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The central mean subspace (CMS) and iterative Hessian transformation
(IHT) have been introduced recently for dimension reduction when the
conditional mean is of interest. Suppose tiaits a vector-valued predictor
andY is a scalar response. The basic problem is to find a lower-dimensional
predictor 7 X such thatE(Y|X) = E(Y|nT X). The CMS defines the
inferential object for this problem and IHT provides an estimating procedure.
Compared with other methods, IHT requires fewer assumptions and has been
shown to perform well when the additional assumptions required by those
methods fail. In this paper we give an asymptotic analysis of IHT and provide
stepwise asymptotic hypothesis tests to determine the dimension of the CMS,
as estimated by IHT. Here, the original IHT method has been modified to
be invariant under location and scale transformations. To provide empirical
support for our asymptotic results, we will present a series of simulation
studies. These agree well with the theory. The method is applied to analyze
an ozone data set.

1. Introduction. The basic problem of dimension reduction for regression [Li
(1991, 1992), Cook and Weisberg (1991) and Cook (1998a)] is to find a lower-
dimensional predictor that carries all the information relevant to the regression.
Suppose thak is a p-dimensional predictor andl is a scalar response. If there
is a p by g, ¢ < p, matrix n such that the; linear combinations;” X fully
describe the conditional distribution &f given X, then the subspace spanned by
the columns of is called a dimension reduction subspace. In symbols, if

YU xn'x,

then the column space afis a dimension reduction subspace. Hdtestands

for independence, so the statement is thais independent ofX given n’ X.

Any subspace that contains a dimension reduction subspace is itself a dimension
reduction subspace. Under mild conditions the intersection of all dimension
reduction subspaces is itself a dimension reduction subspace and then is called
the central subspace (CS), and writter$ag. If the CS is known, theX can be
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replaced withPy, , X without loss of information on the conditional distribution
of Y|X, where P, indicates a projection in the usual inner product onto the
indicated subspace.

If, as in many regression analyses, the conditional n&@n X) is of particular
interest, then it is possible, and beneficial, to carry out dimension reduction for
that purpose. Cook and Li (2002) formulated dimension reduction in this context
as follows. If there is @ by ¢ matrix n such that

E(Y|X)=E(|n"X),

then the column space gfis a dimension reduction subspace for the conditional
mean, and is called mean subspace. Under mild conditions, the intersection of
all such subspaces is again a mean subspace and then is called the central mean
subspace (CMS), and written &g y|x). See Li, Cook and Chiaromonte (2003)
and Yin and Cook (2002) for other developments related to the CMS.

Several benefits accrue from studying the conditional nfe@f X) rather than
allof Y| X:

1. BecauseSg(y|x) € 4dy|x, it may be possible to achieve further reduction of
dimension.

2. As in classical estimation, focusing on a smaller inferential object could lead
to increased accuracy. Hesg y|x) acts as the “parameter of interest” and all
aspects of the conditional distribution BfX not described by the conditional
mean act as the nuisance parameter.

3. Study of8g(y|x) leads to a categorization of several existing methods, such
as ordinary least square estimates (OLS) [Li and Duan (1989)], sliced inverse
regression (SIR) [Li (1991)], principal Hessian directions (PHD) [Li (1992)]
and the sliced average variance estimator (SAVE) [Cook and Weisberg (1991)].
It thus provides further insight into the dimension reduction problem.

As demonstrated by Cook and Li (2002), these four methods estimate either the
CS or the CMS under the first or both of the following two conditions:

(A) Linearity condition: E(X|PsX) is a linear function ofX,
(B) Constant covariance condition: Var(X|PsX) is a nonrandom matrix,

where the subspacg is either the CS8y|x or the CMS4£y|x), depending on
the method. In particular, using = 8z (y|x), OLS and PHD estimate vectors in
the CMS, with OLS requiring condition (A) and PHD requiring both conditions.
Using 8 = 8y x, SIR and SAVE estimate vectors in the CS, with SIR requiring
condition (A) and SAVE requiring both conditions.

Condition (A) holds fo all subspaces dR? if the predictorX has an elliptical
distribution [Eaton (1986)], and it holds approximately if dién < p [Hall and Li
(1993)]. Condition (B) is more stringent but will be satisfie&ihas a multivariate
normal distribution. It is noteworthy that both conditions apply to the marginal
distribution of the predictors and not to the conditional distributiorY X as is
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common in regression modeling. Consequently, we are free to use experimental
design, predictor transformations or re-weighting [Cook and Nachtsheim (1994)]
to induce the conditions as necessary without suffering complications when
inferring aboutE (Y| X) or Y |X.

In some practical problems, such as in the recumbent cow data [Clark et al.
(1987); see also Cook and Li (2002)], there is significant heteroscedasticity among
the predictors. In such cases condition (B) fails and application of PHD and SAVE
becomes problematic. Also, OLS provides at most one vector, and so does SIR if
the response is binary as it is in the recumbent cow data. Hence if the dimension
of the CMS or the CS is 2 or more, then OLS and SIR will necessarily miss part
of the CMS and CS.

It is in this context that Cook and Li (2002) introduced the method of IHT,
presenting two versions of IHT that both estimate vectors in the CMS. Assuming
that X is standardized to have mean zero and covariance mitriithe identity
matrix of dimensionp), one version uses the response-based (y-based) Hessian
matrix E((Y — E(Y))XXT) and the other uses the residual-based (r-based)
Hessian matrix

H=E((Y -E®Y)-EYXHXx)xxT).

Both versions require only condition (A) but, like PHD, can estimate multiple
vectors in the CMS. Following the findings of Cook (1998b) on the general
superiority of r-based PHD over y-based PHD, we use the r-based Hessian
matrix H in the rest of this article.

Cook and Li (2002) demonstrated the following fundamental relation, which is
the basis for IHT. Under condition (A) alone, the CMS is an invariant subspace of
the linear transformatio#’, that is,

H8gwx) S8Ewx)-

It follows that if we know any nonzero vector in the CMS, then we can transform
it iteratively by the Hessian matrix to bring out other vectors in the CMS. An
obvious initial vector is the OLS vector, which we know belongs to the CMS
under condion (A) alone. Thus if we use8 to denote the OLS vector, which,
assumingX to be standardized, has the fofm= E (Y X), then the vectors

B, HB, H?B, ...

are all in the CMS. At a certain point, say at‘~18 (with k < p), one more
iteration ceases to bring out a linearly independent vector, and all subsequent
vectors in the sequence must also be linear combinations of the fiesttors.

In brief, under the linearity condition (A) thédT subspace

SiuT = Spanp, HB, H?B, ..., HP 18} = SpanB, HB, HB, ..., H* "1}

is contained in the CMS§iut < 8£(v|x) [Cook and Li (2002)]. The task of this
paper is to estimate the dimensibrof 81T, the number of linearly independent
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vectors generated by the iterative transformatiéfig, j =0,1,..., p — 1, and
thereby obtain an estimator &fyr. Of course, if we knows and H, then all

we need to do is to check at each stevhether the smallest singular value of

the matrix(8,..., H/p), j =0,..., p — 1, is zero, and stop as soon as it is. At
that point,k = j. However, in practiceH and g are replaced by their sample
estimates, sayd and 8. Whereas in the population sequerige HB, ...} the
smallest singular value becomes zero after a certain point, in the sample sequence
{B, HB, ...} the smallest singular value becomes small, rather than zero, after a
certain point. So our task is to deduce an asymptotic distribution against which we
can judge if the observed smallest singular values correspond to singular values
of 0 in the population.

Procedures for determining the order of a dimension reduction space via
sequential testing of hypotheses were developed previously for other dimension
reduction methods. For example, Li (1992) developed a testing procedure for PHD,
and Li (1991) and Schott (1994) developed testing procedures for SIR.

It should be mentioned that, although IHT can bring out multiple vectors in
the CMS, at the present stage we do not have a rigorous set of sufficient conditions
that guarantees IHT will actually cover the CMS. However, based on our numerous
experiences with real data, IHT often does well in bringing out the full pattern
in the conditional mean. Hence in part of the subsequent development (i.e., the
constrained case) we take the pragmatic approach of making coverage a working
assumption at the outset. Indeed, the issue of coverage is challenging, and to date
there has not been a general result published in this regard. For this reason a similar
working assumption is typically adopted for the asymptotic development of other
methods, such as those for SIR and PHD [Li (1991, 1992)]. Or, alternatively,
the null hypothesis is formulated directly on the rank of the population matrix
corresponding to the estimator rather than on the dimension of the CS [Schott
(1994)]. In fact, we are inclined to believe that IHT is more comprehensive in
estimating the CMS than using OLS or PHD alone, because it can pick up both
monotone and U-shaped trends, so long as it has a nonzero vector such as OLS
to prime the process. Cook and Li (2002) argued that the span of OLS and PHD
is a subset of the CMS, and it seems that a combination of them should provide a
reasonably comprehensive estimator of the CMS. IHT can be viewed as one way
of combining these elements, without evoking the constant covariance condition
that is required by PHD.

The rest of the paper is organized as follows. In Section 2 we introduce a version
of IHT that is modified slightly from that of Cook and Li (2002) for an invariance
consideration. We also formulate the hypothesis testing problem and establish
initial asymptotic expansions. In Section 3 we derive the asymptotic distribution
under certain assumptions on the predictoand its relation with the respone
In this case the limiting distribution is a chi-squared distribution (Theorem 4).
In Section 4 we derive the asymptotic distribution when no practically restrictive
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conditions are placed oX or Y (Theorem 5). In Section 5 we discuss the
implementation of the tests in both cases. We check our theoretical conclusions
against simulated results in Section 6, and we apply both procedures to analyze an
ozone data set.

2. Foundations.

2.1. Invariant IHT. Let (X1, Y1),...,(X,,Y,) be n independent copies of
(X,7Y), in which the predictoX is a random vector ifR” and the responsg is a
scalar random variable. We assume throughout this article thék'Vas positive
definite. As demonstrated in Cook and Li (2002), the CMS is invariant under affine
transformation ofX: For any nonsingulap by p matrix A and p-dimensional
vectorb,

-1
BE (AT x+b) = A TBEY|X)-

Thus, without loss of generality, we prestandardize andAiseVar(X)~1/2(X —
E (X)) as the predictor vector so thA(Z) = 0 and Va(Z) = I,,.. In what follows,
we first estimate the standardized subspgg,z) along with its dimension, and
then transform back to estimafg (y|x).

Let Z and X be the sample mean and sample covariance mat of

Z=E,Z) and S=E,(Z-2)Z-2Z)T,
whereE, f(Z) stands forn ! Yt f(Zy). Let Z be the standardized,
Z=S"VYV2z-7),
and let
H=E,eZZ"},
whereé is the observed regression erior Y — B7Z with B = E,(Z(Y — Y)).
This matrix was suggested in Cook and Li (2002) as the transformation matrix
in the r-based IHT method. However, in practice, it is desirable to make IHT
invariant under affine transformation of bathandY ; that is, conclusions drawn
from (Z,Y) should be identical to those drawn fro Z + b, ¢cY + d), where
A is anyp by p nonsingular matrixp is any p-dimensional vectok; is a nonzero

scalar and? is any scalar. For this purpose we will replate- Y in the above
transformation by its standardized version

Y=6"Xy-Y),
whereé?2 = E, (Y — Y)?, and use the transformation matrix

H=E,¢ZZ"},
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whereé = Y — BT Z with 8 being the regression estimafig(Y Z). For consistency
in the rest of this article, we now redefie and g to be the population versions
of H andg,

H=E((Y - E®W))/o—pTZ]zZ"),
where = E((Y — E(Y))Z)/o.

2.2. Formulation of hypotheses. Let
B=(B.HB,...,H’"8) and B=(B,HA.,...,H'71p).

We estimate the rank @8, which is equal to the dimension &fyT sincedjyt =
Spar{B), by conducting a series of hypothesis tests.lqgt 1, > --- > 1, be the
eigenvalues oBB”, and consider the sequence of tests

Ho,j:)"j%—l:"':)\-pzo, ,]:0,1,,[7—1

The rankk of B is the smallest value of for which this hypothesis holds. Let
A1> A2 >---> A, be the eigenvalues afBBT. We testHp ; using the statistic

P

Tj =C_1 Z )A»l',

i=j+1

where C is a positive constant that depends pmand will be determined later.
Relatively large values of’; provide evidence againsiy ;. Tests of Hp ; are
used to estimate the rartkof B as follows: Beginning withj = 0, testHp o. If
the hypothesis is rejected, incremgnby one and test again, stopping with the
first nonsignificant result. The corresponding valuejdé the estimate: of .
Procedures of this form are fairly common for estimating the rank of a matrix; see,
for example, Rao [(1965), page 472].

2.3. Initial asymptotic equivalences. In this section we characterize the
components of7 in terms of their asymptotically equivalent variables, and
provide expansions that will be useful when studying the distributich af later
sections.

First, consider the singular value decompositioBof

& B=1ro)( 8)(3(1;)

wherel = (I'1, I'g) andW¥ = (¥4, W) are p by p orthonormal matrices) is ak

by k diagonal matrix with positive diagonal elemeritg,and¥, have dimensiop

by k, andI'g and ¥y have dimensiorp by p — k. It follows from Eaton and
Tyler (1994) that the joint asymptotic distribution of thee— k& smallest singular
values of the matrix\/ﬁl? is the same as that of the singular values of the matrix
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ﬁFg(E — B)Wy. Therefore the asymptotic distribution 61, is the same as that
of

n{vedI' (B — B)Wol}" vedI'd (B — B) Wy,

where vec is the usual operator that maps a matrix to a vector by stacking its
columns: ifA is a matrix with columnsuy, ..., a,, then ve¢A) = (af - --a;)T.

Thus determining the asymptotic distribution Gf boils down to computing the
asymptotic distribution of/nvedT'} (B — B)Wo].

The estimateB is a function of 8 and H, both of which are essentially
(though not exactly) sums of independent and identically distributed (i.i.d.) random
variables. So the key is to expagd{vec[l‘g(ﬁ — B)Wg] as a function of sums of
i.i.d. random variables.

First, expandA' B so that the remainder is of the ordér,(n1), i =1,...,

p — 1. Starting with

(2) H'B={H+H—-HY{B+B—B)
the term{H + (H — H)} can be expanded as the sum 6ftérms, each being
of the formG; - - - G;, where theG's can be eithed or H — H. However, those
G1--- G; terms involving two or mordf — H are of the ordeD,, (n—1) or smaller
and can be dropped. For the terms involving only aghe- H, thei — 1 H’s
appear either on the left, or right, or both sidesHof- H. In other words they can
be expressed ad/(H — H)H' =17/, wherej =0, ..., i — 1. Hence we have the
following expansion:

i-1

j=0
Substitute this expansion into (2) to obtain

i—1
g TBHB=HG =3 HIE —HH T 0,07,
=0

i=1....,p—1

We next further expanf — 8 andH — H as functions of sums of i.i.d. random
variables. This is given in the next lemma; its proof is provided in the Appendix.

LEMMA 1. Under regularity conditions we have the following expansions:
B—B=E\ZY)~p—3E(ZZ" —1,)B
~IE,(* -1+ 0,0,
H—H=E{e(zZ" —1,)~ H} - 3E,(2Z" —I,)H

(4)

5)
~IHEzZ" —1,) - E,(Y?~DH + 0, ).
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Here, the “regularity conditions” refer to those under which the central limit
theorem applies to averages of i.i.d. random variables, which in our case are
guaranteed iZ has finite fourth moments.

In the next section we derive the asymptotic distributiorfpfunder a set of
constraints onX andY. These constraints are similar to those imposed on SIR
and PHD to produce chi-squared asymptotic distributions [Li (1991, 1992), Cook
(1998b) and Bura and Cook (2001)]. We refer to this case asdhstrained
case. We then derive the asymptotic distribution without these conditions. While
the results for the general case can be applied to the constrained case, the latter
takes advantage of the structures imposed and performs better if the constraints
are satisfied. It also has a simple form of a chi-squared distribution which is easy
to use.

3. Asymptotic distribution for constrained case.

3.1. Constraints. In the constrained case we assume that:

(C1) The span of the IHT vectors exhausts the CMI§T = 8£(v|2).

(C2) The predictoZ is normally distributed.

(C3) E(e?|Z) = E(¢?|Psyy,, Z), Wheree =Y — BT Z is the population regres-
sion error.

These assumptions are similar in spirit to those imposed on the constrained cases
of PHD and SIR. Under the linearity condition (A) alonfint € Sgy|z). In
condition (C1) we carry this a step further and assume equality. This implies,
for example, that if dind8g(y|z)) > 0, then we must havg # 0. Condition (C3)
says thatp .22y € $e(r|z)- That is,8g(y|z) must be a mean subspace for the
regression ofe? on Z. This means that any heteroscedasticity present in the
residuals must depend only on directions in the CMS. Conditions (C2) and (C3)
are used to force a simple chi-squared asymptotic distributioffor

BecauseZ is normal, both the linearity condition (A) and the constant
covariance condition (B) hold and thus SpanH) C $g(y|z). Also, for any
integer j > 0, H/B e SpartH), implying that 847 < Spang, H). Hence, it
follows from condition (C1) that
(6) SinT = SpanB, H) = 8y z)-
Because r-based PHD [Li (1992)] is designed to estimate @pgnt follows
that in the constrained case IHT combines r-based PHD with OLS. Cook
(1998b) found that y-based PHD is not very effective at finding linear trends
and that the best results in practice are often found by informally combining
OLS with r-based PHD. IHT is the first formal method for combining OLS with
r-based PHD, making use gfto find linear trends in the mean function aHdto
find curvature.

We next consider the asymptotic distribution Bf in the constrained case,
picking up the general argument at the end of Section 2.3.
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3.2. Expansion of ﬁveng(E — B)Wg]. From the singular value decompo-
sition (1) we know thaﬂ“gB = 0. That is, the columns dfg are orthogonal to
the columns ofB, and by (6) they are also orthogonal to the columng$&fH)
because$iyt = Span(B). Thus, if we multiply both sides of (3) by the matii
from the left, all the terms that begin with &h drop, and we have

reH B—H B)=T§(H - HH 8+ 0,n™).
It follows that
VnT§ (B — B)Wo
7) = nT§(B—B,(H—-H)B,...,(H— HHP28)¥+ 0,(n"V?
= /nT§ (B — B, (H — H)Bo)¥o+ 0,(n" /3,

whereBg = (8, ..., HP2p).
Observe that, in expansions (4) and (5), the terms

—B, —E,(Y2—1)B, H, HE(ZZ' —1,)/2, E,(Y>—-1)H/2

vanish if we multiply them by"{ from the left. Thereforerg(ﬁ — B)WYp reduces
to

G (En(ZY) = Ex(W)B/2. (En(eW) — E,(W)H/2)Bo)Wo + O,(n ™),

whereW stands for the matriZ Z” — 1,,. Using the relationB = (8, H Bo) we
can rewrite the above matrix as

Fg(E,,(ZY), E,(eW)Bo)¥o — %FgEn(W)B‘l’o + 0,,(n_1).

Note that the second term drops becadsky = 0. Furthermore, the identity
matrix I, in W = ZZ" — I, also drops because it is to be multiplied from the
left by Fg and from the right byBg, and the columns ofFy are orthogonal to
the columns ofBg, which consists of the firsp — 1 columns of the matri8. To
conclude, we have the following expansion Mﬂrg(ﬁ — B)Wq.

THEOREM 1. Under conditions (C1) and (C2) for the constrained case, we
have

®) Vil (B — B)Wo=/nT§(E,(ZY), Ex(eZZ")Bo)Wo+ 0, (n~ /).

The right-hand side of (8) can be further simplified using the propertidg,of
We will do this in two separate case$,c SpaH) or 8 ¢ Spar{H), and then
synthesize them into a simple and general formula.
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3.3. Casel: 8 ¢ SpariH). The next lemma describes the structurelgfin
this case, which is the key to the simplification. Its proof is given in the Appendix.

LEMMA 2. If 8 ¢ SpantH), then:
(i) thefirst row of Wy is a zero vector, and
(ii) the second row of Wq is not a zero vector.

To simplify the expansion ot/ﬁl“g(ﬁ — B)Wq using this result, rewrite the
expansion (8) as
o T8 (B — BYWo = (E,(T§ 2Y), En(eT§ 227 Bo))Wo + 0,(n™h)
= E,(eT§ ZZ" Bo)®o+ 0, (n ),

where®g is the p — 1 by p — k matrix comprising the second through thth
rows of thep by p — k matrix Wp. Furthermore, because the first row is 0
and becaus8 ¥y = 0, we have

(HB, ..., H’"1B)®g= HBq®o=0.

In other words, the columns of the matrBg®g are orthogonal to the columns
of H. Consequently, lettin@y = I, — Pspan),

(10) Bo®o= Oy Bo®o=(Qup.0,...,0000= 0ppBaf,

WhereoeO is the first row of the matrixbg, which by Lemma 2 is a honzero vector.
Substitute (10) into the right-hand side of (9) to obtain

T8 (B - B)Wo=E,(eTy 22T Qupal) = E,(eUVT) + 0,(n7Y),
whereU =T'l'Z andV = aop” Qi Z. Hence
Jnvecl'l (B — B)Wo = /nvedE,(eUVT)) + 0,(n~Y?)
= VnE,(eVRU)+ 0,(n"Y?.

Letting the columns of the by &k matrix y be an orthonormal basis fa&yT, we
see thatV = ag(B7 Z — BT yy T Z) is measurable with respect j0’ Z because
B € SiuT. This implies thatE(eV ® U) = 0, as can be seen from the following
derivation:

E(eV®U)=E(E(|Z)V®U)

E(elyT2)V @ U)
eE(VRU|y'Zz))
eVREWU|y'2)

(eV)® E(U) =0,

E(
(
(
(

E
E
E
E
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where, for the second equality we used the definition of the CMS, for the fourth
we used the measurability & with respect toy” Z, and for the fifth we used the
independence betwedn andy’ Z, which follows from the normality ofZ and
the orthogonality between the columnsIgfand the columns of.

Hence, by the central limit theorenyn E,(eV ® U) is asymptotically normal
with mean 0 and covariance matrix{e2(V @ U)(V ® U)T}. We now simplify
this covariance matrix:

E{A(VeU)(VeU) y=E(AvViouu™))
= E(ECyT2yvvI @UuUT))
=E{PEVVI @uUT|yT 7))
(11)
= E{AvvTY® EWuTyTz))
—EC?vvye E(WUT)
=EEVV®1,.

For the second equality we have used the assumptief|Z) = E(¢?|y ! Z), and
for the last equality we have used the fact tBaUUT) =T'{ E(ZZ")I'g=I,_y.
The rest of the equalities follow from the similar argument we used in the
demonstration oE (eU ® V) = 0.

Now substitute the definitioll = «gB8” Q Z into the expressiol (e2VVT)®
Ip_kZ

(,BTQHE(eZZZT)QH,B)(aOO{g ® Ip—k) = E(eﬂTQHZ)Z(O[o(Xg ® Ip—k)
= C(aod /llol®) ® 1,4,

whereC = E(eBT O Z)?||lagl|?. It is easy to verify that any matrix of the form
aa! ® I,, wherex is a unit vector, is an idempotent matrix of ramk Therefore,

JaTE (B — B)Wo/C 5 N(O, R),
whereR is an idempotent matrix of rank — k. So we have proved the following
theorem.

THEOREM 2. Let A1 > --- > 4, be the eigenvalues of the matrix nBB” .
Suppose that conditions (C1)—(C3)hold and that 8 ¢ Spar{H). Then, under the
null hypothesis Ho i : Ak41=--- =i, =0, we have

1 . 2
C™ 2 M Xy
i=k+1

where C = E(eBT Q1 Z)2||aol|?, oo being the second row of the matrix Wo.
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3.4. Casell: B € SpariH). As in the previous case, the special structure of
the matrixWo underg € Spar{H) plays a critical role in the simplification of the
expansion of\/ﬁr‘g(ﬁ — B)Wq. This structure is described in the next lemma, and
proved in the Appendix.

LEMMmA 3. If 8 € Spar{H), then the first row of ¥ isnot 0.

T
T,
vo= (1)
0 (‘Do

whererg is a vector inR?—* and®y, as before, is @ — 1 by p — k matrix. Since
BY¥o =0, we have

Now write

HBo®o+ B =0.
Becauses € SpariH), 8 = Hn for somen in R”. Hence
H Bodo+ Hntd = H(Bo®o + ntd ) =0.

That is, the columns of the matriBy®q + nrOT are orthogonal to the rows (and
hence columns) off. Consequently,

Bo®o + 1ty = Qu(Bo®o+n1d ),

where, as beforeQ y is the projection matrix onto the orthogonal complement of
SparH). Sincep € Spar{H), SpariBg) C Sparn(H) and therefore y Bo®o = 0.
Hence, letting “t” denote the Moore—Penrose generalized inverse,
Bo®o=—ntg + Quntg =—U — Qu)ntg
=—HHH)"Hytl =—HHH)'B1{.

From the definition of the Moore—Penrose generalized inverse of a symmetric
matrix it is easy to see thaf (H H)" = H'. Therefore,

(12) Bo®o=—H'pr].
Rewrite expansion (8) as
JnTE(B = BYWo = /n(E,(YU), E,(eUVT)) o+ 0,(n"Y/?),

whereU is the(p — k)-dimensional vectoFgZ andV is the(p — 1)-dimensional
vectorBl Z. Note that theV here is different from that defined in Section 3.3, but
U denotes the same quantity. Since the columnBpbelong to SpafB), V is
measurable with respect {0’ Z, and since the columns &f, are orthogonal to
Spar(B), U andy’ Z are independent. Thus, following the same argument used in
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Section 3.3 for the demonstrationBfeV @ U) = 0, we can showthal (YU) =0
andE(eUVT) = 0. Hence the vector

Vnved(E,(YU), En(eUVT))Wo}zﬁ(w()T®Ip_k)( E,(YU) )

E,(eV®U)

is asymptotically multivariate normal of dimensigp — k)2 with mean 0 and
variance matrix

T E(y2uuT) E(eYU(VU)T)
(13)(¥o ® Ip-0) <E(eY(V QUUT) E((VRU)V® U)T)> (Yo ®Ip—i)-

We next simplify this covariance matrix.
By an argument similar to (11), we can show that

EY?UU") =E(Y?)1, 4,
EEVoU)(VeU) ) =EEvveI, .

To derive E(eYU (V @ U)T), note thatU = 1 ® U, where 1 is the scalar one.
Hence

E(YUVRU))=EEYAU)(VRU) ) =Eyv euu™)).
Now apply the argument leading to (11) to obtain
E(YUWVRU))=E@EYv)®I,.
Hence the asymptotic variance (13) now becomes

E(Y?  E(eyvh)
E(eYV) E(eZVVT))'

Expressingl! as(zo, ®f), we can rewrite the matrisl AW as
A=EY?)1otd + 10E(eY VT)dg

WAV ® 1,  whereA = (

(14)
+ oL E(yV)td + L EE?vVT)d,.

Now recall thatBodo = —H 87 . So
dlv=0lBlz=—1p"HZ.
Substitute this relation into (14) to obtain
— eYZDH'B+ BTHTE(?22")H BYror]
= E(Y —ez" H'B)? 107§ = C17074 /ll0l%,

where Cy is the constanE (Y — eZ” H'B)?||o||2. Note thatzorl /l|zol1? is an
idempotent matrix of rank 1, ar(dorOT/||ro||2) ® I,_« is an idempotent matrix of

rank p — k. Therefore
T (B — B)Wo//C1 5 N(O, R),

whereR is an idempotent matrix of rank — k. We have proved the following
theorem.
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THEOREM 3. Suppose that conditions (C1)—(C3)hold and that 8 belongs to
Spar{H). Then, under the null hypothesis Ho x : Ax41=--- =i, =0, we have

1 . 2
Cro D M Xpko
i=k+1

where C1 = E(Y —eZT H'B)2||7o||?, with 7 being the first row of the matrix Wo.

3.5. Synthesis of the two cases. To apply directly the asymptotic results
developed in Sections 3.3 and 3.4, one must determine at the outset whether
belongs to SpaiH ), which would likely be problematic in practice. In this section
we derive a general result that synthesizes the two cases. This enables us to apply
the test in the constrained case without having to know wheghbelongs to
Spar(H) ahead of time.

Recall from (10) and (12) that

OnpBal, if B¢ SparH),

Bodo =
T\ -mtpd. it peSpan).

Using this relation we can rewrite the constafitandC; as
C =tr{aoE (" QuZZ" Qup)ag)

=tr{®{ B§ E(e*ZZ") Bodo},
C1=tr{roE(Y — T H'2)%c]

(15)

(16)
=tr{E(Y?)totd + 210E(YeZT)Bodo+ ®} BE E(e?Z27)Bydo).

Now consider the matrix

(1 O E(Y% Eez")\(/1 O
(17) A=o (o BOT) (E(YeZ) E(eZZZT)) (o Bo) Yo
If 8 ¢ Spar{H), then the first row of¥g is O and the matrix reduces to that
inside tracé) on the right-hand side of (15). B € SpantH), then the first row
of Wg is g and the matrix reduces to that inside trag®f (16). Thus if we let
C> be tr(A), then it automatically normalizes the asymptotic distributiorfpfo
axlz,_k distribution in both cases. To further simplify the notation #etlenote the
(p + 1)-dimensional vecto(Y, eZ7)T, and let diagl, By) denote thep + 1 x p
block-diagonal matrix with diagonal blocks 1 (the scalar one) BadThen we
can expres€’z as

(18) Co =tr{W{ diag(l, B{)E(WW')diag1, Bo)¥o).

The next theorem summarizes this general result.
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THEOREM 4. Suppose that conditions (C1)—(C3)hold. Then, under the null
hypothesis Ho i : Ak+1=--- = A, =0, we have

1 Losog 2
C2 Z )\'i — Xp-kv
i=k+1

where C> is defined at (18).

4. Asymptotic distribution for the general case. We now derive the asymp-
totic distribution ofCZ‘1 Zf=k+1 A; in the general case. The asymptotic result of
this section holds without conditions (C1)—(C3)—in its general form the asymp-
totic distribution is related only to the rank of the mat#x Thus for clarity we
will not refer to these conditions in the statement of the result. Under the linear
conditional mean condition (A¥iuT is a subspace of the CMS, and the test helps
us to identify a set of significant vectors that belongs to the CMS. Under the cov-
erage condition (C1)$y7 is equal to the CMS, and the test helps us to identify
the CMS itself. The point of this generalization is that (C3) is altogether removed,
(C2) is replaced by the much weaker condition (A), and without (C1) we can still
find vectors in the CMS but without the guarantee that they will span the CMS.

By expansion (3), the leading term Bf— B, ignoring the error of magnitude
0,(n7 1Y), is

(3—ﬂ,H<ﬁ—ﬂ>+<ﬁ_H)ﬁ,...,HP—l<ﬁ—ﬁ>

p—2
+ > HI(H - H)HP_Z_jﬂ>.
j=0

This can be written as the sum pfmatrices of simpler structures, as follows:
(B=B,.... H" X (B—P)) + (0.(H — H)B,...,(H — HYH"?)
+(0,0,H(H—H)B,...., H(H — HYHP38) + ...
+(0,...,0, H’"%(H — H)p).
Thus, the vector vé@ — B) can be written as
p—B _ 0 0
H(B—p) (H—-H)B 0
: + . +o :

HYG—p)) \(H - H)H28 HP2(H — H)B
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In other words,

I, 0 -~ 0 O B8
. H I, --- 0 O H—-H
veaB-B)=| . " o P
(29) : : R :
gpr1 o H I, (H— H)HP28
=MYV.

Here, M is ap2 by p? constant matrix, and’ is a random vector consisting
of subvectorsg — B, ..., (H — HYHP~ Zﬁ which, according to Lemma 1, can
be approximated by sums of independent and identically distributed vectors. It
follows that /M V converges in distribution to @2-dimensional multivariate
normal random vector.

To write an explicit form of the asymptotic distribution, let

E1=2Y —B—(ZZ" —1,)B/2— (Y* - 1)B/2,
(20) & ={e(zZ"-1,)—-H—(zZ" —1,)H/2
—HZZT - 1,)/2— (Y2 - 1)H/2}H' 7?8, i=2,...,p.
Then, by Lemma 1,
B—PB=EnE)+ 0p(nh),
(H—-H)H ?B=E, &)+ 0,0, i=2...p

Thus, if we let¢ be the vector&], ..., )7, thenV = E,(§) + 0,(n™ 1), and
consequently/n V converges in distribution to @2-dimensional multivariate
normal with mean 0 and covariance matfixé¢ 7). Therefore,

J/njCavedTd (B — B)Wo} 5 N(0, (Wo® o)’ MEEET)MT (W ® To)/ Ca).

Thus we have proved the following theorem.

THEOREMS5. Inthe general case, we have

A (p—k)?
Com Y k> ) wiKi,
i=k+1 i=1

where K1, ..., K (p—k)2 are independent chi-squared random variables with one
degree of freedomand w, ..., w(,_4)2 arethe eigenvalues of the matrix

(21) (Wo®@To) MEEET)MT (Wo® L)/ Co,
with C2, M and & defined by (18), (19)and (20), respectively.
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5. Implementation. In this section we describe how to estimate the various
unknown quatities involved in the asymptotic distribution 8f = Cz‘lzf’:,(Jrl iy
for both the constrained and the general cases. In the constrained case we only need
to estimateC,, whereas in the general case we need also to estimate the coefficients
W1,y ..., w(p—k 2.

To estimateC,, recall thatT'g and ¥ are derived from the singular value
decomposition ofB. That is, the columns of'g are the eigenvectors of the
matrix BBT corresponding to its zero eigenvalues, and the columnggoére
the eigenvectors a8’ B corresponding to its zero eigenvalues. So, wé{dhe the
p X p— j matrix whose columns are the— j eigenvectors oBB” corresponding
to its smallest eigenvalues, in a descending order. In a similar manner cosggruct
also of dimensionp x p — j, from the matrix B’ B. Furthermore, we will
estimateBy by its sample version

Bo=(B,..., H'7?p).
By the weak law of large numbe and By consistently estimat# and Bo,
and, under the null hypothestf ;, the matriced’o and ¥y conS|stentIy estlmate

o and ¥o. We propose to estimaié, by substituting the estimatd), Ug and
By for their population valueBo, ¥o and Bg in (18):

Co =tr{U] diag1, BY)E,(WWT) diag(1, Bo) ¥o},
where W is the (p + 1)-dimensional vecto(Y, ¢Z”)”. By Slutsky’s theorem,
substitutingC> for C» in T; = Cz‘1 Zf:,-HM will not change its asymptotic
distribution. ‘
To estimatevy, ..., O(p—i)2s let

E1=2Y —B—(ZZ" - 1,)B/2— (Y* - Dp/2.
E=1{e(ZZ" —1,)—H—(ZZ" - 1,)/2
—(ZZ" —1,)H/2— (Y2 - 1)H/2}H' 728, i=2,...,p,

and leté be the p2-dimensional vectot€] , ..., £I)T. We estimateM in (21)
by replacingH in the definition ofM, as given in (19), byi. The coefficients
w1, ..., w,_p)2 are then estimated by the eigenvalues of

(Wo®To) ME,(EETM" (B ®To)/C2.

As we can see from its construction, the general test does not reduce
numerically to the constrained case when conditions (C1)—(C3) are satisfied,
though in this case the two asymptotic distributions are first-order equivalent
becausec?)l,...,c?)(p_k)z converges in probability taws, ..., 0,_k2, which
containp — k 1's and(p — k)2 — (p — k) 0’s. Because the test for the constrained

case uses this special 0-1 structure of dl® it is expected to outperform the
general test when conditions (C1)—(C3) are satisfied.
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6. Simulation results.

6.1. Test levels. In this section we present selected results from a simulation
study to investigate the levels of the chi-squared and weighted chi-squared tests,
one goal being to provide support for the validity of our asymptotic results. The
tests have the same statistic for the hypothesis

dm@mun =j.  T;=C3" Y. .

but use different reference distributions. The& . reference distribution is
appropriate under conditions (C1)—(C3) of Theorem 4. Otherwise the reference
distribution is the weighted chi-squared of Theorem 5. The scaling corGtamtd

the weightsw; for the weighted chi-squared reference distribution were estimated
as indicated in Section 5. For each simulation run the estimated test levels were
based on 1000 replications and where relevant the chi-squared and weighted chi-
squared tests were performed on the same data. There is a substantial literature on
computing tail areas of distributions of linear combinations of chi-squared random
variables. See Field (1993) for an introduction. For reference, the nominal standard
errors of the estimated levels of nominal 1, 5, 10 and 15 percent tests are about
0.31,0.69,0.95and 1.13.

Table 1 contains results for a null regression with four independent standard
normal predictors and an independent standard normal response. The estimated
levels of the tests seem quite far from the nominal levels:fer25 observations,
but the agreement seems good for both tests with more than abeui00
observations.

TABLE 1
Estimated level of nominal 1, 5, 10and 15 percent chi-squared
(x?) and weighted chi-squared (x2) tests based on Ty, for a 0D
regression with p = 4 independent standard normal predictors
and an independent standard normal response

Nominal level (%)

n Test 1 5 10 15
25 x2 0 2.4 8.2 153
25 G 2.4 8.7 158 216
50 x2 0.1 2.4 9.4 154
50 G 0.8 6.6 121 182

100 %2 0.8 46 99 154

100 %2 15 6.4 118 174

200 %2 11 41 93 145

200 %2 1.3 43 105 148
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TABLE 2

Estimated level of nominal 1, 5, 10and 15 percent chi-squared
(x?) and weighted chi-squared (x2) tests based on 7, for model
(22) with p = 4 independent standard normal predictors Z;

Nominal level, n =50

o Test 1 5 10 15
0 x2 1.1 48 95 146
0 72 0.1 33 83 137

0.2 x2 1.0 59 104 151

0.2 72 0.3 38 8.7 154

0.4 x2 1.1 47 100 146

0.4 72 0 19 5.7 106

0.8 x2 0.5 35 7.7 114

0.8 72 0 10 37 6.3
1.6 x2 0 0.7 31 57
1.6 72 0 0.2 0.7 16

Nominal level, 0 = 1.6
n Test 1 5 10 15

100 x2 0.1 29 6.3 94

100 72 0.1 Q9 1.9 41

200 %2 1.3 57 104 142

200 72 0 19 5.0 86

400 x2 1.4 46 9.4 155

400 72 0.7 41 95 142

Tables 2 and 3 contain results based on the model
Y =Z140.2(Z1+ Z2)*> + o N (O, 1)

(22)

with p = 4 independent standard normal predictors, and various sample sizes and

TABLE 3

Estimated level of nominal 1, 5, 10and 15 percent
chi-squared tests based on 7> for model (22) with
p independent standard normal predictors Z

Nominal level, n = 100

» 1 5 10 15
4 11 47 100 142
6 0.7 49 9.9 150
8 0.9 40 8.6 159

12 03 46 102 151

16 05 39 7.6 120
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values foro. Because dit8q1) = 2, we studied the behavior df, in each

case. In the first part of Table 2 we held the sample size fixed-at50 and
variedo from 0 to 1.6. Aso increases the estimated levels of both tests tend

to decrease, ending with quite conservative tests &t1.6. Note, however, that

o = 1.6 is large compared to the variancef, with vare)/varnZ,) = 2.56. At

this error rate it is not surprising that the percentiles for both tests differ quite a
bit from their nominal value, because the powerTafis not much larger than

the nominal error rate. In the second part of Table 2 we heftked at 1.6 and
increased the sample size. As the sample size increases we see the asymptotic
approximations improving, ending with reasonable results=a#400. Our general
conclusion from Tables 1 and 2 and other simulation results not reported here is
that the results are behaving as expected, which supports our analytic calculations
and method of implementation suggested in Section 5. Perhaps as expected, the
weighted chi-squared seems to take a larger sample size for the asymptotics to
take hold. Additionally, there is a tendency for the weighted chi-squared test to be
conservative.

In Table 3 we investigate the impact on the chi-squared test of increasing the
number of unimportant predictors, holding= 100 ando = 0.2. Although there
seems to be a little tendency for the estimated levels to decregsénascases,
overall increasing the number of predictors does not seem to have much of an
impact.

In Table 4 we consider model (22) with the erN (0, 1) term replaced by
0-5()(22 — 2). Replacing the normal error with a chi-squared error did not seem to
have a notable impact on the results. Because the error does not satisfy (C2) we
have used the weighted chi-squared reference distribution.

Finally, we present a few confirmatory results baseghea5 standard normal
predictors and a response generated as

(23) Y = ¢032%14322) | 1 6sin(Z1 — Z2) + o N (O, 1).

Letting SD denote a population standard deviation, the signal-to-noise ratio
SD(E(Y|Z))/o for model (23) is about @ times that for model (22), so the mean

TABLE 4
Estimated level of nominal 1, 5, 10and 15 percent weighted
chi-squared tests based on 75 for a 2D regression with p =4
independent standard normal predictors Z; and response

Y = Z1 4 0.2(Z1 + Z2)2 + 0.5(x3 — 2)

Nominal level (%)

n 1 5 10 15
50 01 25 6.5 110
100 a5 38 8.9 131

200 10 5.8 9.9 146
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TABLE 5
Estimated level of nominal 1, 5, 10and 15 percent chi-squared
(x?) and weighted chi-squared (x2) tests based on 7, for
simulation model (23) with o = 0.2

Nominal level (%)

n Test 1 5 10 15
50 x2 0.5 41 95 137
50 G 0 21 46 8.7

100 x2 0.6 33 7.2 121

100 %2 0.2 12 45 8.2

200 x2 1.2 45 105 145

200 %2 0.4 24 6.3 115

function of (23) should be harder to estimate. Table 5 contains estimated levels
of 7> for model (23) for three sample sizes and four nominal levels. These results
are qualitatively similar to those discussed previously and confirm the conservative
nature of the weighted chi-squared test in smaller samples.

6.2. Estimation of dim(8y7). In this section we present first results on the
behavior of the sequential testing procedure discussed in Section 2.2 for estimating
k = dim($47). We consider only estimates based on using the same nominal level
for each of the sequential tests, although in a more comprehensive investigation it
might be desirable to include variable levels.

Reasoning in the context of model (22) with difjyt) = 2, if the leading tests
of k = 0 andk = 1 have power 1, then all of the estimation error arises from the
level « of the test ofk = 2, resulting in estimatek = 2 with probability 1— «
and k > 2 with probability «. Ideally, we would like to maker small, while
maintaining high power in the leading tests. Leading tests with small values of
will have relatively low power and will tend to result in underestimatiort ofVe
can increase the power of the leading tests by increasitgt this also increases
the probability of overestimation.

For instance, Table 6 gives the empirical distributionkadut of 1000 trials
based on the sequential chi-squargd)(and weighted chi-squared) tests
for model (22). Withn = 50 we would prefer a level around10since the
fraction of correct decisions was observed to change littleofor 0.1 until it
began to decrease. With= 100, a level around.05 tends to balance over- and
underestimation and produce the best results. With larger sample sizes or smaller
values ofo, a level less than.05 may be preferred. Results for model (23) were
gualitatively similar, but not quite as strong since its mean function is harder to
estimate.

Overall, we found no compelling reason to prefer estimatesavith0.15. Tests
with « = 0.05 ore = 0.1 tended to produce good results in our simulations, but
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TABLE 6
Distribution of dimension estimates k out of 1000trials based
on the sequential chi-squared (x 2) and wei ghted chi-squared
(x2) tests with constant nominal level o

f with n =50 J with n = 100
o 0 1 2 >3 0 1 2 >3
X2
0.001 4 924 T2 0 0 322 678 0
0.01 0 631 365 4 0 85 904 11
0.05 0 308 656 36 0 20 931 49
0.10 0 187 731 82 0 9 901 90
0.15 0 136 733 131 0 3 859 138
)? 2
0001 171 692 137 0 81 412 507 0
0.01 67 527 404 2 37 149 809 5
0.05 18 284 666 32 9 38 911 42
0.10 5 167 746 82 4 18 899 79
0.15 2 119 755 124 1 7 867 125

The model is (22) witly = 0.4 and sample sizes 50 and 100.

tests witha < 0.05 might yield better estimates with a significantly larger sample
size or stronger signal.

6.3. Direction estimation. Givenk = 2 for models (22) and (23), we studied
the accuracy of the IHT estimates of the CMS by computing the absolute
correlation betweerx; and the fitted values from the OLS regressionZgfon
the first two IHT predictorsj = 1, 2. Shown in Table 7 are three quantiles of the

TABLE 7
Quantiles (¢o.05, 0.5 and go.g5) of the empirical distribution of the
absol ute correlation between Z ; and the fitted values fromthe OLS
regression of Zjon thefirst two IHT predictors, j =1, 2, based on 1000
replications frommodel (22) with three values for o and two sample sizes

n =50 n =100
o 40.05 q0.5 40.95 40.05 q0.5 40.95
(A) Z1
0.2 0.98 0.995 Q9996 099 0998 Q9998
0.4 0.97 0993 Q9994 098 0997 Q9997
0.8 0.94 099 0999 Q97 0994 Q9996
(B) 22
0.2 077 095 0996 Q89 098 0.998
0.4 071 094 0996 Q86 097 0997

0.8 0.47 088 0992 Q72 094 0995
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empirical distribution of these correlations over 1000 simulations for model (22).
The results for model (23) are qualitatively similar, but as expected the correlations
are smaller at the same sample size and standard deviatibor example, the
guantiles forZ; under model (23) witlh = 100 ando = 0.4 were observed to be
g0.05 = 0.89, go.5 = 0.97 andgg 95 = 0.996.

7. Ozone data. In addition to simulations with normal predictors, we ana-
lyzed several different simulated and real data sets with nonnormal predictors
using IHT methodology and found that in nearly all cases the chi-squared and
weighted chi-squared reference distributions result in the same estimate of the di-
mension of the CMS. The ozone data [Breiman and Friedman (1985)] considered
briefly in this section is an instance where the estimates of dimension differ.

The respons& is atmospheric ozone concentration, and there are seven pre-
dictors: Daggett pressure gradient (DGPG, mmHg), humidity (HMDT, percent),
visibility (VSTY, miles), wind speed (WDSP, mph), Vandenburg 500 millibar
height (VDHT, m), the logarithms of Sandiy Air Force Base temperature (SBTP,
degrees C), and inversion base temperature (IBTP, degrees F). The logarithm of
the two temperature predictors was used to help to ensure that the linearity condi-
tion (A) hold to a useful approximation. Because we use only IHT methodology,
there is no reason to consider the constant covariance condition (B).

The test results from using the chi-squared and weighted chi-squared reference
distributions for7; are shown in Table 8. Use of the chi-squared reference
distribution indicates that the dimension of the CMS is 3, while the weighted chi-
squared reference distribution indicates two dimensions.

Shown in Figure 1 is a scatterplot of the response versus the first IHT
pl‘edICtOI'vlTZ wherev] is the eigenvector of BB” corresponding to itsith

largest elgenvalua A 3D plot (not shown) of the residuatsversus the first

two IHT predictors {7 Z, ﬁZTZ) exhibits a saddle, confirming that digjyt) is

at least 2. We were unable to find any notable graphical support for a third IHT
predictor and consequently we conjecture that the results of the third chi-squared
test in Table 8 are due to a failure of condition (C2) or (C3). In any event, because
the conditions needed for the weighted chi-squared reference distribution are
considerably less restrictive than those needed for the chi-squared, the weighted
chi-squared-values are likely more reliable.

TABLE 8
Test results for the ozone data

j T df  x2 p-value 2 p-value
0 1790 7 0.000 0.000
1 19.08 6 0.004 0.025
2 1252 5 0.028 0.261
3 2238 4 0.692 0.721




2524 R. D. COOK AND B. LI

S L
<
[e]
o]
@® ©
(o]
<
o
2
SN
@)
S N
00 [e/eslel(»] @ Ooamo O o]
o @ @® OO0 QXD C O o0 @O
o 00 (] [e] o Q¢
[o}Ne]
o
-3.5 2.4 -1.3 -0.2 0.9 2
First IHT Predictor

FIiG. 1. Scatterplot of ozone versus the first IHT predictor with a LOWESS smooth.

8. Discussion. In this article we developed two asymptotic tests for the
dimensionk of the IHT subspace§iyt. The tests use the same statistic=

C;' ¥, 1A for the hypothesis rarig) = j, but have different reference

distributions depending on characteristics of the regression.x'ﬁng reference
distribution is appropriate under conditions (C1)—(C3) of Theorem 4. Otherwise, in
practically full generality, the reference distribution is the weighted chi-squared of
Theorem 5. We typically use both reference distributions in practice, as illustrated
in Table 8.

Both tests are derived under the winrdk coverage corition (C1), which
is typically assumed in similar asymptotic developments in the literature. The
working assumption is supported partly by the fact that IHT incorporates OLS



DIMENSION OF ITERATIVE HESSIAN TRANSFORMATION 2525

and PHD in a way that does not evoke the constant variance condition (B), and
is capable of discovering monotone and nonmonotone trends. Our experience
indicates that IHT often works very well in picking up the patterns in a regression
relation, so long as there is a nonzero vector to initiate the iteration process. Even
if the coverage assumption does not hold, the general test still finds the significant
vectors in the CMS, but the span of these vectors need not cover the CMS. In such
cases, the tests should be viewed as a means of finding significant vecigrs,in
which is a subspace of the CMS under the linear conditional mean condition (A).
The issue of coverage is a fundamental and challenging one and deserves careful
and in-depth investigation for IHT as well as other dimension reduction methods.

Cook and Critchley (2000) found that the CS automatically expands to
incorporate regression outliers and mixtures. Consequently, they argued that the
acknowledged sensitivity of CS methods like SIR and SAVE [see, e.g., Gather,
Hilker and Becker (2002)] can be viewed as an advantage, since they have the
ability to identify outliers and mixtures along with the main regression. In effect,
methods for estimating the CS provide their own diagnostics. We conjecture
that IHT is similarly self-diagnosing for outliers that affect the regression mean.
Although we have not performed theoretical work to trace the diagnostic limits of
IHT, various simulation results suggest that they might be fairly wide. For example,
with four standard normal predictors, we generated 50 observations according to
the linear modelt = Z; + 0.2N (0, 1), and then added a 51st observation with
Y =6 andcorresponding; =2, j =1, ..., 4. IHT estimated the dimension of the
CMS to be 2, and the 3D summary plot clearly showed the linear mean structure
and the outlier. Removal of the outlier resulted in a one-dimensional estimate of
the CMS, as expected. Alternatively, we might deal with outliers by designing a
robust version of IHT, replacing the sample moments by more robust estimators
along the lines that Gather, Hilker and Becker (2001) used to investigate a robust
version of SIR. This, however, is beyond the scope of the present paper.

The availability of these tests means that IHT is now a fully functioning
methodology on a par with PHD. But, unlike PHD, it does not require the constant
covariance condition (B) for either estimation or testing. In situations where PHD
is applicable [conditions (C1)—(C3)], IHT automatically combines PHD with OLS,
taking advantage of the ability of OLS to find linear trends in the mean function,
and the ability of PHD to find nonlinear trends.

APPENDIX: PROOFS OF LEMMAS

Throughout this section the identity matrix of dimenspmvill be written as/
rather than/,,.

PROOF OFLEMMA 1. By definition,

A

(24) B=S"Y2%E,Z2-Z)Y -Y).
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Let us first expand ~1/2. Note that
S=E,zz"-ZZ"
=E,(ZZD)+ 0,(n Y =T+ E,(ZZT — 1)+ 0,(n7}),

whereE,(ZZ" — I) is of the order0,,(n~/?). We know thatz ~1/2 must be of
the formI + A,, for some random matrlx\ of the orderOp(n—l/z) Therefore,

I+ A (I + En(ZZT — D) =1.
The left-hand side is
I+ E,(ZZ" — 1)+ 24, + 0,(n™h).
ThereforeA, = —E,(ZZT — 1)/2+ 0,(n~1) and

(25) SV2=1—E, 22T - 1)/2+ 0,(n7Y).
By a similar argument one can show that
(26) 6 1=1-E,(Y?-1/2+0,(n™ .

It is easy to see that
E\(Z—=Z)(Y =Y) =E(ZY)+ 0p(n" )

=B+ E(ZY)— B+ 0,(n7 ).

Now substitute (25), (26) and (27) into (24) and expand the right-hand side of
(24) to obtain expansion (4).
Next let us prove expansion (5). By definition,

(28) H=3"1Y?Ee(z-Z)z-Z)"1=27Y2

We have already expandéii1/2. Now let us expandz,[é(Z — Z)(Z — Z)T].
We have

Eé(Z—-Z)Z-Z) 1= En(eZ2ZT) = ZE,(6Z") — E,(¢2)ZT + 0,(n™Y).
BecauseZ = O (n—l/z) we need only expanfl,(¢Z) so that the error is of the
orderOp(n—l/z) Note that

E (e2)=E,[(67YY —Y) - gTE V22 - 7)) 7]
=6 E (Y - Y)Z] - E,[Z(Z — Z)T1ZY?8.
It is easy to see that

(27)

57 1=14+0,(n7V?),

E (Y =Y)Z]= B+ 0,(n ),
E Z(Z-Z)" =1+ 0,(n™"?),
sSY2_ 4 Op(n‘l/z),

B=8+ Op(n_l/z).
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Therefore,

En(eZ)=p— B+ 0p(n™"% = 0,(n™"?),
and consequently,
(29) E(Z-Z)Z2-2) =EneZZ" + 0,(n™ ).

We now expand the right-hand side so that the error is of the @gerl). We
have

(30) E,ézZ" =671E, (¥ - Y)Z2Z"1 - E [8TS Y%z -Z)(zZ")].
The first term on the right-hand side is
67 E, (Y —=Y)ZZT]
=6 YE, (Y =Y)(ZZ" - D)
(31)
=6 E Y (ZzZ" -~ D1+ 0,0 Y
=(1— E,(Y2—1)/2)E,[Y(ZZT — D1+ 0,(n7Y).
The second term on the right-hand side of (30) is expanded as
EJB"SV2(z -Z)(z2")]
=E,BTS Y2z -Z)yzZz" - 1)
=E TS Y2222 — D1+ 0,7 Y).
The (i, j)th element of thep x p matrix on the right-hand side is
i(i—l/zﬁ>kEn[zk<zizj — 81,
k=1

where (£ ~Y/28), is thekth element of the vectoE ~%/23 ands;; is the (i, j)th
element of thep-dimensional identity matrix/. BecauseZ has a standard
multivariate normal distribution, the expectation Bf(Z; Z; — §;;) is zero for
anyi, j, k. ThereforeE, (Zx(Z; Z; — ;7)) = 0,(n~1/?), and hence if we replace
the £ and 8 by I and 8, then the error incurred has the magnitudg(n 1. It
follows then that

32) EJB"S YAz -Z)2Z")=E,B"Z(Z2Z" - D]+ 0,(n 7).
Now substitute (31) and (32) into (30) to obtain

E,@ZZ")=E,[e(ZZ" — D1 = 3E,(Y? = DE,[Y(ZZ" — D1+ 0,(n™Y).
However, note that

Ele(ZZT —)]=E(zZ")=H.
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Hence,
E,@ZZ")y=H+E,[e(ZZ" — 1) - H] - 3E,(Y2 = DH + 0,(n™Y),
which, combined with (29), implies that
E(Z—-Z)Z-2Z)T

(33) T 1 2 -1
—H+ Eg[e(ZZ" — 1) — H] - 3E,(Y2 = DH + 0,(n™Y).

Now substitute (25) and (33) into (28), and expand the right-hand side of (28) to
obtain the desired expansion (5]

PROOF OFLEMMA 2. (i) SinceB ¢ SpartH) andHB, ..., H?~18 belong to
SparnH), B ¢ SpafH8p, ..., H?~1p}. Meanwhile, we know that

(B, HB, ..., HP718)W =0.

If the first row of ¥y is not 0, thenB can be written as a linear combination of
HB, ..., HP~18, which is a contradiction.

(ii) First, consider the casge L Spar{H) (which includes the casé = 0). Then
B=(8,0,...,0), rankB) = 1, and¥y is a p by p — 1 matrix. Write

OT)
Wo = ,
0 <<I>o

where®g is ap — 1 by p — 1 matrix. Sincedg is an orthonormal matrix, its first
row must contain a nonzero element.

Next, consider the case whepeis not orthogonal to Spa#). In this case
rank(B) > 2. Suppose first that rank) = 2. Then¥g is a p by p — 2 matrix. We
claim thatH?p # 0. This is because /28 = H(Hp) =0, thenHB L SparH),
but this impliesHB = 0 since HB belongs to SpaiH). This means thag L
Spar(H), which is a contradiction. Hence

(H?B,...,HP™'8) +£0.

Now suppose that the first row @fy is 0 and write

0
%:(Ao)’

where Ag is a p — 2 by p — 2 matrix. Then(H28,..., H?"18)A¢ = 0. In
other words, the columns of\g are orthogonal to the rows of the matrix
(H?B, ..., HP~18), which contains at least one nonzero row. Consequently the
p — 2 columns ofAq belong to ap — 3)-dimensional space, so that they cannot
be an orthogonal set. But this contradicts the fact that the columnkyadre
orthogonal.
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Next, suppose that rank) = k > 2. We first prove that € SparH?8, ...,
HP~18). From B ¢ SparH) it follows that the vectorsZ*8, ..., H?~18 belong
to the subspace spanned by the vectlfs ..., H*~18, because otherwise we
have, for somg € {k, ..., p — 1} and some1 # 0,

Hig=c1f+coHB +---+ crH 1B,

contradicting the assumptigh¢ Spari{H). By the same argument we can deduce
that the vectorsH*B,..., H?~18 must belong to the subspace spanned by
H?B, ..., H*14. In particular,

H*B = (H?B, ..., H*1B)s
for somes in R¥~2. Then
(34) H(H*1g - (HB, ..., H*28)8) =0.

In other words, the vectai*~18 — (HB, ..., H*=2B)s is orthogonal to the rows,
and hence columns, aff. However, both vectors in this difference belong to
Spar{H), and so we have

H* 18 =(HB, ..., H?B)s.

ConsequentlyH*~18, and hence all the subsequent vectéfs, ..., H?~18,
belong to the space spannedig, ..., H*=28, which contradicts the assumption
that ranKB) = k.
However, if HB belongs to SpaiH?8, ..., HP~1p), then the matrix(H?p,

.., HP~18) has rank at leagt— 1, because we know thatg, H28, ..., H*"1p
are linearly independent. Hence the solution space of the mak#&g, ...,
HP~18)x = 0 has dimension at mosp — 2) — (k — 1) = p — k — 1. Now if
the first two rows of¥g are zero, then there age— k orthogonal solutions to that
equation, which is impossible ]

PrRoOOF OF LEMMA 3. Sinceg belongs to SpatH) it can be written as
B = Hn for somen in RP. First assume that ranB) = 1. We claim that
H?y#0, otherwiseHn is orthogonal to Spait!), and must therefore be 0
becausdin belongs to SpaiH). If the first row of ¥ is 0, then

(H?n,..., HPn)do=0.

Therefore thep — 1 columns ofdq are orthogonal to the rows afH?y, ...,
HP~1p), which contains a nonzero row. But if so, the columnsdef belong
to a (p — 2)-dimensional subspace &1, and cannot be an orthogonal set—
a contradiction.

Now suppose that raiB) = k > 2. We first prove thai € SpartHg, ...,
HP~1p). Otherwise, by an argument similar to that used in Lemma 2, the
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vectorsH*B, ..., H?~18 all belong to the space spannedHy, ..., H*"14. In
particular, for somé e RF—1,

H'B = (HB, ..., H*1B)s,
which implies
H"Yy = (H?n, ..., H*n)s.
But then, as we argued in the proof of Lemma 2, following display (34),
HYn=(Hn,...,H" )5 or H18=(B,..., H2p)s.

This implies that7*~18, and hence all its subsequent vect&isg, ..., H’~18,
belong to the space spannedpy..., H*—28, contradicting the assumption that
rank(B) = k.

That 8 belongs to SpaiHp, ..., B’~18) implies that the matrix HB, ...,
HP~18) has rankk, becauses, ..., H*~18 are linearly independent. Therefore
the equation(Hg, ..., H?"18)x =0 has at mostp — 1) —k=p —k — 1
linearly independent solutions. However, if the first row B§ is zero, then
(HB, ..., HP~18)x =0 hasp — k orthogonal solutions—a contradiction]
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