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EXTREMAL QUANTILE REGRESSION?!

BY VICTOR CHERNOZHUKOV
Massachusetts Institute of Technology

Quantile regression is an important tool for estimation of conditional
quantiles of a responseé given a vector of covariateX. It can be used to
measure the effect of covariates not only in the center of a distribution, but
also in the upper and lower tails. This paper develops a theory of quantile
regression in the tails. Specifically, it obtains the large sample properties
of extremal (extreme order and intermediate order) quantile regression
estimators for the linear quantile regression model with the tails restricted to
the domain of minimum attraction and closed under tail equivalence across
regressor values. This modeling setup combines restrictions of extreme value
theory with leading homoscedastic and heteroscedastic linear specifications
of regression analysis. In large samples, extreme order regression quantiles
converge weakly to argmin functionals of stochastic integrals of Poisson
processes that depend on regressors, while intermediate regression quantiles
and their functionals converge to normal vectors with variance matrices
dependent on the tail parameters and the regressor design.

1. Introduction. Regression quantiles [Koenker and Bassett (1978)] estimate
conditional quantiles of a response varialflegiven regressorX. They extend
Laplace’s (1818) median regression (least absolute deviation estimator) and
generalize the ordinary sample quantiles to the regression setting. Regression
guantiles are used widely in empirical work and studied extensively in theoretical
statistics. See, for example, Buchinsky (1994), Chamberlain (1994), Chaudhuri,
Doksum and Samarov (1997), Gutenbrunner andClkoré (1992), Hendricks
and Koenker (1992), Knight (1998), Koenker and Portnoy (1987), Portnoy and
Koenker (1997), Portnoy (1991a) and Powell (1986), among others.

Many potentially important applications of regression quantiles involve the
study of various extremal phenomena. In econometrics, motivating examples
include the analysis of factors that contribute to extremely low infant birthweights
[cf. Abrevaya (2001)]; the analysis of the highest bids in auctions [cf. Donald
and Paarsch (1993)]; and estimation of factors of high risk in finance [cf. Tsay
(2002) and Chernozhukov and Umantsev (2001), among others]. In biostatistics
and other areas, motivating examples include the analysis of survival at extreme
durations [cf. Koenker and Geling (2001)]; the analysis of factors that impact
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EXTREMAL QUANTILE REGRESSION 807

the approximate boundaries of biological processes [cf. Cade (2003)]; image
reconstruction and other problems where conditional quantiles near maximum or
minimum are of interest [cf. Korostelév, Simar and Tsybakov (1995)].

An important peril to inference in the listed examples is that conventional large
sample theory for quantile regression does not apply sufficiently far in the tails. In
the nonregression case, this problem is familiar, well documented and successfully
dealt with by modern extreme value theory; see, for example, Leadbetter, Lindgren
and Rootzén (1983), Resnick (1987) and Embrechts, Klippelberg and Mikosch
(1997). The purpose of this paper is to develop an asymptotic theory for quantile
regression in the tails based on this theory. Specifically, this paper obtains the large
sample properties of extremal (extreme order and intermediate order) quantile
regression for the class of linear quantile regression models with conditional tails
of the response variable restricted to the domain of minimum attraction and closed
under the tail equivalence across conditioning values.

The paper is organized as follows. After an introductory Section 2, Section 3
joins together the linear quantile regression model with the tail restrictions
of modern extreme value theory. These restrictions are imposed in a manner
that allows regressors to impact the conditional tail quantiles of respinse
differently than the central quantiles. The resulting modeling setup thus covers
conventional location shift regression models, as well as more general quantile
regression models. Section 4 provides the asymptotic theory for the sample
regression quantiles under the extreme order conditiofi,— k > 0, wherery is
the quantile index and’ is the sample size. By analogy with the extreme order
guantiles in nonregression cases, the extreme order regression quantiles converge
to extreme type variates (functionals of multivariate Poisson processes that depend
on regressors). Our analysis of the cag& — k > 0 builds on and complements
the analysis oft; T — 0 given by Feigin and Resnick (1994), Smith (1994),
Portnoy and Jurgkova (1999) and Knight (2001) for various types of location shift
models. [Chernozhukov (1998) also studied some nonparametric cases.] Section 5
derives the asymptotic distributions of regression quantiles under the intermediate
order condition:zy T — oo, tr — 0, thus providing a quantile regression analog
of the results on the intermediate univariate quantiles by Dekkers and de Haan
(1989). As with the intermediate quantiles in nonregression cases, the intermediate
order regression quantiles, and their functionals such as Pickands type estimators
of the extreme value index, analyzed in Section 6, are asymptotically normal with
variance determined by both the tail parameters and the regressor design. Section 7
provides an illustration, Section 8 concludes, and Section 9 collects the proofs.

2. The setting. Suppose! is the response variable v, andX = (1, X" ;)
is ad x 1 vector of regressors (typically transformations of original regressors).
(Throughout the paper, given a vectar x_1 denotesx without its first
component;.) Denote the conditional distribution &f given X = x by Fy (-|x).
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The present focus is oﬁy_l(ﬂx) =inf{y: Fy(y|x) > t}, wheret is close to 0.
Let there be a sample

Yy, Xe,t=1,...,T} whereX; € X,

generated by a probability model with a conditional quantile function of the
classical linear-in-parameter form

(2.1) Fylrlx)=x'B(xr)  forallzed,xeX,

where () is a nonparametric function of, which when 4 = (0,1) also
corresponds to the stochastic model with random coefficients:

(2.2) Y=X'B(), ¢2U@01),XeX.
Here it is necessary that (2.1) holds for
(2.3) £ =10, n] for some O< < 1 andx € X, a compact subset &,

Different linear models (2.1) can be applied to different covariate regidmgich

can be local neighborhoods of a gives, in which case the linear model (2.1)

is motivated as a Taylor expansion]. The model (2.1) plays a fundamental role
in the theoretical and practical literature on quantile regression mentioned in
the Introduction. Its appealing feature is the ability to capture quantile-specific
covariate effects in a convenient linear framework.

In the sequel, we combine the linear model (2.1) with the tail restrictions
from extreme value theory to develop applicable asymptotic results. It is of
vital consequence to impose these restrictions in a manner that preserves the
quantile-specific covariate effects, as motivated by the empirical examples listed
in the Introduction. For instance, in the analysis of U.S. birthweights, Abrevaya
(2001) finds that smoking and the absence of pre-natal care impact the low
conditional quantiles of birthweights much more negatively than the central
birthweight quantiles. The linear framework (2.1) is able to accommodate this
type of impact through the quantile-specific coefficiedts), wheref_1(z), fort
near 0, describes the effect of covariate factors on extremely low birthweights and,
say, B_1(1/2) describes the effect on central birthweights. Thus, when imposing
extreme value restrictions, it is important to preserve this ability.

The inference aboug(z) is based on the regression quantile statisfics)
[Koenker and Bassett (1978)] defined by the least asymmetric absolute deviation
problem:

T
(2.4) A(r) earg mﬂigpr(Y, —X/8)  wherep,(u) = (t — 1(u < 0)u,
BERT 21

of which Laplace’s (1818) median regression is an important casepjisiiu) =
lu|/2. The statistics3(¢) naturally generalize the ordinary sample quantiles to
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the conditional setting. In fact, the usual univariatguantiles can be recovered
as the solution to this problem without covariates, that is, wkige= 1. [E.Q., if
tT € (0,1), B(r) = Y1), and ift T € (1,2), B(r) = Y(2), etc.]

In order to provide large sample propertiesgat) in the tails, we distinguish
three types of sample regression quantiles, following the classical theory of order
statistics: (i) an extreme order sequence, when\ 0, o7 7 — k > 0, (i) an
intermediate order sequence, whep \, 0, 77T — oo, (iii) a central order
sequence, when € (0, 1) is fixed, andT — oo (under which the conventional
theory applies). We conside#(t7) under the extreme and intermediate order
sequences, and refer &(z7) under both sequences as théremal regression
guantiles. In what follows, we omit theT' in tz whenever it does not cause
confusion.

3. The extreme value restrictions on the linear quantile regression model.
This section joins the linear model (2.1) together with the tail restrictions from
extreme value theory, examines the consequences and presents examples.

Consider a random variabdewith distribution functionF, and lower end-point
s, = 0 or s, = —oo. Recall [cf. Resnick (1987)] thak,, is said to have tail of
type 1, 2 or 3 if for

type 1. as N\ s, =0o0r —oo,
Fu(z +va(z)) ~ Fy(2)e’ VveR,&=0,

type 2: ax u=—090,
3.1) yp NS

F,(vz2) ~v YEF,(2) Vv>0¢&>0,
type 3: as \(s, =0,
Fu(vz) ~v Y5 Fy(2) Vu>0§ <0,

wherea(z) = fju F,(v)dv/F,(z2), for z > s,. The numbel is commonly called
the extreme value index, ang, with tails of types 1-3 is said to belong to the
domain of minimum attraction.afz) ~ b(z) denotes that:(z)/b(z) — 1 as a
specified limit overz is taken.]

CoNDITION R1. In addition to (2.1), there exists an auxiliary line> x’S,
such that for
(3.2) U=Y - X'B, with sy =0 orsy = —o0,
and someF,, with type 1, 2 or 3 tails,
(3.3) Fy(zlx) ~ K(x) - F,(2) uniformly inx € X, asz \_ sy,

whereK () > 0 is a continuous bounded function EnWithout loss of generality,
letK(x)=1atx =ux andF,(z) = Fy(z|ux).
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CoNDITION R2. The distribution function ok = (1, X" ;)’, Fx, has com-
pact supporX with EX X’ positive definite. Without loss of generality, let =
EX=(10,...,0).

WhenY has a finite lower endpoint, that iX’S(0) > —oo, it is implicit in
Condition R1 thatg, = B(0) so thatU =Y — X’B(0) > 0 has endpoint 0 by
construction. In the unbounded support ca$&3(0) = —oo and is not suitable
as an auxiliary line, but existence of any other line such that Condition R1 holds
suffices.

Condition R1 is the main assumption. First, Condition R1 requires the tails of
U =Y — X'B, for someg, to be in the domain of minimum attraction, which
is a nonparametric class of distributions [cf. Resnick (1987) and Embrechts,
Kluppelberg and Mikosch (1997)]. In this sense, the specification Condition R1
is semiparametric. Examples 3.1 and 3.2 present some of the regression models
covered by Condition R1. Second, Condition R1 also requires that, for any
x',x" eX, z— Fy(z|x') andz — Fy(z|x”) are tail equivalent up to a constant.
This condition is motivated by the closure of the domain of minimum attraction
under tail equivalence [cf. Proposition 1.19 in Resnick (1987)].

Compactness oK in Condition R1 is necessary, as the limit theory for
regression quantiles may generally change otherwise. In applications, compactness
may be imposed by the explicit timming of observations depending on whether
X, € X. In this case the linear model (2.1) is assumed to apply only to values
of X in X. Clearly, the smalleiX, the less restrictive is the linear model by
virtue of Taylor approximation [e.g., Chaudhuri (1991)]. Also, trimmikKigo X
eliminates the impact of outlying values on the limit distribution and inference, as
it does in the case of the central regression quantiles. In some cases it should be
possible to mak& unbounded by imposing higher level nonprimitive conditions,
for example, similar to those on page 98 in Knight (2001). However, since we
view X as a “small” neighborhood over which the linear approximation (2.1) is
adequate, we do not pursue this extension.

Theorem 3.1 shows that the functi&(x) in Condition R1 can be represented
by the following types. Other properties of the linear quantile regression model
under Conditions R1 and R2 are obtained in Lemma 9.1 given in Section 9.1.

THEOREM 3.1 [Three types oK (-)]. Under Conditions R1and R2, for some
ceR?,

’

e *C, when F, hastype 1tails, & =0,
(3.4) K(x)=1 (x'¢)V8, when F, hastype 2 tails, & > 0,
(x'c) /¢, when F, hastype 3tails, £ <0,

where 'y c =1 for type 2 and 3 tails, u'y c = 0 for type 1 tails, and x'c > O for all
x € X for types 2 and 3.
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REMARK 3.1. The conditionX’c > 0 a.s. for tails of types 2 and 3 arises from
the linearity assumption (2.1). Indeed, (2.1) imposes that the quantiles should not
cross: ifl > 1, thenX’(B(It) — B(t)) > 0 a.s. Since by Lemma 9.1(X) (8(It) —
B(0)/uy(Bdr) — B(r)) — X'c ast (0, the noncrossing condition requires
X'c > 0a.s. Inlocation-scale shift models (cf. Example 3.2), the condkian- 0
a.s. is equivalent to a logical restriction on the scale functidfo (> 0 a.s.). In
location shift models (cf. Example 3.1), this condition is ordinarily satisfied since
X’c=1 a.s. for tails of types 2 and 3.

REMARK 3.2. The general case whéh{K (X) # 1} > 0 will be referred to
as the heterogeneous case, amdll be referred to as thbeterogeneity index. The
special case with

(3.5) KX)=1 as.

will be referred to as thBomogeneous case. The latter amountsde= 0 for type 1
tails, andc =€} = (1,0, ...)" for type 2 and 3 tails. Notice that in this cak¥& = 1
a.s. for types 2 and 3 and'c =0 a.s. for type 1 tails.

In developing regularity conditions which target regression applications, it is
natural to try to cover the most conventional regression settings and, hopefully,
more general stochastic specifications. The following examples clarify this
possibility.

ExamPLE 3.1 (Location shift regression). Consider the location-shift model
(3.6) Y=XB+U,

where U is independent ofX, and supposd/ is in the domain of minimum
attraction. When the lower endpoint of the supportofs finite, it is normalized

to 0. Clearly, this is a special case of Condition R1 wh&'@, = X'8,U =

Y — X'B,K(X) =1 a.s. The data generating process (3.6) has been widely
adopted in regression work at least since Huber (1973) and Rao (1965).
A variety of standard survival and duration models also imply (3.6) after a
transformation, for example, the Cox models with Weibull hazards and accelerated
failure time models [cf. Doksum and Gasko (1990)]. Also, (3.6) underlies many
theoretical studies of quantile regression. Hence, it is useful that Condition R1
covers (3.6).

ExXAMPLE 3.2 (Location-scale shift regression). As a generalization of (3.6),
consider the stochastic equation

(3.7) Y=XB+Xo-V, V is independent ok,
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where X’ > 0 (a.s.) is the scale function, andis in the domain of minimum
attraction withé # 0. (3.7) implies the following linear conditional quantile
function

(3.8) FlaX)=X'B+X'o - F, 1 (x).

Then forX'g, = X'B,U=Y — X'B, = X'c -V, we haveP(X'o - V < z|X) ~
(X'0)Yé. Fy(z) asz \, 0or —oco, so Condition R1 is satisfied witlF, =

Fy andK (X) = (X'0)Y%. The data generating process (3.7) has been adopted
in, for example, Koenker and Bassett (1982), Gutenbrunner andkawé (1992)

and He (1997).

ExamMpPLE 3.3 (Quantile-shift regression). To see that Condition R1 covers
more general stochastic models than (3.6) and (3.7), note that Condition R1
requires thatFy (u|X) or Fy (u|X) be independent ok only in the tails. In both
cases, these weaker independence requirements Aljdar example, to have a
negative impact on the high and low quantiles but to have a positive impact on the
median quantiles. In contrast, notice from (3.8) that (3.6) and (3.7) preclude such
guantile-specific impacts. Thus, Condition R1 preserves the heterogeneous impact
property of (2.1), allowing the impact of covariate factors on extreme quantiles to
be very different from their impact on the central quantiles.

4. Asymptoticsof extreme order regression quantiles. Consider sequences

7,0 =1,...,1, such that;T — k; > 0 asT — oo, and the corresponding
normalized regression quantile statistits(k;), where
(4.1) Zr(k)=ar(B(r) — By — brey),

B(z) is the regression quantil@, is the coefficient of the auxiliary line defined
in 3.2),e1 =(1,0,...) € R4, and (ar, by) are the canonical normalization
constants, given by

1 1
for type 1 tails: ar = 1/a[Fu1<—>], br = Ful(—>,
T T
1
(4.2) fortype 2tails: ar = —l/Fu—l(F>, br =0,
. (1
for type 3 tails: ar =1/F, 7)) br =0,
whereF, is defined in Condition R1. Moreover, consider the centered statistic
(4.3) Z5() = ar (B(x) — B(0))

and the point process, féf;, = Y; — X, 3,

T
(4.4) NG =3 1({ar (U, — br), X} € ).
t=1
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We will show thatN(:) converges weakly to the Poisson process

(4.5) NG =) 1({Ji, Xi} € ),

i=1
with points{J;, X;} satisfying
(In(Ty) + Xic, X;), for type 1 talils,
4.6) (Ji,X;,i>1)= (—r;fx;c, X)), for type 2 talils, i>1,
(I‘i—g X:c, Xi), for type 3 talils,
where{X;} is an i.i.d. sequence with lawy,

i
(4.7) ri=) &, ix>1,
j=1

and{§;} is an i.i.d. sequence of unit-exponential variables, independefiX gt
In the homogeneous case (3.3)andX; are independent since

B { 0, for type 1 tails,

4.8 Xic= . foralli > 1.
(4.8) 1, for type 2 and 3 tails, =

l
The following theorem establishes the weak limit&f (k)'s as a function of.

THEOREM 4.1 (Extreme order regression quantilespssume Conditions
R1 and R2 and that {Y;, X,} isani.i.d. or a stationary sequence satisfying the
Meyer type conditions of Lemma 9.4.Thenast7T — k> 0and T — oo,

(4.9) Zr (k) 4 Z~o(k) =arg mizr{—k,ulxz + /(x/z —u)T dN(u, x):|,
zZe
provided Z., (k) is a uniquely defined random vector in Z, where (x'z —

)yt =1 < x'2)(x'z — u), Z =R? for type 1 and 3 tails, and Z = {z €
R? : max.cx z’x < 0} for type 2 tails. Moreover,

(4.10) Z5.(k) 5 ZE, (k) = Zoo (k) — n(k),
where
c+Inkeyq, for type 1 tails,
(4.11) nk) =14 —k~%c, for type 2 tails,
k~%c, for type 3 tails.

If Zo (k) isa uniquely defined random vector for k = k1, ..., k;,

Zrke) ... Zr(k)) S (Zook) s ... Zoo (kD))

(ZSk)s ..., Zs(k)) S (2 (ke ... Z5 (k)Y
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REMARK 4.1 (The limit criterion function). The limit objective function
—kpyz+ [(x'z —u)t dN(u, x) can also be written as

o0
(4.12) —kpyz+ Y (Xjz—J)7.
i=1

REMARK 4.2 (Homogeneous case). The limit result is simpler for the
homogeneous case (3.5), sil¢eloes not depend on the heterogeneity paraneeter
due to (4.8).

REMARK 4.3 (CasewithtT — 0). The linear programming estimator, which
corresponds t@'t — 0in (2.4) (in comparison, herel' — k > 0), was studied in
Feigin and Resnick (1994), Smith (1994), Portnoy andckeoea (1999), Knight
(1999, 2001) and Chernozhukov (1998) under various types of location-shift
specification (3.6). This estimator is the solution to the problem

T
(4.13) maz()_(’ﬂ suchthat; > X, forallt<7,X=T"1) X,.

BeR t=1
The asymptotics of (4.13) and proofs differ substantively from the ones given here
for tT — k > 0. The analysis ot T — k > 0 is specifically motivated by the
applications listed in the Introduction.

REMARK 4.4 (Uniqueness). The limit objective function is convex, and it is
assumed in Theorem 4.1 that, (k) is unique and tight. Lemma 9.7 shows that a
sufficient condition for tightness is the design condition of Portnoy andlava
(1999). Taking tightness as given, conditions for uniqueness can be established.
Define #¢ as the set of alli-element subsets ™. Fori € J#, let X (k) and J (k)
be the matrix with rowsX;, ¢ € h, and vector with elements, ¢ € &, respectively.

Let #* = {h € #H:|X(h)| # 0}. #* is nonempty a.s. by Condition R2 and is
countable. Application of the argument of Theorem 3.1 of Koenker and Bassett
(1978) gives that an argmin of (4.12) takes the fagm= X (h)~1J (h) for some

h € #*, and must satisfy the gradient condition

(4.14) Gz = <kux -y 1 < x;Zh)xt) X(h)~te[0, 1),
=1

where the argmin is unique iff, (z,) € O = (0, 1)?. Thus, uniqueness holds for a
fixedk > 0 if

(4.15) P (L (zn) € 0D for someh € #*) =0.

This condition is a direct analog of Koenker and Bassett’s (1978) condition for
unigueness in finite samples; for instance, it is satisfied for a givevhen
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covariatesX,_1, are absolutely continuous [cf. Portnoy (1991b)]. Thus, uniqueness
holds generically in the sense that for a fixeddding arbitrarily small absolutely
continuous perturbations {&¢_1,} ensures (4.15).

REMARK 4.5 (Asymptotic density). The density ofZ,, (k) can be stated fol-
lowing Koenker and Bassett (1978). GivEN, }, h € #*, andJ (h), the probability
that Z. (k) = X (h)~1J (h) equalsP{z (X (h)~1J (h)) € DI{X;}, J(h)}. Condi-
tional on{Zs. (k) = X (h)~LJ (h)}, h € #*, and X (h), the density ofZ., (k) atz
IS f1m)m (X (h)zZ) - | X (h)|, where fxyxm) (1), u € RY, is the joint density of
J (h) conditional onX;(h). Thus, the joint density of (k) atz is

JZoo i) (2) = E[ D Fraxan (X (h)z) - | X (h))|

hedt*

x P{e(%(h) 1T (h)) € DI}, J(h)}]

Finally, for fz_ «)(z) to be nondefectiveZ,(k) = O,(1) should be established
(cf. Lemma 9.7).

REMARK 4.6 (Univariate case). The density simplifies in the classical
nonregression case, that is, whéh= 1, in which case we also have the
simplification (4.8). In this case, an argmin is necessarily an order statistic, that
is, z = J(h) = Jp,; the gradient condition (4.14) becomes

(4.16) Ci(zn) = (k -y 1 < Zh)) € [0, 1];

=1

and the condition for uniqueness is tlgatz,) € H = (0, 1). Then, fork # [k],
P{tk(zp) € D} =1if h = [k] and P{¢k(zp) € D} =0 if h # [k]. Herek # [k] is
needed for uniqueness. Henge, «)(z) = f, (z), Which is the limit density of

the [k]th order statistics in the univariate case. Thus, uniqueness holds for almost
everyk € (0, 0c0).

5. Asymptotics of intermediate order regression quantiles. In order to
develop asymptotic results for the intermediate regression quantiles, the following
additional Condition R3 will be added. First, existence of the quantile density
function aFgl(ﬂx)/ar = x'9B(t)/dt and its regular variation will be required.
Second, the tail equivalence of the conditional distribution functions, previously
assumed in Condition R1, will now be strengthened to the tail equivalence of
conditional quantile density functions.
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ConNDITION R3. In addition to Conditions R1 and R2, fodefined in (3.1),

0Fy M) 9FNx/K (X))
(5.1) ot ot
.. AF (1)
(i) a9

uniformly inx € X,

is regularly varying at O with exponenté — 1.

-1
In the homoscedastic case (3.5), Condition R3(i) amountsafégﬂ ~

(
T
%ﬁm uniformly in x € X as t \ 0. Condition R3(ii) is a von Mises type
condition; see Dekkers and de Haan (1989) for a detailed analysis of the
plausibility of Condition R3(ii).
For an intermediate sequence such that 0 andt T — oo, define, form > 1,

_ VT
- Wy (BmT) = (1)

Consider als& sequence$rly, ..., tli}, wherely, ..., [y are positive constants,
and corresponding statisti¢Z7 (1), ..., Z7(lk)")’, where, forl > 0 andm > 1,

VTlT
Wy (B(mit) — B(T))
The following theorem establishes the weak limits #or and Z7 (1)'s. Because

T\ 0, the limits depend only on the tail parametérandc, as in Theorem 4.1,
but sincerT — oo, the limits are normal, unlike in Theorem 4.1.

(5.2) Zr=ar(B(r) - B(v)),  ar

(5.3) Zr()=ar()(Bdr) — 7)),  ar()=

THEOREM 5.1 (Intermediate order regression quantilesjuppose Condi-
tions R1-R3hold, and that {Y;, X,} is an i.i.d. sequence or a stationary series
satisfying the conditions of Lemma 9.6. Then, astT — oo and t N\ O,

2
~ d _ -1 -1 §
(54)  Zr=Zo=N0O.Q0).  Q=Qy Ay s

where, for £ = 0, interpret £2/(m—¢ — 1)? as (Inm)~2 and

(5.5) @Q@u=E[HX)] XX, Qxy=EXX/,

(5.6) H(x)=x'c  for type2and 3tails, H(x)=1  for type 1tails.
In addition,

G7)  (Zrl), ... Zr()) S (Zao) s ... Zoo)) = N(O, Q),

(5.8) EZoo(li)Zoo(lj)/ = Qo x min(;, L)/ Jlil .
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Finally, a7 (/) can be replaced by ~/7IT /X' (B(miz) — B(It)) without affecting
(5.4)and (5.7),that is,

(5.9 ar@® (_ - - )—>1 where X =T X;.
/ X'(B(mlt) — (7)) ,:X;
REMARK 5.1 (Scaling constants). It may be useful to have the same
normalizationar in place ofar (1) for the joint convergence. This is possible by
noting thatar /ar (1) — 175 //1.

REMARK 5.2 (Homogeneous case). In the homogeneous case (3.5),
H(X) =1, so the variance simplifies to

_ -1 &

REMARK 5.3 (Nonregression case). Theorem 5.1 extends Theorem 3.1 of
Dekkers and de Haan (1989), which applies to univariate quantiles, to the case
of regression quantiles. In fact, Theorem 3.1 of Dekkers and de Haan (1989) can
be specialized from Theorem 5.1 with= 1 andm = 2. In this case the variance
becomes

%-2 22*;‘&-2
(275 -12 (%1%
as Dekkers and de Haan (1989) found in their Theorem 3.1.

(5.11)

6. Quantile regression spacings and tail inference. The tail parameters
enter the limit distributions in Theorems 4.1 and 5.1, and estimation of the
tail index is an important problem of its own. The following results show how
to estimate them by applying Pickands (1975) type procedures to the quantile
regression spacings.

Consider the following parameters and statistics:

wzfﬁww—ﬁu»
x'(B(mt) — (1)’
x'(B(mlt) — (7))
X'(B(mt) — B(1)
P x’(BA(mlr) — ,[?(lt)).
T X(Bmr) — (1)
Theorem 6.1 shows that the quantile regression spacings of intermediate order

consistently approximate the corresponding spacings in the population [results (i)
and (ii)], which then reveal the tail parameters [results (iii) and (iv)].

(6.1) Ox,x,1 =
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THEOREM 6.1 (Quantile regression spacings and tail inferenc&uppose the
conditions of Theorem 5.1 hold. Thenast \ 0,77 — oo, for all / > 0,m > 1,
x,x eX,

0 ¢ 51,
(i) Pt — prid = 0, pris = 176 [H(x)/H(H)], for H(x) defined in
Theorem5.1,
(i) &p=m1inpxx, =&,
(V) b, %1 £ x'cuniformlyinx € X (& #0),
. (v) for = = M’X(,‘Z;Il(,‘lx(,‘ll_{lux, I =m =2, it ViT(pxx; —
limp IOY,Y,I) — 0,

. d g2(2%+ 41

(6.2) VT, -85 N(O, T @ DN 2)2>.
REMARK 6.1 (Homogeneous case). The proposed estimatér,, consistently

estimates the tail inde¥ in the heteroscedastic and homoscedastic quantile

regression models, and it is a regression extension of the Pickands (1975)

estimator. In fact, in the homoscedastic model (3.5) or wher= 1, = =

Wy (EXX)tux = €(EXX")~1e; = 1, so the variance in (6.2) reduces to that

of the canonical Pickands estimator.

7. An illustrative example. The set of results established here may provide
reliable and practical inference for extremal regression quantiles. To illustrate this
possibility, the following simple example compares graphically the conventional
central asymptotic approximation, where, for fixed (0, 1) asT — oo,

7.1 VT - B —d>N<O,— ExX)ltl-1 )

(7.1) (B(r) — B(D) fg(Fgl(f))( ) (-1

to the extreme approximation (cf. Theorem 4.1). The comparison is based
on the following design:t = 0.025, ¥; = X,8 + U,;,U; ~ Cauchy,t =
1,...,500 whereX; = (1, X" ;) € R, X_4, are i.i.d. Bet&3, 3) variables, and
B=(1,1111. [A more detailed simulation study is given in Chernozhukov
(2999).] In this comparison, the parameters of the limit distribution are fixed at the
true values.

Figure 1 plots (a) quantiles of the simulated finite-sample distribution of
B1(0.025 and B»(0.025), (b) quantiles of the simulated extreme approximation
(cf. Theorem 4.1), (c) quantiles of the central approximation [cf. (7.1)]. Hexe
T =0.025x 500= 125. It can be seen that the extreme approximation accurately
captures the actual sampling distribution of both the intercept estiriat01025)
and the slope estimat@p(0.025). In contrast, the central approximation (7.1) does
not capture asymmetry and thick tails of the true finite sample distribution. The
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A. Q-Q Plot for Intercept B. Q-Q Plot for Slope

100
1
100
1

50
1
50
1

-50
1

quantiles of approximating distribution
0
1
-50

quantiles of approximating distribution
0
1

-100
1

, _-
=/
— finite sample —— finite sample
........ extreme approx / =eseses- extreme approx
———  central approx

— == central approx

T T T T T T T T T T
-100 -50 0 50 100 -100 -50 0 50 100

quantiles of finite-sample distribution quantiles of finite-sample distribution

FiG. 1. Panel A plots quantiles of the finite-sample distribution of 81 (t) (horizontal axis) against
the quantiles of the extreme approximation (cf. Theorem 4.1) and the quantiles of the central
approximation (7.1) (vertical axis). Panel B plots quantiles of the finite-sample distribution of B> (<)
(horizontal axis) against the quantiles of the extreme approximation (cf. Theorem 4.1) and the
guantiles of the central approximation (7.1) (vertical axis). The plot is based on 10,000simulations

of the regression model described in Section 7. The dashed line “- - - -" denotes quantiles of the
central approximation, and the dotted line“- - - - - - " denotes quantiles of the extreme approximation
(this approximation almost coincides with “——"). The simulated quantiles of the finite-sample

distribution are given by the 45-degree line depicted as the solid line “——."

intermediate approximation (cf. Theorem 5.1), performs similarly to the central
approximation and is not plotted. The central and intermediate approximations are
expected to perform better for less extreme quantiles.

8. Conclusion. The paper obtains the large sample properties of extreme
order and intermediate order quantile regression for the class of linear quantile
regression models with tails of the response variable restricted to the domain of
minimum attraction and closed under tail equivalence across conditioning values.
There are several interesting directions for future work. It would be important
to determine the most practical and reliable inference procedures that can be
based on the obtained limit distributions. Also, it would be interesting to examine
estimation of the extreme conditional quantiles defined through an extrapolation of
the intermediate regression quantiles. The nonregression case has been considered
in Dekkers and de Haan (1989) and de Haan and Rootzén (1993), and the approach
may prove useful in the quantile regression case. Another interesting direction
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would be an investigation of the Hill and other tail index estimators based on
regression quantiles.

9. Proofs.

9.1. Properties of the linear quantile regression model under Conditions
Rland R2. Let

(9.2) M = any fixed compact sub-interval @, 1) U (1, c0),
(9.2) M’ = any other fixed compact sub-interval @ 1) U (1, c0),
9.3) TGE)H={r:t=s1t,5eL)} wheret’ N\ 0,

(9.4) £ = any fixed compact sub-interval @, co).

LEMMA 9.1 (Properties of the linear model under Conditions R1 and R2).
Conditions R1 and R2 imply that (for a constant vector c specified in Theo-
rem3.1):

(i) K (x) can be represented by the forms specified in Theorem 3.1.
(i) ar(B(r) — B, — brey) — n(k) for n(k) defined in Theorem 4.1.
(iiiy Uniformlyin (m,t,x) e M x T(t') x X,ast/ \ 0,
C-1

m, for g < 0,
(9.5) _,31—1(T) _ ,3—_11r — u(m) = i, for £ > 0,
F;~(mt) — F; (1) m—§—1
C-1
'] f - 0;
Inm or ¢

also B1(t) — B1- = F, 1(x), and (B_1(v) — B-1,)/F; 1 (t) - c_1 for & #0.
(iv) Uniformlyin (m,t,x) e M x 7 (t') x X,as 1t/ \ 0,

=), fE<0,
(x — 1x) (B@) — ) . <
OO e gy T e 10
/ C H J—

(x — pux) nm’ ife =0.

(V) Uniformlyin (m,z,x) e M x 7(t/) x X,ast’ \ 0,

, x'c, if¢ <0,

(9.7) B =PE) e g0

weBmo—p@) |7 T
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(vi) Uniformlyin (1, m, 7,x) € M x M’ x T (') x X, 857\, 0,
=5 -1

m—E—1’
x'(Bdt) — (1)) NESE |
x'(B(mt) — B(1)) 1% ife >0,
In!

Inm’

if € <0,

(9.8)

if £ = 0.

Write F,, € D(Hg) if F, is a c.d.f. in the domain of minimum attraction with
tail index £. Write F,, € R, (0) if F, is a regularly varying function at 0 with
exponenty.

LEMMA 9.2 (Useful relations). Under Conditions R1 and R2, uniformly in
(m,l,tyeM x M' x T(t'),ast/ \ 0:
(i) Suppose F1(z) ~ F2(z) asz \(0 or —oo and Fy € D(Hg). Then F;
D(Hz); F{tand F; 1 e R_£(0); F1(F1(2)) ~ t and Fa(F, 1(z)) ~ t; and
(9.9) (F{tmt) — FU () ~ (Fy Ymo) — Fy ().

(i) If Fy(z]x) ~ K(x)F,(z) asz \ 0or —oo for each x € X (compact), where
K (x) € (0, 00) for all x € X, then for each x € X,

(9.10) Fytmtlx) — Fyt(elx) ~ F Y me /K (x)) — F N e/ K (x)).

o Fomo-Fol) omio1
(iii) 0o Fle 1A if &£ <O,
F, € D(Hy).
oy FoYimn)—F7 )
(W) a(Fy 1 (0)
function defined in (3.1).

Lm’ it & > 0,/ jf £ = 0; for

— Inm if F, € D(Hp), where a(-) is the auxiliary

PrROOF Results (i), (iii) and (iv) are well known [cf. de Haan (1984) and
Resnick (1987), Chapters 1 and 2]. Result (ii) holds from (i) pointwise in(J

PROOF OFLEMMA 9.1. Claim (i): The proof consists of two steps, where we
use notation(.L, M, 7 (t'), t’') as defined in (9.1)—(9.4).

STeP 1. |In this step all of the results hold uniformly im:, z,x) € M x
T(t') x X ast’ (0, but we shall suppress this qualification for notational
simplicity. By construction in Condition R1y'(8(t) — B,) = Fljl(r|x) and

Wy(B(T) — By) = FyH(tlnx) = F74(1). Hence,

— / _ -1 -1
9.11)  B,(x.m)= (xl Hx) (B() —Br) _ Flil(rlx) Fu_l(r).
Wy (Bnt) = B(D)  FyXomt) — Fy 1)
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We would like to show that, for eache X,

(/K@) -1

) S ie<o
_ —&

912)  B.(x.m)— Bx,m)=] L il_/[;(_x;) )

—'”(llﬁi(x)), if £ = 0.

We will show (9.12) for the casé& < 0 only; others follow similarly. Fix
any x € X. By Condition R1 and Lemma 9.2(i)l7"U(F51(r|x)|x) ~ 7. Hence,
by Condition R1,K (x) - Fu(Fljl(rpc)) ~ 1 ast’ \ 0. Therefore, there exist
sequences of constams (x) and K. (x) such that

FyYt/K. () < Fy(tla) < F Yo/ K ()

(9.13)
whereK;(x) - K (x) andK.(x) — K (x).
Therefore,
-1 _ -1
fy F(tl/ Kel) F?‘ © _ Bxem)
(9.14) u (mt) —F, (1)

F /K x) — FA(n)
< .
Fitmr) — Fit ()
Suppose thak (x) # 1. By Lemma 9.2(iii),

Fl(t/K-(x)) — F1(v) . (1/K(x))~5 -1

9.15
(®.13) F Ymr) — F7 () m—€—1

= B(x,m),

and, likewise, conclude foK’(x) in place of K (x). Therefore,B;(x,m) —
B(x,m) when K(x) # 1. To show thatB,(x,m) — B(x,m) also holds for
K(x) =1 with B(x,m) =0, let«’ and«” be any positive constants such that
k' <1 < «k”. By monotonicity of the quantile function, for all sufficiently small|
Fii(t/e") = Fi(m) _ FoH(T/Ke () = Fi(n)
Filtmt)— FoNr) — Fatmo) — Fil(o)
_ B - Fr )
T Fotmr) - RN

(9.16)

By Lemma 2(iii), ast’ ~\ 0, the upper and lower bounds in (9.16) converge to

(1/k")~5 -1 (1/kH)~5 -1
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If in (9.17) we let«’, k" — 1, then expressions in (9.17 0. Therefore, since
«" andk” can be chosen arbitrarily close to 1, it follows from (9.16) and (9.17)

1
that “F(’/(K’()"); F( )(” — 0 ast’ \{ 0. Likewise, conclude fok (x) in place

of K;(x). Therefore,B; (x,m) — B(x,m) =0whenK (x) =1

STeEP 2. By Step 1, for each € X, uniformly in (m,t) e M x T(t')
ast’' \ 0,

(9.18) B:(x,m) = O = i) (B(@) = Br) — B(x,m).

Wy (B(mt) — B(7))
Since (a)B(x, m) is finite and continuous im over X by conditions imposed on
K (x) in Condition R1, and (b)B;(x,m) is linear inx, the relation (9.18) also
holds uniformly inx € X. Recall that(x — ux)1 = 0. Since(x — ux)_1 ranges
over a nondegenerate subseR§f 1, (9.18) implies
(919) /lB—l(T) — B-1r = u(m),
wy (B(mz) — B(7))

uniformly in (m, t) e M x 7 (t’) ast’ \ 0, wherew(m) is some vector of finite
constants. HenceB(x,m) is affine in (x — ux). Note also thatlx — uyx) =
(0,x” ;). Therefore, it =0, B(x, m) affine andB(x, m) = —In K (x)/ Inm imply
K (x) = e =10)'C — o¥118-1 — o¥'Cfor all x iff ¢; = 0. Wheng < 0, B(x, m) affine
andB(x,m) = (K(x)§ —1)/(m =% — 1) imply K (x) = (1+ (x — ux)'©)¥¢, which
equals(x’c)Y¢ for all x iff ¢, = 1. Likewise, conclude fo¢ > 0. This completes
the proof of claim (i).

Claim (iii) follows directly from (9.19) and the preceding paragraph.

Claim (iv) is verified by substituting the forms &f (x) found above into (9.18).

Claim (v) holds pointwise inx by Lemma 9.2(ii) and (iii). Since the left-hand
side in (9.7) is linear inc andX is compact, it also holds uniformly in € X.

A combination of Lemma 9.2(iii) with claim (v) implies claim (vi).

Claim (ii). If & < 0, by claim (iii) uniformly in k in any compact subset of
(0, 00) asT — oo,

()
o (§) o5 ()

since by Lemma 9.2(iF, 1 € R_¢(0); similarly, if £ > 0,
or(o(7)-7)
~ —aTCFLt_]'(;) —CF, ( )/F ( ) — —k75c.

(9.20)

(9.21)



824 V. CHERNOZHUKOV

If € =0, byci =0, Lemma 9.2(i), (iv) and claim (iii) [using: = e in u(m)], we
have that uniformly irk in any compact subset @9, co),

ar(B(5) -~ —brer)

N 1
a(F~1(1/T))

[elmeg) = (7)) raln () -7 (7)

—clne+ e lnk=c+elnk. O

(9.22)

9.2. Proof of Theorem3.1 Follows from Lemma 9.1(i). O
9.3. Proof of Theorem 4.1

Part 1. Referring to (2.4), notice that; (k) defined in (4.1) solves

- [T1d
(9.23) Zr (k) € argmi —pr(aT(U, —br) — X;z):|
ZGR‘] ar =1

[where z = ar (8 — B, — bre1)]. Rearranging terms, the objective function
becomes

1 _ T
— —1TX'z =Y 1(ar(U; — br) < X;z)(ar (U, — br) — X2)
T _
(9.24) =t

+T- ZGT(Ut - bT):|~
t=1
Mutiply (9.24) byar and subtract
T T
> 1(ar(U; —br) < —8)(—=8 —ar(U; — br)) + Y_ tar (U; — br)

9.25) =" =1
for somes > 0O,

which does not affect optimization, and denote the new objective function
Or(z,k):

T
(9.26) Qr(z.k)=—tTX'z+ ) _ls(ar (U — br), X]2),
=1

where

(9.27) Ls(u,v) =1 <v)(v—u) —1L(u < —-8)(—8 —u) for § > 0.
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Since it is a sum of convex functions in Q7 (z,k) is convex inz. The
transformations make (as shown lat€r)} a continuous functional of the point
processN:

(9.28) QT(z,k):—rTY/z+/Ela<j,x’z)dﬂ<j,x),

where the point process

(9.29) NG =Y 1{(ar (U, — br), X;) € )
t<T

is taken to be a random element of the metric splg&E) of point processes
defined on the measure spade &) and equipped with the metric induced by the
topology of vague convergence [cf. Resnick (1987)].

It will suffice to restrict our attention to underlying measure spadest) of
the form

Eq1=[-00,00) x X, for type 1 tails,
(9.30) E=1Ey=[—00,0) x X, for type 2 tails,

E3=10,00) x X, for type 3 tails,
with o -algebrag generated by the open setsifThe topology orEq, E2 andE3
is assumed to be standard so that, for exanipleo, a] x X is compact inE> for
a <0andinE; foranya < oo.

Part 2 shows that, for type 1 and 3 tails, the marginal weak limi pfis a finite
convex function ing:

931)  Quole, k) = —kplyz + /E Is(j,x'2)dNG, %), zeRY,

whereN is the Poisson point process defined in the statement of Theorem 4.1.
Part 2 also shows that, for type 2 tails, the marginal weak limi@ gfis a finite
convex function ing:

Ooo(z. k) = —kptlyz + f Is(j, x'2) dN(j, x)
(9.32) E
forze Zy = {z e]Rd:mz;x;c/z < O},
xXe

whereN is the Poisson point process defined in the statement of Theorem 4.1, and

(9.33) Qoo(z, k) =400 forze Zp= {zeRd:mc’g.(Xx’z >O}.

xXe
The functionQw(z, k) is convex ands(j, x'z) = (j — x’z)* > 0 whenj > —é.
Hence,0(z, k) is also well defined over entir& = {z € R? :max.ex x'z < 0},
although it may equatoo atz: max,ex x'z = 0. Also, note thaZy U Z p is dense
in RY,



826 V. CHERNOZHUKOV

Recall the convexity lemma [cf. Geyer (1996) and Knight (1999)], which states:
Suppose (i) a sequence of convex lower-semicontinous funcignsR? — R
marginally converges t@., : R¢ — R over a dense subsetBf, (i) Q is finite
over a nonempty open sy, and (iii) Q. is uniquely minimized at a random
vectorZ... Then any argmin 007, denotedZr, converges in distribution t@d .

We showed (i) and (ii) in Step 2, and we assumed (jii). (A sufficient condition
for uniqueness is given in Remark 4.4.) Hence, application of the convexity lemma
to our case gives

(9.34) Zr(k) % Zoo (k) = argminQus (z, k).

zeRd
Note also that, for type 2, tails, the arg i, (k) necessarily belongs 68 = {z
R? :max.cx x'z < 0}. This gives us the conclusion stated in Theorem 4.1 upon
noting thatQ + (z, k) differs from the limit objective function of Theorem 4.1 only
by a finite random variable that does not depend.on

Part 2. It remains to verify that (I) there exists a nonempty openZgesuch
that O (z, k) is finite a.s. for allz € Zg and (Il) O (-, k) is, indeed, the weak
marginal limit of Q7 (-, k).

To show (I), when tails are of type 1 and 3, chod&gas any open bounded
subset ofR?; when tails are of type 2, additionally requi# c Zy for eachl
(possible by compactness ¥)). For anyz € Zg, (u, x) — ls(u, x'z) is in Cg (E)
(continuous functions o vanishing outside a compact s€) by the arguments
in (I). This implies [ Is(u, x'z) dN(u, x) is finite a.s., sinct\ € M, (E).

To show (ll), O (-, k) is the marginal weak limit of Q7 (-, k)} iff for any
finite collection(z;, j = 1.....0), (Or(zj. k). j =1.....1) > (Qoo(z;. k). j =

1,...,0D. Since)_(/zj LS wyz;j andtT — k > 0, it remains to verify

(Ll(g(u,x'zj)dﬂ(u,x),j=1,...,l>
(9.35)

4 </ lg(u,x/zj)dN(u,x),j:1,...,l>.
E

Define the mapping : M ,(E) — R! (for E = E1, E5 or E3) by

(9.36) T:Nr—></ l(g(u,x’zj)dN(u,x),j=1,...,l>.
E

(a) Consider type 1 tails and s€t= E;. The map(u, x) — I5(u, x'z;) is in
Ck (E1) (continuous functions oik1 vanishing outside a compact sE), since
by construction it is continuous oA; and vanishes outsidE = [—oco, max(k,
—8)1 x X, wherex = maXcex zefz.....;) X'z. K is compact inEq sincex < oo by
Condition R2. Hencell - T(N) is continuous fromV,(E1) to R!. Thus,N = N

in M, (E1) impliesT(N) L TN).
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(b) Consider type 3 tails and sé = E3. The map(u, x) — [(u,x'z;) is
in Cg(E3): by construction, it is continuous of3 and vanishes outsid& =
[0, max(x, 0)] x X, wherex = MaXex, zefz,....;) X'z. K is compact inE3 since
K < oo by Condition R2. Therefordy > T(N) is continuous fromV , (E3) to R'.
Hence N = N in M, (E3) impliesT(N) % T(N).

(c) Consider type 2 tails and sét= E>. (c)(i) shows that (9.35) holds iy,
while (c)(ii) shows thatD,, (z) £ o for anyz € Zp.[SetsZy andZp are defined
in (9.32) and (9.33).]

(i) The map(u, x) — Is(u, x'z) isin Cgx (E2) if z € Zy, since, by construc-
tion, it is continuous onE> and vanishes outsidE = [—oo, max(k, —§)] x X,
wherex = MaXex, zefzy,...;1} X'2. K is compact inEz sincex <0 if z € Zy.

.....

Hence,N — T(N) is continuous fromM,(E>) to R!. ThenN = N in M,(E>)
implies T(N) % T(N).

(i) Observe thatl = Y, 7 ls(ar U, X;2)1(arU; < —=8) = 0,(1) by the
argument in (i). Observe that(u, v) = (v — u)™* > 0 for anyu > —§. Hence,

lsw,v)=1(=6<u<v)(v—u)>21(-8§<u<0,v>¢)
(9.37)
foranyu > —6 and anye > 0.

For a givenz € Zp, sinceX equals the support ok, max.cx x'z > 0 implies
that X'z > ¢ occurs with positive probability for some > 0. Fix thise. Since
1/ar — oo for type 2 tails,P(—8/ar <U <0,X'z>¢e) >n=P(U <0,X'z >
g) > 0.7 > 0because intx P(U <0|X =x) > 0 for type 2 tails by assumptions
in Condition R1. Thereforell =,y 1(=8/ar < U; <0, lez > g)e LS +00
in R. Since Q7(z,k) > —kpyz + I + 11 by (9.37), Q7 (z, k) £ 400 for any
z€Zp.

Part 3. By Lemma 9.1(ii))ar (B(z) — B — bre1) — n(k). Hence,’Z;(k) 4
Z5 (k) = Zoo (k) — n(k).

Part4. (Zr(k)),j=1,....1) €argmincgaa[Qr(z1, k) +---+ Q1 (21, k)],
for z = (z1, ..., z1). Since this objective is a sum of objective functions in Parts
1 and 2, the previous derivation of the marginal limit and subsequent arguments
apply very similarly toQr(z1, k1) + --- + Q1 (z;, k;) to conclude tha(fr(kj)/,

=1 S Zeotky). j =1.....1) = argmin _gaa[Qoo(z1. k1) + - +
Oco(zt, k)], O

9.4. Weak limit of N.

LEMMA 9.3 [Resnick (1987), Proposition 3.22]Suppose N is a simple
point process in M,(E), T is a basis of relatively compact open sets such
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that 7 is closed under ﬂnite unions and intersections and, for any F € T,
P(N(OF)=0)=1.ThenN=NinM,(E) if,foral FeT,

(9.38) im PIN(F)=0] = P[N(F) = 0],

(9.39) Jim EN(F) = EN(F) < 00.

REMARK 9.1. In our casey consists of finite unions and intersections of
bounded open rectangles i, E; and E3 [cf. Resnick (1987)].

We impose Meyer (1973) conditions on the “rare” evedts(F) = {w €
Q:(ar(U; —br), X;) € F}.

LEMMA 9.4 (Poisson limits under Meyer mixing conditions)Suppose that,
for any F € 7, the triangular sequence of events {(Af(F),t <T),T=>1}is
stationary and «-mixing with mixing coefficient a7 (-), condition (9.39)holds, and
the Meyer type condition holds. There exist sequences of integers (p,,n > 1),
(gn,n = 1), (tn = n(py + qn),n > 1) such that as n — oo, for some r > 0,
(@) 7"y, (gn) = O, (0) Gu/pu — O, pas1/pu — 1, and (€) 1, = X7 (pu —
i)P(A](F) N A 1 (F)) = o(1/n). Then in M,(E), N = N, a Poisson point
process with mean measure m : m(F) = limy_, o EN(F).

PROOF  For any F:m(F) > 0, limr_.o P[N(F) = 0] = P[N(F) = 0] =
e~ by Meyer (1973). The same also holds form (F) = 0, sinceEN(F) — 0
implies P(N(F) =0) — 1. Conclude by Lemma 9.3.[]

REMARK 9.2. Condition/p, = o(1/n) prevents clusters of “rare” events
AT (F), eliminating compound Poisson processes as limits.

LEMMA 9.5 (Limit N under Conditions R1 and R2).Suppose Conditions
R1land R2hold andthat (Y;, X,) isani.i.d. or stationary strongly mixing sequence
that satisfies the conditions of Lemma 9.4 with (ar, br) defined in (4.2). Then:

(i) N= NinM,(E), where E = E1, E; and E3 for tails of types 1, 2
and 3, respectively. N is a Poisson point process with mean intensity measure:
m(du,dx) = K(x) x dh(u) x dFx(x), where h(u) = " for type 1, h(u) =
(—u)~Y¢ for type 2, and h(u) = u~¢ for type 3 tails.

(i) Points (J;, X;) of N have the representation (J;, X;,i > 1) 4 (h=X(Ty/
K (%)), Xi,i > 1), wherehListheinverseof h, I, = &1+ ---+ &,i > 1 ({&)}
arei.i.d. standard exponential ), and {X;} arei.i.d. r.v.swith law Fy, independent
of {&;}.
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ProOOF To show (i), by Lemmas 9.3 and 9.4 the proof reduces to verifying
limy EN(F) =m(F) for all Fin 7. For example, as in Leadbetter, Lindgren and
Rootzén [(1983), page 103], it suffices to considieof the form F = Ul}=1 Fj,
where F; = (I;,uj) x X;, where F1,..., F; are nonoverlapping, nonempty
subsets off, andXy, ..., Xy are intersections of open bounded rectangleRof
with X. Then by the stationarity an&l;’s nonoverlapping,

T
EN(F)=EY_ 1[(ar(U; — br), X;) € F]

t=1
k
=Y TP[larU —br), X) € (j,uj) x X;]
j=1
k
= T-E(P[(ar(U —br), X) € (j,u;) x X;1X])
(9.40) le
=3"T-E(P[(ar(U —br) € U, u))|X]-1[X € X;])
j=1
k
=Y T -E((Fyluj/ar + br|X]

~
[I
=

— Fyllj/ar +br|X]) - 1[X € X;]).
Suppose that; > —oo for all j. Then asl" — oo,

k
~ _ FU[u_,-/aT +bT|X] o _
EN(F)_;E(( Fuluj/ar + br] T Fulusfar +br]

_ Fyllj/ar + br|X]
Fu[lj/aT +b7]

T Flyfar +br]) 11X € X))
k
(9.41)  ~ Y E((KGOIh(u;) —h(IHDILX € X;1)
=1

k
- K (x)dh(u) x dFyx(x)

k
=Y m(Fj)=m(F).
j=1
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In (9.41), ~ follows from two observations. First, the assumed tail equivalence
Condition R1 implies
(9.42) Full/ar +b11¥1 ¢y uniformlyinx € X,

Full/ar + br]
since by definition ofar, br) givenin (4.2)] /ar +br \  F;1(0) =00r = —c0
for any [ € (—oo, 00) for type 1 tails, anyl € (—oo,0) for type 2 tails, and
I € [0,00) for type 3 tails. Second, for example, as in Leadbetter, Lindgren
and Rootzén [(1983), page 103], the definition of the tail types (3.1) implies
that (a) for tails of type 2, for any < 0, TF,(l/ar) = TF,(—IF;1(})) ~
(—D)"YVETF(F7Y(3) ~ (=D)~Y%, (b) for tails of type 3, for anyl > 0,
TF,(/ar) = TF,(F;Y($) ~ I7YVETF,(F74(3)) ~ 7Y% and (c) for tails of
type 1, for anyl € R, TF,(/ar + br) = TF,(l/a(F;Y(3)) + F/1(3)) ~
TF,(F1(3) ~é.

On the other hand, if for somgs, I; = —oo for type 1 or 2 tails, then we have
the replacemerit Fy[l;/ar + br|X]=0in (9.40), and (9.41) follows similarly.

To show (i), construct a Poisson random measure (PRM) with the given
First, define a canonical homogeneous PRiMwith points{I';,i > 1}. It has the
mean measurei1(du) = du on [0, o0), for example, Resnick (1987). Second,
by Proposition 3.8 in Resnick (1987), the composed point pradesgith points
{T;, X;} is PRM with mean measures(du, dx) =du x dFx(x) on[0, 00) x X,
becausqX;} are i.i.d. and are independent @f;}. Finally, the point proceshl
with the transformed pointsT (I';, X;)}, whereT : (u, x) — (h~1(u/K (x)), x), is
PRM with the desired mean measure®rx X, m(dj, dx) =m0 T~ 1(dj, dx) =
K(x) x dh(j) x dFx(x), by Proposition 3.7 in Resnick (1987)

9.5. Proof of Theorem 5.1. Step 1 outlines the overall proof using standard
convexity arguments, while theain Step 2 invokes regular variation assumptions
on the conditional quantile density to demonstrate a quadratic approximation of the
criterion function. Step 3 shows joint convergence of several regression quantile
statistics. Step 4 demonstrates thatcan be estimated consistently.

Step 1. With reference to (2.4), notice thdl = aT(B(r) — B(1)), defined
in (5.2), minimizes
(0.43) 0r(z, )= 2L i( (- X600 X;Z) (¥ - X;p(0))
. ,T) = — - - T)— — ) —pr - 7)) ).
T ‘L’T[=1 1% t t ar 1% t t
Using Knight's identity,

pr(u —v) — pc(u)
(9.44)

=—v(rt —1(u <0) + /OU(]l(u <s)—1(u <0))ds,
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write, a.s.,
Or(z, 1) = Wr(r)’z +Gr(z, 1),

WT(‘E

«/_Z T —1[Y; < X;B8(0)]) X;,

tZ/aT
Gr(z,7)= (Z/ — X,B8(x) <)

(9.45)

—1(Y, — X/B(r) <0)] ds).

By Lemma 9.6 W7 (7) 4 W = N(0, EXX'), and by Step 2,
1/m5—-1
(9.46) Grz.1) 5 E(’” :

where@y = E[H(X)]71X X', H(x) = x'c for type 2 and 3 tails, and (x) = 1
for type 1 tails. Thus, the weak marginal limit ¢f7 (z) is given by

& _
(9.47) Qoo(z)=W/z+}~<m : !

)Z/C‘ZHZ, m>1,

> ) -7@pz.

We have thatE X X’ is positive definite and by Theorem 3.1 thakOH (X) <
¢ < oo for some constant. Thus, @y is finite and @y is positive definite.
Indeed,z’@Qxz = E(X'z)2/H(X) = 0 for somez # 0 if and only if X'z =0
a.s., which contradict& X X’ positive definite. Thus, the marginal limi(z)

is uniquely minimized ag, = (—— 1)@‘1W N, Gt l)2(,‘2‘1EXX Q).
By the convexity lemma [e.g., Geyer (1996) and Knlght (1998}, LY Zoo

STEP2. This step demonstrates thatmas, O,

1 €1
(9.48) EGr(z,7) — > (m p ) .7 @Qpz,
while Lemma 9.6 shows that Va7 (z, 7)) — 0. In what follows, F;, f; and E;
denote Fy (-|X;), fu(-|X;) and E[-|X,], respectively, wherd/ is the auxiliary
error constructed in Condition R1.

Since
Gr(z,7)
_ T . (/x;z/ar [1(Y[ —X/B(r) <s)—1(Y; — X,B(z) < 0)] ds)
(9.49) P 0 JTT

T

_ Z(/Ox;z[n(y, — X!B(r) < s/a\T/‘)E_; 1(Y, — X,B(r) < 0)] ds)

El

=1
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Xiz F[F7Yt) 4 s/ar] — F[FY(1)] ds)
0 VT T

/X;Z SAF @) + o(F mr) — F7 (1)) X -ds)
i ar T

(
(

© T- E(‘/(;X;Z ft{Fl_l(T)} .S -ds)
(

ar - \/ﬁ
ff{Fflu)})
ar -~TT
> Ftmo) - Fu_l(t))
t(flF M opt
. 1 . m—§ — 1)
H(X) —¢

1

(9.50) T E(=-(X)2)%-

- (Xz)

NI

E(

3) 1
~E(§-<X;z)2
1 m§-1
2 ¢

Equality (1) is by the definition ofiy and a Taylor expansion. Indeed, since
tT — oo uniformly overs in any compact subset &,

—

-7 @Qpz.

(9.51) s/ar=s- (Fu_l(mt) — Fu_l(t))/v T = o(Fu_l(mt) — Fu_l(‘t)).

To show equivalence (2), it suffices to prove that, for any sequence
o(FY(mt) — F,1(r)) with m > 1 ast \, 0,
(9.52) H(F7Yo) +v) ~ f,(F7 X)) uniformlyinz.

This will be shown by using the assumption made in Condition R3, which is
that uniformly inz, 1/f,(F,X(1)) ~ 8 F, X(t/K(X,))/dt, whered F, X(z) /ot is
regularly varying with index-¢ — 1.

To be clear, let us first show (9.52) for the special casg ef f, andFt‘l(r) =
F (o)
(9.53) Fu(F7H @) + ) ~ fu(F (D),

By the regular variation property ot)Fu—l(r)/ar = 1/fu(Fu‘1(r)), locally
uniformly in/ [uniformly in / in any compact subset 09, co)],

(9.54) FulF7H0) ~ EF fu (F7A ).
That is, locally uniformly ir/,

9.55)  fu(F7Yo) +(F7 ) — F AN ~ EP (RN ).
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Hence, for any, — 1,

(9.56) FuF7H@) + R = F D) ~ fu(FHD).
Hence, for any sequenee = o([F~1(mt) — F~1(1)]) with m > 1 ast \, 0,
(9.57) Su(F7HO) +v0) ~ fu(F7HD)),

because for any sudh. }, in view of Lemma 9.2(iii), we can choose a sequence
{I;} such thafv,} = {[F; (. 7) — F7X(r)]} andl, — 1 ast \, 0.

Next, let us strengthen the claim (9.53) to (9.52), completing the proof of
equivalence (2) in (9.50). Since

@ Yfi(F Nr) ~ aF Nr/K (X)) /ot = 1/{K (X)) ful F7 Y@ /K (X))
uniformly in z by Condition R3, and

(b) fu(F,  T/K)) ~ (/K fu(Fr (@) ~ (D3 fu(F H(x/K), locally
uniformly in / and uniformly inK € {K (x):x € X} [compact by assumptions on
K (1) andX], by (9.54) we have that locally uniformly ihand uniformly in¢,

(9.58) H(F7Yao) ~ 54 1 (F ).
Repeating the steps (9.55)—(9.57) wymF;l(zr)) in place of £, (F 1(I1)), we

obtain the required conclusion (9.52).
The equivalence (3) in (9.50) can be shown as follows. By (a), uniformdy in

Flmo) - Fl(o) F Y mo) — F7 ()
T(filF D! T(K (X)) ful F Yt/ K (X))D~L
By (b) we have that uniformly im,
(9.60) Ful 7 e/ K X0)] ~ (K X0)*H - fu(F4(D)).
Putting (9.59) and (9.60) together, we have uniformly,in
Flmo) —F' 1 Ftmo) - Fl(o)
tfIF T oD KX c(ful i)t
1 Fmo-F
CHX)  c(fulFMont

where H(X;) = X,c for £ #0 andH (X,) = 1 for & = 0. Finally, by the regular
variation property, (9.54),

Flmv)— F7Y () m fulF7 )] J
= ——ds

(9.59)

(9.61)

(9.62)

(9.63) =
t(ful B oDt N RN s
~ [ e
(9.64) /; s ds
£ _
(9.65) =" —~ L nmife=o).

Putting (9.61)—(9.65) together gives (3) in (9.50).
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STeP 3. For Zr () defined in (5.3), notice thatZ;(l;),i = 1,...,k) €
argmin cgax«[ Q1 (21, 1)+ -+ Q7 (2k, kT)] = arg mir}eRdxk[Zf;l Wr(tl) x
zi + Gr(zi, tlp)] for z = (24, ..., z;)', where the function®r(-,-), Wr(-) and
Gr(,,-) are defined in (9.45). Since this objective function is a sum of the
objective functions in the preceding steps, it retains the properties of the elements
summed. Therefore, the previous argument applies to conclude that the marginal
limit of this objective function is given bnyFZIW(l,-)/zi + G(z;,1;), where
(W(ly),i <k)= N, Z)with EW()W(;) = EXX'min(;,1;)//I:I; and, by
calculatlons that are identical to those in the preceding sedlién,/;) = G(z) =
('” ‘1) -7/@pgz. The limit objective function is mlnlmlzed &Aoo (ly),i <k)

-5 @;11W(l,-),z < k). Therefore(Zr ;)i < k) (Zso(y), 1 <k).

(

}’117E
Step4. It suffices to prove the result foe= 1. Then
X' (B(mr) — B(1))
1wy (Bmt) — B(T))
_ X'(Bmz) — B(m1))
-~ wyx(BmT) — B(1))
X'(B(x) — B(0)) L X' B = p@) 5y
Wy (Bmt) — (1)) wy(Bmr) —B(r))

since the first two elements on the right-hand side@};eﬁ) = 0,(1) by the
first part of Theorem 5.1.0

(9.66)

9.6. CLT for Wy (r) and LLN for Gr(z, 7).

LEMMA 9.6 (CLT and LLN). Let {Y;, X} beani.i.d. or a stationary
a-mixing sequence. The following statements are true for Wy (1) and Gr(-, -),
definedin (9.45),ast \(Oand t T — oc:

(i) Suppose mixing coefficients satisfy o; = O(j %) with ¢ > 2, and for any
K sufficiently close to 0 or —oo, uniformly int ands > 1, and some C > 0
[P; denotes P(-|F7), ft—U({Yj»X} )]

(9.67) Pi(U; <K,Upis <K)<CP/(U; < K)°.
Then for any finite collection of positive constants /1, ... ., I,

(Wr(tl), ..., Wr(tln)} —d> (W(ll)' W(lk)/)/ =N(0, X)
with EW ()W (;) = EXX'min(l;, 1)/ /Til;.
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(i) If, in addition, a; = O(j~%) with ¢ > ﬁ for 0<y <1and 1?7/
T — 0, then

(9.68) Var(Gr(z, 1)) — 0.

REMARK 9.3. In the i.i.d. case the claim (i) simply follows from the
Lindeberg—Feller CLT. In the dependent case condition (9.67) requires that the
extremal events should not cluster, which leads to the same limits as under i.i.d.
sampling. This condition may possibly be refined along the lines of Watts, Rootzén
and Leadbetter (1982), who dealt with the nonregression case. (9.67) is analogous
to the no-clustering conditions of Robinson [(1983), A7.4, page 191] used in the
context of kernel estimation.

PROOF OFLEMMA 9.6. To show (i),{Wr(zl;)’,i < m} suits the CLT of
Robinson (1983), which implies the same weak limit as under i.i.d. sampling.
His conditions A7.1 (withg = 0), A7.2 and A7.3 are satisfied automatically.
The assumed above mixing condition implESZ, ja; < oo, which implies his
condition A3.3. Last, condition (9.67) immediately implies his condition A7.4.

To show (ii), suppress. Then from (9.49),

T-1
T —k
Var(GT(z)) = r1<Var(k1) +2 Z T Cov(r, )‘l-i-k)) ,
k=1

for

X}z
A = /O [L(Y; — XB(x) <s/ar) — 1(Y; — X.B(z) < 0)]ds.
By Condition R2,|A;| < Ko|u:/|, for
M = (]l(Yt - X;,B(T) = X;Z/GT) - ]]-(Yt - X;ﬂ(f) = 0))
and someKg < oo. Hence,

@

2
Var(iy) = 0(Ex3) 2 0(Eu?) 2

= O(E|p1l)
2 o(fu(F i ®)ar") = O(T/T),
where (1) is byiA;| < Kolul, (2) is by|u,| € {0, 1}, and (3) is by the calculation

in (9.50). Thus, in the i.i.d. case @ r(z)) = o(1) follows from (9.69) and
T — oo. Also, for alls and some positive constamty, K», K3, K4,

(9.69)

(9.70) | CoV(Al, A1rs)| < K@V [E|ra 1Y [E|rg]P1YP)
(9.71) < Ka(@X Y [E|pua| 1Y [E e P1YP)
(9.72) < K3(@} 7 [E|pall”)

(9.73) < K4(asl—y (%)V/Z)’
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where ¥Yp+1/r =y € (0,1), p > 1. Here (9.70) follows by Ibragimov’s mixing
inequality [e.g., Davidson (1994)], (9.71) follows by the previous boin¢<
Kolu| and (9.72) follows by|u,| € {0, 1}, while (9.73) follows by (9.69). So
Var(Gr(z)) = o(1) by the condition on the mixing coefficients[]

9.7. Proof of Theorem6.1. Theorem 6.1 is a direct corollary of Theorem 5.1
and Lemma 9.1. Proof of claim (i) follows similarly to the proofin (9.66). Claim (i)
implies claims (ii)—(iv), using the properties (v) and (vi) in Lemma 9.1. Uniformity
in x in claim (iv) follows from the linearity of, ¥ ; in x. Finally, claim (v) follows
from Theorem 5.1 by the delta method.

9.8. Tightness of Z (k). This section provides primitive conditions for
tightness ofZ,(k), which is assumed in the statement of Theorem 4.1 and the
conditions of uniqueness given in Remark 4.4.

We impose the design condition of Portnoy and dkoea (1999), who used
it for the caserT — 0 and show its plausibility on page 233, for example, when
EX X’ > 0. Their proof of tightness is not applicable here, so we have it.

CONDITION PJ. LetFx denote the distribution function of. There are a
finite integer!, a collection of set§R1, ..., R;} and positive constani and n
such that:

(a) for eachu € {u:|lu|l > 1,u1 > 0}, there iSR, such thatx'u > §|ju| for
all x e Rj(u)a
(b) ijdFX >n>0forallj=1,...,1.

LEMMA 9.7. If Conditions R1, R2and PJhold, then Z,, (k) isfinite a.s.

PROOF Choose;/ = (z{, ...,z[j;)’ € R4 such that

974) Qoo k) = —kyz! + /E 'z — uy* dN@u, x) = 0,(1),

which is possible, as shown in the proof of Theorem 4.1.

Consider a closed balB(M) with radius M and centerz/, and letz(k) =
7/ + 8(k)v(k), wherev(k) = (vi(k), ..., vqs(k)) is a direction vector with unity
norm|lv(k)|| = 1 ands (k) > M. By convexity inz,

M .
9.78) 515 (Qoole(h) k) - Q002! 6)) = Qoo(2*(K). k) — Qoo(z” . K),
wherez* (k) is a point of boundary oB(M) on the line connecting(k) andz/ .
We will show that, for anyk ande > 0, there is largé/ such that

(9.76) Qoo(z*(k), k) > K) >1—c¢.

P( inf
v(k): vk ||=1



EXTREMAL QUANTILE REGRESSION 837

(9.76) and (9.74) impIy9.75) > C > 0 with probability arbitrarily close to 1
for M sufficiently large, meaning thaf, (k) € B(M) with probability arbitrarily
close to 1 forM sufficiently large, that isZ. (k) = O, (1).

Thus, it remains to show (9.76). Singey = (1,0,...,0), uyz*(k) = z{ +
v1(k) - M. Hence, it suffices to show that, for any- 0 and any largek > 0,

—v1(k) k- M+ /E(x’z*(k) —u)tdN@u, x) > K

(9.77)
w.pr.> 1 — ¢, for large enougt,

and, therefore, we establish (9.76). We have by Condition PJ that, for Bgme
with j(v) € {1, ..., I},

/ (x'z*(k) — u)+dN(u, X)
E

(9.78) >

/ (x'z*(k) — u) T dN(u, x)
([—OO,K]XR]'(U))ﬂE

> N(([—00, k] X Rj)) NE) x M —k — k'),
wherex € R is a constant to be determined later and that does not depen@)n
andx’ = max.ex |x'z”].
Note that for any regioiX such that/x d Fx > n > 0 and any; > 0 ands > O,
there is a sufficiently large> such that

(9.79) N(([—o0, k2] x X) N E) > k1 w.pr.>1—¢.
Hence, by (9.79) we can selectarge enough so that
N(([—o0,k] x Rj))NE) > k jS— b

(9.80)
forall je{l,....I}wpr.>1—¢,

sothatw.pr>1—e¢,

—vi(k) k- M+ / (/2" (k) — u)* dN(u, x)
(9.81) E

SM —k — k)T
> kM4 U+ '; 7
Now setM sufficiently large to obtain (9.77).00
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