ̂n − Zn| + O(n−1/2)

(1.4)
≤ Eθ0 |θ̂n − θ0| + Eθ0 |Zn − θ0| + O(n−1/2)

= n−1/2I−1/2(θ0)
(
Eθ0

∣∣√nI 1/2(θ0)(θ̂n − θ0)
∣∣

+ Eθ0

∣∣√nI 1/2(θ0)(Zn − θ0)
∣∣)

+ O(n−1/2).

Expression (1.4) can be controlled by using an Edgeworth expansion for the
density of θ̂ under θ0 in the first term in parentheses, namely, Eθ0

√
nI 1/2(θ0) ×

(θ̂n − θ0). Using this approximation and recognizing limiting normal forms gives
that, term by term, (1.4) is

n−1/2I−1/2(θ0)

(∫
|z|φ(z) dz +

K∑
k=1

n−k/2
∫

|z|Pk(z) dz

+ o(n−K/2)

∫ |z|
1 + |z|K+2 dz +

∫
|z|φ(z) dz

)
+ O(n−1/2).

So, (1.3) is O(1/
√

n ) and the left-hand side of (1.1) is

Eθ0Fα(W(·|Xn)) = α + o(1) + O(n−1/2),(1.5)

that is, the expected Bayesian coverage probability is always α + o(1).
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Improving (1.5) leads to inequalities that can be solved to give sample sizes.
That is, careful use of the Edgeworth and Johnson expansions that we used to
control (1.3) and (1.4) will give an error term of order o(1/

√
n ). So, we can find

N = N(ε) large enough that, for a specified range of parameter values θ , we would
have |EθFα(W(·|Xn)) − α| < ε for n > N . Details on this case are given below
in Example 3 of Section 4. The “nicest” cases occur when the first term in (1.1)
is independent of the value of θ̂ and the second term goes to zero. As suggested
by the form of (1.2), when the first term in (1.1) depends on an estimator such as
an or θ̂ , we expect an asymptotically normal random variable Zn to appear in the
limit. In these cases, we want the second term of (1.1) to go to zero at a fast enough
rate. Thus, we want to give an expansion for it as a sum of powers of 1/

√
n times

evaluations of expectations.

1.2. Expected values of functionals of the posterior. Before proceeding with
the mathematical formalities, we suggest that the formulation we have adopted
here—representing sample size criteria as expectations of functionals of the
posterior—is the right one, in the sense that it is general enough to encapsulate
all the important cases, yet narrow enough to permit straightforward analysis and
use.

The three classes identified earlier—Bayes credibility, decision theoretic and
evidentiary—suggest that many authors have, implicitly or explicitly, studied cri-
teria that amount to functionals of the posterior, if not expectations of them. Indeed,
the pure Bayes and evidentiary approaches amount to studying functionals of the
posterior and most of the decision theoretic optimality criteria can be written
as functionals of the posterior; most often these are clearly expectations. More-
over, taking expectations over the sample space pre-experimentally is standard
Bayesian practice for design problems. This is done in [23], for instance, an ap-
proach that motivated the present work. Wang and Gelfand proposed a simulation
based technique for determining a sample size large enough to achieve various
pre-experimentally specified criteria.

All the criteria used in [23] are special cases of the form E(T (Y )) ≤ ε, where
T is a nonnegative function in which the data Y appears via conditioning; see [23],
Section 2, equation (6). Their simulation technique has a broad scope of appli-
cation, and should be at least as accurate as approximations based on asymptotic
expansions. The special cases of F we use here are taken from [23].

We comment that some of the criteria used in Wang and Gelfand’s simula-
tions, for instance, the average cover criterion, ACC, and average length criterion,
ALC, have been studied mathematically. For instance, Joseph and Bélisle [12] and
Joseph, du Berger and Bélisle [13] derived inequalities the sample size must sat-
isfy under certain prior specifications for normal and binomial models. Wang and
Gelfand’s work [23] is important because these special cases may not cover all the
settings of interest.
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Unfortunately, simulations may not always be easy to do. Moreover, the distinc-
tion between the sampling and fitting priors used in [23] may be a layer of conser-
vatism that is not necessary. Aside from computational ease, Sahu and Smith ([21],
Section 2.3) argue that using sampling and fitting priors permits weaker assump-
tions for the validity of inference. However, one could use a single objective prior
for both sampling and fitting purposes to achieve essentially the same inferential
validity. In either case, there remains a role in Bayesian experimental design for a
good closed form expression for sample sizes.

Expression (1.1) suggests a different tack for obtaining the kind of closed
form expressions we want. One could approximate EθF(W(·|Xn)) by EθF(N̂(θ̂ ,

(nÎ (θ̂ ))−1)), where N̂ is a Laplace approximation to the posterior, instead of a
Johnson style expansion. The two approaches—Johnson and Laplace—probably
require similar hypotheses. Arguably, the Laplace expansion is conceptually eas-
ier. However, Johnson expansions give an approximation to F(W(·|Xn)) directly
rather than separately approximating F and W(·|Xn). One could use more terms
in the Laplace approximation, evaluate F on those terms, and then approximate F ,
but the complexity would likely exceed what we have done here. The Johnson ex-
pansions are readily available and more direct, although a confirmatory treatment
using Laplace’s method would be welcome.

The structure of this paper is as follows. Section 2 gives the theoretical context
of our work: We observe generalizations of key results in Johnson [11] and state
the version of Edgeworth expansions we will need. Then, we give a simple result,
Proposition 2.1, that formalizes the strategy implicit in (1.1). It seems that getting
an asymptotic expression for general functionals F is a hard problem so, in Sec-
tion 3, we give asymptotic expressions for three kinds of terms that often arise in
special cases of functionals of the posterior density. Two of these theorems are de-
rived from [11], and one is new. The most technical arguments from this section are
relegated to the Appendix at the end. Section 4 uses our main results to show how
four established criteria for sample size determination admit asymptotically valid
closed form expressions. In Section 5 we compare the results of our asymptotic
expressions to closed form expressions obtained from three exponential families
equipped with conjugate priors. It is seen that our asymptotic expansions typically
match the leading 1/

√
n terms in those cases. In addition, Section 5 presents nu-

merical results which confirm our approximations are reasonably accurate.

2. Theoretical context. We consider the case that F is a functional on dis-
tributions such as the posterior W(·|Xn = xn) for a parameter. We assume F rep-
resents something about how distributions concentrate at a specific value in their
support. Our interest here focuses on the class of F only in that we want to include
the commonly occurring sample size criteria used in [23].

We will need two assumptions to control the leading term in an expansion
for E(F). The first is drawn from [11], Theorem 2.1: The expectation of the func-
tional of the posterior, EF(W(·|Xn)) minus its normal approximation [see (1.1)]
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must have an expansion of the form established by Johnson [11]. The second as-
sumption is that the classical Edgeworth expansion can be used to approximate the
sampling distribution of θ̂n when θ is taken as true.

To begin, we make Assumptions 1–9 in [11], modifying them only by permitting
θ to range over a set � ⊂ R

d . Together, these are the standard “expected local sup”
conditions that ensure the consistency, asymptotic normality and efficiency of the
MLE. Assumption 8, for instance, bounds the first two derivatives of logp(x|θ)

by an integrable function so that, when d = 1,

Î (θ̂ ) = −1

n

n∑
i=1

∂2

∂θ2 logp(Xi |θ̂ )
a.s.→ −Eθ0

∂2

∂θ2 logp(X|θ) = I (θ),

which generalizes directly to multivariate θ .
To set up our first result, we need some notation. Let θ be a random realiza-

tion of �, φ̂n = √
nÎ 1/2(θ̂n)(θ − θ̂n) and consider Johnson expanding the pos-

terior distribution function Ŵ (φ̂|Xn) of φ̂n. Johnson [11] obtained an expansion
for Ŵ (φ̂n|Xn) in terms of normal densities with polynomial factors when θ is
one-dimensional. The expansion uses (nÎ (θ̂n))

−1 as the empirical variance of θ̂ −θ

and holds in an almost sure sense, for n > Nx , where Nx depends on the observed
sample x = xn. This is almost the expansion we want. For our purpose, we set
ψ = ψn = √

nI 1/2(θ0)(θ − θ̂n) for given θ̂n and denote the posterior distribution
function of it by Wo(·|Xn). Writing the distribution of the d-dimensional standard
normal N(0, Id) as �(·), with density φ(·), we have �(

√
nI 1/2(θ0)(θ − θ̂n)) =

�
θ̂n,I−1(θ0)/n

(θ) and φ(
√

nI 1/2(θ0)(θ − θ̂n)) = |nI (θ0)|−1/2φ
θ̂n,I−1(θ0)/n

(θ). Let

w(r)(θ) be the r th (vector) derivative of the prior density w(θ), when it exists,
and write Îr (θ) = 1

n|r|!
∑n

i=1
∂ |r|
∂θr logp(Xi |θ̂ ) for a vector r = (r1, . . . , rd), where

|r| = k means r1 + · · · + rd = k, and for θ = (θ1, . . . , θd), θr means θ
r1
1 · · · θrd

d .
Examination of [11] gives the following.

THEOREM 2.1. Suppose all derivatives of logp(·|θ) of order J + 3 or less
exist and are continuous and that all the derivatives |(∂ |r|/∂θr) logp(x|θ)|, for
|r| ≤ J + 3, are bounded in an open set containing θ0 by a function G(x) with
EG(X) finite. Suppose also that all derivatives of w up to order J + 1 exist and
are continuous in a neighborhood of θ0. Then, for given θ0, there are a sequence of
sets Sn with Pθ0(S

c
n) = o(1), and an integer N , so that, for xn ∈ Sn, Theorems 2.1,

3.1, 4.1, 5.1 and 5.2 of [11] continue to hold with Ŵ (φ|Xn) replaced by Wo(ψ |Xn)

when n ≥ N . That is, we have:

(A) For the posterior distribution:∣∣∣∣∣Wo(ψ |Xn) − �(ψ) −
J∑

j=1

n−j/2φ(ψ)γj (ψ,Xn)

∣∣∣∣∣ ≤ Cn−(J+1)/2,

(2.1)
n > N,Xn ∈ Sn,
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where C > 0 is a constant, and the γj (ψ)’s are polynomials in ψ with bounded
coefficients.

(B) For posterior moments: For each integer i ≤ K − 1, there are a sequence
of functions {λij (X

n)}, a constant C > 0 and an integer Ni so that∣∣∣∣∣EWo(·|Xn)

(
ISnI

i/2(θ0)(θ − θ̂n)
i) −

J∑
j=i

λij (X
n)n−j/2

∣∣∣∣∣ ≤ Cn−(J+1)/2,

(2.2)
n > Ni,

on a set Sn(i) with Pθ0(Sn(i)
c) → 0, where λij (X

n) = 0 for j odd, and for i even
we have

λii(X
n) = 2i/2�

(
(i + 1)/2

)
/�(1/2),

while for i odd we have

λi,i+1(X
n) = 2(i+1)/2(

2(i + 1)I3n(θ̂n)�
(
(i + 4)/2

)
+ �

(
(i + 2)/2

)
w(1)(θ̂n)/w(θ̂n)

)/
�(1/2),

all of which are bounded in Xn.
(C) For inverse quantiles: Let η(ξ) = �−1(Wo(ξ |Xn)) be the transformed

quantile of Wo(·|Xn). Then∣∣∣∣∣η(ξ) − ξ −
J∑

j=1

n−j/2ωj(ξ)

∣∣∣∣∣ ≤ Cn−(J+1)/2, n > N,Xn ∈ Sn,(2.3)

where C > 0 is a constant, for some functions ωj (ξ) = ωj(ξ,Xn) that are polyno-
mials in ξ with coefficients bounded for large enough n.

(D) For posterior quantiles: For a solution η = �−1(Wo(ξ(η)|Xn)), we have
the following:

(i) ∣∣∣∣∣ξn(η) − η −
J∑

j=1

n−j/2τj (η)

∣∣∣∣∣ ≤ Cn−(J+1)/2, n > N,Xn ∈ Sn,(2.4)

where C > 0 is a constant and the functions τj (·) are polynomials in η with
bounded coefficients.

(ii) If we set η = αth percentile of �, then∣∣∣∣∣Wo

(
η +

J∑
j=1

n−j/2τj (η)|Xn

)
− α

∣∣∣∣∣ ≤ Cn−(J+1)/2, n > N,Xn ∈ Sn.(2.5)
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REMARK. This collection of statements differs from Johnson’s [11] results
because we observe it for general d-dimensional parameters, a single choice of
N independent of the data string, and have replaced the empirical Fisher infor-
mation by its population value in the standardization of the MLE. Replacing the
Nk,x’s in [11] by a single fixed N means we can only get a Johnson expansion
valid for xn in a set Sn with probability increasing as Pθ0(Sn) = 1 − o(1). To
ensure Pθo(S

c
n) = o(1), we will typically need laws of large numbers to hold for

the Îr ’s occurring in the expansion; we assume these as needed. Faster rates for
Pθo(S

c
n) → 0, for instance, Pθ0(S

c
n) ≤ e−nγ for γ > 0, can be obtained by impos-

ing moment generating function assumptions to get a large deviations principle.
Note that I (θ0) is used in the standardization of the MLE, but the coefficients

in the expansion remain empirical. That is, the coefficients in the polynomials of
the expansions are functions of the data, usually estimates of population quantities
of the form [11], equations (2.25) and (2.26). When it is important to replace these
with differentiable quantities, as in the proof of Theorem 3.3, we will use approx-
imations such as Î (θ̂ ) = I (θ0) + op(1); the op(1) term in such approximations is
what limits the accuracy of our expansions.

PROOF OF THEOREM 2.1. Proofs for (2.1)–(2.5) are all modifications of the
techniques in [11]. To demonstrate the modifications, consider (2.1). It will be
enough to check the proof of Theorem 2.1 in [11] line by line.

First, the main difference due to the dimensionality is that occurrences of
powers (θ − θ̂n)

r in the one-dimensional case must be replaced by the multi-
dimensional version,

∑
|r|=k(θ − θ̂n)

r for a d-tuple nonnegative integer vector r .
Johnson used bounds Nk,x, k = 1, . . . ,5, in his proof. The first two, N1,x

and N2,x , are used in his Lemmas 2.1 and 2.2, which are not needed in our case,
since we are replacing Î (θ̂n) by I (θ0) (Note that in the statement of Lemma 2.2
in [11], f (xi, θ) in the denominator should be f (xi, θ̂n).) The next two, N3,x

and N4,x , are from Lemmas 2.3 and 2.4. They arise from using the strong law of
large numbers finitely many times to get inequalities. Denote the set on which the
strong laws fail for a given n by Sc

n. Then, the conclusions in Lemmas 2.3 and 2.4
hold for all x ∈ Sn, and P(Sc

n) = o(1). This property of the strong law holds even
when Î (θ̂ ) is replaced by I (θ0). Finally, N5,x > N4,x is used to allow the finite term
approximations (2.21) and (2.22) to be used in the expansions (2.19) and (2.20).
The sets of xn’s on which this fails have probability tending to zero. Thus, they
can be put into Sc

n too, and N can be chosen independent of xn. �

It is seen from (2.1) that, for n > N and Xn ∈ Sn,

Wo(ψ |Xn) = �(ψ) +
J∑

j=1

n−j/2φ(ψ)γj (ψ,Xn) + n−(J+1)/2γJ+1(ψ,Xn),
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for positive integers J , where the polynomials γj (ψ) in ψ have finite coefficients.
Note that γJ+1 is not known to be of the form of the γj ’s when j ≤ J ; it is only
known to be bounded. The other expansions (2.2)–(2.4) give analogous statements.

We formalize this class of posterior approximations in the following definition.
First, we say that PW(xn) is a posterior derived object if and only of PW(xn) is
a function of the posterior distribution W(·|xn). Here, we have chosen Wo(·|Xn)

as the form of the posterior for our work. The class of PW(xn) does not matter,
but the use of W(·|xn) does. We rule out the appearance of parameters or their
estimates apart from I (θ0). Thus, the posterior itself and a posterior quantile are
both posterior derived objects.

ASSUMPTION JE. A posterior derived object PWo(x
n) is Johnson expandable

of order J if and only if it has a Johnson expansion of the following form: There
are an N and an Sn with Pθ0(S

c
n) = o(1) so that, for n > N , we have∣∣∣∣∣PWo(x

n) −
J∑

j=0

γj (x
n)

nj/2

∣∣∣∣∣ ≤ C

n(J+1)/2 ,

for some C > 0, where the γj (x
n)’s are any quantities that depend only

on Wo(·|xn).

We assume that all Assumption JE’s are nontrivial, that is, the j = 0 term is
not PWo(x

n).
Next, we turn to the other asymptotic expansion assumption we will need. For

the MLE θ̂n of θ based on p(Xn|θ), let fn(·) = fn(θ̂ |θ) be the density function
of θ̂n when θ is the true value, and let gn(·) = gn(·|θ) be the density of T = Tn =√

nI 1/2(θ0)(θ̂n−θ) given θ . (It is seen that T is a function of θ̂ for fixed θ , whereas
αn is a function of θ for given θ̂ .) Observe that

fn(θ) = |nI (θ0)|1/2gn

(√
nI 1/2(θ0)(θ − θ0)

)
.

So, to get an expansion for fn, it is enough to get one for gn. For later use, we
record

�
θ̂n,I−1(θ0)/n

(θ) = �
(√

nI 1/2(θ0)(θ − θ̂n)
)

and

φθ0,(nI (θ0))
−1(θ) = |nI (θ0)|1/2φd

(√
nI 1/2(θ0)(θ − θ0)

)
.

The expansion for gn will depend on the form of the MLE. For many parametric
families, θ̂n can be expressed as

θ̂n = s

(
1

n

n∑
i=1

h(Xi)

)
,
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for some s(·) and h(·). Thus, as argued in [24], we often have

gn(t) = φd(t) +
K∑

k=1

n−k/2Pk(t) + o(n−K/2)
1

1 + ‖t‖K+2 ,

where the error o(n−K/2) is uniform over θ in a compact set and t = √
nI 1/2(θ)×

(θ̂n − θ). The Pk(v)’s are polynomials given by

φ−1
d (v)

k∑
q=1

1

q!
∑

l1+···+lq=k,

∑
|rm|=lm+2,(1≤m≤q)

χr1 · · ·χrq

r1! · · · rq !

× (−1)|r1|+···+|rq |Dr1+···+rq φd(v)

in which χr , for a vector r , is the r th cumulant; see [2].

ASSUMPTION EE. The Edgeworth expansion of order K for fn(·) induced
from gn(·) is

fn(θ) = φθ0,(nI (θ0))
−1(θ) +

K∑
k=1

n−k/2Pk

(√
nI 1/2(θ0)(θ − θ0)

)
φθ0,(nI (θ0))

−1(θ)

+ o(n−K/2)
|nI (θ0)|1/2

1 + ‖√nI 1/2(θ0)(θ − θ0)‖K+2 ,

when it exists, where θ is a dummy variable varying over values of θ̂ and the error
o(n−(K−2)/2) is uniform for θ in a compact set.

We comment that Yuan and Clarke [24] do not prove Assumption EE in full
generality. They only establish uniformity for the density of the mean and for a
certain restricted class of functions of the mean. However, the discussion in [24]
suggests that Assumption EE holds in much greater generality even though a for-
mal proof does not yet exist. Indeed, when it fails, it seems to do so only on sets
of very small probability which are enough to prevent the supremum from going
to zero. Consequently, we suggest Assumption EE is an acceptable hypothesis in
a design setting where we are primarily interested in average behavior rather than
worst case behavior.

Note that Assumption EE permits us to take expectations over the parameter
space and the sample space because the approximation is uniformly good over
both θ and Xn. Indeed, Assumption EE immediately gives an expression for the
mean of θ̂ because∫

θfn(θ) dθ =
∫

|nI (θ0)|1/2θφd

(√
nI 1/2(θ0)(θ − θ0)

)
dθ

+
K∑

k=1

n−k/2
∫

|nI (θ0)|1/2θPk

(√
nI 1/2(θ0)(θ − θ0)

)
(2.6)
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× φd

(√
nI 1/2(θ0)(θ − θ0)

)
dθ

+ o(n−K/2)

∫ |nI (θ0)|1/2θ

1 + ‖√nI 1/2(θ0)(θ − θ0)‖K
dθ

= θ0 +
∫

uφd(u)du

+
J∑

k=1

n−k/2
∫ (

θ0 + u/
(√

n|I (θ0)|1/2))
Pk(u)φd(u) du

+ o(n−K/2)

∫
θ0 + u

1 + ‖u‖K
du.

= θ0 +
J∑

k=1

n−k/2θ0Pk(σ )

+
J∑

k=1

n−(k+1)/2|I (θ0)|−1/2P1,k(σ ) + o(n−K/2),

where Pk(σ ) and P1,k(σ ) are the expectations of Pk(u) and uPk(u). The argument
σ signifies that powers um are replaced by σm’s, the mth moments of N(0,1). To
see this, suppose Z = (Z1, . . . ,Zd) ∼ N(0, Id) and that the ith term in Pk(u) has
the form aiu

i1
1 · · ·uid

d . Then the term in its expectation is ai

∫
u(u

i1
1 · · ·uid

d )φd(u) du,

which equals aiE(Z
i1+1
1 Z

i2
2 · · ·Zid

d , . . . ,Z
i1
1 · · ·Zid+1

d ) = ai(σi1+1σi2 · · ·σid , . . . ,

σi1 · · ·σid+1), a vector with entries in which the powers of ui correspond to stan-
dard normal moments.

Recall, our goal is to derive asymptotically, for pre-specified ε > 0 and F , the
minimal sample size n to achieve

Eθ0F(W(·|Xn)) ≤ ε,(2.7)

where the expectation is with respect to the density p(xn|θ0). Our main approach
to (2.7) rests on the following general procedure for the computation of the asymp-
totic expected behavior of functionals of the posterior distribution. As indicated in
the Introduction, let

Rn = F(W(·|Xn)) − F
(
�

θ̂n,(nI (θ0))
−1(·)),(2.8)

where, under θ0, θ̂n is distributed as in Assumption EE, and we have done the
standardization in the limiting normal rather than in the nonstandardized posterior
W(·|Xn) for θ .

PROPOSITION 2.1. Functionals of the posterior distribution function
W(·|Xn) satisfy the following:
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(i) If F(�z,(nI (θ0))
−1(θ)) is independent of z, then if Assumption JE holds for

some J ≥ 1, we have

Eθ0F(W(θ |Xn)) = F
(
�0,(nI (θ0))

−1(θ)
) + Eθ0Rn.(2.9)

(ii) If Assumption EE holds for some K ≥ 1, we have that

Eθ0F(W(θ |Xn)) = Eθ0F
(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))

+
K∑

k=1

n−k/2Eθ0F
(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))

Pk(Z)(2.10)

+ o(n−K/2)h(n) + Eθ0Rn,

where the first expectation on the right-hand side is with respect to Z ∼ N(0, Id),
and

h(n) =
∫

F(�(z + √
nI 1/2(θ0)(θ − θ0)))

1 + ‖z‖K
dz.

REMARK 1. In settings where our theorems for special cases do not apply, we
can often obtain results by use of (2.10). This will be seen in Section 4. Moreover,
it is seen that h is integrable when F(�(Z + √

nI 1/2(θ0)(θ − θ0))) is.

PROOF OF PROPOSITION 2.1. Assumption JE gives that Wo(·|Xn) is approx-
imated by �0,Id

(·), or W(·|Xn) is approximated by �
θ̂n,(nI (θ0))

−1(·). Thus, the
functional can be written as

F(W(θ |Xn)) = F
(
�

θ̂n,(nI (θ0))
−1(θ)

) + Rn.

Taking expectations in θ0 and using Assumption EE gives

Eθ0F(W(θ |Xn))

=
∫

F
(
�u,(nI (θ0))

−1(θ)
)

×
(
φθ0,(nI (θ0))

−1(u)

+
K∑

k=1

n−k/2Pk

(√
nI 1/2(θ0)(u − θ0)

)
φθ0,(nI (θ0))

−1(u)

+ o(n−K/2)
|nI (θ0)|1/2

1 + ‖√nI 1/2(θ0)(u − θ0)‖K

)
du + Eθ0Rn

=
∫

F
(
�

(
z + √

nI 1/2(θ0)(θ − θ0)
))

φd(z) dz
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+
K∑

k=1

n−k/2
∫

F
(
�

(
z + √

nI 1/2(θ0)(θ − θ0)
))

Pk(z)φd(z) dz

+ o
(
n−(K/2)) ∫

F(�(z + √
nI 1/2(θ0)(θ − θ0))

1 + ‖z‖K
dz + Eθ0Rn. �

In examples we will see that o(n−K/2)h(n) is often of lower order than
EF(�(Z + √

nI 1/2(θ0)(θ − θ0))). Also, we observe the heuristic approximation

E
[
F

(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))

Pk(Z)
]

∼ E
[
F

(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))]

E[Pk(Z)]
= E

[
F

(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))]

Pk(σ ),

where Z is a N(0, Id) random vector, and Pk(σ ) is the expectation of Pk(z) with
powers zl replaced by σl , the lth moment of N(0, Id). Taken together, these heuris-
tics suggest that in many cases (2.10) gives

Eθ0F(W(θ |Xn)) = EF
(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
)) +

K∑
k=1

O(n−k/2) + o(1).

3. Asymptotics for expected values of functionals. Proposition 2.1 was of
general applicability. However, there are commonly occurring functionals that are
worth examining in detail. When they depend on Johnson expandable quantities
such as those in Theorem 2.1, we have a K-term expansion in powers of n−j/2

on the “good” sets Sn. However, the coefficients depend on Xn. This is a problem
because we want to take the expectation over the sample space for a functional
of the posterior distribution. To get a closed form for these expectations, we must
replace the empirical quantities in the coefficients in the expansion by their the-
oretical ones. Unfortunately, as noted in the remark after Theorem 2.1, such ap-
proximations are only accurate to order op(1) unless more stringent hypotheses
are proposed. Such hypotheses are hard to determine in part because the forms of
the coefficients are generally unknown. Moreover, a posterior quantity must de-
pend on the data, so replacing all the estimates with population values, if it could
be done, defeats the purpose of using them. This is especially problematic when
our goal is to obtain sample sizes. A final caveat is that we have tacitly been as-
suming that the expectation over the “bad” set Sc

n will typically be small compared
to that over the “good” set Sn, as noted in the Remark after Theorem 2.1, but we
do not have a general closed form expression for it.

Taken together, these considerations mean we will only get a two-term expan-
sion for the expectation, plus a remainder term

R′
n = Eθ0

(
F(W(·|Xn)ISc

n

)
,
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which we have argued is asymptotically small enough, relative to the main approx-
imation, that we can neglect it.

Theorems 3.1 and 3.2 below are extensions of results in [11], in which we have
left the dimension of the parameter d = 1; cases with d ≥ 2 are similar. Theo-
rem 3.3 is more novel.

Let θ̄ be the posterior mean which often has the form θ̄ = s((1/n)
∑

h(Xi)) +
op(1/n). We use this in the first theorem because it is the right centering for pos-
terior moments and is very close to the MLE. Note that in general we need to
specify an estimator for planning purposes and that consistency of the MLE gen-
erally ensures that Bayes estimators are consistent; see [22]. Our first result is the
following.

THEOREM 3.1. Make all the assumptions in Section 2, in particular, those
for Theorem 2.1. Also, assume Assumption EE for θ̄ in place of θ̂ . Suppose∫ |θ |rw(θ) dθ < ∞ and choose K,J ≥ r . Then,

Eθ0EWo(·|Xn)[(θ − θ̄n)
r ] = I−r/2(θ0)λrrn

−r/2 + o(n−r/2) + R′
n,(3.1)

where λrr = 2r/2�((r + 1)/2)/�(1/2).

REMARK. In this case, the concern about using an approximation like
Î i/2(θ̂n) = I i/2(θ0)(1 + o(1)) for i = 1, . . . , r is built into Theorem 2.1: The scal-
ing in the posterior by I (θ0) and the laws of large number that are invoked to get
Pθ0(Sn) → 0 are enough for the expansions of posterior moments and percentiles.

PROOF OF THEOREM 3.1. Let Vn = √
nI 1/2(θ0)(θ̄n − θ0). By Assump-

tion EE for Vn, its density is

gn(v) = φd(v) +
K∑

k=1

n−k/2Pk(v)φd(v) + o(n−K/2)
1

1 + ‖v‖K+2 .

So we have

EV r
n =

∫
vrgn(v) dv = σr +

K∑
k=1

n−k/2Pr,k(σ ) + o(n−K/2),

where σ is the vector of central moments from a N(0, Id) as in (2.6) and the
o(n−K/2) comes from o(n−K/2)

∫
vr/(1 + ‖v‖(K+2)) dv. The integration is finite

since K ≥ r .
By using Assumption EE for both θ̂n and θ̄n, we have

Eθ0(θ̂n − θ̄n) = I−1/2(θ0)n
−1/2Eθ0(αn − Vn)

= I−1/2(θ0)n
−1/2

K∑
k=1

(
P1,k(σ ) − P̄1,k(σ )

)
n−k/2 + o(n−K/2)

= O(n−1),
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where αn = √
nI 1/2(θ̂ −θ0), the P1,k(σ )’s are defined after (2.6), and the P̄1,k(σ )’s

are their counterparts in the expansion for fVn(·). In general, for m = 1, . . . , r , we
have

Eθ0(θ̂n − θ̄n)
m = O

(
n−(m+1)/2)

.(3.2)

Note Eθ0EWo(·|Xn)(θ − θ̄n)
r = Eθ0EWo(·|Xn)(ISn(θ − θ̄n)

r ) + R′
n, and we only

need to deal with the first of these terms. We omit the indicator ISn for simplicity.
Assumption JE is satisfied by use of expression (2.2) in Theorem 2.1. Thus, for

i = 1, . . . , r we have

EWo(·|Xn)

(
I i/2(θ0)(θ − θ̂n)

i) =
J∑

j=i

λij (X
n)n−j/2 + O

(
n−(J+1)/2)

,(3.3)

on
⋂r

i=1 Sn(i) for N ≥ maxr
i=1 Ni , where the O(·) is independent of Xn.

Now we can deal with the expectations Eθ0EWo(·|Xn)I
i/2(θ0)(θ − θ̄n)

i , for i =
1, . . . , r . Let C(r, i) be the combination number of subsets of size i from a set of
size r . By (3.2) and (3.3), we have

Eθ0EWo(·|Xn)(θ − θ̄n)
r

= Eθ0EWo(·|Xn)

(
(θ − θ̂n) + (θ̂n − θ̄n)

)r
= (I (θ0))

−r/2Eθ0EWo(·|Xn)

(
I r/2(θ̂n)(θ − θ̂n)

r)
+

r∑
i=1

C(r, i)I−r/2(θ0)

× Eθ0

[
I (r−i)/2(θ0)(θ̂n − θ̄n)

r−iEWo(·|Xn)

(
I i/2(θ0)(θ − θ̂n)

i)]
= I−r/2(θ0)λrrn

−r/2 + O
(
n−(r+1)/2)

+
r∑

i=1

C(r, i)I−r/2(θ0)O
(
n−(r−i+1)/2)

×
(

J∑
j=i

λij (θ0)n
−j/2 + O

(
n−(J+1)/2))

= I−r/2(θ0)λrrn
−r/2 + o(n−r/2). �

Now that we have an asymptotic form for functionals based on posterior mo-
ments, we turn to percentiles. Our result is the following.

THEOREM 3.2. Make all the assumptions of Theorem 2.1 for some J ≥ 1,
and assume Assumption EE for some K ≥ 1. Let W−1(α|Xn) be the αth quantile
of W(·|Xn). Then we have

Eθ0W
−1(α|Xn) = θ0 + n−1/2I−1/2(θ0)�

−1(α) + o(n−1/2) + R′(n).(3.4)
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PROOF. Let ξα be the αth quantile of ψ = √
nI 1/2(θ0)(θ − θ̂n). That is,

α = Wo(ψ ≤ ξα|Xn) = W
(
θ ≤ n−1/2I−1/2(θ0)ξα + θ̂n|Xn)

.

So, we get

W−1(α|Xn) = n−1/2I−1/2(θ0)ξα + θ̂n
(3.5)

= n−1/2I−1/2(θ0)ξα + θ0 + n−1/2I−1/2(θ0)Un,

where Un = √
nI 1/2(θ0)(θ̂n − θ0).

There is a function ξ = ξ(η) which for any η is a solution to �(η) =
Wo(ξ(η)|Xn). So, given ξα , we can backform to an ηα by defining the function ξ(·)
to satisfy ξ(ηα) = ξα . Using this in (2.4) from Theorem 2.1, we get that ξn(α) sat-
isfies Assumption JE, which we write as

ξ(ηα) = ηα +
J+1∑
j=1

τj (ηα)n−j/2, n > N,Xn ∈ Sn,

where τJ+1(α) is the O(n−(J+1)/2) remainder term, which is bounded in absolute
value (a.s.). Using this in (3.5), we get

W−1(α|Xn) = n−1/2I−1/2(θ0)

(
ηα +

J+1∑
j=1

τj (ηα)n−j/2

)

(3.6)
+ θ0 + n−1/2I−1/2(θ0)Un,

for n > N and Xn ∈ Sn.
By Assumption EE, we have

Eθ0Un = σ1 +
K∑

k=1

n−k/2P1,k(σ ) + o(n−K/2),(3.7)

in which we see σ1 is the first moment of N(0,1) and so is 0. Also, we have

�(ηα) = Wo(ξ(ηα)|Xn) = Wo(ξα|Xn) = α,

so �−1(α) = ηα .
Finally, since Eθ0W

−1
n (α|Xn) = Eθ0ISnW

−1
n (α|Xn) + R′

n, we can take the ex-
pectation in (3.6), use (3.7), note that the τj (ηα)’s are bounded in Xn, collect terms
and substitute for ηα to obtain

Eθ0W
−1
n (α|Xn) = θ0 + n−1/2I−1/2(θ0)�

−1(α) + o(n−1/2) + R′
n. �

Next, we turn to derivatives of the posterior and more general posterior expec-
tations. Denote the r = (r1, . . . , rd)th derivative of W(θ |Xn) at θ by

W(r)(θ |Xn) = ∂ |r|∏d
i=1 ∂θ

ri
i

W(θ |Xn).
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To express the first terms in the expansion for the expectation of a derivative
of a posterior distribution, we need to define two sets of polynomials that arise
when we differentiate expressions involving the normal density. The first is the set
of Hermite polynomials: For a vector i of length d , let Hi(·) be the ith Hermite
polynomial defined by H0(v) ≡ 1 when i = 0 and by

D(i)φ(I 1/2(θ0)v) = Hi(v)φ(I 1/2(θ0)v),

when i �= 0. The second set of polynomials is particular to the use of Assump-
tion JE for the posterior distribution. We define η

(r)
j (·) to be the polynomial given

by

D(r)[φ(I 1/2(θ0)v)γj (I
1/2(θ0)v)] = η

(r)
j (v)φ(I 1/2(θ0)v).

When we need to take expectations in the standard normal of products of polyno-
mials P(u) and Q(u), we denote the polynomial of the normal moments by P ◦Q.
That is, EP(u)Q(u) �= P(σ)Q(σ), but EP(u)Q(u) is a polynomial in σ which
we denote P ◦ Q. In this notation, we have the following.

THEOREM 3.3. Assume Assumptions JE and EE for some J = K ≥ 1, and
that W(θ |Xn) has r = (r1, . . . , rd)th derivative at θ0 with mini ri ≥ 1. Then

Eθ0W
(r)(θ0|Xn) = n|r|/2|I (θ0)|1/2

(4π)d/2 Hr−1

(
σ√

2

)
(3.8)

+ A1n
(|r|−1)/2 + o

(
n(|r|−1)/2) + R′

n,

where r − 1 = (r1 − 1, . . . , rd − 1), Hr−1(
σ√

2
) is the expectation of Hr−1(v) with

powers vs = v
s1
1 · · ·vsd

d replaced by σs/(
√

2 )|s| and

A1 = 1

(4π)d/2

(
|I (θ0)|1/2Hr−1 ◦ P1

(
σ√

2

)
+ η

(r)
1

(
σ√

2

))
.

PROOF. See the Appendix. �

If we set r = (1, . . . ,1) in Theorem 3.3, we get the posterior density. In
fact, we can get the result for any partial derivative without the restriction
min{r1, . . . , rd} ≥ 1, by a similar technique. However, the computation of the coef-
ficients becomes more involved. Also, in the Appendix we develop an asymptotic
expansion for

Eθ0

(∫
h(θ)w(θ |Xn)dθ

)
,

where h is a specified differentiable function; see (A.13). Such expansions may be
helpful in sample size criteria derived from hypothesis testing optimality.
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4. Special cases. Here, we examine four functionals encapsulating different
sample size criteria taken from [23]. It will be seen that Proposition 2.1 and the
results from Section 3 can be used to obtain closed form expressions for Bayesian
sample sizes. To avoid repetition, we assume all the required conditions on the
models are satisfied and just derive the corresponding formulae.

EXAMPLE 1. For the criterion APVC in [23], set

F(W(·|Xn)) = Var(�|Xn)

=
∫

θ ′θW(dθ |Xn) −
(∫

θW(dθ |Xn)

)′(∫
θW(dθ |Xn)

)
.

By Theorem 3.1,

Eθ0F(W(·|Xn)) = I−1(θ0)λ22n
−1 + o(n−1) + R′

n,

in which λ22 = 2�(1 + 1/2)/�(1/2) = 1, since �(1 + 1/2) = 1/2�(1/2). Typ-
ically, R′

n will be of smaller order than the main term, so for θ ∈ A with
infθ∈A |I (θ)| > 0, and prespecified ε > 0, the smallest sample size to achieve∣∣Eθ0 Var(�|Xn)

∣∣ ≤ ε

is approximately given by

n ≥ 1

ε infθ∈A I (θ)
.(APVC)

A direct approach to this result by evaluating the terms in Proposition 2.1 can
be done but seems to be quite involved.

EXAMPLE 2. For the criterion ACC in [23], set F(W(·|Xn)) = ∫
Dn

W(dθ |
Xn), in which Dn is the HPD interval with length l under the posterior distri-
bution W(θ |Xn) and suppose θ is unidimensional. Unfortunately, our results in
Section 3 do not apply, because, like the quantile example in the Introduction, the
functional F would have to depend on more than just the posterior.

However, we can still evaluate the terms in Proposition 2.1. The first term on
the right-hand side of (2.6) is

EF
(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
))

=
√

nI 1/2(θ0)√
2π

E

∫
D′

n

e−(1/2)(Z+√
nI 1/2(θ0)(θ−θ0))

2
dθ(4.2)

=
√

nI 1/2(θ0)√
2π

E

∫
D′

n

e−(1/2)nI (θ0)(θ−θ0+Z/
√

nI (θ0) )2
dθ.

From this, we see that D′
n is of the form

D′
n = [θ0 − n−1/2I−1/2(θ0)Z − l/2, θ0 − n−1/2I−1/2(θ0)Z + l/2],
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which is the HPD interval for θ under �(Z + √
nI 1/2(θ0)(· − θ0)) of length l. Let

η = √
nI (θ0)(θ −θ0 +z/

√
nI (θ0) ). Then η ∼ N(0,1) and D′

n = [−√
nI (θ0)l/2 ≤

η ≤ √
nI (θ0)l/2], so the right-hand side of (4.2) is
√

nI 1/2(θ0)

2π

∫ ∫
D′

n

e−nI (θ0)/2(θ−θ0+z/
√

nI (θ0) )2
dθ e−(1/2)z2

dz

=
√

nI 1/2(θ0)

2π

∫ ∫
[−√

nI (θ0)l/2≤η≤√
nI (θ0)l/2]

e−η2/2 dη e−(1/2)z2
dz

= (
2�(

√
nI (θ0)l/2) − 1

) 1√
2π

∫
e−(1/2)z2

dz

= 2�
(√

nI (θ0)l/2
) − 1.

As n → ∞ this term tends to 1.
For large n, Dn is of the form [θn ± l/2], where θn is the posterior mean, and

θn → θ0 in Pθ0 probability. Also, we see that F(�(Z + √
nI 1/2(θ0)(· − θ0)) is in

fact independent of Z. Now, we have that

W([θ̃n ± l/2]|Xn) → 1

and

F
(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
)) = �0,(nI (θ0))

−1([±l/2]) → 1,

also in Pθ0 probability. So, by the dominated convergence theorem, we have

Eθ0Rn = Eθ0

(
W([θ̃n ± l/2]|Xn) − �Z,(nI (θ0))

−1([Z ± l/2])) → 0.

In the decomposition from Proposition 2.1(i), we see that (4.2) is the leading
term and the other terms tend to zero. So, for given 0 < α < 1, the minimal n to
achieve

Eθ0F(W(·|Xn)) = Eθ0

∫
Dn

W(dθ |Xn) ≥ 1 − α

is approximately given by

2�
(√

nI (θ0)l/2
) − 1 ≥ 1 − α.

Equivalently, for θ ∈ A with infθ∈A I (θ) > 0, we have

n ≥ 4

l2 infθ∈A I (θ)

[
�−1

(
1 − α

2

)]2

,(ACC)

where �(·) is the distribution function of N(0,1) and �−1(·) its inverse.
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EXAMPLE 3. For the criterion ALC in [23], take F(W(·|Xn)) = W−1
θ |Xn(1 −

α/2)−W−1
θ |Xn(α/2), that is, suppose we require that the symmetric posterior quan-

tiles be less than l apart.
By Theorem 3.2,

Eθ0F(W(·|Xn)) = 1√
nI (θ0)

(
�−1(1 − α/2) − �−1(α/2)

) + o(n−1/2).

So, for θ ∈ A with infθ∈A I (θ) > 0, and given length l, the minimal n to achieve

Eθ0

(
W−1

θ |Xn(1 − α/2) − W−1
θ |Xn(α/2)

) ≤ l

is approximately given by

n ≥ 1

l2 infθ∈A I (θ)(�−1(1 − α/2) − �−1(α/2))2 .(ALC)

Again, for completeness, we evaluate the terms in Proposition 2.1 directly. Let
�Z,(nI (θ0))

−1(·) be the distribution function of φZ,(nI (θ0))
−1(·) for given Z and sup-

pose θ is unidimensional. It is straightforward to see that

�−1
Z,(nI (θ0))

−1(α/2) = Z + 1√
nI (θ0)

�−1(α/2).

So, the first term in (2.10) is

Eθ0F
(
�

(
Z + √

nI 1/2(θ0)(θ − θ0)
))

= Eθ0F
(
�Z,(nI (θ0))

−1(·))
= Eθ0

(
�−1

Z,(nI (θ0))
−1(1 − α/2) − �−1

Z,(nI (θ0))
−1(α/2)

)
= Eθ0

((
Z + 1√

nI (θ0)
�−1(1 − α/2)

)
−

(
Z + 1√

nI (θ0)
�−1(α/2)

))

= 1√
nI (θ0)

(
�−1(1 − α/2) − �−1(α/2)

)
,

as obtained above from Theorem 3.2.
Next, we deal with the remainder term in (2.6). In fact, it is enough to use (1.1),

the two-term version of (2.6) avoiding nontrivial expansions entirely. Since we
have

W
(√

nI 1/2(θ0)(θ − θ̂n)|Xn) d→ N(0, Id),

we must have

W−1√
nI 1/2(θ0)(θ−θ̂n)|Xn

(α) = �−1(α) + op(1),

∀0 < α < 1. Equivalently,

W−1
(θ |Xn)(α) = θ̂n + 1√

nI (θ0)
�−1(α) + op(n−1/2).
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So, we obtain

W−1
(θ |Xn)(α) − �−1

Z,(nI (θ0))
−1(α) = θ̂n − Z + op(n−1/2).

Since E(Z) = θ0, we can use Assumption EE to get

Eθ0(θ̂n) = θ0 + n−1/2I−1/2(θ0)Eθ0

(√
nI 1/2(θ̂n − θ0)

)
= θ0 + n−1/2I−1/2(θ0)

×
(∫

vφd(v) dv

+
K∑

k=1

nk/2
∫

vPk(v)φd(v) dv + o(nK+2)

∫
v

1 + ‖v‖K+2 dv

)

= θ0 + O(n−1).

Hence, with mild abuse of notation,

Eθ0Rn = Eθ0

(
F(W(·|Xn)) − F

(
�Z,(nI (θ0))

−1(·)))
= Eθ0(op(n−1/2)) = o(n−1/2).

EXAMPLE 4. For the effect size problem in [23], take F(W(·|Xn)) =∫ ∞
θ1

W(dθ |Xn). Here θ1 < θ0 and θ1 < θ̂n for large n. Our theorems do not ap-
ply, so we use Proposition 2.1. This gives

EF
(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
))

= E

(√
nI (θ0)√

2π

∫ ∞
θ1

e−(1/2)(Z+√
nI (θ0)(θ−θ0))

2
dθ

)

=
√

nI (θ0)

(
√

2π)2

∫ ∫ ∞
θ1

e−(nI (θ0)/4)(θ−θ0)
2
dθ e−(z+(

√
n/2)I 1/2(θ0)(θ−θ0))

2
dz(4.3)

=
√

nI (θ0)√
2
√

2π

∫ ∞
θ1

e−(1/2)(nI (θ0)/2)(θ−θ0)
2
dθ

= 1 − �

(√
nI (θ0)√

2
(θ1 − θ0)

)
.

We see that (4.3) goes to 1 as n increases (since θ1 < θ0). We show that the other
terms are O(n−1/2), so that (4.3) is the leading term.

In fact, since

F
(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
)) =

√
nI (θ0)√

2π

∫ ∞
θ1

e−(1/2)(Z+√
nI (θ0)(θ−θ0))

2
dθ

= 1 − �
(
Z + √

nI (θ0)(θ1 − θ0)
)
,
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which is bounded, for J ≥ 1 we have that
J∑

j=1

n−j/2E
[
F

(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
))

Pj (Z)
] + o(n−1/2)h(n)

=
J∑

j=1

n−j/2O(1)EPj (Z) + o(n−1/2)h(n) = O(n−1/2),

since the EPj (Z)s are finite and h(n) = o(1) by a similar evaluation as in (4.3).
For the remainder term, as in the proofs of the theorems, we only consider the

“good” sets, omitting indicators on them. We have

Eθ0Rn = Eθ0

∫ ∞
θ1

d
(
W(θ |Xn) − �

θ̂n,(nI (θ0))
−1(θ)

)

= Eθ0

∫ ∞
θ1

(
J∑

j=1

n−j/2nd/2|I 1/2(θ0)|

× φd

(√
nI 1/2(θ0)(θ − θ̂n)

)
γ̃j

(√
nI 1/2(θ0)(θ − θ̂n)

)
(4.4)

+ n−(J−d+1)/2|I 1/2(θ0)|γ (1)
J+1

(√
nI 1/2(θ0)(θ − θ̂n)

))
dθ

= Eθ0

∫ ∞
√

nI 1/2(θ0)(θ1−θ̂n)

(
J∑

j=1

n−j/2φd(v)γ̃j (v) + n−(K+1)/2γ
(1)
J+1(v)

)
dv.

Since each term in (4.4) is integrable, expression (4.4) is bounded in absolute
value by∫ (

K∑
j=1

n−j/2φd(v)|γ̃j |(v) + n−(K+1)/2|γ (1)
K+1|(v)

)
dv = O(n−1/2),

where, for a polynomial P(·), |P |(v) is P(v) with the coefficients and powers
replaced by their absolute values.

So, for (4.3), for θ ∈ A = [a, b] with infθ∈A I (θ) > 0, and given 0 < α < 1, the
minimal n achieving

Eθ0

∫ ∞
θ1

W(dθ |Xn) ≥ 1 − α

is approximated by

�

(√
nI (θ0)√

2
(θ1 − θ0)

)
≤ α,

which gives

n ≥ 2(�−1(α))2

infθ∈A(θ1 − θ)2I (θ)
.(ES)
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5. Comparisons with exact results and numerical evaluations. In this sec-
tion we present some closed form expressions for the sample size criteria we have
evaluated asymptotically. Then we turn to some numerical work. Both types of
material suggest our asymptotic approximations are reasonable.

5.1. Exact results. In the case of the normal density with a conjugate normal
prior we can obtain exact expressions from direct calculation for all four criteria
we studied in Section 4. It is seen that our asymptotic expressions match these
up to the stated error terms. More generally, only the (APVC) criterion, arguably
the most popular of the four we have examined, can be calculated explicitly. We
present two more examples, the Poisson(θ) with a Gamma(a, b) prior and the
Binomial(θ) with a Uniform([0, 1]) prior. Again, it is seen that our asymptotic
expressions match the direct calculation expressions up to the stated order of error.

To begin the normal case, we record that, for X|θ ∼ N(θ,σ 2
0 ) and θ ∼ N(µ0,

τ 2
0 ), we get I (θ0) = σ−2

0 and W(θ |Xn) = N(θn, σ
2
n ) with

θn = X + σ 2
0 µ0/(nτ 2

0 )

1 + σ 2
0 /(nτ 2

0 )
and σ 2

n = σ 2
0 τ 2

0

nτ 2
0 + σ 2

0

.

Next we go through the four criteria in turn.

For the (APVC), the exact quantity is

Eθ0(Var(θ |Xn)) = Var(θ |Xn) = σ 2
0

n + σ 2
0 /τ 2

0

= σ 2
0

n
− σ 4

0 /τ 2
0

n(n + σ 2
0 /τ 2

0 )
.

If we choose r = 2, we have λ22 = 2�(1 + 1/2)/�(1/2) = 1, so by Theorem 3.1,
we get

Eθ0(Var(θ |Xn)) = σ 2
0

n
+ o(n−1) + R′

n,

which matches up to the stated error.
For the (ALC), let Zn ∼ N(θn, σ

2
n ). Then

α = P
(
Zn ≤ W−1(α|Xn)|Xn) = P

(
Zn − θn

σn

≤ W−1(α|Xn) − θn

σn

∣∣∣Xn

)
,

so

σ−1
n

(
W−1(α|Xn) − θn

) = �−1(α) or W−1(α|Xn) = θn + σn�
−1(α).

Since X ∼ N(θ,σ 2
0 /n), we have

Eθ0W
−1(α|Xn) = θ0 + σ 2

0 µ0/(nτ 2
0 )

1 + σ 2
0 /(nτ 2

0 )
+ σ0√

n + σ 2
0 /τ 2

0

�−1(α)

= θ0 + σ0√
n
�−1(α) + o(n−1/2).
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By Theorem 3.2, we have

Eθ0W
−1(α|Xn) = θ0 + σ0√

n
�−1(α) + o(n−1/2) + R′

n,

matching up to the stated error.
For the (ACC), we have Dn = [θn − l/2, θn + l/2], and

Eθ0W([θn ± l/2]|Xn) = Eθ0

∫
[θn−l/2,θn+l/2]

1√
2πσ 2

n

e−(1/(2σ 2
n ))(θ−θn)2

dθ

=
∫
[−l/2,l/2]

1√
2πσ 2

n

e−(1/(2σ 2
n ))α2

dα

= 2�(σnl/2) − 1 = 2�

(√
n(1 + σ 2

0 )/(nτ 2
0 )

σ0

l

2

)
− 1

= 2�

(√
n

σ0

l

2

)
− 1 + o(1).

From Example 3, we have

Eθ0

∫
Dn

W(dθ |Xn)d = 2�

(√
n

σ0

l

2

)
− 1 + o(1),

matching up to the stated error.
For the effect size criterion, let θ1 < θ0. So, for large n, θn − θ1 ≥ ε > 0 (a.s.),

σ−1
n = O(n1/2) and θn − X = O(n−1), giving σ−1

n (θn − X) = O(n−1/2). Using
this in the functional gives

Eθ0

∫ ∞
θ1

W(dθ |Xn)

= Eθ0

∫ ∞
θ1

1√
2πσn

e−(θ−θn)2/(2σ 2
n ) dθ

= Eθ0

∫ ∞
σ−1

n (θ1−θn)

1√
2π

e−α2/2 dα

= Eθ0

∫ ∞
σ−1

n (θ1−X)

1√
2π

e−α2/2 dα + Eθ0

∣∣∣∣
∫ σ−1

n (θ1−θn)

σ−1
n (θ1−X)

1√
2π

e−α2/2 dα

∣∣∣∣
= Eθ0

∫ ∞
σ−1

n (θ1−X)

1√
2π

e−α2/2 dα + O(n−1/2).

Since

σ−1
n −

√
n

σ0
= 1

τ 2
0 (

√
nτ 2

0 + σ 2
0 /(σ0τ0) + √

n/σ0)
= O(n−1/2),
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so σ−1
n (θ1 − X) − √

n/σ0(θ1 − X) = O(n−1/2) (a.s.), the last expression for the
functional is

Eθ0

∫ ∞
√

n/σ0(θ1−X)

1√
2π

e−α2/2 dα

+ Eθ0

∣∣∣∣
∫ √

n/σ0(θ1−X)

σ−1
n (θ1−X)

1√
2π

e−α2/2 dα

∣∣∣∣ + O(n−1/2)

= Eθ0

∫ ∞
√

n/σ0(θ1−X)

1√
2π

e−α2/2 dα + O(n−1/2) + O(n−1/2)

=
∫ ∞
−∞

∫ ∞
θ1

1√
2π

√
n

σ0
e−n(θ−x)2/(2σ 2

0 ) 1√
2π

√
n

σ0
e−n(x−θ0)

2/(2σ 2
0 ) dθ dx

+ O(n−1/2)

=
∫ ∞
θ1

1√
4π

√
n

σ0
e−n(θ−θ0)

2/4σ 2
0

∫ ∞
−∞

1√
π

√
n

σ0
e−n(x−(θ+θ0)/2)2/σ 2

0 dx dθ

+ O(n−1/2)

=
∫ ∞
θ1

1√
4π

√
n

σ0
e−n(θ−θ0)

2/(4σ 2
0 ) dθ + O(n−1/2)

=
∫ ∞
(
√

n/(
√

2σ0))(θ1−θ0)

1√
2π

e−α2/2 dα + O(n−1/2)

= 1 − �

(√
n

2

θ1 − θ0

σ0

)
+ O(n−1/2).

From Example 4, we have that

Eθ0

∫ ∞
θ1

W(dθ |Xn) = 1 − �

(√
n

2

θ1 − θ0

σ0

)
+ o(1),

again matching up to the stated error. In this case, the exact expression gave slightly
stronger control of the error.

Next, we turn to two other examples for the (APVC). Of the four criteria, only
the (APVC) is simple enough that it can be obtained in closed form in some cases.

Let X|θ ∼ Poisson(θ), and suppose θ ∼ G(a,b), the Gamma distribution with
a, b known. Let Sn = ∑n

i=1 Xi . Then, by standard results, θ |Xn ∼ G(a + n,b +
Sn), with E(θ |Xn) = (b + Sn)/(a + n), Var(θ |Xn) = (b + Sn)/(a + n)2, I (θ0) =
1/θ0, and Eθ0(Sn) = nθ0.

So, the expected posterior variance is

Eθ0(Var(θ |Xn)) = b + nθ0

(a + n)2 = θ0

n
+ b − θ0

(n + a)2 − a

n(n + a)
,

and by Theorem 3.1, the approximation is

Eθ0(Var(θ |Xn)) = θ0

n
+ o(n−1) + R′

n.
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As in the normal case, the two match up to the stated error.
Now, let X|θ ∼ Binomial(θ) with θ ∼ U(0,1). Setting Sn = ∑n

i=1 Xi , standard
results give that θ |Xn ∼ Beta(Sn + 1, n + 1 − Sn), with E(θ |Xn) = (Sn + 1)/

(n+2), Var(θ |Xn) = (nSn−S2
n +n+1)/[(n+2)2(n+3)], I (θ0) = 1/[θ0(1−θ0)],

Eθ0(Sn) = nθ0 and Eθ0(S
2
n) = nθ0(1 − θ0) + n2θ2

0 .
The expected posterior variance is

Eθ0(Var(θ |Xn))

= n2θ0 − nθ0 − n(n − 1)θ2
0 + n + 1

(n + 2)2(n + 3)

= θ0(1 − θ0)

n
− 3θ0(1 − θ0)

n(n + 3)
+ 1 − θ0(1 − θ0)

(n + 2)(n + 3)
− 2θ0(1 − θ0) + 1

(n + 2)2(n + 3)
.

By Theorem 3.1 our approximation is

Eθ0(Var(θ |Xn)) = θ0(1 − θ0)

n
+ o(n−1) + R′

n.

As before, the two agree.
The agreement between the asymptotics and the closed form expressions sug-

gests that in the other examples the discrepancy between the two will be small.
Indeed, all of the criteria are derived from posteriors and posterior objects which
can be approximated as well as desired by taking enough terms in the expansions.
That is, optimizing the asymptotic expression obtained by using more terms will
give any desired degree of accuracy. We suggest this will only be needed in ex-
treme cases when the coefficients in the neglected higher-order terms are so large,
possibly because of the range of the set in the parameter space, that they over-
whelm the lower-order terms.

5.2. Numerical evaluations. Fundamentally, the class of quantities we want
to evaluate is of the form G = EθFε(W(·|Xn)), where F represents the inference
objective and ε summarizes how well it must be met. To begin, we present com-
putations for two simple cases in which G can be obtained from the closed form
expressions in Section 5.1. We compare selected values of G with the correspond-
ing approximations G∗ from our asymptotic formulae. We look at expected values
of functionals, rather than fix ε’s and find optimal sample sizes, to make it easy to
compare these first two simple cases with a more complicated third case.

Table 1 gives the exact G and approximate G∗ (in brackets) numerical re-
sults for the normal likelihood and normal prior example given in Section 5.1.
We have set η = (θ0,µ0, σ

2
0 , τ 2

0 ) and chosen η1 = (0.5,0.25,0.20,0.30), η2 =
(5.0,3.5,2.5,3.0) and η3 = (25,20,18,15); the values of n are as indicated. The
confidence level for (ALC) is α = 0.05; for (ACC), we set l = θ0/10. (We omitted
results for the effect size problem because the exact and the approximate quantities
have the same first-order term and the higher-order terms are hard to get explicitly.)
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TABLE 1
Exact vs. asymptotic: Normal–Normal

Parameter n (APVC): G, G∗ (ALC): G, G∗ (ACC): G, G∗

η1 10 0.0187 (0.0200) 0.2591 (0.2674) 0.1449 (0.1403)

30 0.0065 (0.0067) 0.3617 (0.3657) 0.2431 (0.2405)

50 0.0039 (0.0040) 0.3934 (0.3960) 0.3093 (0.3074)

100 0.0020 (0.0020) 0.4250 (0.4264) 0.4251 (0.4238)

η2 10 0.2308 (0.2500) 4.0944 (4.1776) 0.3972 (0.3829)

30 0.0811 (0.0833) 4.4911 (4.5252) 0.6200 (0.6135)

50 0.0492 (0.0500) 4.6106 (4.6322) 0.74040 (0.7364)

100 0.0248 (0.0250) 4.7286 (4.7399) 0.8877 (0.8862)

η3 10 1.6071 (1.8000) 22.3791 (22.7932) 0.6759 (0.6485)

30 0.5769 (0.6000) 23.5583 (23.7259) 0.9002 (0.8934)

50 0.3516 (0.3600) 23.9075 (24.0131) 0.9650 (0.9628)

100 0.1779 (0.1800) 24.2470 (24.3022) 0.9970 (0.9968)

It is seen that as n increases the values of the (APVC) functional decrease, while
the values for (ALC) and (ACC) increase. This is expected from the interpretation
of the functionals. For each choice of η and criterion, it is seen that the error de-
creases as n increases; that is, the difference between Ĝ and G∗ gets smaller as n

gets larger. It is important to note that, as the numerical value of G changes, it is
closely tracked by our approximation.

Less routine examples are the Poisson(θ ) likelihood with a Gamma(a, b) prior
and a binomial (θ ) likelihood with a Uniform[0, 1] prior. For the Poisson–Gamma,
we set η = (θ0, a, b) and for the Binomial–Uniform we set η = θ0.

Table 2 shows the values for (APVC) from G and G∗ for η1 = (0.5,2.5,3.5),
η2 = (1.6,8,7.5) and η3 = (1.5,10,12). For the Binomial–Uniform, we set η1 =
0.20, η2 = 0.5 and η3 = 0.75.

TABLE 2
Exact vs. asymptotic: Non-Normal

η
n 10 30 50 100

Poisson–Gamma
η1 0.0544 (0.0500) 0.0175 (0.0167) 0.0103 (0.0100) 0.0051 (0.0050)

η2 0.0725 (0.1600) 0.0384 (0.0533) 0.0260 (0.0320) 0.0144 (0.0160)

η3 0.0675 (0.1500) 0.0356 (0.0500) 0.0242 (0.0300) 0.0134 (0.0150)

Binomial–Uniform
η1 0.0136 (0.0160) 0.0050 (0.0053) 0.0031 (0.0032) 0.0016 (0.0016)

η2 0.0179 (0.0250) 0.0073 (0.0083) 0.0046 (0.0050) 0.0024 (0.0025)

η3 0.0149 (0.0188) 0.0057 (0.0063) 0.0036 (0.0038) 0.0018 (0.0019)
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As in Table 1, both the error of approximation and the numerical values decrease
as n increases for both prior likelihood pairs. For the Poisson–Gamma case, it is
seen that the values for η2 and η3 are close because their θ ’s are close. The prior
has a smaller effect. For the Binomial–Uniform with constant prior, it is seen that
the symmetry of the Binomial makes the values for η1 and η2 close.

Next, we turn to an example in which a closed form for G does not exist. We
will approximate G by Ĝ obtained from simulations and compare this to G∗ again
obtained from our asymptotic expressions. To clarify the comparison in Table 3,
observe that, in a world of infinite resources, we would generate m IID Xn’s
from pθ , find W(·|Xn = xn) for each of the xn

j ’s, evaluate Ĝ(θ, ε,W,n,m) =
(1/m)

∑m
j=1 Fε(W(·|Xn = xn

j )) and report Ĝ = Ĝ(θ, ε,W,n,m) as an approxi-
mation to G = G(θ, ε,W,n). Ideally, we would use a large enough m that depen-
dence on it could be neglected and W would be replaced by the hyperparameters,
say, α, that specify it. That is, we will have

Ĝ(θ, ε,α,n,m) ≈ G(θ, ε,α,n),(5.1)

so we can obtain minimizing values of n = n(θ, ε,α) from Ĝ. In fact, we want a
maximin solution

nMm(ε) = max
θ∈K,α∈A

n(θ, ε,α),(5.2)

in which K and A are compact sets. However, direct evaluation of nMm(ε) is
computationally demanding: It requires, for each specified ε, θ and α, evaluating
EθFε(W(·|Xn)) for many values of n so one can select the smallest n that satisfies
the criterion.

As in the first two cases, rather than evaluating (5.2), we compute, for some
choices of n, the empirical posterior functional Ĝ(θ, ε,α,n,m), which can be

TABLE 3
Empirical vs. asymptotic: Non-Normal

θ0 n Eθ0(Var(θ |Xn)) Eθ0 (HPD) Eθ0(ALC)

0.25 10 0.0116 (0.0062) [0.1475, 0.5388] ([0.1633, 0.4732]) 0.3912 (0.3099)
30 0.0031 (0.0021) [0.1742, 0.3826] ([0.1803, 0.3592]) 0.2084 (0.1789)
50 0.0018 (0.0012) [0.1884, 0.3483] ([0.1939, 0.3325]) 0.1599 (0.1386)

100 0.0008 (0.0006) [0.2017, 0.3123] ([0.2055, 0.3035]) 0.1106 (0.0980)
0.50 10 0.0238 (0.0250) [0.2703, 0.8399] ([0.2320, 0.8518]) 0.5696 (0.6198)

30 0.0107 (0.0083) [0.3387, 0.7273] ([0.3409, 0.6988]) 0.3886 (0.3578)
50 0.0068 (0.0050) [0.3727, 0.6832] ([0.3798, 0.6570]) 0.3105 (0.2772)

100 0.0034 (0.0025) [0.4020, 0.6208] ([0.4084, 0.6044]) 0.2188 (0.1960)
0.75 10 0.0348 (0.0562) [0.3738, 0.9467] ([0.2135, 1.1432]) 0.5729 (0.9297)

30 0.0140 (0.0187) [0.4986, 0.9368] ([0.4556, 0.9923]) 0.4382 (0.5368)
50 0.0102 (0.0112) [0.5511, 0.9282] ([0.5349, 0.9506]) 0.3771 (0.4158)

100 0.0059 (0.0056) [0.5988, 0.8988] ([0.5997, 0.8937]) 0.3000 (0.2940)
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regarded as a good enough approximation to G(θ, ε,α,n) for large m. We also
compute our asymptotic approximation, G∗. In effect, we have assumed (5.1) by
choosing m large enough and then compared Ĝ(θ, ε,α,n) to G∗(θ, ε,α,n). Thus,
Table 3 gives G∗ and Ĝ for several choices of θ , ε, α and n, for various function-
als F .

Our argument is that the approximations G∗ are close to the corresponding Ĝ’s
for a variety of points (θ, ε,α,n) and, therefore, it is reasonable to use sample sizes
obtained from G∗ as approximations to the sample sizes one would get from opti-
mizing G directly. The values given for the Ĝ and G∗ given in the tables support
this contention.

Thus, we evaluated a nonconjugate, nonclosed form example. In this case, the
G could not be found as in Section 5.1; we are forced to use Ĝ. To provide a real
test of the asymptotics, take the likelihood to be Exponential(x|θ) = θe−θx with
a Beta(3/2, 3/2) prior having density β(θ |3/2,3/2) ∝ √

θ(1 − θ) on [0, 1]. It is
seen that this example is far from the normal prior, normal likelihood setting, so
its relation to the asymptotic normality used to derive our expressions is not close.

Since G is an expected value of a functional of the posterior, we generate
m = 1000 IID data sets of size n for several values of n, Xn

1 , . . . ,Xn
m, from an

Exponential(x|θ). For each Xn
j , j = 1, . . . ,m, we draw outcomes from W(·|Xn

j )

by Markov chain Monte Carlo, compute F(W(·|Xn
j )) from the empirical posterior

distribution, and approximate EθF(W(·|Xn)) by (1/m)
∑m

j=1 F(W(·|Xn
j )).

For several values of θ taken as true, n as a potential sample size, and each
of three criteria, we give the empirical value, Ĝ, and its asymptotic approxima-
tion using our technique G∗ in brackets in Table 3. The expected HPD is a proxy
for (ACC): In the average coverage criterion, we fix � and find the n making the
coverage probability of the HPD set of length less than � at least 1 − α. Here,
the E(HPD) represents the � for coverage 0.95 for the approximate HPD interval
centered at the posterior mean.

It is seen that the expected (APVC) and (ALC) decreases as n increases, as does
the error of approximation. Likewise, the expected HPD length decreases, as does
the error of approximation as n increases. When n = 10, the approximation can
be poor with errors often over 25% of the true value; this may be due to the m

or n being too small or due to convergence problems in the Markov chain Monte
Carlo. At the other end, n = 100 gives good approximation in absolute and relative
senses, suggesting the size of m is not the problem. Overall, in highly nonnormal
and nonconjugate settings, our approximation may not give satisfactory results
unless n is moderate, say, over 30.

We comment that the effect size criterion involves the mean posterior quantiles,
so we expect our formulae to give results similar to those for Eθ0(HPD), for which
reason we omitted its presentation here.

6. Final remarks. Overall, we have argued that simple, asymptotically valid
inequalities can be derived so that Bayesian sample sizes can be readily determined
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essentially as easily as in the frequentist case. We have done this for four sample
size criteria taken from the established literature.

Apart from this contribution, we have several observations.
First, integrating our approximations for (1.1) over θ0 gives expressions for

use in pre-posterior Bayesian calculations where the expectations are taken
with respect to the mixture density. That is, because F(W(·|Xn)) does not de-
pend on the parameter explicitly, the expectation with respect to the mixture is
EmF(W(·|Xn)) = ∫

� EθF(W(·|Xn))w(θ) dθ , and our asymptotic expressions
will apply to the argument of the integral. Our results are slightly stronger than
necessary for evaluating marginal probabilities.

Second, although we have not done it here, we suggest that, as ever, sensitivity
analyses should be used to ensure the sample sizes obtained from any one method
are robust against deviations of the prior, likelihood and loss function (if one ex-
ists) from the nominal choices used to obtain the sample sizes. Robustness against
similar choices of sample size criterion would also be desirable.

Finally, we anticipate that examining functionals of posteriors may be a step to-
ward unifying the three cases described in the Introduction. Decision theoretic pro-
cedures implicitly rest on the posterior risk which can be regarded as a functional
of the posterior. Evidentiary procedures usually devolve to posterior probabilities
which can likewise be regarded as functionals of the posterior—we suggest for-
mulae for these at the end of the Appendix. And, finally, purely Bayes criteria that
focus on credibility sets also express properties of credibility sets in terms of the
posterior. It may be that a suitably general treatment of functionals of the posterior
will include all these as special cases of one unified formalism.

APPENDIX

Here, we prove Theorem 3.3 and compare it with the expansions for two func-
tionals in [5]. As a final point, we note how to use our techniques to get an as-
ymptotic expansion for a functional that is the expectation of a posterior mean of
a function of the parameter.

PROOF OF THEOREM 3.3. We need to approximate Eθ0(ISnW
(r)(θ0|Xn)); for

simplicity of notation, we omit the ISn .
First, for 1 ≤ j ≤ J , the γj (

√
nI 1/2(θ0)(θ − θ̂n),X

n)’s are polynomials and,
hence, differentiable. As in Assumption JE, the remainder term is

γJ+1
(√

nI 1/2(θ0)(θ0 − θ̂n),X
n)

n−(J+1)/2

= W(θ0|Xn) − �
θ̂n,I−1(θ0)/n

(θ0)

−
J∑

j=1

n−j/2φd

(√
nI 1/2(θ0)(θ0 − θ̂n)

)
γj

(√
nI 1/2(θ0)(θ0 − θ̂n),X

n)
,

n > N,Xn ∈ Sn.
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So γK+1(·,Xn) has r th derivative whenever W(·|Xn) does.
To control the expectation of W(r)(θ |Xn), we replace the γj (·,Xn)’s by

the γj (·)’s. That is, by the boundedness of the γj (·,Xn)’s, and the a.s. conver-
gence of θ̂n and the Ir(θ̂n)’s to θ0 and the Ir(θ0)’s, we have

γj (·,Xn) = γj (·)(1 + op(1)
)
,

for j = 1, . . . , J + 1, where the op(1) may depend on j , but is independent of θ .
So we have

W(θ0|Xn) = �
θ̂n,I−1(θ0)/n

(θ0)

+
J∑

j=1

n−j/2φd

(√
nI 1/2(θ0)(θ0 − θ̂n)

)
(A.1)

× γj

(√
nI 1/2(θ0)(θ0 − θ̂n)

)(
1 + op(1)

)
+ n−(J+1)/2γJ+1

(√
nI 1/2(θ0)(θ0 − θ̂n)

)(
1 + op(1)

)
.

Next, we convert (A.1) into a form to which Assumption EE can be applied. We
begin to deal with derivatives of the first term by noting

∂ |r|�
θ̂n,I−1(θ0)/n

(θ)

∂θr

∣∣∣∣
θ=θ0

= ∂ |r−1|φ
θ̂n,I−1(θ0)/n

(θ)

∂θr−1

∣∣∣∣
θ=θ0

.

Next, let I
1/2
i (θ0) be the ith column of I 1/2(θ0), and 1i = (0, . . . ,0,1,0, . . . ,0) be

the d-vector with the ith component 1 and all other components zero. For the first
derivative with respect to the ith component of θ we have

∂φ
θ̂n,I−1(θ0)/n

(θ)

∂θi

= |nI (θ0)|1/2 ∂φ(
√

nI 1/2(θ0)(θ − θ̂n))

∂θi

=
( |nI (θ0)|1/2∂φ(

√
nI 1/2(θ0)(θ − θ̂n))

∂[√nI 1/2(θ0)(θ − θ̂n)]
)′ ∂

∂θi

(√
nI 1/2(θ0)(θ − θ̂n)

)

= n(d+1)/2|I (θ0)|1/2I
1/2
i (θ0)

(√
nI 1/2(θ0)(θ − θ̂n)

)
φ

(√
nI 1/2(θ0)(θ − θ̂n)

)
= n(d+1)/2|I (θ0)|1/2H1i

(√
nI 1/2(θ0)(θ − θ̂n)

)
φ

(√
nI 1/2(θ0)(θ − θ̂n)

)
.

So, by an induction argument we have

∂ |r−1|φ
θ̂n,I−1(θ0)/n

(θ)

∂θr−1

∣∣∣∣
θ=θ0

= n|r|/2|I (θ0)|1/2Hr−1
(√

nI 1/2(θ0)(θ0 − θ̂n)
)

(A.2)

× φ
(√

nI 1/2(θ0)(θ0 − θ̂n)
)
,
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in which we have simplified by using (d + |r − 1|)/2 = |r|/2.
Using (A.2) in the first term, and recalling the definition of the η

(r)
j in the second

term, the r th derivative of (A.1) becomes

W(r)(θ0|Xn)

= n|r|/2|I (θ0)|1/2Hr−1
(√

nI 1/2(θ0)(θ0 − θ̂n)
)

(A.3)
× φ

(√
nI 1/2(θ0)(θ − θ̂n)

)

+
J∑

j=1

n−j/2n|r|/2η
(r)
j

(√
nI 1/2(θ0)(θ0 − θ̂n)

)
(A.4)

× (
1 + op(1)

)
φ

(√
nI 1/2(θ0)(θ0 − θ̂n)

)
+ n−(J+1)/2n|r|/2γ̃

(r)
J+1

(√
nI 1/2(θ0)(θ0 − θ̂n)

)(
1 + op(1)

)
.(A.5)

Here, γ̃
(r)
J+1(

√
nI 1/2(θ0)(θ0 − θ̂n)) is generated by applying the chain rule to the

last term on the right-hand side in (A.1). Note that we differentiate with respect to
θ and then evaluate at θ0. Expressions (A.3) and (A.4) will give the two leading
terms in (3.8), respectively.

Next we use Assumption EE to observe an identity: We can take expectations
over θ̂n when it occurs in the argument of a polynomial Q(·) by the relationship

Eθ0

(
Q

(√
nI 1/2(θ0)(θ0 − θ̂n)

)
φ

(√
nI 1/2(θ0)(θ0 − θ̂n)

))

=
∫

Q(v)φ(v)

(
φ(v) +

K∑
k=1

n−k/2Pk(v)φ(v) + o(n−K/2)

1 + ‖v‖K+2

)
dv

(A.6)

= 1

(4π)d/2

∫
Q

(
v√
2

)(
φ(v) +

K∑
k=1

n−k/2Pk

(
v√
2

)
φ(v)

)
dv + o(n−K/2)

= 1

(4π)d/2

(
Q

(
σ√

2

)
+

K∑
k=1

n−k/2Q ◦ Pk

(
σ√

2

))
+ o(n−K/2),

where Q◦Pk(·) is the polynomial obtained by their product in which, as before, we
have taken expectations and replaced powers. [The factor 1/(4π)d/2 appears when
we multiply two standard normal densities and observe the change of variables in
the exponent.]

We use (A.6) in (A.3), (A.4) and (A.5) to get (3.8).
Since the integrability of W(r)(·|Xn) and Hr−1(·)φ(·) implies that of γ̃J+1(·),

we can apply (A.6) to see that the expectation of the error term (A.5) is

Eθ0

(
n−(J+1)/2n|r|/2γ̃

(r)
J+1

(√
nI 1/2(θ0)(θ0 − θ̂n)

)(
1 + op(1)

))
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= Cn(|r|−J−1)/2
∫

γ̃
(r)
J+1(v)

(
φ(v) +

K∑
k=1

n−k/2Pk(v)φ(v)

(A.7)

+ o(n−K/2)
1

1 + ‖v‖K+2

)
dv

= O
(
n(|r|−J−1)/2)

.

In (A.7) we used the fact that the integral over γ̃
(r)
J+1(v)φ(v) gives an O(1) term.

The integral over the summands in the summation gives terms of order O(1)nk/2,
for k = 1, . . . ,K . So, the initial term gives the order in n as indicated in (A.7).

Similarly, using (A.6), the expectation of (A.4) is
J∑

j=1

n(|r|−j)/2

[
1 + o(1)

(4π)d/2

(
η

(r)
j

(
σ√

2

)
+

K∑
k=1

n−k/2η
(r)
j ◦ Pk

(
σ√

2

))

+ o
(
n(|r|−K−1)/2)]

(A.8)

=
J∑

j=1

n(|r|−j)/2 1 + o(1)

(4π)d/2 η
(r)
j

(
σ√

2

)

+ ∑
k+j≤J

n(|r|−k−j)/2 1 + o(1)

(4π)d/2 η
(r)
j ◦ Pk

(
σ√

2

)
+ o

(
n(|r|−K−1)/2)

.

The leading term in (A.8) gives the second term in A1 in (3.8).
Finally, using (A.6), the expectation of (A.3) is

n|r|/2 |I (θ0)|1/2

(4π)d/2

(
Hr−1

(
σ√

2

)
(A.9)

+
J∑

j=1

n−j/2Hr−1 ◦ Pj

(
σ√

2

))
+ o

(
n(|r|−J )/2)

,

which gives the leading term in (3.8) and the first term in A1. That is, by collecting
terms in (A.7)–(A.9), the proof is completed. �

To exemplify Theorem 3.3, we examine the average behavior of the posterior
density at θ0. Straightforward extensions give similar results at other values of θ .

Consider the functional F(W(·|Xn)) = w(θ0|Xn) = ∂ |r|W(·|Xn)
∂θr |θ=θ0 with r =

(1, . . . ,1). Since Hr−1(·) = H0(·) ≡ 1, Theorem 3.3 gives

Eθ0(w(θ0|Xn))
(A.10)

= nd/2|I (θ0)|1/2

(4π)d/2 + n(d−1)/2A1 + o
(
n(d−1)/2) + R′

n.
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When d = 1, we can verify that A1 = 0. This is easy because the expressions for
the γj (·)’s are available from [11] in this case. Indeed, we have

η1(v) = I (θ0)c
−1
00 (c10v

3 + c01v)

and

A1 = |I (θ0)|1/2

(4π)d/2 P1

(
σ√

2

)
+ 1

(4π)d/2 η
(r)
1

(
σ√

2

)
,

in which P1(v) = χ3v/3!. The expectations of P1(v) and η1(v) when v is
Normal(0,1) are obviously zero. So, P1(

σ√
2
) = η

(r)
1 ( σ√

2
) = 0 and, thus, A1 = 0.

This means that the two biggest terms in (A.10) are of order nd/2 and n(d−2)/2.
We have not carried out the analysis far enough to identify the coefficient of the
second-order term.

It is seen that (A.10) is the same as the result in [5]. We remark that if one
chooses F(W(·|Xn)) = w2(θ0|Xn), the techniques above give

Eθ0(w
2(θ0|Xn)) ∼ Eθ0(n

d |I (θ0)|φ2(Z)) = nd |(θ0)|
3d/2(2π)d

,(A.11)

the same as in [5].
For completeness, we next show how to use the general procedure Proposi-

tion 2.1 to get (A.10). There are four types of terms in (2.10); we go through them
in turn.

The first term on the right-hand side of (2.10) is

EF
(
�

(
Z + √

nI 1/2(θ0)(· − θ0)
))

= nd/2|I 1/2(θ0)|
(2π)d/2

∫ 1

(2π)d/2 e−(1/2)z′ze−(1/2)z′z dz

= nd/2|I 1/2(θ0)|
(2π)d/2

∫ 1

(2π)d/2 e−z′z dz = nd/2|I 1/2(θ0)|
(4π)d/2 .

Next, for J ≥ 1, the terms in the summation in (2.10) are of the form

n−j/2 n1/2|I 1/2(θ0)|
(2π)d/2

∫ 1

(2π)1/2 e−(1/2)z′zPj (z)e
−(1/2)z′z dz

= n−j/2 nd/2|I 1/2(θ0)|
(4π)d/2

∫
e−(1/2)z′zPj

(
z√
2

)
dz

= n−j/2 nd/2|I 1/2(θ0)|
(4π)d/2 Pj

(
σ√

2

)
,

where Pj (
σ√

2
) is the expectation of Pj (

z√
2
) with the zl’s replaced by σl’s, the lth

moments of N(0, Id).
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Next, for h(n), we observe that

�
(
z + √

nI 1/2(θ0)(θ − θ0)
)

= 1

(2π)d/2

∫ z+√
nI 1/2(θ0)(θ−θ0)

−∞
e−(1/2)t ′t dt

= |nI 1/2(θ0)|1/2

(2π)d/2

∫ θ

−∞
e−(1/2)(

√
nI 1/2(θ0)(v−θ0)+z)′(√nI 1/2(θ0)(v−θ0)+z) dv.

This gives

∂ |r|�(z + √
nI 1/2(θ0)(θ − θ0))

∂θr

∣∣∣∣
θ=θ0

= nd/2|I 1/2(θ0)|φ(z),

and we have

h(n) =
∫

F(�(z + √
nI 1/2(θ0)(· − θ0)))

1 + ‖z‖J
dz

=
∫

nd/2|I 1/2(θ0)|φ(z)

1 + ‖z‖J
dz

= nd/2|I 1/2(θ0)|
(2π)d/2

∫
e−(1/2)z′z

1 + ‖z‖J
dz,

which is smaller than the leading term when multiplied by o(nJ/2) for any J ≥ 1.
It remains to evaluate the expectation of the remainder term. As assumed in the

proofs of the theorems, we only need to evaluate it over the “good” sets, and we
omit the indicators for them. Write

Rn = d

dθ

(
J∑

j=1

n−j/2φ
(√

nI 1/2(θ0)(θ − θ̂n)
)

× γj

(√
nI−1/2(θ0)(θ − θ̂n)

)(
1 + o(1)

)
+ n−(J+1)/2γJ+1

(√
nI−1/2(θ0)(θ − θ̂n)

)(
1 + o(1)

))∣∣∣∣
θ=θ0

=
J∑

j=1

n−j/2nd/2φ
(√

nI 1/2(θ0)(θ − θ̂n)
)
η

(1)
j

(√
nI−1/2(θ0)(θ0 − θ̂n)

)(
1 + o(1)

)

+ n−(J+1)/2nd/2∣∣I (r)/2(θ0)
∣∣γ (1)

J+1

(√
nI−1/2(θ0)(θ − θ̂n)

)(
1 + o(1)

)
.

So, by Assumption EE and (A.6), we get

Eθ0Rn =
J∑

j=1

n(d−j)/2

(4π)d/2 η
(1)
j

(
σ/

√
2

)(
1 + o(1)

) + o
(
n(d−J )/2)

,
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which has lower order than the leading term for J ≥ 1. Thus, by Proposition 2.1,
we get the same result as from Theorem 3.3.

Our final point is that our techniques can be used to approximate the expected
value of posterior expectations. Indeed, from (A.1), note that

w(θ |Xn) = φ
θ̂n,I−1(θ0)/n

(θ)

+
J∑

j=1

n−j/2nd/2|I 1/2(θ0)|φ(√
nI 1/2(θ0)(θ − θ̂n)

)
(A.12)

× η
(1)
j

(√
nI 1/2(θ0)(θ − θ̂n)

)(
1 + o(1)

)
+ n−(J+1)/2nd/2|I 1/2(θ0)|γ (1)

J+1

(√
nI 1/2(θ0)(θ − θ̂n)

)(
1 + o(1)

)
.

The γj (·,Xn)’s are from Assumption JE and are differentiable, as are the η
(r)
j (·)’s.

Now, suppose h = h(θ) has all r th partial derivatives, for |r| ≤ J , on a neighbor-
hood of θ0 and that h(θ)w(θ |Xn) and its partial derivatives are integrable with
respect to w(·|Xn).

Then, Taylor expanding h at θ̂ , justifying a use of Assumption EE and gathering
terms suggests that

Eθ0

(∫
h(θ)w(θ |Xn)dθ

)
= h(θ0) + n−1/2I−1/2(θ0)

∑
|r|=1

h(r)(θ0)σr

(A.13)
+ A1n

−1 + o(n−1) + R′
n,

where

A1 = I−1/2(θ0)
∑
|r|=1

η
(r)
1 (σ )h(r)(θ0) + 3

2I−1(θ0)
∑
|r|=2

h(r)(θ0)(A.14)

and the η
(r)
j (·)’s are as in Theorem 3.3. An extension of this argument gives similar

expressions for higher-order terms.
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