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SOBOLEV TESTS OF GOODNESS OF FIT OF DISTRIBUTIONS
ON COMPACT RIEMANNIAN MANIFOLDS

BY P. E. JUPP

University of St. Andrews

Classes of coordinate-invariant omnibus goodness-of-fit tests on compact
Riemannian manifolds are proposed. The tests are based on Giné’s Sobolev
tests of uniformity. A condition for consistency is given. The tests are illus-
trated by an example on the rotation group SO(3).

1. Introduction. Although many tests of goodness of fit are available for dis-
tributions on the circle, comparatively little work has been done on developing
general tests of goodness of fit on spheres and other sample spaces used in direc-
tional statistics. Goodness-of-fit tests for specific models include score tests for
Fisher distributions within the Kent family [11], Bingham distributions within the
Fisher–Bingham family [11], and for von Mises–Fisher distributions within the
Fisher–Bingham family [13], as well as omnibus tests for Fisher distributions [6]
and for Watson distributions [2]. An overview is given in Section 12.3 of [14]. The
only general work on goodness-of-fit tests for directional distributions appears to
be that of Beran [1] and of Boulerice and Ducharme [3]. Beran introduced Wald-
type tests for certain nested exponential models on spheres, whereas Boulerice and
Ducharme considered score tests of goodness of fit of distributions on spheres and
projective spaces. Neither Beran’s tests nor those of Boulerice and Ducharme are
consistent against all alternatives.

For continuous distributions on the real line or the circle, the probability integral
transform can be used to derive a test of goodness of fit from each test of unifor-
mity. However, if the sample space is a manifold of dimension greater than 1, then
there is no unique coordinate-invariant analogue of the probability integral trans-
form, so that it is not obvious how one can obtain tests of goodness of fit from
tests of uniformity. The purpose of this paper is to use the machinery of Giné’s [7]
Sobolev tests of uniformity to obtain coordinate-invariant omnibus tests of good-
ness of fit on arbitrary compact Riemannian manifolds. This is in the spirit of the
adaptations of Sobolev tests of uniformity by Wellner [17] to get two-sample tests
and by Jupp and Spurr [9, 10] to get tests of symmetry and tests of independence.
For a large class of Sobolev tests of uniformity (those which are consistent against
all alternatives), the corresponding tests of goodness of fit are consistent against
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all alternatives. Section 2 recalls Giné’s Sobolev tests of uniformity. In Section 3
Sobolev tests of goodness of fit are introduced and their basic properties are given.
A numerical example on the rotation group SO(3) is presented in Section 4.

2. Sobolev tests of uniformity. Let M be a compact Riemannian manifold.
The Riemannian metric determines the uniform probability measure µ on M . The
intuitive idea of the Sobolev tests of uniformity is to map the manifold M into
the Hilbert space L2(M,µ) of square-integrable functions on M by a function
t :M → L2(M,µ) such that, if x is uniformly distributed, then the mean of t(x)

is 0.
The standard way of constructing such mappings t is due to Giné [7] and is

based on the eigenfunctions of the Laplacian operator on M . For k ≥ 1, let Ek de-
note the space of eigenfunctions corresponding to the kth eigenvalue, and put
d(k) = dimEk . Then there is a well-defined map tk of M into Ek given by

tk(x) =
d(k)∑
i=1

fi(x)fi,

where {fi : 1 ≤ i ≤ d(k)} is any orthonormal basis of Ek . If {a1, a2, . . . } is a se-
quence of real numbers such that

∞∑
k=1

a2
k d(k) < ∞,(2.1)

then

x �→ t(x) =
∞∑

k=1

aktk(x)(2.2)

defines a mapping t of M into L2(M,µ). The resulting Sobolev statistic evaluated
on observations x1, . . . , xn on M is

Tn = 1

n

∥∥∥∥∥
n∑

i=1

t(xi)

∥∥∥∥∥
2

= 1

n

n∑
i=1

n∑
j=1

〈t(xi), t(xj )〉,

where 〈·, ·〉 denotes the inner product on L2(M,µ) given by

〈f,g〉 =
∫
M

f (x)g(x) dµ(x),

the integration being with respect to the uniform probability measure µ on M . The
corresponding Sobolev test rejects uniformity for large values of Tn.

The main properties of Tn are the following:



SOBOLEV TESTS OF GOODNESS OF FIT 2959

(i) It is defined without recourse to a coordinate system.
(ii) It is invariant under isometries of M .

(iii) Its large-sample asymptotic distribution under uniformity is that of a
weighted sum of independent χ2 distributions.

(iv) The corresponding test is consistent against all alternatives if and only if
ak �= 0 for all k.

Further details can be found in [7]. A brief outline of Sobolev tests on spheres is
given in Section 10.8 of [14]. Many well-known tests of uniformity are Sobolev
tests.

3. Sobolev tests of goodness of fit.

3.1. Weighted Sobolev statistics. Let F = {f (·; θ) : θ ∈ �} be a family
of probability density functions on M , where the parameter space � is a
p-dimensional manifold. The null hypothesis to be tested is that the probability
density function of the distribution generating the data is in F . Let θ̂ denote the
estimate of θ obtained from independent observations x1, . . . , xn by means of an
estimating function ψ :M × � → R

p , that is, θ̂ is the root (assumed unique) of

n∑
i=1

ψ(xi; θ) = 0.

The intuitive idea behind the Sobolev goodness-of-fit tests to be introduced here is
that under the null hypothesis θ̂ is close to θ , so that the expectation

Eθ

[
1

f (x; θ̂)
t(x)

]

is near 0, and so therefore is its sample analogue

1

n

n∑
i=1

1

f (xi; θ̂)
t(xi).

The closeness of the latter to 0 can be measured by the weighted Sobolev statistic

Tw = 1

n

∥∥∥∥∥
n∑

i=1

1

f (xi; θ̂)
t(xi)

∥∥∥∥∥
2

.(3.1)

Thus, Tw is obtained by applying a Sobolev test of uniformity not to the empirical
distribution but to the weighted empirical distribution in which each observation xi

is weighted by the reciprocal of the value f (xi; θ̂) of the fitted density at that point.
The null hypothesis is rejected for large values of Tw. Significance can be assessed
using Monte Carlo simulation from the fitted distribution.
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The weighted Sobolev statistic Tw can also be written as

Tw = 1

n

n∑
i=1

n∑
j=1

1

f (xi; θ̂)f (xj ; θ̂)
〈t(xi), t(xj )〉,

which is often suitable for computation.

REMARK 1. Any direct sum decomposition L2(M,µ) = E1 ⊕ E2 with
E1 and E2 orthogonal in L2(M,µ) yields a decomposition t = t1 + t2 with
tj (M) ⊆ Ej for j = 1,2, and so

Tw = Tw1 + Tw2,

where

Twj = 1

n

∥∥∥∥∥
n∑

i=1

1

f (xi; θ̂)
tj (xi)

∥∥∥∥∥
2

for j = 1,2.

Note that Tw1 and Tw2 are not necessarily asymptotically independent under the
null hypothesis. Any group G of isometries of M gives such a direct sum decom-
position L2(M,µ) = EM/G ⊕ EG with

EM/G = {f ∈ L2(M,µ) :f (gx) = f (x), x ∈ M,g ∈ G},

EG =
{
f ∈ L2(M,µ) :

∫
G

f (gx)dλ(g) = 0
}
,

where λ is the uniform probability measure on G. If the f (·; θ) are invariant un-
der G, in that

f (gx; θ) = f (x; θ) for x ∈ M, θ ∈ �,g ∈ G,

then the component TM/G of Tw obtained from EM/G measures the goodness of
fit of the data to the corresponding distribution on the quotient space M/G, while
the component TG obtained from EG measures the lack of symmetry under G.

REMARK 2. Beran’s [1] goodness-of-fit tests on spheres can easily be gen-
eralized to general compact Riemannian manifolds as follows. Let E1 and E2 be
orthogonal finite-dimensional subspaces of L2(M,µ) which are invariant under
isometries of M . Consider the exponential model with probability density func-
tions of the form

f (x; θ1, θ2) = exp{〈θ1, t1(x)〉 + 〈θ2, t2(x)〉 − κ(θ1, θ2)},
(3.2)

x ∈ M, θj ∈ Ej ,

where tj :M → Ej for j = 1,2 and κ(θ1, θ2) is the normalizing constant. Then
Beran’s test of goodness of fit of the model obtained by putting θ2 = 0 in (3.2)
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rejects this hypothesis for large values of 〈θ̂2,S22.1
−1θ̂2〉, where θ̂2 is a suitable

estimate of θ2 and S22.1
−1 is the (2,2)-part of the inverse of the sample variance

matrix of (t1(x), t2(x)). There is no direct connection between Beran’s tests and
the Sobolev goodness-of-fit tests introduced here. The large-sample asymptotic
distribution of 〈θ̂2,S22.1

−1θ̂2〉 is χ2
dimE2

and, in contrast to those Sobolev tests of
goodness of fit characterized in Theorem 3 below, Beran’s tests are not consistent
against all alternatives.

Although Boulerice and Ducharme [3] presented their score tests of goodness of
fit only for distributions on spheres and projective spaces, the generalization to dis-
tributions on general compact Riemannian manifolds is straightforward. Whereas
Tw is defined by (3.1), the statistics of Boulerice and Ducharme have the form

TBD = h̄′{var
θ̂
(h̄)}−1h̄,

where

h̄ = 1

n

n∑
i=1

(
1√

f (xi; θ̂)

t(xi) − E0
[√

f (x; θ̂)t(x)
])

,

E0[·] denoting expectation under the uniform distribution, and only finitely
many ak are nonzero. Thus, whereas Tw is based on a multiplicative transform
of t(xi) which makes its mean of order O(n−1/2) under the null hypothesis, TBD is
based on a standardization of t(xi) which makes its mean zero and its variance
matrix the identity under the null hypothesis. In contrast to those Sobolev tests of
goodness of fit characterized in Theorem 3 below, the tests based on TBD are not
consistent against all alternatives. One way of obtaining such consistency, men-
tioned on page 159 of [3], is to replace TBD by

T ∗
BD = 1

n

∥∥∥∥∥
n∑

i=1

(
1√

f (xi; θ̂)

t(xi) − E0
[√

f (x; θ̂)t(x)
])∥∥∥∥∥

2

,

where in (2.2) ak �= 0 for all k. Because of the need to calculate E0[
√

f (x; θ̂)t(x)],
TBD and T ∗

BD are more complicated than Tw.

3.2. Large-sample asymptotic properties. An appropriate setting for large-
sample asymptotic results is that in which the mapping t given by (2.2) is allowed
to depend on the sample size n. Thus, there is a sequence t(1), t(2), . . . of mappings
from M into L2(M,µ) of the form

t(n)(x) =
∞∑

k=1

an,ktk(x),(3.3)

where the sequences {an,1, an,2, . . . } of real numbers satisfy
∞∑

k=1

(an,k)
2 d(k) < ∞.(3.4)
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The corresponding goodness-of-fit statistic is the weighted Sobolev statistic (3.1)
with t replaced by t(n). If t(1), t(2), . . . converges to some limit t, then Tw has a
limiting distribution. This is made precise in Theorems 1 and 2 below.

Suppose that x1, . . . , xn are independent observations from some distribution ν

on M . Let θ̂ν be the value of θ (assumed unique) such that

Eν[ψ(x; θ)] = 0.

Then, under standard regularity assumptions (e.g., multivariate versions of those
in Sections 4.2.2 and 7.2.2 of [16]) the following distributional result holds.

THEOREM 1 (Asymptotic distribution). Let t(1), t(2), . . . and t be mappings
from M into L2(M,µ) given by (3.3) and (2.2), corresponding to sequences which
satisfy (3.4) and (2.1). If

∞∑
k=1

(an,k − ak)
2d(k) → 0 as n → ∞,(3.5)

then

1√
n

n∑
i=1

1

f (xi; θ̂)

(
t(n)(xi) − τ

) d→ N(0,�) as n → ∞,

where
d→ denotes convergence in distribution and

� = varν

(
1

f (x; θ̂ν)

(
t(x) − τ

) −
(
Eν

[
−∂ψ(x; θ)

∂θ

∣∣∣∣
θ=θ̂ν

]−1

ψ(x; θ̂ν)

)′
υ

)

with

τ = Eν

[
1

f (x; θ̂ν)
t(x)

]
,

(3.6)

υ = Eν

[
1

f (x; θ̂ν)

∂l(θ;x)

∂θ ′
∣∣∣∣
θ=θ̂ν

(
t(x) − τ

)]
,

l(θ;x) denoting the log likelihood of θ based on a single observation x.

PROOF. Taylor expansion of
∑n

i=1 ψ(xi; θ)′ about θ̂ν gives

√
n(θ̂ − θ̂ν) = kν(θ̂ν)

−1 1√
n

n∑
i=1

ψ(xi; θ̂ν)
′ + OP (n−1/2),

where ψ(xi; θ) is regarded as a row vector and

kν(θ̂ν) = Eν

[
−∂ψ(x; θ)′

∂θ

∣∣∣∣
θ=θ̂ν

]
.
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Then

1√
n

n∑
i=1

1

f (xi; θ̂)

(
t(n)(xi) − τ

)

= 1√
n

n∑
i=1

1

f (xi; θ̂ν)

(
t(n)(xi) − τ

)

+ 1√
n

n∑
i=1

(
1

f (xi; θ̂)
− 1

f (xi; θ̂ν)

)(
t(n)(xi) − τ

)

= 1√
n

n∑
i=1

1

f (xi; θ̂ν)

(
t(n)(xi) − τ

)

− (θ̂ − θ̂ν)
′ 1√

n

n∑
i=1

{
1

f (xi; θ̂ν)

∂l(θ;xi)

∂θ ′
∣∣∣∣
θ=θ̂ν

(
t(n)(xi) − τ

) − υ

}

− √
n(θ̂ − θ̂ν)

′υ + OP (n−1/2)

= 1√
n

n∑
i=1

1

f (xi; θ̂ν)

(
t(n)(xi) − τ

) − √
n(θ̂ − θ̂ν)

′υ + OP (n−1/2)

= 1√
n

{
n∑

i=1

1

f (xi; θ̂ν)

(
t(n)(xi) − τ

) −
n∑

i=1

ψ(xi; θ̂ν)
(
kν(θ̂ν)

−1)′
υ

}

+ OP (n−1/2).

Since t and ψ are continuous and M is compact, application of the Hilbert space
version of the limit theorem for triangular arrays (for the univariate version, see,
e.g., Section 1.9.3 of [16]) to

1√
n

n∑
i=1

{
1

f (xi; θ̂ν)

(
t(n)(xi) − τ

) − ψ(xi; θ̂ν)
(
kν(θ̂ν)

−1)′
υ

}

shows that, as n → ∞,

1√
n

n∑
i=1

1

f (xi; θ̂)

(
t(n)(xi) − τ

) d→ N(0,�),

where

� = varν

(
1

f (x; θ̂ν)

(
t(x) − τ

) − ψ(x; θ̂ν)
(
kν(θ̂ν)

−1)′
υ

)
. �

The next two results are straightforward consequences of Theorem 1.
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THEOREM 2 (Asymptotic null distribution). Under the null hypothesis,
if (3.5) holds, then:

(i) τ = 0, where τ is defined by (3.6).
(ii) The distribution of Tw tends as n → ∞ to that of ‖Z‖2, where Z is a random

element of L2(M,µ) with Z ∼ N(0,�0) and

�0 = varν

(
1

f (x; θ̂ν)
t(x) − ψ(x; θ̂ν)

{
Eν

[
−∂ψ(x; θ)′

∂θ

∣∣∣∣
θ=θ̂ν

]−1}′
υ

)

with

υ = E0

[
∂l(θ;x)

∂θ ′
∣∣∣∣
θ=θ̂ν

t(x)

]
,

E0[·] denoting expectation under the uniform distribution.

In general, even for quite simple models, the matrices � and �0 in Theorems
1 and 2 do not admit simple explicit expressions. The main use of Theorems
1 and 2 is the following consistency result.

THEOREM 3 (Consistency). If (3.5) holds, then the test which rejects the null
hypothesis for large values of Tw is consistent against an alternative distribution ν

if and only if

Eν

[
1

f (x; θ̂ν)
t(x)

]
�= 0.

In particular, the test is consistent against all alternatives if and only if ak �= 0 for
all k.

4. The rotation group SO(3).

4.1. Sobolev tests on SO(3). Two important Sobolev tests of uniformity on
the rotation group SO(3) are Downs’ [4] generalization of the Rayleigh test and
Prentice’s [15] generalization of Giné’s [7] Gn test. See Section 13.2.2 of [14]. For
a sample X1, . . . ,Xn on SO(3), these tests reject uniformity for large values of the
Rayleigh statistic

TR = 3n tr(X̄X̄),

where

X̄ = 1

n

n∑
i=1

Xi ,

and the Giné statistic

TG = 1

n

n∑
i=1

n∑
j=1

(
1

2
− 3π

32
[tr(I3 − X′

iXj )]1/2
)
,
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respectively. The corresponding goodness-of-fit tests reject the null hypothesis for
large values of the weighted Rayleigh statistic

TwR = 3n tr(X̄′
wX̄w),

where

X̄w = 1

n

n∑
i=1

1

f (Xi; θ̂)
Xi ,

and the weighted Giné statistic

TwG = 1

n

n∑
i=1

n∑
j=1

1

f (Xi; θ̂)f (Xj ; θ̂)

(
1

2
− 3π

32
[tr(I3 − X′

iXj )]1/2
)
,

respectively. For TR and TwR, ak = 0 for k ≥ 2; for TG and TwG, all the ak are
nonzero ([15], pages 173–174). It follows from Theorem 3 that the goodness-of-fit
test based on TwR is consistent only against alternatives ν with Eν[X] �= 0, whereas
the test based on TwG is consistent against all alternatives.

4.2. A numerical example. The set of vectorcardiogram data described in [5]
is a classic data set on SO(3). The portion of this data set given by the orientations
of vectorcardiograms obtained using the Frank lead system from boys aged 2–10
gives 28 observations on SO(3). For these 28 observations, TR = 209, so that com-
parison with the large-sample limiting χ2

9 distribution (which is appropriate for
n ≥ 18 by Table 1 of [8]) indicates very clearly that uniformity should be rejected.

The eigenvalues of X̄ are 0.957,0.888 and 0.883, suggesting that it is appro-
priate to fit a matrix Fisher distribution with canonical parameter matrix of the
form κU, where κ > 0 and U ∈ SO(3), that is, the probability density function is

f (X;U, κ) = M
(1

2 ,2,4κ
)−1

eκ exp{κ tr(U′X)},
where M(1/2,2, ·) is a Kummer function. (See [4, 12], or Section 13.2.3 of [14].)
The maximum likelihood estimates of κ and U are κ̂ = 5.63 and

Û =

 0.583 0.629 0.514

0.660 −0.736 0.151
0.473 0.252 −0.844


 .

The p-values (based on 1000 simulations) of the goodness-of-fit tests are 0.169 for
the weighted Rayleigh test and 0.126 for the weighted Giné test, each indicating
clearly that the fit is acceptable.

Acknowledgments. I am grateful to Professor T. D. Downs for giving me
access to the vectorcardiogram data and to a referee for the suggestion of allowing
the mapping t to depend on the sample size.
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