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NONPARAMETRIC ESTIMATION OF MIXING DENSITIES
FOR DISCRETE DISTRIBUTIONS
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GET/ Telecom Paris and Lund University

By a mixture density is meant a density of the form πµ(·) = ∫
πθ (·) ×

µ(dθ), where (πθ )θ∈� is a family of probability densities and µ is a prob-
ability measure on �. We consider the problem of identifying the unknown
part of this model, the mixing distribution µ, from a finite sample of inde-
pendent observations from πµ. Assuming that the mixing distribution has a
density function, we wish to estimate this density within appropriate function
classes. A general approach is proposed and its scope of application is inves-
tigated in the case of discrete distributions. Mixtures of power series distribu-
tions are more specifically studied. Standard methods for density estimation,
such as kernel estimators, are available in this context, and it has been shown
that these methods are rate optimal or almost rate optimal in balls of various
smoothness spaces. For instance, these results apply to mixtures of the Pois-
son distribution parameterized by its mean. Estimators based on orthogonal
polynomial sequences have also been proposed and shown to achieve similar
rates. The general approach of this paper extends and simplifies such results.
For instance, it allows us to prove asymptotic minimax efficiency over certain
smoothness classes of the above-mentioned polynomial estimator in the Pois-
son case. We also study discrete location mixtures, or discrete deconvolution,
and mixtures of discrete uniform distributions.

1. Introduction. Let (X,F ) be a measurable space and let (πθ )θ∈� be a
parametric family of densities on X with respect to a common measure ζ . The
parameter θ is assumed to range over a set � ∈ B(Rd); here d ≥ 1 and B(·) de-
notes the Borel sets. For any probability measure µ on (�,B(�)), the mixture
density πµ is defined on X by

πµ(x) =
∫
�

πθ(x)µ(dθ).

Here the family (πθ ) is called the mixands and µ is the mixing distribution. If
µ has finite support, πµ is called a finite mixture (density). Estimation of such
mixtures from an i.i.d. sequence (Xi)1≤i≤n distributed according to πµ, with the
aim of recovering the unknown support points, their weights and maybe also their
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number, has a long history and we refer to the monographs by McLachlan and
Peel [18], Titterington, Smith and Makov [20] and Lindsay [15] for further reading.
In the present paper we are interested in nonparametric estimation of the mixing
distribution µ. We will assume that each such distribution under consideration has
a density, called the mixing density and denoted by f , with respect to a known
reference (Radon) measure ν on (�,B(�)).

The problem of estimating f for mixtures of discrete distributions (X is dis-
crete) has been investigated, for instance, by Zhang [23] and, for Poisson mixtures
with ν being Lebesgue measure, by Hengartner [12]; see also references in these
two articles. The estimators examined by these authors are of two sorts. Zhang [23]
used a kernel density estimator and adapted it to the mixture setting to estimate f

pointwise. Hengartner [12] used a projection estimator based on orthogonal poly-
nomials to obtain an estimator of f as an element of L2[a, b], 0 ≤ a < b < ∞. Loh
and Zhang [16] used the kernel estimator to derive estimators of f in the two cases
f ∈ Lp[0, b] and f ∈ Lp[0,∞) with 1 ≤ p ≤ ∞. The main results of these works
are concerned with establishing rates of convergence of the estimators, depending
on smoothness conditions assumed on the mixing density, and with establishing
bounds on the achievable minimax rate for mixing densities within balls defined
by similar smoothness conditions.

The results on both estimators were condensed and slightly generalized by Loh
and Zhang [17], who also carried out a numerical study of their finite sample per-
formance. A conclusion of their work is that, although both types of estimators
achieve similar rates with similar smoothness conditions on the mixing density,
projection estimators seem to behave much better for finite samples. As pointed
out by Loh and Zhang [17], the rates being logarithmic, it is not surprising that
identical rates do not imply similar performance for finite sample sizes.

Another important point of the works cited above is that, although the rates of
the estimators are derived over a wide range of smoothness classes, minimax rate
optimality is proved only for particular instances. For example, Hengartner [12]
obtained the rate of the projection estimator over Sobolev classes with arbitrary
index of smoothness, but proved this rate to be minimax optimal for integer indices
only. Similar remarks apply to the results of Loh and Zhang [17], but for a family
of ellipsoidal classes.

In this paper we develop a general framework for studying projection estima-
tors, with the main focus on mixtures of discrete distributions. Let us denote by �

the linear operator mapping a real function h on X to a real function �h on �,
defined by

�h(θ) = πθh =
∫
X

hπθ dζ for all θ in �,(1)

whenever this integral is well defined. Here we use the classical functional analy-
sis notation πh := ∫

hdπ . Above we defined πθ and πµ as densities on X with
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dominating measure ζ , but we will also use the same notation for the correspond-
ing probability measures. Observe that, by Fubini’s theorem, for all h such that
πµ|h| < ∞,

πµh =
∫

h(x)

(∫
�

πθ(x)µ(dθ)

)
ζ(dx) = µ�h.(2)

The mean πµh may be estimated by a sample mean obtained using i.i.d. observa-
tions from πµ; see also [1], where this problem is addressed for h within a given
class of functions. The basic idea of what we call the projection estimator is now
to estimate πµh for a suitable finite collection of functions h and then to use (2) to
obtain an estimate of µ. The precise definition is given in Definition 1.

Our objective, classical in a nonparametric approach, is to find the asymptotic
behavior of the minimax risk

inf
µ̂n∈Sn

sup
µ∈C

π⊗n
µ l(µ, µ̂n),

where C, l and Sn, respectively, denote a class of distributions, a loss function and
a set of estimators defined on Xn and taking values in a set compatible with the
choice of l; π⊗n

µ is the distribution of n i.i.d. observations from πµ. It turns out
that there is a simple argument to lower-bound this quantity in a general mixture
framework (Proposition 1).

However, for exploiting this lower bound and studying the projection estimator,
we will, as in the papers cited above, consider the case when µ is defined by
its density f = dµ/dν for a fixed ν. In this setting we will likewise write πf

for πµ. Furthermore, the density f will be assumed to belong to the Hilbert space
H = L2(ν) with scalar product (f, g)H = ∫

fg dν. Given an estimator f̂ :Xn → H

of f , it is natural to consider a risk given by the mean squared error Ef ‖f̂ − f ‖2
H

;
here Ef denotes integration with respect to π⊗n

f and ‖ · ‖H is the norm on H. In
nonparametric language this is a mean integrated squared error (MISE). We will
notice that, in order to arrive at interesting results, it is sensible to define the class
C above, which is now a class of densities in H, in accordance with the mixands. In
the case of power series mixtures, this class is closely related to polynomials. Such
ideas were used already by Lindsay [14] in a parametric framework. Still in the
context of power series mixtures, we will obtain results on minimax rate optimality
of the projection estimator, using classical results on polynomial approximations
on compact sets (Theorem 3).

Having said that, we note that, quite generally, including Poisson mixands, the
mixing density f may also be estimated using nonparametric maximum likeli-
hood; Lindsay [15] is excellent reading on this approach. The optimization prob-
lem so obtained is an infinite-dimensional convex programming problem, and
numerical routines for approximating the nonparametric MLE (NPMLE) can be
constructed, at least in certain models. The problem with the NPMLE is rather
on the theoretical side. van de Geer [21] proved a rate of convergence result in
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terms of Hellinger distance in a rather abstract setting, and it still remains to be
determined what this result implies for the problems studied in the present paper.

The paper is organized as follows. In Section 2 we give a general lower bound,
in an abstract framework, on the obtainable error over certain classes of mixing
distributions. This result is then specialized to the Hilbert setting outlined above,
that is, we consider the MISE obtainable over smoothness classes of densities. In
Section 3 we define the projection estimator and give a bias-variance decomposi-
tion of its loss. Section 4 focuses on mixtures of discrete distributions, containing a
main theorem that provides a lower bound on the minimax MISE achievable over
smoothness classes related to the definition of the projection estimator. An upper
bound is also given and we discuss how these two bounds apply in a common set-
ting. In Section 5 we apply these results to power series mixtures and complete
the results obtained by Hengartner [12] and Loh and Zhang [17]. Section 6 is de-
voted to translation mixtures, or discrete deconvolution, while Section 7 provides
applications of our results to mixtures of discrete uniform distributions. Finally, in
Section 8 we give some examples in which the general methodology of the present
paper may be valuable, but which we have not explored further.

Before closing this section we give some additional notation that will be used
in connection with the above-mentioned Hilbert space H. We write H+ for the set
of nonnegative functions in H, that is, H+ = {f ∈ H :f ≥ 0}, and H1 for the set of
functions in H+ that integrate to unity, that is, H1 = {f ∈ H+ :νf = 1}. In other
words, H1 is the set of probability densities on � which are also in H. For any
subset V of H, we write V ⊥ for the orthogonal complement of V in H, f ⊥V if
f ∈ V ⊥ and ProjV for the orthogonal projection on V . For two subsets W ⊆ V ,
we shall write V 
 W for V ∩ W⊥. A subset V is called symmetric if V = −V ,
that is, if −f is in V whenever f is.

2. A general lower bound. In this section we first give a lower bound on the
obtainable loss in a more general framework, before turning to the setting specified
in Section 1. To that end, let (X,F ) and (�,G) be measurable spaces and let the
function (θ,A) �→ πθ(A) from � × G to [0,1] be a probability kernel. That is,
π·(A) is measurable for all measurable subsets A ⊆ X and πθ(·) is a probability
measure on (X,F ) for all θ in �. For instance, π may be a regular version of
a conditional probability P(X = ·|θ = ·) (we refer to [19], Section 3.4, for more
details).

We let M(X,F ) and M(�,G) denote the sets of all signed finite measures
on (X,F ) and (�,G), respectively. For any set A, we write 1A for the indicator
function of A. As in (1), the linear operator � maps a real function h on X to
a real function on � defined by �h(θ) = πθh. Considering � acting on bounded
functions, its adjoint operator �∗ operates from M(�,G) to M(X,F ) and is given
by

�∗µ(A) = �∗µ1A = µ�1A for all A ∈ F .
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When µ is a probability measure on �, its image �∗µ by �∗ also is a probability
measure; indeed, it is the mixture distribution obtained from the mixands (πθ ) and
mixing distribution µ.

For any real function h on X, we denote by Mh the multiplication operator
which maps a real function f on X to the real function defined by Mhf (x) =
h(x)f (x) for all x ∈ X. Considering this operator acting on bounded functions,
its adjoint M∗

h is an operator on M(X,F ) given by M∗
hµ = µMh. In other words,

M∗
hµ is the measure with density h with respect to µ.
Finally, we consider a subspace E of signed measures on �, equipped with

a semi-norm N . We assume that E is endowed with a σ -field which makes this
semi-norm measurable. We write Sn for the set of all E-valued estimators based on
n observations, that is, the set of all measurable functions from Xn to E. Finally,
E1 is the set of all probability measures that belong to E.

PROPOSITION 1. Let h be a real nonnegative function on X, bounded by 1.
Let C be a symmetric set included in the kernel of M∗

h ◦ �∗ and let µ0 be a prob-
ability measure on �. Then for any number p ≥ 1,

inf
µ̂∈Sn

sup
µ∈(µ0+C)∩E1

(�∗µ)⊗nN p(µ̂ − µ)

(3)
≥ sup{N p(µ) :µ ∈ C,µ0 ± µ ∈ E1}(�∗µ0h)n.

REMARK. An obvious and interesting problem raised by the proposition is
that of optimizing the right-hand side of (3) with respect to h.

REMARK. One can allow the function h to depend on an index i as long as C
is a subset of the kernel of each M∗

hi
◦�∗. Doing so, the second factor in the lower

bound becomes
∏

1≤i≤n �∗µ0hi .

REMARK. The supremum in the lower bound is also that of N p over C ∩
(E1 − µ0) ∩ (µ0 − E1). Since this set is symmetric, the supremum is the pth
power of its half diameter.

PROOF OF PROPOSITION 1. Write h⊗n for the function on Xn mapping
(x1, . . . , xn) to

∏n
i=1 h(xi). Let µ be in the kernel of M∗

h ◦ �∗ such that µ0 + µ

is a probability measure. Then, since h⊗n is bounded by 1, for all nonnegative
functions g on Xn,(

�∗(µ0 + µ)
)⊗n

g ≥ (
�∗(µ0 + µ)

)⊗n
(gh⊗n)

= (
M∗

h�∗(µ0 + µ)
)⊗n

g

= (M∗
h�∗µ0)

⊗ng.
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Now pick an estimator µ̂ in Sn. Let µ be a signed measure in the kernel of
M∗

h ◦ �∗ such that both µ± := µ0 ± µ are probability measures. Applying the
above inequality twice, with g equal to g± := N p(µ̂ − µ±), we obtain

(�∗µ+)⊗ng+ + (�∗µ−)⊗ng− ≥ (M∗
h�∗µ0)

⊗n(g+ + g−).(4)

Furthermore, note that

g+ + g− ≥ 21−pN p(2µ) = 2N p(µ),

so that the right-hand side of (4) is at least 2N p(µ)(�∗µ0h)n. The supremum in
the left-hand side of (3) is at least half the left-hand side of (4), hence, at least
N p(µ)(�∗µ0h)n. This corresponds to bounding the supremum risk from below
by a two-point Bayes risk with uniform prior. We conclude the proof by optimizing
over µ. �

We note that Proposition 1 holds for norms such as the Lp norms or the total
variation norm in a nondominated context. Our particular interest in this result,
however, is when πθ(A) = ∫

A πθ dζ (what we call the dominated case) and when
E is the set of all finite signed measures with a density with respect to ν in H =
L2(ν). As this is the main topic of the remainder of the paper, we now restate
Proposition 1 in this context as a separate result. From now on, Sn will denote the
set of estimators in H from n observations, that is, the set of measurable functions
from Xn to H, where H is endowed with its Borel σ -field.

PROPOSITION 2. Let f0 be in H1 and let h be a real nonnegative function
on X, bounded by 1. Let C� be a symmetric subset of H such that, for ζ -a.e.
x ∈ X, the mapping θ �→ h(x)πθ (x) belongs to C�⊥. Then

inf
f̂ ∈Sn

sup
f ∈(f0+C�)∩H1

Ef ‖f̂ − f ‖2
H

(5)
≥ sup{‖f ‖2

H
:f ∈ C�, f0 ± f ∈ H1}(πf0h

)n
.

PROOF. Take E = {M∗
f ν :f ∈ H ∩ L1(ν)} and define the norm N (M∗

f ν) =
‖f ‖H on this space. Note that, for all f in H1, �∗M∗

f ν = πf . Thus, for all f ∈ H1,
if p = 2 and µ = M∗

f ν, the expectation in the left-hand side of (1) equals that in
the left-hand side of (5).

Now put µ0 = M∗
f0

ν and let C = {M∗
f ν :f ∈ C�}∩M(�,G). From the assump-

tions on C�, it is clear that C is a symmetric set included in the kernel of M∗
h ◦�∗.

Hence, in order to apply Proposition 1, it only remains to verify that

{M∗
f ν :f ∈ (f0 + C�) ∩ H1} = (µ0 + C) ∩ E1,(6)

where E1 is the set of probability distributions in E, that is, E1 = {M∗
f ν :f ∈

H1}. By observing that C ⊆ {M∗
f ν :f ∈ C�}, we get the inclusion “⊇” in (6). For
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showing the inverse inclusion, pick g ∈ C� such that f := f0 + g is in H1. Since
f0 is in H1 as well, M∗

gν ∈ M(�,G). This proves (6). �

Re-examining the proof of Proposition 1 in this context shows that it uses argu-
ments similar to those of the second part of the proof of Theorem 3.1 in [12], but
does not use Lemma 1 in [23], where a lower bound on supf Pf {‖f̂ − f ‖H ≥ λ}
is derived, the supremum being over a given subset of H1.

3. The projection estimator. Assume that (Xi)1≤i≤n are i.i.d. with density
πf with f in H1. We denote by Pn the empirical distribution defined by

Pnh =
∫

hdPn = 1

n

n∑
k=1

h(Xi) for all h :X → R.

Let H denote the linear space containing all real functions h which satisfy πθ |h| <
∞ for all θ . For introducing the projection estimator, it is convenient to consider �

defined by (1) acting on H . The definition of the projection estimator depends on
a given nondecreasing sequence (Vm)m≥1 of finite-dimensional linear subspaces
of H. We put dm := dimVm and define V0 := {0}. We assume without loss of
generality that Vm is included in �(H); otherwise we let Vm ∩ �(H) replace Vm.
We furthermore assume that, for any g in

⋃
m Vm, there exists a unique h in H

such that �h = g, and we write h = �−1g. In other words, we assume that � is
one-to-one on �−1(

⋃
m Vm). This is ensured, for instance, if � is one-to-one on

H , which, as observed by Barbe ([1], Lemma 5.1) simply means that the mixands
are complete in the sense that, if �h(θ) = 0 for all θ , then h = 0 (our � and H
correspond to Barbe’s P and F , resp.). Moreover, he showed that for location and
scale mixtures identifiability of the mixands in the sense πµ = πµ′ if and only if
µ = µ′ implies that � is one-to-one ([1], Lemmas 5.2 and 5.3).

DEFINITION 1. Let f̂m,n be defined as the unique element in Vm satisfying

(f̂m,n, g)H = Pn�
−1g for all g in Vm.(7)

This estimator is called the projection estimator of f of order m [from n observa-
tions and with respect to (Vm)].

From the assumptions above, the function which maps g in Vm to Pn�
−1g is

a linear functional and, thus, (7) completely defines f̂m,n by duality of the scalar
product. The projection estimator relies on the following idea. First observe that in
the Hilbert setting (2) reads

πf h = (f,�h)H(8)

and holds for all h such that �h is in H. Hence, for all g in Vm, by the law of large
numbers, Pn�

−1g tends to πf �−1g = (f,��−1g)H = (f, g)H as n → ∞, so
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that f̂m,n is approximately ProjVm
f for large n. Making m large as well, ProjVm

f

is roughly f , provided the closure of
⋃

m≥1 Vm contains f . An important part of
the development is thus to find a suitable rate at which to increase m with respect
to n.

In practice, the projection estimator can be expressed using an orthonormal se-
quence (φk)k≥0 in H such that (φk)0≤k≤dm−1 is a basis of Vm for all m ≥ 1. The
expansion of the projection estimator in this basis then reads

f̂m,n =
dm−1∑
k=0

(Pn�
−1φk)φk.(9)

For any random element g in H such that πf ‖g‖2
H

< ∞, we define its vari-
ance as varf (g) := Ef ‖g − Ef g‖2

H
. Under the i.i.d. assumption, the MISE of the

projection estimator admits the following bias-variance decomposition.

PROPOSITION 3. For all f in H1, the MISE of f̂m,n writes

Ef ‖f̂m,n − f ‖2
H

= ∥∥f − ProjVm
f

∥∥2
H

+ 1

n
varf (f̂m,1).(10)

PROOF. Pythagoras’ theorem gives

‖f̂m,n − f ‖2
H

= ∥∥f̂m,n − ProjVm
f

∥∥2
H

+ ∥∥f − ProjVm
f

∥∥2
H
.

From (9) and (8), we have

Ef f̂m,n =
dm−1∑
k=0

Ef (Pn�
−1φk)φk =

dm−1∑
k=0

(f,φk)Hφk = ProjVm
f.

Inserting this equality into the next to last display and taking expectations yields
Ef ‖f̂m,n − f ‖2

H
= ‖f − ProjVm

f ‖2
H

+ varf (f̂m,n). Using (9) and the orthonor-
mality of (φk), we obtain

varf (f̂m,n) =
dm−1∑
k=0

varf (Pn�
−1φk) = 1

n

dm−1∑
k=0

varf (P1�
−1φk).(11)

The proof is complete. �

We finish this section by noting that in many cases the sequence (Vm) is defined
as Vm = Span(�h0, . . . ,�hdm−1) for a sequence (hk)k≥0 in H such that (�hk)k≥0
is a linearly independent sequence in H. This constructive definition of (Vm) au-
tomatically ensures that all the above assumptions are verified. Observe, however,
that the projection estimator only depends on the sequence (Vm), whence different
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choices of (hk) are possible. In particular, by the Gram–Schmidt procedure, we
can construct an orthonormal sequence (φk) as

φk =
k∑

�=0

�k,��h� for all k ≥ 0,

for some real coefficients (�k,�)k,�≥0 for which we set �k,� := 0 for all � > k ≥ 0.
The sequence (φk) may then replace (hk) for defining the same sequence (Vm),
and in this context (9) becomes

f̂m,n =
dm−1∑
k=0

k∑
�=0

�k,�(Pnh�)φk.(12)

4. Application to mixtures of discrete distributions. The basic assumption
of this section is

X = Z+ and ζ is counting measure.

The case of continuous X seems to require deep adaptations and is left for future
work. In the present setting we write 1k for the indicator function 1k(x) = 1(x = k)

and take

Vm := Span(�1k,0 ≤ k < m).(13)

Notice that �1k = π·(k). We are hence in the constructive framework of Section 3
with dimVm = m, provided that (π·(k))k≥0 is a sequence of linearly independent
functions in H. In this section we thus make the following assumption.

(�1k)k≥0 is a sequence of linearly independent functions in H ∩ L1(ν).(A1)

Obviously, since (1k) is a linearly independent sequence in H , so is (�1k),
provided � is one-to-one. We recall that this holds whenever the mixands are
complete (see Section 3). Assumption (A1) implies that the projection estimator
f̂m,n is well defined and, as a linear combination of �1k’s, belongs to L1(ν) for all
m and n. Hence, it is a good candidate for estimating a probability density function
with respect to ν. We elaborate further on this assumption in Section 4.3.

The results of Sections 2 and 3 may be used for bounding the minimax MISE
inf

f̂ ∈Sn
supf ∈C Ef ‖f̂ − f ‖2

H
for particular smoothness classes C, which we now

introduce.
For any positive decreasing sequence u = (um)m≥0, any positive number C and

any nonnegative integer r , define

C(u,C, r) := {
f ∈ H :

∥∥f − ProjVm
f

∥∥
H

≤ Cum for all m ≥ r
}
.(14)
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Note that, for r ≥ 1, the classes C(u,0, r) do not reduce to {0} but to Vr . Also note
that one may assume u0 = 1 without loss of generality, in which case, recalling the
convention V0 = {0},

C(u,C,0)
(15)

= {
f ∈ H :‖f ‖H ≤ C,

∥∥f − ProjVm
f

∥∥
H

≤ Cum for all m ≥ 1
}
.

Usually we simply write C(u,C) for C(u,C,0). This set can be interpreted as
the ball of functions whose rate of approximation by projections on the spaces Vm

is controlled by (um) within a radius C. Finally, observe that having limum = 0
amounts to saying that C(u,C, r) is a subset of the closure of

⋃
m≥1 Vm in H.

For any fixed f0 in H+, we define the following semi-norm on H:

‖f ‖∞,f0 := ν- ess sup
θ∈�

|f (θ)|
f0(θ)

,(16)

with the convention 0/0 = 0 and s/0 = ∞ for s > 0. This semi-norm is not neces-
sarily finite. Also introduce, for any subspace V of H,

K∞,f0(V ) := sup
{‖f ‖∞,f0 :f ∈ V,‖f ‖H = 1

}
.

Finally, we define for any positive numbers K and C, any sequence u = (um) as
above and any nonnegative integer r ,

Cf0(K,u,C, r) := {
f ∈ C(u,C, r) :‖f ‖∞,f0 ≤ K

}
(17)

= C(u,C, r) ∩ {
f ∈ H : ‖f ‖∞,f0 ≤ K

};
again, just as for C(u,C), we write Cf0(K,u,C) for Cf0(K,u,C,0).

4.1. A lower bound on the MISE under (A1). The following result is derived
from Proposition 2 using the smoothness classes above.

THEOREM 1. Let f0 be in H1, u = (um)m≥0 a positive decreasing sequence,
C a positive number, r a nonnegative integer and K a positive number such that
K ≤ 1. Then for any positive integer n, any estimator f̂n in Sn and any integer
m ≥ r ,

sup
f ∈(f0+Cf0 (K,u,C,r))∩H1

Ef ‖f̂ − f ‖2
H

(18)

≥
(

K

K∞,f0(Vm+2 
 Vm)
∧ (Cum+1)

)2(
πf0{0, . . . ,m − 1})n.

REMARK. For the lower bound (18) to be nontrivial, K∞,f0(Vm+2 
Vm) must
be finite. Since Vm+2 
 Vm is finite-dimensional, this is true if ‖ · ‖∞,f0 is a finite
norm on Vm+2 
 Vm.
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REMARK. The lower bound (18) can be optimized over all m ≥ r . In most
cases K∞,f0(Vm+2 
 Vm) behaves like K∞,f0(Vm) and thus increases as m gets
large. Hence, the squared term in the lower bound decreases when m gets large
while, in contrast, πf0{0, . . . ,m − 1} increases to 1 as m tends to infinity.

The proof of the theorem is prefaced by two lemmas.

LEMMA 1. Let f0 be in H+. Then for all f in H,

‖f ‖∞,f0 = sup
g∈H

|(f, g)H|
(f0, |g|)H

(19)

with the convention 0/0 = 0 and s/0 = ∞ for s > 0.

PROOF. First assume that there is a Borel subset A of � with ν(A) > 0 and
such that both f0 = 0 and |f | > 0 on A. It then follows immediately that the left-
hand side of (19) is infinite, and so is the right-hand side (take g = f 1A).

Now assume that there is no such set A. Using the convention 0/0 = 0,
we then have f = (f/f0)f0 ν-a.e. Letting µ0 be the measure having density
f0 with respect to ν, we find that the left-hand side of (19), ν- ess sup |f/f0|,
equals µ0- ess sup |f/f0|. Furthermore, µ0 is a σ -finite measure. Indeed, since
ν is σ -finite, the Cauchy–Schwarz inequality shows that µ0(K) = (f0,1K)H ≤
‖f0‖H(ν1K)1/2 < ∞ for any compact set K . Hence, the space L∞(µ0) and the
dual L1(µ0)

∗ are isometric (see [9], Theorem 4.14.6), implying that the left-hand
side of (19) equals

µ0- ess sup |f/f0| = sup
g : µ0|g|=1

|µ0[(f/f0)g]| = sup
g : µ0|g|<∞

|µ0[(f/f0)g]|
µ0|g| ,

again with the convention 0/0 = 0. It now remains to show that this display is
equal to the right-hand side of (19).

To do that, notice that, for any g in H, (f, g)H = ν(fg) = µ0[(f/f0)g] and
(f0, |g|)H = µ0|g|. Thus, the right-hand side of (19) is the supremum of the same
ratio as in right-hand side of the last display, but over g in H rather than over g in
L1(µ0). However, these suprema are, in fact, identical, which concludes the proof.
To see the equality, first observe that since µ0|g| = (|g|, f0)H ≤ ‖g‖H‖f0‖H for
any g in H (Cauchy–Schwarz), H is included in L1(µ0). The inverse inclusion
does not hold, but, by optimizing the sign of g in the two suprema, we may replace
f by |f | in the numerators and restrict the suprema to nonnegative g’s and then
use the result that any nonnegative function g in L1(µ0) can be approximated by
an increasing sequence of functions in H [e.g., by (g1|g|≤M)M>0]. �

LEMMA 2. Adopt the assumptions of Theorem 1 and denote by C� the set
Cf0(K,u,C, r) ∩ V ⊥

m . We then have the upper and lower bounds

sup{‖f ‖H :f ∈ C�, f0 ± f ∈ H1} ≤ Cum(20)



ESTIMATION OF MIXING DENSITIES 2077

and

sup{‖f ‖H :f ∈ C�, f0 ± f ∈ H1} ≥ Cum+1 ∧ K

K∞,f0(Vm+2 
 Vm)
.(21)

PROOF. We start with the upper bound (20). Pick f in C�. Since f is then
in C(u,C, r), ‖f − ProjVm

f ‖H ≤ Cum for m ≥ r . However, because f is also
in V ⊥

m , ProjVm
f = 0, and, thus ‖f ‖H ≤ Cum.

We now turn to the lower bound. Let (φk)k≥0 be an orthonormal sequence in H

such that Vm = Span(φ0, . . . , φm−1) for all m ≥ 1 (see Section 3). Using the fact
that

∑
k≥0 �1k = �1 = 1, monotone convergence provides∑

k≥0

(�1�,�1k)H = (�1�,1)H = ν�1� for all � ≥ 0.

The right-hand side of this equation is finite by (A1). Since φl is a linear combina-
tion of (�1s)0≤s≤l , we obtain∑

k≥0

|(φ�,�1k)H| < ∞ for all � ≥ 0.(22)

We shall now prove (21) by constructing a function f in C� satisfying f0 ±f ∈
H1 and whose norm equals the right-hand side of (21). To that end, note that,
by (22), we can find two numbers α and β such that

α
∑
k≥0

(φm,�1k)H + β
∑
k≥0

(φm+1,�1k)H = 0(23)

and, putting f := αφm + βφm+1,

‖f ‖H = (α2 + β2)1/2 = Cum+1 ∧ K

K∞,f0(Vm+2 
 Vm)
.(24)

To finish the proof, we need to show that f ∈ C� and f0 ±f ∈ H1. To start with
we note that f lies in Vm+2 and that f ⊥ Vm. Therefore, ‖f − ProjVp

f ‖H = 0
for all p ≥ m + 2. Moreover, ‖f − ProjVm+1

f ‖H = |β| ≤ Cum+1 and, since (un)

is decreasing, ‖f − ProjVp
f ‖H = (α2 + β2)1/2 ≤ Cup for all p = r, . . . ,m. All

this implies that f lies in C(u,C, r). Using (24), we also see that ‖f ‖∞,f0 ≤
‖f ‖HK∞,f0(Vm+2 
 Vm) ≤ K , so that f belongs to C(K,u,C, r). Thus, f ∈ C�.

Finally, as a finite linear combination of L1(ν) functions, f is in L1(ν). Hence,
dominated convergence and (23) yield νf = ∑

k≥0(f,�1k)H = 0. By Lemma 1,
we also find that, for all g in H+,

(f0 + f,g)H ≥ (f0, g)H

(
1 − ‖f ‖∞,f0

) ≥ 0,

where we have used K ≤ 1. Taking g = (f0 + f )− := −(f0 + f ) ∨ 0 yields
−‖(f0 + f )−‖H ≥ 0, whence (f0 + f )− = 0 and f0 + f ∈ H+. Together with
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νf = 0, this shows that f0 + f ∈ H1. The same arguments hold true for f0 − f

and the proof is complete. �

PROOF OF THEOREM 1. Take C� as in Lemma 2 and define h :X → {0,1}
by h(x) := 1(0 ≤ x < m). Then any mapping θ �→ h(x)πθ (x) is either identically
zero (if x ≥ m) or equal to πθ(x) = �1x (when x < m). Since such a �1x triv-
ially lies in Vm, it is orthogonal to C�. Thus, the conditions of Proposition 2 are
met. Proposition 2, Lemma 2 and the trivial observation C� ⊆ Cf0(K,u,C, r) now
prove the theorem. �

4.2. An upper bound on the MISE under (A1). We shall now derive an up-
per bound on the MISE in the same context as above, by bounding the MISE of
the projection estimator. The bias in Proposition 3 is trivially bounded within the
smoothness classes defined above, so what remains to do is to bound the variance
term uniformly over the same classes.

In the following we denote by Rm the m×m upper-left submatrix of the infinite
array [(�1k,�1l)H]k,l≥0. Under (A1), Rm is a symmetric positive definite matrix
for all m ≥ 1. For f in H+, we denote by �f,m the m × m diagonal matrix having
entries πf 1k = (f,�1k)H on its diagonal.

THEOREM 2. Let f∞ be in H+, u = (um)m≥0 a positive decreasing sequence,
K and C positive numbers and r a nonnegative integer. Then for any positive
integer n and any integer m ≥ r ,

sup
f ∈Cf∞ (K,u,C,r)∩H1

Ef ‖f̂m,n − f ‖2
H

≤ (Cum)2 + K

n
tr

(
R−1

m �f∞,m

)
.(25)

REMARK. The upper bound (25) can be optimized over all m ≥ r . As ex-
pected, the bias term decreases and the variance bound increases as m grows.

PROOF OF THEOREM 2. Pick a probability density f in Cf∞(K,u,C, r) and
depart from Proposition 3, noting that the squared bias term is bounded by (Cum)2.
Regarding the variance term, it is sufficient to consider n = 1. Let f̂m denote the
column vector of coordinates of f̂m,1 in the basis (�1k)0≤k<m of Vm. By Defini-
tion 1 and the definition of Rm, f̂m = R−1

m P11(m), where 1(m) is the column vector
function with entries 1k , 0 ≤ k < m. Then

varf (f̂m,1) = Ef ‖f̂m,1‖2
H

− ‖Ef f̂m,1‖2
H

≤ Ef f̂ T
m Rm̂fm − 0

= Ef

((
P11(m))T R−1

m

(
P11(m)))

= tr
(
R−1

m πf 1(m)1(m)T )
.
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The proof is concluded by observing that, as a positive definite symmetric matrix,
R−1

m has positive entries on its diagonal and by noting that πf 1(m)1(m)T = �f,m ≤
‖f ‖∞,f∞�f∞,m. �

REMARK. Our objective here is only to provide an upper bound that is uni-
form over a given class of densities. For power series mixtures (Section 5) and
mixtures of uniforms (Section 7), the bound on the variance varf (f̂m,1) will be
made more explicit by using orthogonal sequences. These bounds will then be
derived directly from (12). However, they are closely related to the upper bound
derived above. Indeed, let �m denote the matrix (�k,�)0≤k,�<m, where �k,� is as
in Section 3. Observing that (φk,φ�)H = (�mRm�T

m)k,� for all 0 ≤ k, � < m, we
obtain R−1

m = �T
m�m. This relates (25) to orthonormal sequence techniques.

4.3. Existence of smooth densities. Theorems 1 and 2 provide lower and upper
bounds, respectively, on the MISE. The classes over which these bounds apply are
different in structure though; the class in Theorem 1 is a ball centered at f0, while
that in Theorem 2 is centered at 0. Therefore, the two bounds are not immediately
comparable. The purpose of the following result is to show that under some con-
ditions the former class is included in the latter one, thus implying that the lower
bound is indeed smaller than the upper bound.

PROPOSITION 4. Let f∞ be in H+, u = (um)m≥0 a positive decreasing se-
quence and r a nonnegative integer. Assume that we have a density f0 in H1 and a
nonnegative C0 such that f0 belongs to C(u,C0, r).

Then for any positive K and K ′ satisfying K ′/(1 + K) ≥ ‖f0‖∞,f∞ and any
nonnegative C and C′ satisfying C′ − C ≥ C0, the inclusion

f0 + Cf0(K,u,C, r) ⊆ Cf∞(K ′, u,C′, r)(26)

holds.

PROOF. This follows from the inclusion C(u,C0, r)+C(u,C, r) ⊆ C(u,C0+
C, r) and the inequality ‖f0 + f ‖∞,f∞ ≤ (1 + ‖f ‖∞,f0)‖f0‖∞,f∞ . �

In the case where the inclusion (26) holds, the lower and upper bounds of The-
orems 1 and 2, respectively, apply in a common setting. Hence, it is important to
be able, given a smoothness class, to find f0 satisfying the assumptions of Propo-
sition 4. Under (A1), given any sequence u = (um), it is always possible to find a
nonnegative number C0 such that the class C(u,C0, r) contains a probability den-
sity f0 for all nonnegative r . Take f0 = �10/ν�10; we then trivially have f0 ∈ H1
and f0 ∈ C(u,C0, r) for all C0 ≥ 0 if r > 0, or for all C0 ≥ ‖f0‖H otherwise. This
choice will indeed be made in the case of a power series mixture in Section 5.
In general, this f0 does not guarantee the norm ‖ · ‖∞,f0 to be finite on the sets
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(Vm)m≥0, however, which is crucial for the lower bound (see the remark follow-
ing Theorem 2). In the rest of this section we provide a general construction of f0
which satisfies this constraint.

Define

H∗ :=
{∑

k≥0

αk�1k ∈ H :αk > 0 for all k ≥ 0

}
.

By
∑

k≥0 αk�1k ∈ H, we mean that
∑n

k=0 αk�1k converges in H as n tends to in-
finity. Note that the series having nonnegative terms, by the monotone convergence
theorem, this is equivalent to saying that∫ ( ∑

k≥0

αk�1k

)2

dν < ∞.

Of course, H∗ is contained in H+, and for any function f = ∑
k≥0 αk�1k ∈ H∗,

we have ‖�1k‖∞,f ≤ α−1
k for all k; consequently, ‖ · ‖∞,f is a finite norm on

every Vm. We now show the existence of a “smooth probability density” f0 in H∗,
given any smoothness sequence u = (um).

PROPOSITION 5. Assume (A1). Then H∗ and H1 have a nonempty intersec-
tion. Moreover, for any positive decreasing sequence (um), the following holds:

(i) For any positive C0, there are elements in H∗ ∩ H1 which also belong to
C(u,C0,1) and, hence, to C(u,C0, r) for any positive integer r .

(ii) There exists a positive constant C0 such that there are elements in H∗ ∩ H1
which also belong to C(u,C0).

PROOF. The linear independence part of (A1) implies ν�1k �= 0 for all k. For
any positive sequence (αk), a simple sufficient condition to have

∑
k αk�1k in H

is absolute convergence, that is,
∑

k αk‖�1k‖H < ∞. Moreover, by the monotone
convergence theorem,

ν
∑
k≥0

αk�1k = ∑
k≥0

αkν�1k.

Hence, we may pick (αk) with αk > 0 for all k and such that
∑

k αk�1k is both in
H and in L1(ν). It is then also in H1 by normalizing appropriately. Hence, the first
part of the proposition.

For any f = ∑
k αk�1k ∈ H∗, since

∑m−1
k=0 αk�1k ∈ Vm and since ProjVm

f

minimizes ‖f − g‖H over g ∈ Vm, we have

∥∥f − ProjVm
f

∥∥
H

≤
∥∥∥∥∥∑
k≥m

αk�1k

∥∥∥∥∥
H

≤ ∑
k≥m

αk‖�1k‖H for all m ≥ 0.
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Hence, for having f in C(u,C, r) ∩ H∗ ∩ H1, it is sufficient that (αk) satisfies∑
k≥0

αkν�1k = 1 and
∑
k≥m

αk‖�1k‖H ≤ Cum for all m ≥ r .(27)

The second constraint simply says that the αk’s cannot be too large for k ≥ r .
If r ≥ 1, the first constraint is then met by adapting the values of αk for k =
0, . . . , r − 1. If r = 0, then C must be taken large enough for both constraints
to be compatible. We now formalize these ideas.

Let (vm)m≥0 be a positive decreasing sequence such that vm ≤ um for all m ≥ 0
and limvm = 0. Define a sequence (βk) by

βk := (vk − vk+1)(‖�1k‖H ∨ ν�1k)
−1 for all k ≥ 0.

Then, by construction, (βk) is a positive sequence and, for all m ≥ 0, both∑
k≥m βk‖�1k‖H and

∑
k≥m βkν�1k are less than um. Now pick a positive num-

ber C. Take αk = λβk for all k > 0, where 0 < λ ≤ C and λ < (
∑

k>0 βkν�1k)
−1.

Then the second part of (27) holds with r = 1 and we may choose α0 > 0 for insur-
ing the first part of (27). It follows that f0 := ∑

k αk�1k ∈ H∗ ∩ H1 ∩ C(u,C,1).
This proves (i).

For the case r = 0, define C0 := (
∑

k≥0 βkν�1k)
−1; this a finite positive number

by the definition of (βk). Putting αk = C0βk for all k ≥ 0, (27) holds for C ≥ C0
and r = 0. This proves (ii). �

4.4. Minimax optimality. By optimizing the bounds (18) and (25) over m ≥ r

in a common setting (as detailed in the previous section), we obtain lower and
upper bounds on the minimax MISE over classes Cf∞(K,u,C, r) under the simple
assumption (A1). Depending on how these bounds compare, we may obtain the
minimax rate and possibly the asymptotic constant of the MISE achievable over
such a class. However, this is not guaranteed. A crucial step for the lower bound is
the computation of K∞,f0 , which will be possible only for particular smoothness
classes. Concerning the upper bound, we will need to find a tractable bound on the
variance, and this will only be possible in cases where orthonormal sequences are
easily obtained.

In Section 5 these steps will be carried out for power series mixtures, resulting
in minimax rates over smoothness classes as defined above. However, we will also
give examples of mixands with different characteristics. In the setting of translation
mixtures or deconvolution, treated in Section 6, an upper bound applies uniformly
over all f in H1. We will then derive a better adapted lower bound of the same rate.
In the setting of mixtures of discrete uniform distributions examined in Section 7,
�1k is not in L1(ν) for the most natural choice of ν. We will then choose (Vm)

different from (13) and adapt the proof of Theorem 1 to this choice. Finally, in
Section 8 we give situations in which how the lower and upper bounds compare is
an open question.
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5. Power series mixtures. Let (ak)k≥0 be a sequence of positive numbers
with a0 = 1, and let R, 0 < R ≤ ∞, be the radius of convergence of the power
series

Z(t) := ∑
k≥0

akt
k.

Obviously, Z(0) = 1 and Z is an increasing function on [0,R). Put Z̃(t) :=
1/Z(t). For all θ ∈ [0,R), the discrete distribution πθ is defined by

πθ(k) = �1k(θ) = akθ
kZ̃(θ) for all k ≥ 0.(28)

In particular, the Poisson and negative binomial distributions are obtained using,
respectively, ak = 1/k! and ak = (ν+k−1

k

)
. It is without loss of generality to assume

a0 = 1, since any constant multiplier of (ak) does not alter πθ .
Recall that H = L2(ν), where ν is a Radon measure on �; in the case of the

above power series mixture, � is a Borel subset of [0,R). Let us first give suffi-
cient and necessary conditions on ν for our previous results to apply, that is, for
assumption (A1) to hold. These conditions are as follows.

PROPOSITION 6. For mixands given by (28), (A1) is equivalent to having both
the following assertions:

(i)
∫
� θkZ̃(θ)ν(dθ) is finite for all nonnegative integers k;

(ii) ν is not a finite sum of point masses.

PROOF. Condition (i) exactly says that �1k is in L1(ν) for all k. Since Z̃ is
bounded by one, it also gives that

∫
� θ2kZ̃2(θ)ν(dθ) < ∞, that is, �1k is in L2(ν)

for all k. Hence, (i) is necessary and it is sufficient for having a sequence in both
L1(ν) and L2(ν).

We now claim that the sequence (�1k)k≥0 is linearly independent in H if and
only if (ii) holds. First note that if (ii) does not hold, then H is finite-dimensional
and cannot contain an infinite sequence of linearly independent elements. To prove
the converse implication, assume that (ii) holds, so that the support of ν is infinite.
Pick a nonnegative integer p and let (λk)0≤k≤p be scalars such that

∑
0≤k≤p λk�1k

is the zero element of H, that is,
∑

0≤k≤p λkπθ (k) = 0 for ν-a.e. θ ∈ �. Since
π·(k) is continuous on � for all k, {θ ∈ � :

∑
0≤k≤p λkπθ (k) = 0} is a closed

set (in the relative topology on �). Consequently, it contains the support of ν

and, thus by (ii), p + 1 distinct points θi ∈ �, i = 0, . . . , p. As Z̃ > 0, it fol-
lows that

∑
0≤k≤p λkakθ

k
i = 0 for i = 0, . . . , p, which in turn implies λk = 0 for

k = 0, . . . , p. This shows that (�1k)0≤k≤p are linearly independent for all p ≥ 0,
which completes the proof. �

The objective of the remainder of this section is to carefully apply Theorem 1
to power series mixtures when ν is Lebesgue measure on a compact interval, and
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to find upper bounds on the MISE for the projection estimator. This is organized
as follows. We first provide computational expressions for the projection estima-
tor in Section 5.1. We then examine the smoothness classes defined by (14), (15)
and (17), and how these classes intersect H1 (see Section 5.2). In this context and
under a submultiplicative assumption on the sequence (ak), we find that the upper
and lower bounds on the MISE have the same rate, the minimax rate. A closer look
is made when R < ∞ and also for Poisson mixtures (for which R = ∞). These
results are stated in Section 5.3, where they are also compared to previous results
found in similar settings.

5.1. Computations based on orthonormal polynomials. In this section we
shall elaborate on the use of orthonormal polynomials in connection with the pro-
jection estimator and power series mixands. These polynomials will serve two
purposes: being building blocks for numerical computations of the projection esti-
mator and being a mathematical vehicle for establishing bounds on its variance.

The projection estimator may be computed using the techniques of Section 3.
More precisely, since Vm = Span(�1k,0 ≤ k < m) and Pn1� is the empirical fre-
quency of � in the sample (Xi)1≤i≤n, (12) translates into

f̂m,n =
m−1∑
k=0

k∑
�=0

�k,�(Pn1�)φk = 1

n

m−1∑
k=0

n∑
i=1

�k,Xi
φk;(29)

recall that �k,� := 0 for � > k. In the case of power series mixtures, we may use
orthogonal polynomial techniques for constructing the sequence (φk). Let Pm be
the set of polynomials of degree at most m (with the convention P−1 = {0}). In
view of (28),

Vm = {pZ̃ :p ∈ Pm−1}.(30)

Define the measure ν′ on � by dν′ = Z̃2 dν and let H
′ = L2(ν′). Then for any two

polynomials p and q , (pZ̃, qZ̃)H = (p, q)H′ . Hence, if (qν′
k )k≥0 is a sequence of

orthonormal polynomials in H
′ with

qν′
k (t) =

k∑
l=0

Qν′
k,l t

l,(31)

then the sequence (φk)k≥0 defined by

φk(t) = qν′
k (t)Z̃(t) =

k∑
l=0

Qν′
k,l t

lZ̃(t) =
k∑

l=0

Qν′
k,l

al

πt (l)

is an orthonormal sequence in H such that (φk)0≤k<m spans Vm. Thus, �k,l =
(Qν′

k,l/al)1(l ≤ k) in (29). This shows that f̂m,n is the same estimator as the one
defined by Loh and Zhang ([17], equation (18)) with weight function w ≡ 1. How-
ever, it differs from the one studied by Hengartner [12], since the latter is a poly-
nomial, and ours is in Vm. The coefficients Qν′

k,l may be obtained using standard
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methods to compute orthogonal sequences of polynomials; a particular method is
described in the Appendix.

Let us also derive another estimator, denoted by f̌m,n and belonging to the space
Ṽm := {pZ :p ∈ Pm−1}. In analogy with Definition 1, this estimator is defined as
the element of Ṽm satisfying

(f̌m,n, g)H = Pn�
−1g for all g ∈ Vm.(32)

Observe that (f̌m,n, g)H = (Z̃f̌m,n,Zg)H, so that (32) is equivalent to

(Z̃f̌m,n,p)H = Pn�
−1(Z̃p) for all p ∈ Pm−1.(33)

Since Pn�
−1(Z̃·) is a linear functional on Pm−1, this uniquely defines Z̃f̌m,n in

Pm−1 and thus f̌m,n.
We see from (32) and (7) that f̂m,n = ProjVm

f̌m,n. Therefore, by linearity,

f̂m,n − Ef f̂m,n = ProjVm
(f̌m,n − Ef f̌m,n). Since projections do not increase the

norm, taking the squared norm and expectation gives

varf (f̂m,n) ≤ varf (f̌m,n) for all f ∈ H1.(34)

We will use this property below to bound the variance of f̂m,n. At the moment
let us note that this bound indicates that f̌m,n does not behave as well as f̂m,n,
even though, for brevity, we leave aside the problem of the bias. Nevertheless,
the estimator f̌m,n has the appealing property that it may be expressed by using a
sequence (qν

k )k≥0 of orthonormal polynomials in H = L2(ν) that does not depend
on the sequence (ak) but only on ν. To see this, let us write, as in (31),

qν
k (t) =

k∑
l=0

Qν
k,lt

l .

Again, by convention, we extend the values of Qν
k,l to the domain l > k by zeros.

An algorithm for computing Qν
k,l is given in the Appendix for � = [a, b] and

certain choices of ν. Let us now express f̌m,n in terms of this sequence. By (33),
as �−1(Z̃(t)t l) = �−1(π·(l)/al) = 1l/al , we obtain

(Z̃f̌m,n, q
ν
k )H =

k∑
�=0

Qν
k,�

a�

Pn1�.

Since Z̃f̌m,n belongs to Pm−1, we conclude that the right-hand side of this display
has the coefficients of the expansion of Z̃f̌m,n in the orthonormal basis (qν

k ). Thus,

f̌m,n = Z

m−1∑
k=0

k∑
�=0

Qν
k,�

ak

(Pn1�)q
ν
k = Z

n

m−1∑
k=0

n∑
i=1

Qν
k,Xi

aXi

qν
k .(35)

Below we will use this expression to bound the variance of f̂m,n.
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5.2. Approximation classes. Recall the definitions (14), (15) and (17) made in
Section 4. These smoothness classes are closely related to those used in previous
works on power series mixtures, as will be shown in this section. The discussion
will be devoted to the case

ν is Lebesgue measure on [a, b] with 0 ≤ a < b < R.

Hence, H is the usual L2 space of functions on [a, b]. Let, for any positive α,

uα := (
(1 + n)−α)

n≥0.

It turns out that, for these particular sequences, the classes C(uα,C) of Section 4
are equivalent to classes defined using weighted moduli of smoothness. This, in
turn, will relate them to Sobolev and Hölder classes, classes that were considered
by Hengartner [12]. To make this precise, let ‖ · ‖p be the Lp norm over [a, b],
define the function φ(x) = √

(x − a)(b − x) on this interval and let �r
h(f, x) be

the symmetric difference of order r , that is,

�r
h(f, x) :=

r∑
i=0

(
r

i

)
(−1)if

(
x + (i − r/2)h

)
,

with the classical convention that �r
h(f, x) is set to 0 if x + (i − r/2)h is outside

[a, b] for i = 0 or r . Then for any function f on [a, b], the weighted modulus of
smoothness is defined as

ωφ
r (f, t)p := sup

0<h≤t

∥∥�r
hφ(·)(f, ·)∥∥p.(36)

The effect of the weight φ here is to relax the regularity conditions on f at the
endpoints a and b. Finally, for all positive numbers α and C, define the classes

C̃(α,C) := {
f ∈ H :‖f ‖H ≤ C,ω

φ
[α]+1(f, t)2 ≤ Ctα for all t > 0

}
.(37)

The following result shows that these classes are, in a certain sense, equivalent to
C(uα,C).

PROPOSITION 7. For any positive number α, there exist positive constants C1
and C2 such that

C(uα,C1C) ⊆ C̃(α,C) ⊆ C(uα,C2C) for all C > 0.(38)

Before giving the proof of this proposition, we explain the point of this result
and of defining the classes C̃(α,C). Recall that the standard modulus of smooth-
ness

ωr(f, t)p := sup
0<h≤t

‖�r
h(f, ·)‖p

provides definitions of semi-norms for Besov and Sobolev spaces (see, resp. equa-
tion (2.10.1) and Theorem 2.9.3 in [4]). In particular, the classes defined as in
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(37) but with the weighted modulus of smoothness (36) replaced by the stan-
dard one with the same parameters r = [α] + 1 and p = 2 are balls in the Besov
space Bα∞(L2[a, b]). Now using Theorems 6.2.4 and 6.6.2 in [4] and the fact that
‖f ‖Wr

p(φ) ≤ ‖f ‖Wr
p
, from [4], equation (6.6.5), we have that, for a constant C0 > 0

only depending on p and r ,

ωφ
r (f, t)p ≤ C0ωr(f, t)p for 0 < t < (2r)−1.

Furthermore, bounding ω
φ
r (f, t)p by ‖f ‖p up to a multiplicative constant for

t ≥ (2r)−1 as in [4], equation (6.6.5) shows that C̃(α,C) contains Besov balls
{‖f ‖Bα∞(L2[a,b]) ≤ C′

0C} for a constant C′
0, but is not contained in such balls. Us-

ing inequalities between Hölder, Sobolev and Besov semi-norms, it also follows
that C̃(α,C) contains balls of the Hölder space Cα[a, b] and of the Sobolev space
Wα

2 and, of course, converse inclusions are not to be found. In view of Proposi-
tion 7, since C̃(α,C) contains Besov, Hölder and Sobolev balls as just described,
so does C(uα,C).

These inclusions are helpful for comparing our results to those of Hengartner
[12], where minimax rates are given for Sobolev balls with integer exponents and
conjectured for Hölder balls. In his paper, as well as the present one, rates for
the projection estimator are obtained using properties which hold over the classes
C̃(α,C) and, consequently, over smaller ones such as Sobolev and Hölder balls.
Minimax bounds, however, are obtained using different methods. Our approach
takes advantage of the whole class over which the rate applies, whereas Hengartner
[12] only used subclasses to derive minimax bounds. This “closer look” allows us
to derive minimax bounds applying to C̃(α,C) for all α ≥ 1, not only integers,
and to obtain results on the asymptotic constant when refining the class C̃(α,C) to
C(u,C, r).

PROOF OF PROPOSITION 7. Write the equivalence relationships (38) as

C(uα, ·) � C̃(α, ·).
We start by relating C̃(α,C) to classes of the form

C(u,C) :=
{
f ∈ H : inf

p∈Pm−1
‖f − p‖H ≤ Cum for all m ≥ 0

}
;

recall that Pm is the set of polynomials of degree at most m. Theorem 8.7.3 and
equation (8.7.25) of [4] show that, for all α > 0 and all r > α, there exist constants
C′

1 and C′
2 such that, for all C > 0 and f ∈ H,

sup
t≥r

ωφ
r (f,1/t)2t

α ≤ C �⇒ sup
m≥4r

inf
p∈Pm

‖f − p‖Hmα ≤ C′
1C,

sup
m≥r

inf
p∈Pm

‖f − p‖Hmα ≤ C′
2C �⇒ sup

t>r
ωφ

r (f,1/t)2t
α ≤ C.
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Here C′
1 and C′

2 may depend on α and r . Taking r = [α] + 1, observing that
(1 + m)α � (m − 1)α for m ≥ 2 and using ‖f ‖H for bounding infp∈Pm−1 ‖f −
p‖H and ω

φ
r (f,1/t)2 in cases not covered by the above implications, we ob-

tain C̃(α, ·) � C(uα, ·). Thus, also ZC̃(α, ·) � ZC(uα, ·), where ZC̃(α,C) :=
{Zf :f ∈ C̃(α,C)} and so on.

Next we proceed to study ZC(uα,C). By (14) and (30),

C(u,C) =
{
f ∈ H : inf

p∈Pm−1
‖f − pZ̃‖H ≤ Cum for all m ≥ 0

}
.

Since Z̃ is positive and decreasing on [a, b],
Z̃(b)‖f ‖H ≤ ‖Z̃f ‖H ≤ Z̃(a)‖f ‖H for all f in H.(39)

This shows that ‖f −pZ̃‖H � ‖Zf −p‖H, whence C(uα, ·) � ZC(uα, ·). Recall-
ing that ZC̃(α, ·) � ZC(uα, ·), we thus see that in order to prove (38) it is sufficient
to show ZC̃(α, ·) � C̃(α, ·).

The remainder of the proof is thus devoted to showing that there are constants
C′

1 and C′
2 such that f ∈ C̃(α,C) implies Zf ∈ C̃(α,C′

1C) and Z̃f ∈ C̃(α,C′
2C).

Since b < R, Z is bounded away from zero and infinity on [a, b] and both Z and
Z̃ are thus infinitely continuously differentiable on this interval. Having made this
observation, both of the desired implications follow from the claim that, for any
[α] + 1 times continuously differentiable function g on [a, b], there exists c > 0
such that

f ∈ C̃(α,C) �⇒ gf ∈ C̃(α, cC).(40)

To prove this claim, pick an f in C̃(α,C) and let r := [α] + 1. Recalling
that C̃(α, ·) � C(uα, ·), we see that the union

⋃
c′>0 C̃(α, c′) coincides with⋃

c′>0 C(uα, c′), and is, hence, increasing as α decreases. As the union can be
written

⋃
c′>0 C̃(α, c′C), there exists a positive c′, depending only on α, such that

C̃(α,C) ⊆ C̃(α − r + i, c′C) for all i = 1, . . . , r . Since f is included in all these
classes and r = [α] + 1, we find that ω

φ
i (f, t)2 = ω

φ
[α−r+i]+1(f, t)2 ≤ c′Ctα−r+i

for these i, and also for i = 0 with the usual convention ω
φ
0 (f, t)2 := ‖f ‖H.

Now the equality (obtained by standard algebra)

�r
h(fg, x) =

r∑
i=0

(
r

i

)
�i

h

(
f, x + (r − i)h/2

)
�r−i

h (g, x − ih/2)

and the bound |�r−i
h (g, x − ih/2)| ≤ ‖g(r−i)‖L∞[a,b](rh)r−i for all 0 ≤ i ≤ r and

x ∈ [a, b] yield

ωφ
r (fg, t)2 ≤ Mg

r∑
i=0

(
r

i

)
ω

φ
i (f, t)2(rt)

r−i ,
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where Mg := max0≤j≤r ‖g(j)‖L∞(a,b). Since, as shown above, ω
φ
i (f, t)2t

r−i ≤
c′Ctα , the claim (40) follows with c = c′(1 + r)rMg . �

Let us now consider the smoothness classes Cf0(K,u,C, r) defined in (17). We
take f0 such that, for two positive constants c1 and c2,

c1 ≤ f0(t) ≤ c2 for all t ∈ [a, b].(41)

Under this condition the norm (16) satisfies

1

c2
ess sup
a≤t≤b

|f (t)| ≤ ‖f ‖∞,f0 ≤ 1

c1
ess sup
a≤t≤b

|f (t)|.(42)

Thus, as in (38), the classes defined by (17) are equivalent to classes defined by
the weighted modulus of smoothness and a bound on the sup norm. Indeed, with
C̃(K,α,C) := {f ∈ C̃(α,C) : ess supa≤t≤b |f (t)| ≤ K},

Cf0(K/c2,uα,C1C) ⊆ C̃(K,α,C) ⊆ Cf0(K/c1,uα,C2C).(43)

Another important consequence of (42) is that for bounding K∞,f0(Vm) we may
use the Nikolskii inequality (see, e.g., [4], Theorem 4.2.6). This inequality states
that there is a universal positive constant C such that, for all nonnegative inte-
gers m,

sup
{

sup
−1≤t≤1

|p(t)| :p ∈ Pm−1,

∫ 1

−1
|p(t)|2 dt = 1

}
≤ Cm.

Also recall (30), that is, Vm = {pZ̃ :p ∈ Pm−1}. Combining these observations
with (39) and the Nikolskii inequality yields, for all m ≥ 1,

K∞,f0(Vm) ≤ Ca,bm(44)

for a positive constant Ca,b depending only on (ak), a, b and c2.
The following useful result says how the class C̃(α,C) intersects H1.

LEMMA 3. Let α be a positive number. If C < 1/
√

b − a, then the intersection
of C̃(α,C) with H1 is empty. Furthermore, the intersection of C̃(α,1/

√
b − a )

with H1 is the singleton set {1[a,b]/(b − a)}.

PROOF. Pick f in H1. Applying Jensen’s inequality Eg(Y ) ≥ g(E(Y )) with
g(t) = t2, Y = f and probability measure dt/(b − a) on [a, b] gives∥∥∥∥ f√

b − a

∥∥∥∥
H

≥
∫ b

a

f (t)

b − a
dt = 1

b − a
,

so that ‖f ‖H ≥ 1/
√

b − a. Hence, the first part of the lemma. Now, using the strict
convexity of the square function, equality in the above relation implies that f is
constant. Thus, to prove the second part of the lemma, we need to check that the
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uniform density 1[a,b]/(b − a) belongs to C̃(α,1/
√

b − a ) for all α > 0. This is
trivially true since ω

φ
k (1[a,b], t)2 = 0 for all t > 0 and k > 0. �

We conclude this section with a remark on the somewhat more general case
when � = [a, b] and ν(dt) = dt/w(t) for a weight function w, investigated by
Loh and Zhang [17]. In this case the classes denoted by G(α,m,M,w0) in [17]
are included in the classes C(uα,C,m) as

G(α,m,M,w0) ⊆ C(uα,M1M,m + 1) for all α > 0,

G(α′,m,M,w0) ⊇ C(uα,M2M,m + 1) for all α > α′ > 0,

for positive constants M1 and M2 depending on m, α and α′. Hence, our setting is
very close to the one adopted by Loh and Zhang [17] in their Section 3, where they
provide lower and upper bounds on the MISE over these classes. However, all their
results in this section rely on special conditions, namely, their (19) and (20), which
imply restrictions on the parameters α and m defining the classes G(α,m,M,w0)

(see their Remark 3). In particular, the rate optimality in these classes is only ob-
tained for integer α (we refer to the closing comments of Section 3 in [17]). As re-
marked above, a similar restriction applies in [12], where minimax rates are proved
in Sobolev classes with integer exponents. In contrast, the lower bound of Theo-
rem 1 will provide the minimax rate for all α ≥ 1 in our classes and we will also
obtain results on the asymptotic constant.

5.3. Minimax MISE rates. The following result is concerned with the asymp-
totic properties of the projection estimator and lower bounds on the MISE over the
approximation classes of Section 5.2.

THEOREM 3. Assume that ν is Lebesgue measure on [a, b] with 0 ≤ a < b <

R, and let λ := γ + √
γ 2 + 1 with γ = (2 + a + b)/(b − a). Then the following

assertions hold true:

(a) Let α and C be positive numbers, r be a nonnegative integer and (mn) be a
nondecreasing divergent integer sequence. If there exists a number λ1 larger than
λ such that

1

n
λ

2mn

1 max
0≤k<mn

bk

ak

→ 0 as n → ∞,(45)

then

sup
f ∈C(uα,C,r)∩H1

Ef

∥∥f̂mn,n − f
∥∥2

H
≤ C2m−2α

n

(
1 + o(1)

)
.

(b) Let α ≥ 1, C be a positive number, r be a positive integer and (m′
n) be a

nondecreasing divergent integer sequence. Put

wn := n
∑

k≥m′
n

ν�1k for any positive integer n.(46)
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If (wn) tends to zero, then

inf
f̂ ∈Sn

sup
f ∈C(uα,C,r)∩H1

Ef ‖f̂ − f ‖2
H

≥ C2m′−2α
n

(
1 + o(1)

)
.(47)

(c) Let α ≥ 1 and C > 1/
√

b − a. If there exist sequences (mn) and (m′
n) satis-

fying the conditions of (a) and (b) and such that lim infn→∞ mn/m′
n > 0, then the

minimax MISE rate over C̃(α,C)∩H1 is m−2α
n and it is achieved by the projection

estimator f̂mn,n.

Before giving the proof in Section 5.4, we make the following remarks and
examine the particular cases of mixands with R < ∞ and Poisson mixtures:

(i) The condition on C in (c) is necessary since otherwise the class is empty or
reduces to one element; see Lemma 3. In contrast, under the assumptions of (c), a
direct application of (a) and (b) provides the same minimax rate over C(uα,C, r)∩
H1 for α > 1, r ≥ 1 and C > 0.

(ii) The same lower and upper bounds apply to classes defined by adding a
bound on the uniform norm. For instance, part (c) holds when replacing C̃(α,C)

by C̃(K,α,C) for any K > 1 (for K ≤ 1, this class is empty or reduces to the
uniform density as for a too small C). This can be verified easily by reading the
proof.

(iii) The o-terms in parts (a) and (b) can be made more precise. In part (a),
m−2α

n (1 + o(1)) can be replaced by (mn + 1)−2α + κξ−mn , where ξ > 1 and κ > 0
depend only on (ak), a and b and the inequality holds for mn ≥ r . In part (b),
m′−2α

n (1 + o(1)) can be replaced by (m′
n + 2)−2α exp(−κ ′wn), where κ ′ > 0 de-

pends only on (ak), a and b, and the inequality holds for n sufficiently large.
(iv) The estimator f̂mn,n in (a) depends only on (mn), which is fixed by (ak),

a and b through (45). Thus, it is universal in the sense that it does not depend on C

or α, although, under the conditions of (c), it is rate optimal in C̃(α,C)∩H1 for all
α ≥ 1 and all C > 1/

√
b − a. However, an interesting problem, which is left open

in the present work, would be to build an estimator which adapts to an unknown
[a, b] ⊂ [0,R).

(v) Clearly, one can always find two sequences (mn) and (m′
n) satisfying the

conditions of (a) and (b), respectively. In contrast, for obtaining (c), it remains to
show that these sequences can be chosen equivalent. This requires further condi-
tions on the asymptotics of (ak).

A condition addressing the issue of item (v) above is the following:

There exists a positive constant c0 such that ak+l ≤ c0akal(A2)
for all nonnegative integers k and l.

This condition holds in various important situations including Poisson and neg-
ative binomial mixands. In Proposition 8 below we show that it ensures that The-
orem 3(c) applies. The condition says that (ak) is submultiplicative up to the



ESTIMATION OF MIXING DENSITIES 2091

constant c0. Mimicking the argument of the subadditive lemma (see, e.g., [3],
page 231, and Exercise 6.1.17, page 235), L = limn→∞ n−1 logan exists and is
given by L = infn≥1 n−1(log c0 + logan). Thus, c0an ≥ eLn for all n ≥ 1. Note
that L = −∞ is possible. Since an = O(en(L+ε)) and enL = O(an) for all posi-
tive ε, L is related to the radius of convergence through the relation ReL = 1, that
is, L = −∞ if and only if R = ∞ and L = − logR otherwise. In addition, for
R < ∞, we see that the series

∑
akθ

k is divergent at θ = R.
A first simple application of this assumption is the following lemma:

LEMMA 4. Under (A2), we have, for any nonnegative integer m,∑
k≥m

ν�1k ≤ c0am

∫
tmν(dt).

PROOF. A direct application of (A2) with (28) shows that, for all k ≥ m,
�1k(t) ≤ c0amtm�1k−m(t). Thus, by monotone convergence and the observation∑

k≥0 �1k = 1,∑
k≥m

ν�1k = ν
∑
k≥m

�1k ≤ c0am

∫
tm

∑
k≥0

�1k(t)ν(dt) = c0am

∫
tmν(dt).

�

PROPOSITION 8. Under (A2) there exist a sequence (mn)n≥0 satisfying the
conditions of Theorem 3(a) and a number η ≥ 1 such that, by setting m′

n := [ηmn],
the sequence (m′

n)n≥0 satisfies the conditions of Theorem 3(b). Hence, Theo-
rem 3(c) applies.

We note that, with m′
n := [ηmn], the asymptotic constants of parts (a) and (b) of

Theorem 3 differ by a factor η2α . Thus, up to this factor, the projection estimator
is minimax MISE efficient over classes, C(uα,C, r) ∩ H1 with α > 1 and r ≥ 1.
How large η needs to be taken depends on the model through (ak), a and b. The
following result is a sharpened version of Proposition 8 in the case where R < ∞,
obtained by optimizing with respect to η. We refer to the proof for details. The
proof of Proposition 8 in the case where R = ∞ is postponed to Section 5.5. It
provides an explicit, although more involved, construction of (mn) and η in a way
making η ≥ 2 necessary.

COROLLARY 1. Let ν be Lebesgue measure on [a, b] with 0 ≤ a < b < R.
Assume that R is finite and that (A2) holds. Let α ≥ 1 and C > 1/(b − a). Then
the minimax MISE rate over C̃(α,C) ∩ H1 is (logn)−2α . This rate is achieved
by the projection estimator f̂mn with mn := [τ logn] for any positive τ less than
1/ log{λ2(1 ∨ bR)}. Moreover, if α > 1, then for any positive C and any positive
integer r ,

lim sup
n→∞

(logn)α sup
f ∈C(uα,C,r)∩H1

Ef

∥∥f̂mn,n − f
∥∥

H
≤ τ−αC(48)
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and

lim inf
n→∞ (logn)α inf

f̂ ∈Sn

sup
f ∈C(uα,C,r)∩H1

Ef ‖f̂ − f ‖H ≥ (log(R/b))αC.(49)

PROOF. Put τmax := 1/ log{λ2(1 ∨ bR)} and consider (45). We will make use
of the properties derived above from (A2). First we note that, since ak ≥ c−1

0 eLk =
c−1

0 R−k for all k, we have

1

n
λ2m

1 max
0≤k<m

bk

ak

≤ 1

n
λ2m

1 c0 max
0≤k<m

(bR)k = 1

n
λ2m

1 c0(1 ∨ bR)m−1.

Thus, the log of the left-hand side of this equation is at most m log(λ2
1(1 ∨ bR)) −

logn + log c0, so that for mn = [τ logn] with τ log(λ2
1(1 ∨ bR)) < 1, (45) holds.

Combining this condition with the requirement λ1 > λ, we obtain the bound τ <

τmax. Hence, for such (mn), Theorem 3(a) applies and gives (48).
Now consider part (b) of Theorem 3. Lemma 4 shows that

∑
k≥m ν�1k =

O(ambm). Moreover, for any ε > 0, it holds that am ≤ (eL/(1 − ε))m = (R(1 −
ε))−m for large m. Thus, with m′

n = [ηmn] and (wn) defined as in (46), logwn ≤
logn + ηmn log(b/(R − ε)) up to an additive constant. Hence, we may choose
η > −1/(τ log(b/(R − ε))) > 0 such that wn → 0. This achieves the proof of the
minimax MISE rate by applying Theorem 3(c) with the chosen sequences (mn)

and (m′
n). Theorem 3(b) gives a lower bound on the MISE asymptotically equiva-

lent to C2(ητ logn)−2α . Optimizing with respect to ητ under the above constraints
and letting ε tend to zero gives (49). �

We note that Loh and Zhang [17] proved the rate (logn)α to be minimax over
different smoothness classes, but also under different assumptions on (ak). Corol-
lary 1 extends their results to other classes and mixands, but only for b < R < ∞.

We now consider the Poisson case. We already know from Proposition 8 that we
can find a universal projection estimator whose rate is optimal in classes C̃(α,C),
which complements the results of Hengartner [12] and Loh and Zhang [17]. This
does not address asymptotic efficiency, however, which includes computations of
asymptotic constants. It turns out that a direct computation of (mn) provides the
following precise result for C(uα,C, r).

COROLLARY 2. Let ν be Lebesgue measure on [a, b] with 0 ≤ a < b < R and
suppose that ak = 1/k! (Poisson mixands, R = ∞). Let α ≥ 1 and C > 1/

√
b − a.

Then the minimax MISE rate over C̃(α,C) ∩ H1 is (logn/ log logn)−2α . This rate
is achieved by the projection estimator f̂mn with mn := [τ logn/ log logn] for any
positive τ ≤ 1. Moreover, if α > 1, then for any positive C and any positive inte-
ger r , the projection estimator f̂mn defined as above with τ = 1 is asymptotically
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minimax efficient (including the constant) over C(uα,C, r):

lim sup
n→∞

(
logn

log logn

)α

sup
f ∈C(uα,C,r)∩H1

Ef

∥∥f̂mn,n − f
∥∥

H

= lim inf
n→∞

(
logn

log logn

)α

inf
f̂ ∈Sn

sup
f ∈C(uα,C,r)∩H1

Ef ‖f̂ − f ‖H

= C.

PROOF. Consider (45). By Stirling’s formula, max0≤k<m(bk/ak) = O(mmcm)

for a positive c. Since mn ≤ τ logn/ log logn for τ in (0,1], a simple computation
yields

log(mmn
n cmn/n) ≤ (τ − 1) logn − (

τ + o(1)
) logn log log logn

log logn
→ −∞.

Condition (45) follows for any λ1 > λ (indeed, λ1 simply multiplies c).
Now assume τ = 1 and consider part (b) of Theorem 3. Use Lemma 4 once

again to see that
∑

k≥m ν�1k = O(ambm). In the present case ambm = O(m−mcm)

for a positive c (not the same as above). For any σ in (0,1), it holds that mn ≥
σ logn/ log logn for large n. As usual, we set m′

n := [ηmn] for a positive number
η to be optimized later on and define (wn) as in (46). Thus, if ησ > 1, then up to
an additive constant,

logwn ≤ log
(
n(ηmn)

−ηmncηmn
) ≤ (

1 − ησ + o(1)
)

logn → −∞.

The conclusions of the corollary now follow by applying the various parts of
Theorem 3. In particular, the lower bound on the asymptotic MISE, normalized
by the rate (logn/ log logn)2α , is obtained upon observing that we may choose σ

and, hence, also η, arbitrarily close to 1. �

We recall that, in contrast to Corollary 2, Hengartner [12] did not consider con-
stants and the exact rate was proved for Sobolev classes with entire exponents
only. Likewise, Theorem 5 in [17] does not provide constants, and optimal rates
are obtained only in cases similar to Hengartner [12] (cf. the paragraph ending
Section 5.2 above). By determining the asymptotic constant, we also answer a
question raised by Hengartner ([12], page 921, Remark 4). He suggested that the
optimal τ , in terms of the asymptotic constant, may depend on the smoothness
class under consideration. The above result shows that, at least not over a wide
range of classes, it does not. Furthermore, Loh and Zhang [17] proposed an adap-
tive method to determine τ in the formula mn = τ logn/ log logn for fixed n, but
the behavior of this adaptive method was not proved to be better than for τ con-
stant. Corollary 2 shows that such an adaptive procedure is not needed and that τ

can be taken equal to one.
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The final part of Corollary 2, saying that the projection estimator is asymptoti-
cally minimax efficient in the Poisson case, is a theoretical argument corroborating
the conclusions of the empirical study of Loh and Zhang [17]. Indeed, in a simula-
tion study they compared the projection estimator to a kernel estimator and found
that the former performed significantly better for finite sample sizes. Both estima-
tors achieve the optimal rate, but the kernel estimator does not exploit the polyno-
mial structure of the classes C(uα,C, r); this probably introduces a nonnegligible
constant in its asymptotics.

5.4. Proof of Theorem 3. Throughout the proof we denote by Ki some con-
stants depending only on (ak), a and b.

We start by proving (a). Take f in C(uα,C, r) ∩ H1. In the bias-variance de-
composition of Proposition 3, the first term is then bounded by C2(m + 1)−2α for
all m ≥ r . We now bound the second term in the right-hand side of (10). Using (34)
and (35) and recalling that the qν

k are orthonormal in H, varf (f̂m,1) is bounded by

Ef ‖f̌m,1‖2
H

≤ Z(b)2
Ef

∥∥∥∥∥
m−1∑
k=0

Qν
k,X1

aX1

qν
k

∥∥∥∥∥
2

H

(50)

= Z(b)2
∑

0≤l≤k<m

(
Qν

k,l

al

)2

πf 1l .

Moreover,

πf 1l =
∫ b

a
f (θ)alθ

lZ̃(θ) dθ ≤ alb
lZ̃(a).

Finally, using the bound on
∑

l(Q
ν
k,l)

2 given by Lemma A.1, we obtain, for λ0 > λ

(recall that λ > 1 depends only on a and b) and m ≥ r ,

Ef ‖f̂m,n − f ‖2
H

≤ C2(m + 1)−2α + K1λ
2m
0

n
max

0≤k<m

bk

ak

.

Taking λ0 in (λ,λ
1/2
1 ), this proves (a) [see also remark (iii) following the statement

of the theorem].
Next we prove (b). Let f0 = c�10 = cπ·(0) = ca0Z̃ with c > 0 such that f0 is

in H1. Observing that the conditions given in Proposition 6 are satisfied for our
choice of ν, we can apply Theorem 1. It remains to verify that (18) implies (47)
in this context. Since f0 is in all Vm for positive m, f0 + Cf0(K,uα,C, r) ⊆
C(uα,C, r) for any K > 0, say K = 1 and any positive r . Thus, (18) provides
a lower bound on the left-hand side of (47). Next we lower bound the right-hand
side of (18). Note that, for this choice of f0, (41) holds for c1 and c2 depending
only on (ak), a and b, so that, by (44) and the observation K∞,f0(Vm+2 
 Vm) ≤
K∞,f0(Vm+2), we find that, for all m,

1

K∞,f0(Vm+2 
 Vm)
∧ Cum+1 ≥ K2

m + 2
∧ C(m + 2)−α.(51)
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Since we have assumed α > 1, the right-hand side of this expression equals C(m+
2)−α for large m. Regarding the second factor in the right-hand side of (18), we
note that since f0 is bounded on [a, b], there is a positive constant K3 such that
πf0h ≤ K3ν�h for all h ≥ 0. Thus, πf0{0, . . . ,m′

n − 1} = 1 − ∑
k≥m′

n
πf01k ≥

1 − K3n
−1wn, so that, under the assumption wn → 0,

πn
f0

{0, . . . ,m′
n − 1} ≥ exp

(
n log(1 − K3n

−1wn)
) ∼ exp(−K3wn).

By applying Theorem 1 as explained above, the two last displayed equations
prove (47), with the more detailed lower bound claimed in remark (iii) following
the statement of the theorem.

Finally we show (c). The rate of the projection estimator follows from part (a)
already proved, and the equivalence relationship (38) between the classes C(uα,C)

and C̃(α,C). We now turn to proving optimality of this rate for α ≥ 1. Optimality
over C̃(α,C) is established as in the proof of (b), but taking f0(t) = 1/(b − a) for
a ≤ t ≤ b: we apply Theorem 1 and verify that, for this choice of f0, (18) implies
the lower bound

inf
f̂ ∈Sn

sup
f ∈C̃(α,C)∩H1

Ef ‖f̂ − f ‖2
H

≥ K4m
−2α
n

for large enough n. Here are the details. Since f0 is in C̃(α,1/
√

b − a ) (as pointed
out in Lemma 3) and ω

φ
r (f, t)p is a semi-norm in f , f0 + C̃(α, δ) ⊆ C̃(α,C)

whenever δ + 1/
√

b − a ≤ C. By Proposition 7, f0 + C(uα,C1δ) ⊆ f0 + C̃(α, δ)

for all δ > 0, where C1 is as in (38). Adding a constraint on the supremum norm
makes an even smaller class, whence f0 + Cf0(K,uα,C1δ) ⊆ C̃(α,C) for any
K > 0, say K = 1, provided δ is sufficiently small. Thus, the lower bound of
Theorem 1 applies. Using the same arguments as in the proof of (b), we find that
this lower bound behaves as K5((m

′
n + 2)−2α ∧ (m′

n + 2)−2), which has same rate
as m−2α

n for all α ≥ 1. This completes the proof of (c).

5.5. Proof of Proposition 8. We first note that, for R < ∞, the proof is com-
pletely contained in the proof of Corollary 1. Thus, we here consider the case
R = ∞ only. Then the conclusions drawn from the subadditive lemma [the para-
graph following (A2)] are not helpful, as we can only conclude that ak = O(εk)

for any ε > 0; the latter is indeed implied by R = ∞ alone. Thus, a more refined
analysis is necessary, as in the proof of Corollary 2.

First we note that, since b < R, it holds that akb
k = O(εk) for any ε > 0. Thus,

max
0≤k<m

bk

ak

= max
0≤k<m

akb
k

a2
k

= O

(
1

min0≤k<m a2
k

)
and, consequently, the condition (45) on (mn) is implied by rather requiring

1

n

λ
2mn

1

min0≤k<mn a2
k

→ 0.(52)
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The reason why (52) is not used in Theorem 3 is that one would lose the constant
derived for the Poisson case in Corollary 2. Moreover, using Lemma 4, we see that
for (wn) to converge to zero with m′

n = [ηmn], it is sufficient that

na[ηmn]bηmn → 0.(53)

It remains to check that there exist λ1 > λ, η > 0 and (mn) such that (52) and (53)
hold true. We will do this by a constructive proof.

To this end, take λ1 > λ arbitrary. The cornerstone in the construction is the
following claim, to be proved below: we can find η, a positive number C1 and K

in (0,1) such that, for all m ≥ 0,

λ
2(m+1)
1

min0≤k<m+1 a2
k

≤ C1K
m b−ηm

a[ηm]
.(54)

Given that (54) holds, put

mn = max
{
m :

λ2m
1

min0≤k<m a2
k

K−m/2 ≤ n

}
.

Since λ1 > λ > 1 and K < 1, the sequence λ2m
1 /min0≤k<m a2

k × K−m/2 is nonde-
creasing in m and tends to infinity. Thus, mn is finite for all n and (mn) is nonde-
creasing and tends to infinity. Moreover, λ

2mn

1 /min0≤k<mn a2
k ≤ nKmn/2, and (52)

follows. On the other hand, from the definition of mn and (54),

n <
λ

2(mn+1)
1

min0≤k<mn+1 a2
k

K−(mn+1)/2 ≤ C1K
(mn−1)/2 b−ηmn

a[ηmn]
for large n. Hence, (53) follows and the construction is complete.

It now remains to prove the claim (54). To do this, let (rm)m≥0 be a sequence
such that arm = min0≤k<m ak . Applying (A2) yields

c0 min
0≤k<m

a2
k = c0a

2
rm

≥ a2rm for all m ≥ 0.

Now put s = 2rm+1 and t = [ηm] and note that since 2rm+1 ≤ 2m, for any η ≥ 2, it
holds that t ≥ s. In addition, fix p sufficiently large that c0ap < 1 and c0apbp < 1.
The latter can be done since, as noted above, akb

k = O(εk) for any ε > 0. Apply-
ing (A2) repeatedly, we easily obtain that there is a constant c1 > 0 such that

at ≤ c1as(c0ap)[(t−s)/p].
Using 2rm+1 ≤ 2m again, we find that [(t − s)/p] ≥ (t − s)/p − 1 ≥ {(η − 2)m −
1}/p − 1. Recalling that c0ap < 1, together with the two last displays, this yields

a[ηm] ≤ c0c1

(
min

0≤k<m+1
a2
k

)
(c0ap)((η−2)m−1)/p−1

≤ C0

(
min

0≤k<m+1
a2
k

)(
(c0ap)η/p

(c0ap)2/p

)m
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for a positive C0. Then with

K := λ2
1
((c0ap)1/pb)η

(c0ap)2/p
,

we see that (54) holds for a positive C1. Finally, since (c0ap)1/pb < 1, we can
choose a large enough η such that K < 1. The proof is complete.

6. Discrete deconvolution. In this section we take X = � = Z and let ζ be
counting measure. Let also p be a fixed and known probability mass function on Z

and consider the mixands πθ(·) = p(· − θ). Another way to view this setup is the
following. Take independent random variables ε and U , both in Z, with probabil-
ity mass functions p and f , respectively, and put X = U + ε. Then the probability
mass function of X is the convolution (f � p)(·) = ∑

θ p(· − θ)f (θ) of f and p,
which we can also write as

∑
θ πθ (·)f (θ). Our interest in recovering f from i.i.d.

observations from X can thus be phrased as a deconvolution problem. Note that
this setting includes the case of ε being zero, that is, we estimate a discrete distri-
bution.

Observe that, for all integer k, �1k = p(k − ·). Applying the general approach
of Section 4, we take V0 = {0} and, for all m ≥ 1, Vm := Span(�1k : |k| < m). This,
of course, defines an increasing sequence of linear spaces. It remains to choose the
measure ν or, equivalently, the space H = L2(ν). A natural choice is to let ν be
counting measure, that is, H = l2(Z). Then, since p is square-summable, (Vm) is a
sequence of subspaces of H. It is practical to define the projection estimator using
Fourier series. Thus, let

p∗(λ) = ∑
k∈Z

p(k)e−ikλ for all λ ∈ (−π,π ]

be the Fourier series with coefficients (p(k))k∈Z. Then p∗ ∈ L2(−π,π ] and, be-
cause p is a density, p∗ is continuous with positive L2 norm. The Fourier series
with coefficients (�1k)k∈Z simply reads p∗(−λ)e−ikλ. Because there necessarily
is an interval on which p∗ is nonzero, {p∗(−λ)e−ikλ}k∈Z is linearly independent
and assumption (A1) then follows immediately. Hence, the projection estimator is
well defined and the results of Section 4 apply.

Let us derive the expression for the projection estimator f̂m,n through the
Fourier series f̂ ∗

m,n with Fourier coefficients (f̂m,n(k))k∈Z. Let P ∗
n be the Fourier

series associated to the coefficients (Pn1k)k∈Z,

P ∗
n (λ) = ∑

k∈Z

(Pn1k)e
−ikλ for all λ ∈ (−π,π ].

Then applying Parseval’s formula to (7) with g = �1k , f̂ ∗
m,n is the unique element

in Span(e−ikλp∗(−λ) : |k| < m) which satisfies, for all k = −m, . . . ,m,

1

2π

∫ π

−π
f̂ ∗

m,n(λ)p∗(λ)eikλ dλ = Pn1k = 1

2π

∫ π

−π
P ∗

n (λ)eikλ dλ.(55)
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Here we will treat the special case where the following condition holds:

Kp :=
∫ π

−π

1

|p∗(λ)|2 dλ < ∞.(56)

This condition implies that p∗ may only vanish on a Lebesgue null set, and in a
singular way (it cannot have a finite derivative where it vanishes). It is, of course,
verified, for instance, if |p∗| is bounded away from zero, which includes the case
of estimating a discrete distribution (ε = 0). If (56) holds, there is a function in
L2(−π,π ] such that (55) holds for all k ∈ Z. Indeed, since Pn is a probability,
|P ∗

n | is bounded by one so that P ∗
n /p∗ is in L2(−π,π ] and satisfies (55) for all

k whenever (56) holds. This amounts to taking the definition of the projection
estimator to its limit m = ∞; hence, we put f̂ ∗∞,n := P ∗

n /p∗ or, equivalently,

f̂∞,n(k) := 1

2π

∫ π

−π

P ∗
n (λ)

p∗(λ)
eikλ dλ for all k ∈ Z.

To compute the expectation of f̂∞,n, first apply (8) and then Parseval’s formula to
obtain

Ef P ∗
n (λ) = ∑

k∈Z

πf 1ke
−ikλ

= ∑
k∈Z

(f,�1k)He−ikλ = f ∗(λ)p∗(λ) for all λ in (−π,π ],

where f ∗ is the Fourier series with coefficients (f (k))k∈Z. The two last equations
give

Ef f̂∞,n(k) = 1

2π

∫ π

−π

Ef P ∗
n (λ)

p∗(λ)
eikλ dλ = f (k) for all k ∈ Z,(57)

where, as |P ∗
n /p∗| ≤ 1/|p∗| is integrable, we applied Fubini’s theorem. Hence,

f̂∞,n is unbiased, as expected, since it corresponds to m = ∞. Furthermore,

varf (f̂∞,n) = 1

n
varf (f̂∞,1) ≤ 1

2πn
Ef

∫ π

−π
|f̂ ∗∞,1(λ)|2 dλ ≤ Kp

2πn
.(58)

As shown by the following result, we are in a case where the minimax MISE rate
is achieved by f̂∞,n over any reasonable subclass of H1. This is a degenerate case
compared to the general setting of Section 4, because smoothness conditions of
the form (14) do not improve the minimax rate. To formulate the result, we define
the line segment [f0, f1] between f0 and f1 as [f0, f1] := {(1 − w)f0 + wf1 :w ∈
[0,1]}.

THEOREM 4. Assume that (56) holds. Then the MISE of the projection estima-
tor f̂∞,n has rate n−1 over H1, and this rate is minimax over any class C included
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in H1 and containing a line segment [f0, f1] for distinct f0 and f1 in H1. More
precisely, for any f0 and f1 in H1 and any positive integer n,

c0(K1 + K2c1n)−1 ≤ inf
f̂ ∈Sn

sup
f ∈[f0,f1]

Ef ‖f̂ − f ‖2
H

≤ sup
f ∈H1

Ef ‖f̂∞,n − f ‖2
H

≤ Kp

2πn
,

where K1 and K2 are universal positive constants, c0 := ∑
l∈Z(f1(l)−f0(l))

2 and
c1 := ∑

l∈Z |πf1(l) − πf0(l)|.

REMARK. Observe that the lower bound may reduce to a positive constant
only when the model is not identifiable, that is, if there exist f0 and f1 in H1 such
that c1 = 0. In this case (56) cannot be fulfilled.

PROOF OF THEOREM 4. Since f̂∞,n is unbiased, the upper bound simply
is (58).

The rate n−1 of the lower bound on the MISE generally holds for any reg-
ular parametric statistical model. Here we derive it via a Bayes risk lower
bound. Consider the parametric model {π(1−w)f0+wf1 :w ∈ (0,1)}. Put any contin-
uously differentiable prior density r on w ∈ (0,1) which is symmetric about 1/2:
r(1/2 + w) = r(1/2 − w). Let I(w) = E(1−w)f0+wf1[(∂w logπ(1−w)f0+wf1(X))2]
and I(r) = ∫ 1

0 ṙ(w)2/r(w)dw. Then, for any estimator f̂ from n observa-
tions,

sup
f ∈[f0,f1]

Ef ‖f̂ − f ‖2
H

≥
∫ 1

0
E(1−w)f0+wf1

∥∥f̂ − (
(1 − w)f0 + wf1

)∥∥2
H
r(w)dw

(59)

=
∫ 1

0

∑
k∈Z

E(1−w)f0+wf1

[(
f̂ (k) − (

(1 − w)f0(k) + wf1(k)
))2]

r(w)dw

≥ ∑
k∈Z

(f1(k) − f0(k))2

n
∫ 1

0 I(w)r(w)dw + I(r)
.

Here the first inequality is the Bayes risk lower bound on the minimax risk and the
second one is the van Trees inequality (a Bayesian Cramér–Rao bound); see, for
example, [11]. We easily compute

I(w) = ∑
k∈Z

(πf1(k) − πf0(k))2

(πf0(k) + πf1(k))/2 + (w − 1/2)(πf1(k) − πf0(k))
,
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with the convention 0/0 = 0. Using the symmetry of r , we obtain∫ 1

0
I(w)r(w)dw

= ∑
k∈Z

∫ 1

0

|πf1(k) − πf0(k)|r(w)dw

(πf0(k) + πf1(k))/(2|πf1(k) − πf0(k)|) + (w − 1/2)

≤ ∑
k∈Z

∣∣πf1(k) − πf0(k)
∣∣ ∫ 1

0
w−1r(w)dw,

where we simply used a + b ≥ |a − b| for any nonnegative a and b for
the inequality. Hence, (59) gives the required lower bound, where K1 = I(r)

and K2 = ∫ 1
0 w−1r(w)dw are fixed once a particular choice of r is made.

�

REMARK. There is a tradeoff between K1 and K2 when the prior density r

is chosen for optimizing the lower bound for finite n. Asymptotically, the lower
bound is equivalent to c0/(K2c1n), and it is easy to see that the infimum of possible
values of K2 is 2 (let r tend to a point mass located at w = 1/2). Hence,

lim inf
n→∞ inf

f̂ ∈Sn

sup
f ∈[f0,f1]

nEf ‖f̂ − f ‖2
H

≥ c0

2c1
.

The right-hand side depends on f0 and f1 and should be compared to the asymp-
totic upper bound Kp/(2π).

The statistical literature on deconvolution is vast, but it is primarily concerned
with continuous random variables having densities with respect to Lebesgue mea-
sure, often on R. Some key references on achievable minimax rates of convergence
over suitable smoothness classes in that setting are [2] and [6] for pointwise esti-
mation of the mixing density, and [5, 7, 8, 22] for (weighted) Lp loss. The diffi-
culty of the estimation then depends on whether the characteristic function of ε,
that is, essentially our p∗, vanishes algebraically or exponentially fast at infinity,
these cases being referred to as ordinary smooth and supersmooth error densities,
respectively. With an ordinary smooth error density, the optimal rate of conver-
gence is algebraic in n, whereas it is algebraic in logn when the error density is
supersmooth.

In the discrete setting considered here, the notions of ordinary smooth and su-
persmooth error densities are void, since p∗ is defined on a compact interval, the
unit circle. The MISE rate n−1 of Theorem 4 is also faster than what is obtained in
the papers cited above; it only appears as a limit in the ordinary smooth case when
the unknown density f has infinite smoothness. In the discrete case, the rate n−1

may not hold when (56) fails; some additional remarks on this issue are given in
Section 8.
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7. Mixtures of uniform discrete distributions. We now take � = N :=
{1,2, . . .}, X = Z+ and let ζ and ν both be counting measure. Thus, H =
l2(�). Consider mixands given by the family of uniform discrete distributions on
{0,1, . . . , θ −1}; that is, �1k(θ) = πθ(k) = θ−1 for 0 ≤ k ≤ θ −1 and 0 otherwise.
Observe that, for all k ≥ 0, �1k(θ) = θ−1 for large θ so that �1k is not in l1(�)

and (A1) does not hold. Then letting the space Vm be spanned by (�1k)0≤k<m as
in Section 4 would yield an estimator f̂m,n that is a linear combination of noninte-
grable functions and, hence, a poor estimator of the mixing density. It is possible to
circumvent this problem by replacing ν by a distribution such that ((1 + θ)−1)θ≥0

belongs to L1(ν), but then the difficulty would lie in the definition of the smooth-
ness classes (14). Indeed, in this case a different choice of Vm provides a much sim-
pler definition of smoothness classes. For all k ≥ 0, we let hk = (k+1)(1k −1k+1),
which yields

�hk = (k + 1)(�1k − �1k+1) = 1k+1.

Hence, (�hk)k≥0 is itself the orthonormal basis denoted by (φk) in Section 3. It
follows that

Vm = Span(�hk,0 ≤ k < m) = {f ∈ l2(�) :f (θ) = 0 for all θ > m},
the projection estimator is

f̂m,n(k) = kPn(1k−1 − 1k)1(k ≤ m) for all k ≥ 1,

and the smoothness classes of Section 4 read

C(u,C, r) =
{
f ∈ l2(�) :

∑
k>m

f 2(k) ≤ C2u2
m for all m ≥ r

}
.(60)

Since varf (hk) ≤ (k + 1)2(πf (k) + πf (k + 1)) for any f in H1, Proposition 3,
along with (11), gives, for all m,

Ef ‖f̂m,n − f ‖2
H

≤ ∑
θ>m

f 2(θ) + 1

n

m−1∑
k=0

(k + 1)2(
πf (k) + πf (k + 1)

)
.(61)

As in Section 6, this implies that the MISE rate n−1 is achievable as soon as πf

has finite second moment, that is,
∑

k≥0 k2πf (k) < ∞. Moreover, it holds that πf

has finite second moment for any f in C(u,C, r) ∩ H1 whenever u = (um) sat-
isfies

∑
m3/2um < ∞. Indeed, as a simple consequence of the Cauchy–Schwarz

inequality, πf (k) = O({k−1 ∑
θ>k f 2(θ)}1/2) = O(k−1/2uk) for such f . The in-

teresting cases are thus those when (um) decreases slowly, and Corollary 3 below
provides such an example.
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THEOREM 5. Let u = (um) be a positive sequence decreasing to zero,
C a positive number and r a positive integer. Then for all sufficiently large m,

inf
f̂ ∈Sn

sup
f ∈C(u,C,r)∩H1

Ef ‖f̂ − f ‖2
H

≥
(

Cum+1

2

)2(
1 −

√
5

2m
Cum+1

)n

,(62)

and for any integer m ≥ r ,

sup
f ∈C(u,C,r)∩H1

Ef ‖f̂m,n − f ‖2
H

≤ (Cum)2 + 2m2

n
.(63)

PROOF. The upper bound (63) follows from (61) and the bound
∑m−1

k=0 (k +
1)2πf (k) ≤ m2.

The lower bound (62) is obtained along the same lines as the lower bound of
Theorem 1. We apply Proposition 2 with h(k) = 1(k < m),

V = Span{h(k)π·(k), k ∈ X}
= {f ∈ l2(�) : there exists λ ∈ R such that f (θ) = λθ−1 for all θ ≥ m}

and C� := V ⊥ ∩ C(u, 1
2C, r). Thus, the assumptions of Proposition 2 are imme-

diately satisfied. To arrive at (62), we still need to find a suitable probability den-
sity f0 such that f0 + C� ⊆ C(u,C, r), and a function g in C� such that f0 ± g

are in H1 to bound the supremum in the lower bound of Proposition 2 from be-
low.

In order to do this, let g in l2(�) be one of the two sequences satisfying the
three equations

(i) g(θ) = 0 unless θ = m, m + 1 or m + 2;

(ii)
m+2∑
θ=m

g(θ) = 0 and
m+2∑
θ=m

θ−1g(θ) = 0;

(iii)
m+2∑
θ=m

g2(θ) = (1
2Cum+1

)2.

Then ‖g‖H = 1
2Cum+1.

Let f0 be such that f0(θ) = |g(θ)| for θ > 1 and f0(1) = 1−∑m+2
θ=m f0(θ). Then

for m sufficiently large,
∑m+2

θ=m f0(θ) ≤ √
3(

∑m+2
θ=m g2(θ))1/2 =

√
3

2 Cum+1 is less
than one. Hence, f0 belongs to H1 for large m. Using (60) and the result that (uk)

is nonincreasing, one readily checks that f0 is in C(u, 1
2C, r). It is then immediate

that f0 + C(u, 1
2C, r) ⊆ C(u,C, r), and thus also f0 + C� ⊆ C(u,C, r).

We now proceed to checking that g belongs to C� and that f0 ±g are in H1. The
latter follows from

∑
g(θ) = 0 and |f0| ≥ |g|. The former is also true as g both

belongs to C(u, 1
2C, r), which is checked as for f0, and is perpendicular to V ,

which follows from item (i) and the second part of item (ii) in its definition.
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Hence, Proposition 2 gives

inf
f̂ ∈Sn

sup
f ∈C(u,C,r)∩H1

Ef ‖f̂ − f ‖2
H

≥ ‖g‖2
H
πn

f0
{0,1, . . . ,m − 1}.

We easily compute

πf0{0,1, . . . ,m − 1}
= 1 − f0(m + 1)(m + 1)−1 − 2f0(m + 2)(m + 2)−1

≥ 1 −
√

5

m
‖g‖H,

and (62) follows from the two last inequalities. �

COROLLARY 3. Let α and C be two positive numbers and r a nonnegative
integer. Then the minimax MISE rate over the class C((log−α(1 + n)),C, r) is
(logn)−2α . This rate is achieved by the projection estimator f̂mn,n with mn =
[τnβ] for any positive number τ and any positive β less than 1/2. Moreover, this
estimator is asymptotically MISE efficient up to a factor 4/β2α .

PROOF. Put um = (log(1 + m))−α . Use the lower bound (62) with m = n to
obtain the asymptotics (Cun/2)2. Then use the upper bound (63), with mn = [τnβ ]
and β ∈ (0,1/2), to obtain

u−2
mn

sup
f ∈C(u,C,r)∩H1

Ef

∥∥f̂mn,n − f
∥∥2

H
≤ C2 + 2m2

n

nu2
mn

= C2 + o(1).

Finally, (Cumn)
2/(Cu2

n/2)2 → 4/β2α . The proof is complete. �

8. Open problems. In Sections 5 and 6 we have investigated some particular
cases for which (A1) is satisfied and, thus, both Theorem 1 and Theorem 2 apply.
The upper bounds were, in fact, obtained directly without using Theorem 2, but are
essentially similar (see the remark following the proof of Theorem 2). We have also
seen in Section 7 that, in certain situations when (A1) does not hold, this approach
could be adapted. However, only in the case of power series mixtures and in the
adaptation of Section 7 could we compute explicit lower and upper bounds giving
rise to identical rates. In the case of discrete deconvolution of Section 6, we even
gave an alternative lower bound which gives the optimal rate in the degenerate
case where the projection estimator f̂m,n can be defined for m = ∞. In this section
we outline a few open problems for which the framework of the present paper is
potentially applicable, but in which we do not attempt to compute the bounds.
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8.1. Multivariate power series. Proposition 6 shows that Theorem 1 applies
for a large range of dominating measures ν. Condition (i) is a simple reformula-
tion of the requirement of having π·(k) both in L1(ν) and in L2(ν) for all k, and
easily generalizes to other mixands. Condition (ii) also generalizes when π·(k) is
related to a well-known sequence of linearly independent functions (here the poly-
nomials). For instance, it trivially generalizes to multivariate power series mixands
(see [13], Chapter 38). A slightly different setting concerns the bivariate Poisson
distributions ([13], Chapter 37) given by, for all θ = (θ1, θ2, θ12) in � := (0,∞)3

and all nonnegative integers x1 and x2,

πθ(x1, x2) = e−(θ1+θ2+θ12)
x1∧x2∑
i=0

θ
x1−i
1 θ

x2−i
2 θi

12

(x1 − i)!(x2 − i)!i! .

In this case (i) is modified to
∫
� |θ |ke−(θ1+θ2+θ12)ν(dθ) < ∞ and (ii) is unchanged.

This is easily seen upon observing that {eθ1+θ2+θ12(πθ (x1, x2)}x1,x2≥0 is a collec-
tion of trivariate polynomials in θ = (θ1, θ2, θ12) that are linearly independent as
the term θ

x1
1 θ

x2
2 only appears in πθ(x1, x2). The rest of the proof above applies

similarly.
Although Theorems 1 and 2 apply, the rates they provide are not known explic-

itly.

8.2. Power series mixing distributions with noncompact support. Let again πθ

be the Poisson distribution with mean θ , and let � = R+. Thus, we have power
series mixands with ak = 1/k!, but with � being unbounded. Take ν as Lebesgue
measure, so that H = L2(R+). Applying (12) [see also (35)], we find that, for all
f in H1, the variance term in Proposition 3 is bounded by

Ef ‖f̂m,1‖2
H

= Ef

(
m−1∑
k=0

�2
k,X1

)
≤ ∑

0≤l≤k<m

�2
k,l,(64)

which should be compared to (50). For λ1 > 2 + √
17/2, this bound, along with

Lemma A.2 in the bias-variance decomposition, shows that for any positive num-
ber C, any nonnegative integer r and any sequences (un) and (mn) satisfying
λ

mn

1 /umn = o(n1/2),

lim sup
n→∞

u−2
mn

sup
f ∈C(u,C,r)∩H1

Ef

∥∥f̂umn,n − f
∥∥2

H

≤ lim sup
n→∞

u−2
mn

(
C2u2

mn
+ n−1K1λ

2mn

1

) = C2.

For sequences uα the obtained root MISE rate is (logn)−α by choosing mn =
[τ logn] for small τ . This is better than when b < ∞ (see Corollary 2).

Concerning lower bounds on the MISE, Loh and Zhang [17] give such a one in
their Theorem 4 over particular classes related to ours, but their assumptions do
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not apply in the case considered here because they correspond to a weight function
w = 1R+ with infinite L1 norm. Hence, it is still to be found if the logarithmic rate
of the projection estimator is optimal in this case. Theorem 1 applies and Proposi-
tion 5 shows that C(u,C, r) ∩ H1 is nonempty for a positive r or for large C. The
next problem, which we have not solved, rather consists in finding f0 in this inter-
section such that um = O(1/K∞,f0(Vm+2 
 Vm)), which is the key in our method
for showing that the minimax MISE rate is (u2

mn
).

8.3. Discrete deconvolution with vanishing characteristic function. Let us re-
turn to the setting of Section 6. If condition (56) is not satisfied, our analysis must
be refined. It is indeed possible that the optimal rate is slower in this case, and the
behavior of p∗ at its zeros may then yield the optimal rate of convergence.

To our knowledge, this problem has not been studied. A possible approach
would be to mimic that of Section 5.1 by observing that the projection estimator
can be easily defined using a sequence of orthonormal trigonometric polynomials
in L2(ν′) with ν′(dt) = |p∗|2(t)1(−π,π ](t) dt , and to express f̂m,n using such a
sequence. However, in contrast to power series mixands, the behavior of the pro-
jection estimator here should be driven by the measure ν′, that is, by using precise
assumptions on its zeros when (56) fails.

APPENDIX

Recurrence relations for orthonormal polynomials. In this appendix we
give some further results for the orthogonal polynomials (qν

k ) in H and (qν′
k ) in H

′,
introduced in Section 5.1. For any measure ν0 on R, one can construct an orthog-
onal sequence of polynomials (rk)k≥0 with increasing degrees in L2(ν0) using a
so-called three terms recurrence relation,

rk+1(t) = (t − αk)rk(t) − βkrk−1(t) with r−1 = 0 and r0 = 1,

where (αk)k≥0 and (βk)k≥0 are sequences depending on ν0. Moreover, putting
β0 = ‖r0‖2

H
, one has ([10], equations (1.13))

Nk := ‖rk‖H =
(

k∏
j=0

βj

)1/2

for all k ≥ 0.(65)

Let the polynomials have coefficients rk(t) = ∑
l Rk,l t

l and put

Q
ν0
k,l = Rk,l/Nk for all k, l ≥ 0.(66)

The latter coefficients are those of an orthonormal sequence corresponding to Qν′
k,l

and Qν
k,l for ν0 equal to ν′ and ν, respectively. The three terms recurrence relation

can be written

Rk+1,l = Rk,l−1 − αkRk,l − βkRk−1,l for all k, l ≥ 0, with R0,0 = 1(67)
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and the convention Rk,l = 0 if l < 0 or l > k. Hence, by (65), (67) and (66), we see
that knowledge of (αk)k≥0 and (βk)k≥0 provides a simple algorithm for computing
the coefficients Q

ν0
k,l recursively at a low computational cost.

Let us now derive the coefficients αk and βk for particular choices for ν0.

A.1. Legendre polynomials. Let ν0 be Lebesgue measure on [−1,1]. In this
case αk = 0, β0 = 2 and βk = 1/(4 − 1/k2) for k ≥ 1 ([10], equation (2.1)).

A.2. Translated-scaled Legendre polynomials. Let ν0 be Lebesgue measure
on an interval [a, b]. Denote µ := (a + b)/2 and δ := (b − a)/2. Replacing t by
(u − µ)/δ in the three terms recurrence relation for Legendre polynomials, one
obtains an orthogonal sequence for ν0 satisfying

rk+1

(
u − µ

δ

)
=

(
u − µ

δ
− αk

)
rk

(
u − µ

δ

)
− βkrk−1

(
u − µ

δ

)
.

Multiplying by δk+1 and identifying (δkrk((u − µ)/δ))k with a new orthogonal
sequence, the previous equation gives the following coefficients in this case: αk =
−µ, β0 = 2δ and βk = δ2/(4 − 1/k2) for k ≥ 1.

The following result serves for bounding the variance of f̌m,n [see (34)] when
ν = ν0.

LEMMA A.1. Let λ0 be a number larger than λ := γ + √
γ 2 + 1 with γ =

(2 + a + b)/(b − a). Then
∑

l(Q
ν0
k,l)

2 = O(λ2k
0 ).

PROOF. It follows from (67) that

‖Rk+1‖ ≤ (1 + |αk|)‖Rk‖ + βk‖Rk−1‖,
where ‖Rk‖ := (

∑
l R

2
k,l)

1/2. Consequently, dividing by Nk+1 as given above, we
obtain

‖Qν0
k+1‖ ≤ 1 + |αk|√

βk+1
‖Qν0

k ‖ +
√

βk

βk+1
‖Qν0

k−1‖.(68)

Note that

lim
k→∞

1 + |αk|√
βk+1

= 2(1 + µ)

δ
and

√
βk

βk+1
≤ 1 for all k ≥ 1,

and that the positive solution of the quadratic equation

x2 − 2(1 + µ)

δ
x − 1 = 0 with µ = a + b

2
and δ = b − a

2
(69)

is λ. The lemma follows. �
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A.3. Laguerre measure. Let ν0 be the measure with density e−t with respect
to Lebesgue measure over t ∈ (0,∞).

In this case αk = 2k + 1, β0 = 1 and βk = k2 for k ≥ 1 ([10], equation (2.4)).

A.4. Squared Laguerre measure. Let finally ν0 be the measure with den-
sity e−2t with respect to Lebesgue measure over t ∈ (0,∞).

This corresponds to ν′ in the case of Poisson mixands, ak = 1/k! and
Z̃2(t) = e−2t . We have a result corresponding to Lemma A.1, but we now study
H

′ rather than H as in the case of compact support and Lebesgue measure, as our
interest lies in the coefficients �k,l = Q

ν0
k,l/al (see Section 5.1).

LEMMA A.2. Let λ1 be a number larger than 2 + √
17/2. Then

∑
l �

2
k,l =∑

l(Q
ν0
k,l/al)

2 = O(λ2k
1 ).

PROOF. Dividing (67) by al one obtains(∑
l

Q
ν02
k+1,l

al

)1/2

(70)

≤ rk + |αk|√
βk+1

(∑
l

Q
ν02
k,l

al

)1/2

+
√

βk

βk+1

(∑
l

Q
ν02
k−1,l

al

)1/2

,

where rk := max0≤l≤k(al−1/al). By arguments similar to the ones used for the
translated-scaled Legendre polynomials, αk = k + 1/2, β0 = 1/2 and βk = k2/4
for k ≥ 1. Since ak = 1/k!, rk = k in (70). Moreover,

lim
k→∞

k + |αk|√
βk+1

= 4 and

√
βk

βk+1
≤ 1 for all k ≥ 1.

The positive solution of the quadratic equation x2 − 4x − 1 = 0 is 2 + √
17/2.

Hence the result. �
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