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ASYMPTOTIC OPERATING CHARACTERISTICS OF
AN OPTIMAL CHANGE POINT DETECTION IN
HIDDEN MARKOV MODELS
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Let &, &1, ...,&,—1 be observations from the hidden Markov model
with probability distributionP, and lett,,, £,1. ... be observations from
the hidden Markov model with probability distributiadPfL. The parameters
6g and 64 are given, while the change pointis unknown. The problem is
to raise an alarm as soon as possible after the distribution changesffom
to PP, but to avoid false alarms. Specifically, we seek a stopping Kile
which allows us to observe thgs sequentially, such thaEx N is large,
and subject to this constraint, sup; (N — k|N > k) is as small as possible.
Here E; denotes expectation under the change péinand E~, denotes
expectation under the hypothesis of no change whatever.

In this paper we investigate the performance of the Shiryayev—Roberts—
Pollak (SRP) rule for change point detection in the dynamic system of hidden
Markov models. By making use of Markov chain representation for the
likelihood function, the structure of asymptotically minimax policy and of
the Bayes rule, and sequential hypothesis testing theory for Markov random
walks, we show that the SRP procedure is asymptotically minimax in the
sense of PollakAnn. Statist. 13 (1985) 206—227]. Next, we present a second-
order asymptotic approximation for the expected stopping time of such a
stopping scheme when= 1. Motivated by the sequential analysis in hidden
Markov models, a nonlinear renewal theory for Markov random walks is also
given.

1. Introduction. The problem of quick detection, with low false-alarm rate,

of abrupt changes in stochastic dynamic systems arises in a variety of applications,
including industrial quality control, segmentation of signals, financial engineering,
biomedical signal processing, edge detection in images, and the diagnosis of
faults in the elements of computer communication networks. A comprehensive
summary in this area was given by Basseville and Nikiforov (1993) and Lai
(1995, 2001). A typical such problem in segmentation of signals is that of
using an automatic segmentation of the signal as the first processing step, and a
segmentation algorithm splits the signal into homogeneous segments, the lengths
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of which are adapted to the local characteristics of the analyzed signal. The main
desired properties of a segmentation algorithm are few false alarms and missed
detections, and low detection delay. In the standard formulation of the change
point detection problem, there is a sequence of observations whose distribution
changes at some unknown timae and the goal is to detect this change as soon as
possible under false alarm constraints. The reader is referred to Braun and Mdiller
(1998) for a nice discussion of hidden Markov models for DNA data and change
point detection analysis.

When the observatior are independent with a common density functjdh
for n < w and with another common density functigfﬁl for n > w, a minimax
formulation has been proposed by Lorden (1971), in which he showed that
subject to the “average run length” (ARL) constraint, Page’s CUSUM procedure
asymptotically minimizes the “worst case” detection delay. Instead of studying
the optimal detection problem via sequential testing theory, Moustakides (1986)
formulated the worst case detection delay problem subject to an ARL constraint
as an optimal solution to the optimal stopping problem. Ritov (1990) later gave a
simpler proof. For change point detection in complex dynamic systems beyond the
i.i.d. setting, Bansal and Papantoni-Kazakos (1986) extended Lorden’s asymptotic
theory to the case whetg are stationary ergodic sequences, under the condition
that {£;, j < w} (before the change point) and;, j > »} (after the change
point) are independent, and proved the asymptotic optimality of the CUSUM
algorithm. Further extensions to general stochastic sequépossre obtained
by Lai (1995, 1998). Moreover, using a change of measure argument, Lai (1998)
also established the asymptotic optimality of the CUSUM rule under several
alternative performance criteria. In the dynamic system of hidden Markov models,
Fuh (2003) proved that the CUSUM scheme is asymptotically optimal in the sense
of Lorden (1971). His method related the CUSUM procedure to certain one-sided
sequential probability ratio tests in hidden Markov models, for which they had
been shown, in Section 4 of Fuh (2003), to be asymptotically optimal for testing
simple hypotheses.

In the simple system of independent observations before and after the change,
a Bayesian formulation has been proposed by Shiryayev (1963, 1978), in which
the change point is assumed to have a geometric prior distribution, and the goal
is to minimize the expected delay subject to an upper bound on the false alarm
probability. He used optimal stopping theory to show that the Bayes rule triggers an
alarm as soon as the posterior probability that a change has occured exceeds some
fixed level. Roberts (1966) considered the non-Bayesian setting, and studied by
simulation the average run length of this rule, and found it to be very good. Pollak
and Siegmund (1975) extended Shiryayev’s work in a nhon-Bayesian setting. And
Pollak (1985) showed that the (modified) Shiryayev—Roberts rule is asymptotically
minimax under the formulation of Pollak and Siegmund (1975). Later Yakir (1997)
proved that the procedure is strictly optimal for a slight reformulation of the
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problem. Finally, we mention that Yakir (1994) studied Bayesian optimal detection
for a finite state Markov chain.

As noted by Basseville and Nikiforoi993) in their monograph, there is a great
deal of literature on detection algorithms in complex systems but relatively little on
the statistical properties and optimality theory of detection procedures beyond very
simple models. The primary goal of this paper is to investigate theoretical aspects
of the Shiryayev—Roberts—Pollak (SRP) change point detection rule in hidden
Markov models. We show that the SRP procedure is asymptotically minimax in the
sense of Pollak (1985). Next, we present a second-order asymptotic approximation
for the expected stopping time of such a stopping scheme whern. Motivated
by the sequential analysis in hidden Markov models, a nonlinear renewal theory
for Markov random walks is also given.

This paper is organized as follows. In Section 2 we define the hidden Markov
model and formulate the sequential change point detection problem. Then we
provide a Markov chain representation of the likelihood ratio. A nonlinear Markov
renewal theory is given in Section 3. In Section 4 we show that the SRP rule
is asymptotically minimax under mild conditions. In Section 5 we study the
asymptotic operating characteristics of the detection procedure, and derive a
second-order asymptotic approximation for the expected stopping scheme when
o = 1. All proofs are given in Sections 6, 7 and 8.

2. Problem formulation. A hidden Markov model is defined as a parame-
terized Markov chain in a Markovian random environment [Fuh (2003)], with the
underlying environmental Markov chain viewed as missing data. That is, for each
0 € ® C R4, the unknown parameter, we considee {X,,n > 0} as an ergodic
(positive recurrent, irreducible and aperiodic) Markov chain on a finite state space
D ={1,2,...,d}, with transition probability matrixP (6) = [pxy(0)]x,y=1,...a
and stationary distribution (6) = (7,(0))x=1....4. Suppose that an additive com-
ponent,, taking values inR, is adjoined to the chain such tH&k,,, &,), n > 0} is
a Markov chain onD x R, satisfyingP@{X1 € A|Xo=x,& =5} = PP {X; e
A|Xo=ux}for A € 8(D). And conditioning on the fulk sequence;, is a Markov
chain with probability

P%(&,11 € B|Xo, X1,...; €0, €1, ..., &)

(2.1)
= P&, 41 € Bl Xpt1: 80} = PP (Xp11:6,,B)  as.

for eachn and B € 8(R), the Borelo-algebra of R. Note that in (2.1) the
conditional probability of¢,.1 depends orX, 1 andé, only. Furthermore, we
assume the existence of a transition probability density for the Markov chain
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{(X,, &), n > 0} with respect to @ -finite measurg: on R such that
PP{X1 € A, & € B|Xo=x, &= s0}
= P& € BIX1€ A, Xo=x, & =50} P {X1 € A|Xo=x}

= [ pn®@ 1630, @ls0 duts),

yeA

2.2)

where f(&; ¢x, (0)|6k—1) is the transition probability density df, given &;_1
and X with respecttqu, 6 € © is the unknown parameter, apd(-) is a function
defined on the parameter spa@dor eachy =1,...,d. Here and in the sequel
we assume the Markov chafiX,, &,), n > 0} has stationary probability with
probability densityr, (6) f (+; ¢ (8)) with respect touw. In this paper we assume
that only one parameter is of interest and treat the other parameters as nuisance
parameters. That is, for simplicity we considee ® C R as a one-dimensional
unknown parameter. For convenience of notation, we writefor =, () and
Pxy for py,(6). We call a proces§,, n > 0} a hidden Markov model if there is
a Markov chain{X,,, n > 0} such that the proceg$X,, &,), n > 0} satisfies (2.1)
and (2.2).

Let &, &1,...,&,_1 be the observations from the hidden Markov model
{€,, n > 0} with distribution P%, and lett,,, £,1, . .. be the observations from the
hidden Markov model&,, n > 0} with distribution P?1. Both6g andé; are given,
while the change poinb is unknown. We shall usg,, to denote such a probability
measure (with change time) and useP,, to denote the case = co (no change
point). DenoteE,, as the corresponding expectation unéfgr The objectives are
to raise an alarm as soon as possible after the change and to avoid false alarms.
A detection scheme is a stopping time on the sequence of observations and aims
to minimize the number of post change observations. Hence, the stoppingy/time
should satisfy{N > w} but, at the same time, keép — » small. In this paper we
use the functional studied by Pollak and Siegmund (1975) and Pollak (1985) to
find a stopping timeV to minimize

(2.3) sup Ep(N —k|N >k)
1<k<oo

subject to

(2.4) ExN =y,

for some specified (large) constantA detection scheme is called asymptotically
minimax if it minimizes (2.3), within am(1) order, among all stopping rules that
satisfyE.oN > y, whereo(1) — 0 asy — oo.

To describe the SRP change point detection scheme, we need the following
notation. Fix6p, 01 € ©. Let &g, &1, ..., &, be the observations given from the
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hidden Markov mode{é,,, n > 0}. Denote

LR, :=
R Pn(&0, 81, ..., &n; 60)
d d
=) Y T (01) f (B0 0o (1)
xo=1 xp=1
(2.5) X [T Prcae 60 £ (&5 02, (D) |E1-1)

=1

d d
x [ Y D x(600) £ (€05 9 (60))

xo=1 xp,=1

" -1
X 1_[ le_lxz (90).]((517 ngz (90)|El—l)i|

=1
as the likelihood ratio. For & k < n, let

LR = Pn Gk Sk+1, - -+, 6n3 61)

X1 X [k Py 00 f &5 0 (0D E1-1)
S X Tl Pa1 60) f (&5 0 (B0) & 1)

Given an approximate threshol® > O and settingb = log B, define the
Shiryayev—Roberts scheme

(2.7) Nb;=inf{n:2nj|m33}=inf{n:|oan:|m zb}.
k=0 k=0

A simple modification of (2.7) was given by Pollak (1985) by adding a
randomization on the initialRf,’. This will be defined precisely in Section 4.

It is worth asking that while the SRP rule (2.5)—(2.7) is asymptotically minimax
in the i.i.d. cases [Pollakl@85)], is it nontrivial whether this is still true for hidden
Markov models? To give a definitive answer to this question, we need to study
the likelihood ratioLR, that appeared in (2.5) since (2.6) can be analyzed in the
same manner. Note that the nonadditive form of (2.5) makes it difficult to analyze.
A key idea to get rid of this difficulty is to represent the likelihood ratio (2.5) as
the ratio of L1-norms of products of Markov random matrices. This device has
been proposed by Fuh (2003) to study SPRT and CUSUM for hidden Markov
models. Here, we carry out the same idea to have a representation of the likelihood
ratioLR,.

Given a column vector = (u1, ..., us)" € R, wherer denotes the transpose
of the underlying vector irR?, define theL1-norm ofu as|u|| = Zle lu;|. The

(2.6)
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likelihood ratio (2.5) can be represented as

Pn(60,81, ... 80301 _ [Mn(01) --- M1(01) Mo(01)7 (00 I
Pn(§0, 61, ..., 6036000 |Mn(60) - - - M1(60) Mo(60)7 (60) ||
where, ford = 6g or 61,

(28) LR, =

/(&0 92(0)) O --- 0
(2.9) Mo = Mo(9) = S : :
0 0 - f(%0; wa(0))

p110) f (&k; 91(0)|6k—1) - par(®) f (&k; 91(6)|6k—1)
(2.10) My = M (0) = : :
p14(0) f (6k; 9a(0)|6x—1) - -+ paa(©) f (ks ©a(0)|6x—1)
fork=1,...,n,and

(2.11) 7(0) = (71(0), ..., ma(®))".

Let {(X,,&,),n > 0} be the Markov chain defined in (2.1) and (2.2). Denote
Y, = (X,,&) andD’ := D x R. DefineGlI(d, R) as the set of invertibld x d
matrices with real entries. For givén=0, 1, ..., n,andd = 6y or 61, let M (6) be
the random matrix fronD’ x D’ to Gl(d, R), as defined in (2.9) and (2.10). For
convenience of notation, we still dendte= (6p, 61) and let

Tp(0) = My (0) - -- Mo(6)

= (T (00), Ty (61)) = (M (60) - - - Mo(0o), M, (01) - - - Mo(61)).
Then the systen{(Y,, T,(0)),n > 0} is called a product of Markov random
matrices onD’ x GI(d, R) x GI(d, R). Denotej’y" as the probability distribution
of {(Yu. Tu(6)), n > 0} with Yo =y, and€? as the expectation undet’.

Let u € RY be ad-dimensional vectori := u/|u| the normalization ofs
(lu]l # 0), and denoteP (R) as the projection space & which contains all
elementsii. For giveni € P(RY) and M € Gl(d, R), denoteM - it = Mu and
Te(@)u = (TxBo)u, T Ou), fork =0,...,n. Let

(2.13) W§ = (Yo, To(@)u), Wi = (Y1, T1@)u), ..., W = (Y, T, (O)u).

Then{W?, n > 0} is a Markov chain on the state spagéx P (R?) x P(R?) with
the transition kernel

(2.14) P((y.it), A x B) := € (Iaxp (Y1, M1(O)u))

(2.12)

forall y e D', it := (i1, 1) € P(R?) x P(R?), A e B(D'), andB € B(P(R?) x
P(R%)), the Borelo-algebra ofP(R%) x P(R?). For simplicity we IeﬂP’?y’ﬁ) =

Pf(-,-) and denoteE! ; as the expectation undé .. Since the Markov
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chain{(X,, &), n > 0} has transition probability density and the random matrix
M1(0) is driven by {(X,,&,),n > 0}, it implies that the induced transition
probability P(-, -) has a density with respect fo. Denote it asP for simplicity.
Under Condition C given below, the Markov chdiw?, n > 0} has an invariant
probability measure:’ on D’ x P(R%) x P(R?); see Fuh (2003).

Now, for yo,y1 € D/, it = u(@) = (u(o),u(01)) € P(R? x P(R?) and
M = M(yg, y1) = M(0) = (M(6g), M(61)) € GI(d, R) x GI(d, R), leto : (D' x
P(R?) x P(RY) x (D' x P(RY) x P(R%) — R be o((yo.it), (y1. Mu)) =
log |47 GLuCLlALCUL  For m(60), m(61) € P(RY), denote o(Wo, Wo) =

I To(60) (0 [/ Iz (B0
109 |G @1 /T @ - T NEN

S, =logLR,

o | My (61) - - - M1(61) Mo(61) 7 (61) ||
| M, (6o) - - - M1(60) Mo(6o) 7 (0o) ||
Ty (1) O/ I Tr—1(01)7 (O |l
IT» (o) G I/ I Ta-160)w GO
T1(61) (BV)I/ I To(01)7 (01) ||
I'T1.(Bo)7 (Bo) 1/ I To(B0) 7w (Bo) ||
To(@1) (BV)II/ 7w @I
To(Bo)m (Bo)l/ |l (Bo) I
=o(W? W)+ 4 a(W§, W) + o (Wi, W)

(2.15)

+ log

+ log

is an additive functional of the Markov cha{W,f, n > 0}.

3. A nonlinear Markov renewal theory. Note that{W?,n > 0} defined in
(2.13) is a Markov chain on a general state spaex P(RY) x P(R%). In
this section, abuse the notation a little bit and {&t,,» > 0} be a Markov
chain on a general state spaXewith o-algebra-, which is irreducible with
respect to a maximal irreducibility measure 6%, 4) and is aperiodic. Let
Sh = >_j_1 & be the additive component, taking values on the real Rpsuch
that{(X,, S,), n > 0} is a Markov chain orX; x R with transition probability

P{(Xn+1, Snt1) € A X (B +5)[(Xpn, Sp) = (x,5)}
= P{(X1, $1) € A x B|(Xo, S0) = (x,0)} = P(x, A x B),

for all x € X, A € A and B € B(R) (:= Borel o-algebra onR). The chain
{(X,, S,),n > 0} is called aMarkov random walk. In this section, letP, (E,)
denote the probality (expectation) under the initial distribution axig beingv. If
v is degenerate at, we shall simply writeP, (E,) instead ofP, (E,). We assume
throughout this section thahére exists a stationary probability distributian
7(A)=[P(x,A)dn(x)forall A€ A andE, & > 0.

(3.1)
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Let{Z, =S, 4+ n,, n > 0} be a perturbed Markov random walk in the following
sense:S, is a Markov random walky, is F,-measurable, wheré,, is the
o-algebra generated bi(Xy, Si),0 < k < n}, andn, is slowly changing, that
IS, MaX <¢<n [1n:|/n — 0O in probability. Let{A = A(z; A), . € A} be a family of
boundary functions for some index set Define

82 T=T,=infn>1:Z,> An; 1)}, inf @ = oo for eachi € A.

Itis easyto see that for all > 0, T, < oo with probability 1. This section concerns
the approximations of the distribution of the overshoot and expected stopping
time E, T as the boundary tends to infinity.

In the case of independent and identically distributed (i.i.d.) random varigbles

with common positive mean, nonlinear renewal theory concerning boundary
crossing times and its applications has been studied by Lai and Siegmund
(1977, 1979), Woodroofe (1976, 1977) and Zhang (1988), among others. A good
summary for this topic can be found in Woodroofe (1982) and Siegmund (1985)
and references therein. For a perturbed Markov random walk ity > O,
Melfi (1992) generalized Lai and Siegmund’s (1977) results to study the limiting
distribution of the overshoot crossing a constant boundary. A multidimensional
nonlinear first passage probability for perturbed Markov random walks can be
found in Fuh and Lai (2001).

A Markov chain{X,, n > 0} on a state spac¥ is calledV-uniformly ergodic
if there exists a measurable functiéh: XX — [1, 00), with [V (x)dr(x) < oo,
such that, for any Borel measurable functianon X satisfying ||i]ly =
sup, |~ (x)|/V(x) < oo, we have

ERX)Xo=x) = [h)dT (Ol oo ) v} 0,
V(x)

In this section we shall assume tHaf,,, n» > 0} is V-uniformly ergodic. Under
the irreducibility and aperiodicity assumptiovi:uniform ergodicity implies that
there exist > 0 and O< p < 1 such that for alh andn > 1,

sup |E(h(Xn)|Xo=x) — [h(y)dm(y)| <
xeX V(x)
see pages 382 and 383 of Meyn and Tweedie (1993). Wherl, this reduces to

the classical uniform ergodicity condition.
The following assumptions for Markov chains will be used in this section:
AL sup {EGE) < oo,
A2. sup, E,|&1]? < oo and sup {%‘;}Xl))} < oo for somer > 1.
A3. Letv be an initial distribution of t(he Markov chaifX,, n > 0}. Assume that
for somer > 1,

lim sup{

—
=0 rex

(3.3) rp"hllv;

(3.4) sup
lAllv<1

< Q.

/ h(x)Ex|£1]" dv(x)
xeX
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A Markov random walk is callediattice with spand > 0 if 4 is the maximal
number for which there exists a measurable funciarX — [0, oo) called the
shift function, suchthaP{& —y(x)+y(y) e {...,—2d,—d,0,d, 2d,...}|Xo =
x,X1 =y} =1foralmost allx, y € X. If no suchd exists, the Markov random
walk is called nonlattice. A lattice random walk whose shift functiop is
identically O is callecarithmetic.

To establish the nonlinear Markov renewal theorem, we shall make use of
(3.1) in conjunction with the following extension of Cramér’s (strongly nonlattice)
condition [G6tze and Hipp (1983R (5) on page 216]: There exists- 0 such that
forallm,n=1,2,...,6 Y <m <n,andallé € R with 6] > 5,

Xn-1, Xn+1, cee Xn+mv Xn+m+1}| = 6’_8-

By using Markov renewal theory [Kesten (1974), Alsmeyer (1994), Fuh and Lai
(2001) and Fuh (2004)] and Wald's equations for Markov random walks [Fuh and
Lai (1998) and Fuh and Zhang (2000)], our approach is based on the investigation
of the difference betweel, and a stopping time crossing linear boundaries with
varying drift. That is, we first define

(35) rt:=t(c,u)y=infln>1:S, —un>c}, c>0, u<Ez&,

and establish the uniform integrability (f, — t(c;, d,)|? for p > 1, for suitable

¢, andd,.. Then we derive nonlinear Markov renewal theory directly from parallel
results in the linear case via the uniform integrabilities and the weak convergence
of the overshoot.

Let P{(x, B x R) = P.{Xc0,u) € B} for u < E;&;1, and denote the transition
probability associated with the Markov random walk generated by the ascending
ladder variableS; o,,). Under theV -uniform ergodicity condition and&,£; > 0,

a similar argument as on pages 655-656 of Fuh and Lai (2001) yields that the
transition probabilityP (x, - x R) has an invariant measurg;. Let E'{ denote
expectation undeXo having the initial distributionr’. Whenu = E; &1, we

denotePfrerél asP,,andr, =1(0, E;£&1). Define

(3.6) b=b) =sudt>1:A(t, 1) >tE;&1}, supg =1,
0A
(3.7) d=di = ("0 )i,
ot
- 0A
(3.8) d=sup{(5)(t;k); t> b, /\eA},
(39) R:R)\:ZT—A(T,)\.),
(3.10) R(c,u) =S¢y —ut(c,u)—c, u<E;&, ¢c>0,

(3.11)  r(u)=E%*R?*©O,u)/2E"R(0, u), u < E &1,
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(3.12) G(r,u)= /OO PY{R(O,u) > s}ds/EL R(O,u), u<Ez&, r>0.

We shall assume that(z; 1) is twice differentiable inr andb,, is finite so that
d andd are well defined. The next theorem is a Blackwell-type nonlinear Markov
renewal theorem. In the case of i.i.d. random variables, such a result has been
developed by Lai and Siegmund (1977). Melfi (1992) has extended their result to
the Markov case under a different ergodicity assumption as in this paper. Here,
we consider a nonlinear boundary, extending Zhang’s (1988) result under the
V-uniform ergodicity assumption. Since fofd< o« <1, b (T — b) = 0p,(1)
implies (3.13) withy (b)/b* — 0, Theorem 1 implies Theorem 3 of Melfi (1992).

THEOREM 1. AssumeAl holds, and A2 and A3 hold with» = 1.Let v bean
initial distribution on Xg. Suppose there exist functions p (§) > 0, Vb < y(b) <b,
y(b)/b — 0asb — oo, and a constant d* < E &1 € (0, co) such that

(3.13) (T, = b)/y (b)) = Op,(1)  a@sb, — oo,

(3.14) nl|_>moo Pv{lsj_sng%))(y(n) [ntj — Nnl = 5} =0 for any § > 0,

2
(3.15) sup”ﬂ(b)(%)(z; /\)‘ t—bl<Kyb), re A} <00

forall K >0
and

(3.16) im d;, =d*.

by—>o0
If £, — d* does not have an arithmetic distribution under P,, then for any » > 0,
PU{XT S B, R)\ > }"}
1

3.17 =
(317) EY'R(0, d*) Jxen

dn? (x) /OO PY{R(0,d*) > syds + o(D)

as b, — oo.

In particular, P,{R;. > r} = G(r,d*) + o(1), as b, — oo for any r > 0. If, in
addition, (T — by)/v (by) converges in distribution to a random variable W as
b, — o0, then

(3.18) lim PR, >r. Ty = by +1y(bi)} =G, d)PLAW > 1),
) —> 00
for every real number ¢ with P {W =1} =0.

The proof of Theorem 1 is given in Section 6.
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To study uniform integrabilities of the powers of the differences for linear
and nonlinear stopping times, we shall first give the regularity conditions on
n = {n,,n > 1}. The procesg is said to beegular with p>0and ¥2<a <1
if there exist a random variablg, a function f(-) and a sequence of random
variablesU,,, n > 1, such that

(3.19) n = fn)+ U, forn>L and SupE,L” <oo,

xeX
(3.20) max_|f(n+j)— fm| <K, K <oo,
l<j=<yn
(3.22) {lmax |Upsjl?, n> 1} is uniformly integrable
<j=n¢

(3.22) n? supr{ max U,y > Gn"‘} -0 asn — oo, forall 6 > 0,
xeX O<j=n

and forsomey >0, w < Ez&1 —d if a =1,

o0
(3.23) > 0Pt supP{~U, = wn®} < cc.
n=1 xeX
We shall setf (n) to be the median of,, whenp is not regular and extend
to a function o1, co) by linear interpolation. Therefore, we can define ¢, =
t(cy, dy) andc;, = b (Exé1 — dy) — f(by).

THEOREM 2. Assume Al holds, and A2 and A3 hold withr = p'(p + 1)/«
forsomep>1,p'>1land1/2 <« <1.Supposen isregular with p > 1, 1/2 <
a <1, and that there exist constants § and u* withO <8 <land 0 < u* < E; &1
such that

(3.24) b? supP {T <8b} — 0 asb — oo,
X
and
dA
(3.25) <§>(I;k) <u*, t>8b, AeA.

(i) If sup.cx E,{|€1]?PP"} < oo for some p' > landfor any K > 0,

3%A
(3.26) sup{ bx<ﬁ)(t; A)‘ by — Kb <t <b,+Kb§, 1€ A} < 00,
then
(3.27) {IT5, — 7;,.|”; A € A}isuniformly integrable under P,.

(i) If 82A//8t2 = 0, then (3.27) stll holds without the condition
sup, Ex{[£1[?P7'} < o0.
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The proof of Theorem 2 is given in Section 6.

We need the following notation and definitions before stating Theorem 3. For
a given Markov random walk(X,, S,),n > 0}, let v be an initial distribution
of Xo and definev*(B) = > 72y Pu(X, € B) on A. Let g = E(£1|X0, X1)
and E |g| < oco. Define operator$ andP, by (Pg)(x) = E,g(x, X1,&1) and
P.g = E;g(Xo, X1, &1), respectively, and sgt= Pg. We shall consider solutions
A(x) = A(x; g) of the Poisson equation

(3.28) (I -P)A=(I —Py)g,  v*-as, PyA=0,

where I is the identity operator. Under conditions A1-A4, it is known [Theo-
rem 17.4.2 of Meyn and Tweedie (1993)] that the soluttonf (3.28) exists and
is bounded.

THEOREM3. AssumeAl holds, and A2 and A3 hold with r = 2+ p for some
p > 1.Letv beaninitial distribution such that £,V (Xg) < co. Suppose that

(3.29) I|m supP{ max |77n+/—77/|>5} 0 for any é > O,

T%xex  ll=jsyn
(3.30) = fn)+U, foranyn > L,
and that there exist constants d; < E; &1 and d; such that
3.31 lim max_|f(n+j)— f(n)|=
(3.31) Jim, o max_| fn+j)— f] =

(3.32) U, convergesin distribution to an integrable randomvariable U,
(3.33) blim dy=di and & —df isnonarithmetic under P,,
L —> 00

and for any constant K > 0,

b(azA)(m) s
a2 ) 2

If {|T5, — 7,]; A € A} isuniformly integrable, then
(3.35) E,Ty=b; — (Exé1—dy) L f (b)) + Co+0(l)  ash, — oo,

(3.34) lim sup{

A—)OO

by)? < KbA} =0.

where

Co= (Ené1— di‘)—1<r<d1‘) + (Exty —d})2d30%/2— ExU
(3.36)
_/A(x)d(nf(x) —v(x))).

The proof of Theorem 3 is given in Section 6.
WhenA(z, 1) = A, we have the following:
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COROLLARY 1. Under the assumptions of Theorem 3, as . — oo,

E,T = (E,,gl)—1<,\ + Ex,S2 /25, — f(1)ExE1) — ExU
(3.37)

— / A(x)d(my(x) — v(x))) +0(1).

4. Asymptotic optimality of the SRP detection procedure. For ease of
notation, letX := D’ x P(R%) x P(R?) be the state space of the Markov chain
{W?, n > 0} defined in (2.13). Denote := (y, i, ii) andw := (yo, 7, ), where
yo = (xo, ) € D' andxg is the initial state ofXq taken fromz. To prove the
asymptotic optimality of the SRP rule in hidden Markov models, the following
condition C will be assmed throughout this paper.

C1. For eachy € ®, the Markov chainX = {X,,,n > 0} is ergodic (positive
recurrent, irreducible and aperiodic) on a finite state sgace {1, ...,d}.
Moreover, the Markov chaifi(X,, &,), n > 0} is irreducible, aperiodic and
V-uniformly ergodic for som&/ on D’ with A1 and A2 holding. We also
assume the Markov chaifX,,n > 0} has stationary probability” with
probability densityr, (0) f (-; ¢, (0)) with respect tqu.

C2. For eachf € ©, the random matricesMy(0) and My(0) defined in
(2.9) and (2.10) are invertib2’ almost surely and

d

sup  EJ| Y m(60) f (50 9x(0)) Py (O)ELS (E1; 0y (6)[E0) | < 00

(x,€0)eDXR x,y=1

The construction of the SRP rule and the proof of its asymptotic optimality
can be split into two steps. We first prove that it is a limit of Bayes rules, and
then we prove the asymptotic optimality. To this end, let us consider the Bayesian
formulation of change point detection in a hidden Markov model and denote it by
B(8, p,c, w). That is, we assume the initial stateW} is w and suppose has a
prior distribution

Py(w=0=p and Pyw=n)=A—-fpl-p"t forn>1,

wherep andg are known constants with9 p <1, 0< 8 < 1. The parametep

is the (unknown) point of change of the process from a hidden Markov model.
Let N be a stopping time adapted to the systemr edlgebrag #,},> ;, where

Fo is the naturab-algebra{@, X} andF, = o (Fo, Wo, W1, ..., W,,). Following

the formulation of Shiryayev (1963, 1978) and its modification given by Yakir

(1994) for a finite state Markov chain, the risk associated with the detection policy

N is

(4.1) p(N,w)=Pz(N <w)+cEz(N —w)",

wherea™ denotes maj, 0}, andc > 0 is a fixed constant.
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DEFINITION 1. For a given pair(p, w) € (0,1] x X, we call a stopping
time N* aB(8, p, c, w)-Bayes time if
p(N*,w) =inf p(N, w),
where inf is taken over the class of all proper stopping times.

The following proposition characterizesthtructure of the Bayes rule in hidden
Markov models. Since the proof of the proposition is similar to Shiryayev’s proof,
it is omitted.

PROPOSITION1. LetO< p<1,c>0andlet
8p = n(p, w) =Py(w < n|Fy)
be the posterior probability that the next observation is governed by P%:. There
existsa function A ,(-), defined on X, such that the stopping time
(4.2) Na,p=inf{n >0:6,(p, w) > A,(W,)}
isthe B(B, p, ¢, w)-Bayesrule. Moreover, A ,(-) does not depend on 8 or on w.

REMARK 1. Proposition 1 remains catt when the initial pairp, w) is
random (according to a measyfe Again, the threshold function does not depend
on the initial state. (Noticéhat the stopping time doeggdend on the distribution
of the initial state through the dependeran the initial state of the probability of
a change.) The structure of the Bayes rule plays a crucial role in the development
of the optimal detection time in the non-Bayesian setting.

Denote
X
4.3) ”(X)Zm’ g=1-p,
and let
L "L
(4.4) LRn,,,:r(ﬁ)i”JrZﬁ.
9 =4

It is convenient to reformulate the stopping tinvg, , in terms of a different
sequence of statistics. By using the same idea as Lemma 2 of Pollak (1985), it
follows that

(4.5) 8u(p, W) = Ry

LR, , +1/p
Since the functiory/(y 4+ 1/ p) is a monotone function if, the Bayesian stopping
time can be rewritten in terms eR, ,,

Na,p=inf{n >0:5,(p, w) > A,(W,)}
(4.6)
=inf{n > 0:LR,,, > B,(W,)} = N3 p,
where B,(-) =r(A,(-)). For consistency of notation, we will uséz , instead
of Ny4,, inthe sequel.
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THEOREM 4. Assume C1 and C2 hold. Suppose that the P -distribution of
LRy is nonarithmetic.

(i) There existsa § > 0 such that for any § < b =logB < oo, there exist a
constant 0 < ¢* < oo and a sequence { p;, ¢;};24 With p; — 0, ¢; — ¢* asi — oo
such that the stopping time N;, definedin (2.7)isalimit asi — oo of Bayesrules
for B(B=0,p=pi,c=c;i,w).

(i) For any set of Bayes problems B(8, p,c, w) withg =0, p — 0,¢c — ¢*,
1- E,O(NB,pa w) -1

i

4.7) limsup
p—0, c—>c* 1— Ep(Np, w)
where the expectation is taken in the Bayes problems B(0, p, ¢, w).
(iii) For any 1 <y < oo, thereexists a unique 1 < b =log B < oo such that
y = ExoNp.

The proof of Theorem 4 is given in Section 7.

After understanding the structure of the Bayes rules for detecting a change in
hidden Markov models and the characteristics of the limits of such rules, we can
turn our attention to the problem of detecting a change in a non-Bayesian setting.
To study randomization of the initial for the SRP change point detection rule, we
need the following notation first.

ForO<k <n, let

1 pn G, ks -+ €03 01)
ic0 4 Pn(&k k+1, -5 En: 00)

(48) Rn’p =

Note thatR, , = LR, , when g = 0. By using the same notation as that in
Section 2, foryp, y1 € D', it = u(0) = (u(0p), u(61)) € P(R?) x P(R? and
M = M(yo, y1) = M(8) = (M(60), M(61)) € GI(d, R) x Gl(d, R), let B: (D' x
P(R?) x P(R?) x (D' x P(RY) x P(R?)) — R be B((yo.u), (y1, Mu)) =
e tAesl. For  x(fo),m(61) € P(RY), denote B(Wo, Wo) =

ITo(@)7 0/l 6
ITo@o)m @) /@)~ 1 NEN

pn(&0, 81, ..., 805 01)

Pn(§0,61. .-, n; 60)
_ IMy(61) - - - M1(61) Mo(61)7 (61) ||
~ |M,,(60) - - - M1(60) Mo(Bo) 7 (6) |

@9  _ ITa@0r@I/ITaca@Dr @Dl
" T 60)7 (60 /1T~ 1(00)7 B |

 IT1007 @I/ ITo@VT BV | ToG)7 @1/ I7 E)]

IT160)7 @0) I/ I To(60) @0) |~ 1 To(B0) (Go) I/ 17 (Go)

=BWE_1, WE) - BWE, Wi - B(WE, WE)
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is a product of the functional for the Markov cha{iW,?, n > 0}. Therefore, (4.8)
can be rewritten as

(4.10) R,”,_Z BW?_ | Woy...pwl_ [, W)  wherew?; = W§.

Define
1 .
Rut1p=BW? 4, W,f)g(l +Rnp),  Ngp:=inf{n:R, ,> B},

F.(s,w) = ]Poo(Rn—i—l,p =< Squ,b >n, W, =w),
pt, s, w,w) = Poo(Rut1,p <5, Wpy1 € dw/|Rn,p =t,Ngp>n+1W,=w),
ct,w,w) = Poo(Ngp>n+1,Wyy1€ dw/|Rn,p =1, Ngp>n, W, =w).

For a given set of nonnegative boundary poiBts { B(w) : w € X} (infinity is
not excluded), consider the s& = {(r,w):w € X,0 < r < B(w)}. Let ¥ be
the set of distribution functions with support#z. Let Tz be the transformation
on ¥ defined by

. s 1Y é t,

x P(w,dw)dF(t,w),

where

Bw') / / /
(4.12) Q(F):/ww’ex/() c(t,w, w)P(w,dw)dF(t,w).

The idea behind (4.11) and (4.12) comes from iterated random functions, which
Pollak (1985) used to define a change point detection rule in the independent case.
Here F,, (s, w) is driven by the Markov chair{W,?,n > 0}, and, hence, in the
domain of Markovian iterated random functions. Under some regularity conditions
on the Markov chaifW?,n > 0}, and the continuity property for the iterated
random functions, we will show in Lemma 8 that for ealthere is an associated
set of invariant measurebg, that is,Tp¢ = ¢ forall ¢ € &p. Letp =1 — g and
defineg as

(1+ ps)do(s, w)
Jwex Jo " @+ prydg e w)
It is easy to see that if the distribution &6 ,, is é, then the distribution oRo,
conditional onfw > 0} is ¢. Note that depends op. By using the same argument

as that in Theorem 4, we can choose a subsequifiice; . ¢;, ¢;} such that as
i — o0, pi = 0,¢; — ¢* andg; converges in distribution to a limif .

d¢~)(s, w) =
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Given the value of the initial statéy = w, the initial (R§, w) is simulated from
the distributionys, conditioned on the eveiivy = w}. Define recursively

(4.13) = BWE_, WH(L+ RY).
Denoteb = log B, and define the SRP rule
(4.14) N} :=inf{n: R* > B} =inf{n:log R} > b}.

Notice that each one of these detection policies is an “equalizer rule” in the
sense that

(4.15) Ex(N) —k+ 1N} >k —1) =E1N/,

for all k > 1. The same is true for the case wherénas atoms on the boundary,
since the randomization law is time independent.

Note that the threshold of the Bayes rule (4.6) depends on the current state of the
Markov chain, while the threshold of the SRP rule (4.14) is a constant. We claim
in Lemma 7 and Theorem 5 that the difference between these two rubés)is
asy — oo, by which we prove the conjecture raised by Yakir (1994) for finite
state Markov chains.

THEOREM 5. Assume C1 and C2 hold. Suppose that the P..-distribution of
LR1 is nonarithmetic. Then for any 1 < y < oo, there exist a constant § < b =

log B < oo and a probability measure v such that y = EOON;/’ and such that if
N isany stopping time which satisfies E.oN > y, then

(4.16) sup E,(N—o|N>w)> sup E,(N) —o|N; =)+ o),

1<w<oo 1l<w<oo

whereo(1l) - 0asy — oo, Ew(N;/’ — a)lN,;// > w) isaconstant for 1 < w < oo.
The proof of Theorem 5 is given in Section 7.

5. Asymptotic approximationsfor the averagerun length. SinceN;/’ isan
equalizer rule in the sense Ef((N;// —k+ 1|N;// >k—1)= ElN,f’ by (4.15), in
this section we consider only the approximatiorE@N;/’. For6 =60%or6?, letn?

denote the stationary distribution £X,,, » > 0} underP?. For givenP% andP’:,
define the Kullback—Leibler information numbers as (4.2) of Fuh (2003),

| M1(60) Mo(B) 7™ || )
| M1(01) Mo(6) 7| )’

| M1(61) Mo(01) 7| )
|| M1(60) Mo(Bo)c || )’

K (P%, Py = By, (Iog
(5.1)

K (P, P) = Eps, (Iog
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where P% (P%) denotes the probability of the Markov chaW, n > 0}
(W, n = 0}), andEgs, (Ege,) refers to the expectation undefo (P).

In the rest of this section we will impose the following mild condition on the
Kullback—Leibler information numbers:
(5.2) 0< KP% P") <00 and O0< K(P%,PP) < co.

To derive a second-order approximation for the average run length of the
SRP rule, we will apply relevant results from nonlinear Markov renewal theory

developed in Section 3. For this purpose, we rewrite the stoppingiime- N;/’

(we deleteyr in this section for simplicity) in the form of a Markov random walk
crossing a constant threshold plus a nonlinear term that is slowly changing. Note
that the stopping tim&/, can be written in the form

(5.3) Np =inf{n > 1:S, +n, > b}, b=IlogB,

where S,, is a Markov random walk defined in (2.15) with medhS; =
K (P, P%), and

n—1
(5.4) N =|Og[1+ Ze_s"}.

k=1
Forb > 0, define
(5.5) Ny =inf{n >1:S, > b},

and letR, = Sny — b (on {N; < oo}) denote the overshoot of the statisfig
crossing the threshold at timen = N;. Whenb = 0, we denoteN; in (5.5)
asN7. Forgivenw € X, let

(5.6) G(y) = Jim Pi(Ry < y|Wo= )

be the limiting distribution of the ovelhot. It is known [cf. Theorem 1 of Fuh
(2004)] that

En. Sy

28, Syt ’
wherem is defined in the same way as defined in the paragraph before (3.6)

in Section 3.
Note that by (5.3),

Sn, =b —nn, + xp on{N; < oo},

wherey, =Sy, + nn, — b is the overshoot df,, 4, crossing the boundaryat
time N,. Taking the expectations on both sides, and applying Wald's identity for
products of Markovian random matrices [Theorem 2 of Fuh (2003)], we obtain

0
lim El(Rb|Wo:zZ))=/ ydG(y) =
b—o0 0

5.7) K (P, PP)E1 (Np| Wo = ) — fx A"y dm i (w') + A@W)

=E1(Sn, |Wo =) =b — E1(nn, |Wo =) + E1(xs|Wo = 1),
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whereA : XX — R solves the Poisson equation
(5.8) E,A(W7) — A(w) =E,;,S1 - E,,S1

for almost everyw € X with E,, A(W1) = 0.
The crucial observations are that the sequdgngen > 1} is slowly changing,
and thaty,, converge$4-a.s. a1 — oo to the random variable

o0
(5.9) n= Iog{l +) e_Sk}

k=1
with finite expectationE,,, n. Here the expectatioii,, is taken undew = 1
and the initial distribution oWy is m.; we omit 1 for simplicity. An important
consequence of the slowly changing property is that, under mild conditions, the
limiting distribution of the overshoot of a Markov random walk over a fixed
threshold does not chandpy the addition of a slowly changing nonlinear term
(see Theorem 1).

THEOREM 6. Assume C1 and C2 hold. Let &, &1,...,&, be a sequence
of random variables from a hidden Markov model {&,,n > 0}. Assume that
S1 is nonarithmetic with respect to P, and Pq. If 0 < K (P, P%) < 00, 0 <
K (PP, P1) < 00, and E1|S1|2 < oo, then for & € X, asb — oo,

E(Ny|Wo = i)
B 1
(5.10)  K@".Ph)
E,n, S2.
x (b Bt = [ Adm () + A(ﬁ») +o(D).
ZEm+SN_T_ X

The proof of Theorem 7 is given in Section 8.

REMARK 2. The constantEmS[%,i/ZIEmSNi andE,,, n are the subject of

the nonlinear renewal theory. The constaft, A(w)dm4(w) + A(w) is due to
Markovian dependence via the Poisson equation (5.8). Obviously, this bound is
asymptotically accurate wheki(P%1, P%) — 0.

6. Proofsof Theorems1-3. We will use the same notation as that in Section 3
unless specifically mentioned.

PROOF OF THEOREM 1. To prove Theorem 1, we can make use of Theo-
rem 3.1 for the one-dimensional case in Fuh and Lai (2001) as in the case of i.i.d.

&, [see Theorem 1 of Zhang (1988)]. The details are omittéd.

To prove Theorem 2, we need some lemmas first.
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LEMMA 1. Let v be an initial distribution such that E,V(Xg) < oo. Let
t(c, u) be defined by (3.5), and let p and « be two constants with p > 1 and
1/2<a<1.

(i) If E,(|&1|P PTD/2y (X()) < oo for some p’ > 1, then

o0
(6.1) an‘lPV{maxmj —jl = yn“} <oo foranyy > 0.
n=1 J=n

(i) If E,(1&1)2PP'V (X0)) < oo for some p’ > 1, then for any K > 0,
{((x(c,u)— (1 - u)_lc)z/c)p; c>1 K l<1-u< K}
is uniformly integrable under P, .

PrROOF By Theorem 16.0.1 of Meyn and Tweedie (1993), #iainiform
ergodicity condition is equivalent to the fact that there exist an extended real-
valued functiorw : X — [1, 00), a measurable sét and constantg > 0,5 < oo,
such that

f WP, dy) — w() < —yw() +ble(x)  forx e X.
X

wherew is equivalent toV in the sense that for some> 1, ™1V <w < ¢V,
Denote A; = A as defined in (3.28). Le§ = E(d?|Xo, X1) and Ax(x; g) =

A(x; g). Since [V(x)dm(x) < oo, A2 implies that there exists & ¢ < oo

such that for allk € X, E(|1/%|Xo = x) < ¢V (x). By Theorem 17.4.2 of Meyn

and Tweedie (1993), the solution, satisfiesA, < R, (V(x) + 1) for r =1, 2.

This implies that supE, |A,(X;; g)| < R,Sup E,(V(X;) +1) <ooforr=1,2.
Therefore, the conditions of Theorem 2 of Fuh and Zhang (2000) hold, and, hence,
the quick convergence (i) follows from Theorem 2 of Fuh and Zhang (2000).

(ii) The proof of (ii) can be derived from (i) easily.C]
Following Lemmas 2 and 3 in Zhang (1988), we have the following:

LEMMA 2. Suppose that n is regular with p > 1 and 1/2 < o < 1 and
that conditions (3.24)and (3.25) hold. If E,(|&1|” ?tD/2V (X)) < oo for some
p > 1,then

blim bPP T, <b—yb*} =0 forany y > 0.
— 00

LEMMA 3. Suppose that n is regular with p > 1and 1/2 <« < 1 and that
condition (3.25) holds. Denote n* = [b + Kb*]. If E, (|&1|P PTD/2V (X)) < 0o
for some p’ > 1, then there exists a constant K > 0 such that

0
lim p=1p (T =0.
b—>oon§*n v{ A= n}
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LEMMA 4. Under the conditions of Theorem 2(i),
{((Th — ©))?; A € A} isuniformly integrable under P,.

PROOF For ease of notation, lel = T;, n1 = [b — yb*], n* = [b +
Kb*], T" =max(ny, min(T, n*)) andt’ = max(ny, min(z, n*)). By Lemmas 1(i),
2 and 3,

(6.2) lim E;|T —T'|1” = lim E;|t —7/|P =0.
b—o00 b—o00

Lety’ = (1—u*)/5, whereu* is defined in Theorem 2. By (6.5) in Zhang (1988),
there exists a constait* < oo, such that

[e.e]
Z nP P AT > 1t +n)

n=ng

o0 o0
< Z P P S, 41— Spyn>y'n)+ Z np_va{ max Uj_1 > y’n}
n=nq n=ng n1<j<n*

+ Y a7 P {K*(x — b)?/b > y'n}

n=ng

o
+ Z nP P (K"t — 19|er1/2 >y'n} +o(1).
n=ng
It follows from Lemma 1(i), (ii), (3.21) and the conditia, {|£1|27P"V (X0)} < 00
for somep’ > 1 that

oo
Y nPP{T > 1 +n}—>0  as minno, b) — co.
n=ng
This proves the uniform integrability ¢¢7 — ) ™7} since the uniform integrability
of {T?; b < b*, A € A} for any givenb* is implied by (6.2) in Zhang (1988).

PROOF OFTHEOREM 2. (i) For ease of notation, |t =T, , n1 = [b — yb*],
ny=[b+yb*], T' =max(ni, min(T, ny)) andt’ = max(ny, min(z, n2)). Though
ny is different fromn* in Lemma 3,(T — T))" < (T — t)* + (r —ny)™, and by
Lemma 4 we have

(6.3) bli_)mooEvlT—T/|p=in_>mooEv|r—r/|p=0.
Clearly,

P,{t' > T +n)
(6.4) < P{L > na} + P,{T <ni} + P,{t > na}

+PA{L<n1<T<T+n<rt<no}
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By (3.19) and Lemma 2,

(e e] np—ni
S nPTIPAT > U +ny= Y nPTIPAT > v +n)
n=ng n=nq
(6.5)
no—nq
< Z n”_lPU{L <nm<T<T+n<t<na}+o0Q).
n=ngp

OntheevenfL <ny <T <T +n <1 <ny},
St4n+ f(b) =D+ d(T +n—>b)
<p'n+(b+d(T —b)— A(T; 1))+ St + Ur + f(T),

and by an argument similar to (6.10) of Zhang (1988), there exists a finite
constantk* that does not depend opn, and§* = yK*b*~1 + K*b~1/2, and
by (6.5),

(6.7) Span—Sr <p*n+Ur+8"|t' = T'|+K*(t —b)?/b+ K*|t —b|b~ /2.
Therefore, it follows from (6.5) and (6.7) that fef = (1 — 1*)/5,

o

> nP7IP v > T' +n}

n=ng

o0 o0
<Y 0P PSrHn—Sran =y} + Y n”_lPu{ max U; > )/n}
ni=j=nz

(6.8)

=ng n=ng

+ Y nPTIP K (r = b)2/b + K*|t — bln Y2 > y'n)

n=ng

o0
+ Y nP P8 = T)) = 0'n}+0(1)  as minng, b) > <.
n=ng
Sincey is arbitrary, we can choosg small enough such tha#s*/y’)? < 2.
Hence, it follows from (6.8), Lemma 1(i), (ii), (3.21) and Lemma 4 that as
min(ng, b) — 00,

o0 o0
6.9) > nP Pt =T >n}< Y PP (T — T 2 yn} +o(D).
n=ng n=ng
And by (6.3) and Lemma 472, n”1P,{t' — T’ > n} = 0(1), and

{IT — t|”; A € A} is uniformly integrable.

(i) For the case wher&?A /312 = 0, the term(z — b)2/b disappears throughout
the proof of (i). O
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PROOF OF THEOREM 3. By definition,S7 = R + A(T; A) — nr and S; =
R(cy,d) + ub+d(t —b) — f(b). It follows that

Sy —S; —d(T — 1)
(6.10)
=R —R(cp,d) +[A(T; X)) — ub —d(T —D)] — [nr — f(D)].

Recall A defined in (3.28). Letdy = & — u + A(x1; 8) — A(xp; 2), &€ =
E(d?|Xo, X1), 02 = Exd? andAy(x; g) = A(x; §). Since

St —uT —S; +put
= [(Smax(T,r) — pmaxT, T)) —(S: — MT)]
- [(ST - /’LT) - (Smin(T,t) — M mln(T7 T))]’

and A1-A3 imply that the conditions in Fuh and Zhang (2000) hold as shown in
Lemma 1, it follows from Markov Wald’s equation for Markov chains for second
moments in Corollary 1 of Fuh and Zhang (2000) that

Ey(St — S: — u(T — 1))
= o?[E,(maxT, t) — 1) + E,(t — min(T, 1))]
—2E,{(S7 — Sr — (T — D) A(Xj7 1))}
+ Ev{A2(X|1—1|) — A2(X0)}
= (62— 2WE,|T — 7|+ O(1).

Therefore, by Theorem 297 — S; — d(T — 1) is uniformly integrable. By
Anscombe’s type central limit theorem for a Harris recurrent Markov random
walk [Theorem 1 of Malinovskii (1986)]z —b/~b — (1 — d})oN(0, 1) in
distribution. It follows that, a$ — oo,

T —
(6.11) Wb — 0 *N(0, 1) in distribution by (3.27),

(6.12) blim PR >r}=Ilim P {R(c,d) >r}=G(r,d") by Theorem 1,
A(T; 1) — ub —d(T — b) — di(c*N (0, 1))?/2
(6.13)
in distribution by (3.34),
(6.14) nr — f(b) — U in distribution by (3.14), (3.31), (3.32),

wherec = ¢; = (1 — dy)by — f(by) ando™ = (u —di) Lo,
By an argument similar to Theorem 3(i) of Fuh and Lai (199, d,) is
uniformly integrable. Hence,

Ey (St —S; —d(T — 1)) = (u—d})%0%d} /2 — E,U +o(1),
E,T =Eyt+ (u—d})%0%d3/2— (u—di) 'E,U +o(D),
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and
Evt=@u—d) Y+ (u-— d*)—1<r(d*) — / Ax)d(md (x) — v(x))) +0(1)
=by—(u—d) " f(b)
+ (- df)—1<r(df) - f A)d(x? (x) — v(x))) +0(1).
This completes the proof.(]

7. Proofs of Theorems 4 and 5. To establish asymptotic optimality of the
SRP rule and derive the second-order asymptotic approximation for the average
run length, we need to apply nonlinear Markov renewal theory developed in
Section 3. Note that the Markov chaiw?, n > 0} on X := D’ x P(R%) x P(R%)
is induced by the products of random matri¢as,, n > 0}. A positivity hypothesis
on the matrices in the support of the Markov chain leads to contraction properties,
on which basis the spectral theory is developed in Fuh (2003). Another natural
hypothesis is that the transition probability possesses a density. This leads to a
classical situation in the context of the so-called “Doeblin condition” for Markov
chains. It also leads to precise results of the limiting theory and has been used
to prove a nonlinear renewal theory in Section 3. We summarize the behavior of
{W¢ n > 0} in the following proposition. Note that in the case of i.i.d. iterated
random functions satisfying Lipschitz conditions, similar results can be found in
Theorems 2.1, 2.2 and Corollary 2.3 of Alsmeyer (2003). Here we generalize it to
Markovian products of random matrices.

PROPOSITION2. Consider agiven hidden Markov chainasin (2.1)and (2.2)
satisfying C1 and C2,and let 6 = (6p, 1) € ® x © be the parameters. Then the
induced Markov chain {W,?, n > 0} defined in (2.13)isan aperiodic, w-irreducible
and Harris recurrent Markov chain. Moreover, it is also a V-uniformly ergodic
Markov chain for some V on X. And we havesup, {E,,(V (W1))/V (w)} < oo, and
thereexist a, C > O such that E,, (exp{lax (M1)}) < C for all w = (y, i, it) € X.

PrROOF For simplicity of notation, we deletg in {W,f, n > 0} in the proof.
First, we prove tha{W,,n > 0} is Harris recurrent. Note that the transition
probability kernel of the Markov chaif(X,, &,),n > 0} defined in (2.2) has
probability density function, and the random matrices defined in (2.9) and (2.10)
also have probability density with respect io. Therefore, there exists a
measurable functiog: X x X — [0, co) such that

(7.1) P(w,dw’) = g(w, w")du(w’),

where [y g(w, w)du(w’) > 0 for all w € X. For an arbitrary stopping time
T = h(W,) for W,, letP*(w, ) :=P, (W, €-) for w € X. For A € 8(D’) and
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B € B(P(R%) x P(RY)), define
w (A x B) = /XIP’{W,(w’) € A x Bydu(w).
Then

P (w, A x B) =/ P*(w', A x B)g(w, w)du(w’)
X
= [ BV € 4 x Blgw, w)duw)
X

for all A € B(D’) and B € B(P(RY) x P(RY)). Therefore, given any,,-a.s.
finite stopping timer for {W,,, n > 0}, the family (P**1(w, -))wex iS nonsingular
with respect tqu®.

We have thus particularly shown thatfihas a probability density with respect
to u, thenP” has a probability density with respect gofor all n» > 1 (with, in
general, differen). Let g, be such that

(7.2) P (w, dw') = g (w, w) du* (w'), we X,

where [y g (w, w)du®(w’) > 0 for all w € X. It is easy to check that all
w andu’ are absolutely continuous with respeciito
Next, under condition C1, for eaeh-positive A x B let

['o(A x B):={we X:P,{W,eAx Bio}=1}

satisfym(I'g(A x B)) =1 and, thus, als®(w, I'o(A x B)) = 1 for m-almost all
w € X. Recursively, define

I'41(A x B) :={weT,(A x B):P(w, T, (A x B)) =1}

for n > 0. Thenm(T,(A x B)) =1 foralln >0 andI',(A x B) | I'eo(A X
B) :=>0T'x(A x B), asn — oo, giving m(I'x(A x B)) = 1. Furthermore,
I'eo(A x B) is absorbing because, by constructi®itw, I',,(A x B)) =1 for all
w € ' (A x B) andn > 0, and, thusP(w, T'eo (A x B)) =lim,,_, oo P(w, ', (A x
B)) =1forallw e T (A X B).

In particular, putt = 1. Denote B¢ as the complement ofB. Since
m(Ceo (X)) =0, alsou (T (X)) = 0. It is now obvious from the previous con-
siderations that we can choase- 0 sufficiently small such that

/ // Tig>s5) (w1, w2)Lig>s) (w2, w3) du(wz) du(wz) dm(wy) > 0.
Foo(X) JX JT 00 (X)

Hence, by Lemma 4.3 of Niemi and Nummelin (1986), there exishgrositive
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setl’'s C I'eo(X) and au-positive sefl’s> C I'so (X) such that

wiel,w3zels

A combination of the above result with (7.1) and (7.2) implies

P3(w1, A x B) :/ P(wa, A x B)P?(w1, dw>)
X

(7.3) Z/X g2(w1, wz)/A o g(w2, w3) dp(ws) dpu(wy)
x BN

> a8%(A x BNTy)

for all w1 eI'y andA x B € 8(X). By definingH := I'o (X1), We obtain an
absorbing set such that, is a regeneration set fgW,,, n > 0} restricted toH,
that is,I'; is recurrent and satisfies a minorization condition, namely (7.3). This
proves the Harris recurrence @¥,,, n > 0} onH. By the previous construction, it
is easy to see thdfl = X. Since{W,,, n > 0} possesses a stationary distribution,
it is clearly positive Harris recurrent.

Next, we give the proof of aperiodicity. ifW,,n > 0} were g-periodic with
cyclicclasse$'y, ..., I'y, say, then thg-skeleton(W,, ) >0 would have stationary

distributions% for k = 1,...,q. On the other handy, is aperiodic by

definition and7,,,(6)u is also a product of random matrices satisfying condition
C1 and thus possesses only one stationary distribution. Consequestly,and
{W,,n > 0} is aperiodic.

Note that we hav@®,,{W, € A x Bi.0o.} =1 for all w € X and allm-positive
openA x B € B(X). Denotep(B) as the first return time t® for W,,. Hence,
m(int(X)) > 0 ensure®,, (0 (X) < o0) = 1 for allw € X, which easily yields the
wu-irreducibility of {W,,, n > 0}.

Under conditions C1 and C2, the propertyoiuniform ergodicity is taken from
Lemma 4 of Fuh (2003). The finiteness A1-A3 of the moments comes from C2
and a simple calculation. The details are omitteid.

To prove the main results in Section 4, our first aim is to find a sequengs of
that converge to 0, for which the stopping timé€g , converge to an appropriate
stopping time. Furthermore, for technical reasons, we want all the stopping times
in the sequence to be bounded by some stopping time with finite expectation.

LEMMA 5. Consider the problem B(8 = 0, p, ¢, w) described in Section 4.
Then the following hold:

(i) Thereexistaconstant D, andsome0 < gg < 1,suchthatforall gp<¢ <1
and for all threshold functions B(-) with the property that B(w) > D, for each
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w € X, we have
(7.4) Ey(Np p — o|Np, > w) > 271

where N, isdefined asin (4.6).
(i) Define Np p.w =inf{n:LR, , > D, W, =w}. Thenfor each 0 < p <
1 — qo, there exists w = w(p) such that with probability 1,

(75) NB,p END,p,w fND,l,w-

Furthermore, there exist a state w1 € X and a subsequence of p’s, such that (7.5)
istruewith w(p) = w4 for all the p’sin the subsequence.

(i) Let B,(-) be the threshold function of the problem B(B, p, c, w), and
assume that B, (-) — ,—0 Bo(-) for some function Bo(-). Assume further that the
convergenceis along the subsequence of p’sfrom (ii). Then Bo(w1) < D,.

(iv) Denote D} = inf{D.|D. asin (i)}. Then D} is nonincreasing in ¢ and
D} — Bo(w1)/qo asc — oo.

PrROOE Since the induced Markov cha{rW,?, n > 0} is Harris recurrent via
Proposition 2, we may assume, without loss of generality, that there exists a
recurrent statevg of the Markov chain governed b§?. By making use of the
regeneration scheme for Harris recurrent Markov chains, the proof of Lemma 5 is
similar to that of Lemma 1 in Yak(1994). The detits are omitted. O

REMARK 3. Notice first that the constam. does not depend on the initial
state(p, w). Lemma 5 remains true when= c(p) is allowed to vary withp, as
long as liminf,_.oc(p) > 0. In particular, it is correct it:(p) converges to some
positivec.

Let (1 — p(N,v))/p be the normalized risk of a stopping tind. Using the
results of Lemma 5, we can show that fpr— 0, the (normalized) risk of a
converging sequence of stopping times goes to a limit. Consider the Bayesian
problemB(8 =0, p,c, w), and letN be a stopping time. A similar argument to
that of Lemma 9 in Pollak (1985) implies that as— 0,

(7.6) 71)”(1\; ) L BN,

LEMMA 6. Let B,(-) bedefinedasin(4.6)andlete.(-) =liminf,_.oB,(-)/p.
Then with probability one, liminf._ge.(-) = oc.

PROOF. Let Np, be defined as in (4.6). Suppose for all € X,
liminf._pec(w) = exc(w) < co. Then for almost alw € X, B, (w)/(p:(1 —
B, (w)) < 1+ ex(w) for some subsequeneg— 0, p; — 0 asi — oo. Since

E;(Loss usingVg, )
= Prr(NB,p < w) +CP71(NB,p Za))En(NB,p _w|NB,p > w),
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it follows from (7.6) that
1— E;(Loss usingVg,,)

Di
Py (N, > o)
:%(1—ciEn(NB,p—a)|NB,pZa)))
l
< Pﬂ(NB,p Zw) < Pﬂ(Nl-‘reoo ZCU) §1+E00N1+eoc
Di Di

for large enoughi. Clearly, E«o N1+, < 00. Hence, one can do better by using a
CUSUM rule in the hidden Markov model with large enough upper boundary [Fuh
(2003)], and this contradicts the fact thég , is a Bayes rule. O

LEMMA 7. Let N,;/’ be defined asin (4.14),and N, , be defined asin (4.6).
Assume the boundary B(w) definedin (4.6)is chosen as Bg(w) for a measurable

function g with [, g(w)dm(w) < co. Then E1(Np, ,|Wo = ) = E1(N) |Wp =
w) +o(l)asp — 0and B — oc.

The proof of Lemma 7 is given in Section 8.

PROOF OFTHEOREM 4. By using Proposition 2 and Lemmas 5-7, the proof
of Theorem 4 is similar to that of Theorem 1 in Pollak (1985). The details are
omitted. [

LEMMA 8. For each B, let Tp be defined as in (4.11) and (4.12). Then
Tg F, = F, 11, and, hence, there associates a set of invariant measures ® g such
that Tgp = ¢ for all ¢ € Dp.

PROOF  Since
Poo(Rp,p €ds, Wyi1 € dw/|Nq,b >n+1, W, =w)
=Poo(Rp,p €ds, Wyr1€dw'|Ngp>n,Ngp>n+1, W, =w)
=Poo(Ngp >n+1 Wyy1€dw'|Ry p=1,Nyp>n, W, =w)

B(w")
X |:/ _/ Poo(Ngp >n+1, Wn+l€dw/|Rn,P=t’
w,w'eX JO

-1
Ngp>n, W, = w)}
Poo(Ry,p €ds|Ngp >n, Wy = w)Poo(Ng p > n|W, = w)P(w, dw’)
X
Poo(Ry,p €ds|Ngp >n, Wy = w)Peo(Ng p > n|W, = w)P(w, dw’)
¢(s, w, w)P(w,dw’)dF,(s, w)
Sopwreac 2 ¢ (s, w, w)P(w, dw') d Fy(s, w)
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it follows that
e JE@Y o2, 5, w, w)e (2, w, w)P(w, dw') d Fy (¢, w)
O(F,)

Fn—‘rl(s’ w) =

=TpF,(s,w).

The existence of the fixed point follows by the same argument as that of
Lemma 11 in Pollak (1985).

Foragiveny, let.V, be the set of all detection policie@/’, definedasin (4.14),

for which EOON;/’ = y. In the next lemma it is shown tha¥, is not empty.
Furthermore, this set contains a stopping rule that is a limit of Bayes stopping
rules.

LEMMA 9. There exist a sequence of p’sthat convergesto 0, a sequence of
randomized Bayes problems B(8 = 0, p, ¢( p) V) with the appropriate Bayes

ruI&cN ‘,;, defined as the detection policy Nb in (4.14)with R, replaced by R, ,,
and a constant 0 < ¢ < oo such that

(i) c(p) —p—0¢C,
(i) BN, =7,
(iiiy pYP(N(B=0, p,c(p), ¥p)) = pso () + y)(L— cE1N}),

where (V) = fyex Joo rdy(r,w), and p¥»(N(B = 0, p,c(p), ¥,)) is the
normalized Bayes risk.

PrRoOOE The proof is similar to that of Lemma 2 in Yakir (1994) and is
omitted. [

By Lemma 7, the difference of the expected values for the stopping rule with
constant boundary and the stopping rule with curved boundargljs Therefore,
we only need to consider the stopping rule with a constant boundary in the
following lemmas. Note that in this casg(s, w) = ¥ (s).

LEMMA 10. Let

J sdyr(s) =0
@y = | 0 54V G) + BNy |
Poo (N, > k) (1o
Jo' sdy(s) + BN, o
Ifoneus&chf”' in the problem B(B = 0, p;, c(pi), ¥,), then ]P’(a)_k|N1//"' >

')/fp

w) — m(k) asi — oo. Also, if one us&cN,f’ instead of N/ in problem B(8 =0,

pi-c(pi). ¥p,), then P(w =k|N, > w) — m(k) asi — oo.
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PrRoOF Note thatP(w =0)/p; — fo sdyr(s) asi — oo. If one usesz’\/w‘;7 in
problemB(8 =0, p;, c(pi), ¥p;), then by using an argument similar to the proof

of Lemmas 9 and 12 of Pollak (1985), we have

PN, > o) B ’
(7.7) b =77, / sdY(s) + EooN) .
Pi 1—>00 J0

Therefore,

PN} = klo = OB = k)

Plo=kIN)"} = w) = = mk).

]P)(prl > ) 1—00
A similar argument applies when usimg‘/’ instead ofN;/:f’l’;. O

By using the same argument as in Lemma 13 of Pollak (1985), we also have

1 — {Expected loss using’;/’ for B(B =0, pi, c(pi), ¥p;)}

i—00 Di

I 1 — {Expected loss using’;;f’l; for B(B =0, pi, c(pi), ¥p,))}

i—00 Di

(7.8) « [/OBsdlﬁ(s) +EOQN;[’}
Ex N}
JE sdy(s) + BN/

J§ sdy(s)
JEsdy(s)+ BN, i

x {1 —c* [El(N,;’f ~1)

lim Eoo (N,;/’|w=0)]}.

The following lemma generalizes Theorem 5 of Kesten (1973) from products
of i.i.d. random matrices to products of Markov random matrices.

LEMMA 11. Let M,,n > 0betherandommatricesdefinedin (2.8)and (2.9).
Assumethat E,, log | M1| < 0, but that for someky > 0, E,,|M1|Kt = 1, E,,| M1 |*t x
log™ |M1| < oco. Assume, in addition, log|M1| does not have a lattice distribution.
Thenthe series R = Y72 o My - - - M1 Mg convergeswith probability 1, and

lim 1P, (R>¢) and lim P, (R < —1)
—>00 —>00

exist and are finite.
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PROOF By making use of the result that for all € X,
B]P’w{maleMn -« M1 Mo || > B} —-C asB — oo,
n>

for some constant, developed in Section 3.2 of Fuh (2004) for products of
Markov random matrices, the proof of the remainder part is similar to that of
Theorem 4 and Theorem 5 in Kesten (1973). The details are omitied.

LEMMA 12. [Esdy(s)/1JE sdy(s) + ExN/]1 = 0((log B)/B), where
O((logB)/B)/((log B)/B) remains bounded as B — <.

PrRooFk Denote by#, the o-algebra generated bito, &1, ..., &,}. Since
R, =BWI_,WHA+ R}, it follows that Eo (R}, 4|%,) = 1+ R}, and,

therefore,R) — n is aP,-martingale with expectatloEOO(R* —n)=ExRj =
foB sdyr(s).

By using the optional sampling theorem, we have fjat dy (s) = EOOR;‘W -
EN) . Therefore [$°s dy (s) + ExN) =ER}, = B. ’

It is easy to see that for all,

¥ (s) = Poo(R} < sIN) > n)

(7.9)
>]P’OQ(R*<s) = I|m Po(R, <5)=P(R <5s).

Note that the limit in the above equation (7.9) follows froR} — R, =
R{exp(}_!_1Si} — 0 a.s.Py, asn — oo. Hence,

/OBsdw(s)=/oB[1—/os dlp(t)]dsgfon(RH)d&

Under the conditions of Lemma 10, this implies the conditions of Lemma 11 hold
with k&1 = 1. And by Lemma 115sP(R > s) — 1 ass — o0.
It follows that limg_, foB sdyr(s)/logB < 1, from which Lemma 12 follows.
O

PROOF OFTHEOREM 5. Let N,f’ be a stopping time from the sed that
minimizes Ex N among all stopping times&V from that set. The change point
detection poIicyN;/’ is a minimax policy in the sense of equations (2.3) and (2.4).
Notice that a limit of Bayes rules minimizé N among all stopping times in the
setNg, hence the claim of the above theorem is not empty. By (4J!Z$),is an
equalizer rule and note that

. JE, ..., 60
NY <Ny < mm{n max PeGo. 81, - & 01) > B},
1<k<n pi(§0, 81, ..., &k: 60)

which is the CUSUM stopping rule for hidden Markov models. By Theorem 7 of
Fuh (2003), we havElN;,/’ = O(log B). The rest of the proof is almost identical
to the proof of Theorem 2 in Pollak (1985) and is thus omitted.
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8. Proofsof Theorem 6 and Lemma 7.

PROOF OFTHEOREM 6. Note that the probabilitfP; and expectatiofit; in
this section are taken undé&y = w, and we omit it for simplicity. The proof
of (5.10) rests on the nonlinear Markov renewal theory from Theorem 3 and
Corollary 1. Indeed, by (5.3), the stopping tim@” is based on the thresholding
of the sum of the Markov random wafl, and the nonlinear term,. Note that

M — 1N Pi-a.s. and ElnnnjooEln,

n—oo

andn,, n > 1 are slowly changing undé®;. In order to apply Theorem 3 and
Corollary 1, we have to check the validity of the following three conditions:

[e.e]
(8.1) Y Pifn, < —en} <oco  for some O< & < K (P, P*);
n=1

(8.2) max |1,+«|, n > 1, arePp-uniformly integrable
O<k<n

. ¥ eb

(8.3) bll_)moob IP’l{Nb < K (P01, Pho)

Condition @.1) holds trivially because, > 0. Sincen,, n = 1,2..., are
nondecreasing, maXx<, |m»+x| = n2, and to prove (8.2) it suffices to show that
nn, n > 1, areP1-uniformly integrable. Since,, < n and, by (5.9)E1n < oo, the
desired uniform integrability follows. Therefore, condition (8.2) is satisfied.

We now turn to checking condition (8.3). By using;&; > 0, and O<
K (P91, P%) < 0o, we will prove that

1-9)b }
K (P91, Pbo)
wherey, > 0 for alle > 0 and

}:0 for some O< ¢ < 1.

<e %P L ay(e, b),

(8.4) Pl{N;” <

ai(e, b) = P1{1<ma13< Sy > (14 ¢e)(1— e)b},
SN<Kgp

(8.5)
K¢ = (1—e)b/K (P%, P%).
If (8.4) is correct, then the first term on the right-hand side of (8.4)igb) as
b — oo. All it remains to do is to show thaij (e, b) in (8.5) iso(1/b).
To this end, by Proposition 2 we can apply Theorem 2 of Fuh and Zhang (2000)
to have that for alk > 0 andr > 0,

o
8.6 r=ip { max (Sx — K (P%, PP)k) > } ,
(8.6) nX::ln 11§k5n(k ( k) > en} < 0o
whenevetE;|S1|? < oo andE1[(S1 — K (P, P%))*1+1 < 0. Recall that under
the conditions of Theorem @1|S1|2 < oo, and hence, the sum on the left-hand
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side of the inequality (8.6) is finite for= 1 and alle > 0, which implies that the
summand should b&(1/n). Since

a1(e, b) < ]P’l{ max (S, — K (P, PP)n) > e(1 — s)b}
n<Kegp
it follows thata1 (e, b) = 0(1/b).
Next, we need to prove (8.4). Denofé = logLR!, and letN = N, for
simplicity. For anyC > 0, by using a change of measure argument, we have

_ _gk
Poo N < (1 = ©)bK (P, PO) Y = Ex{Ty 1 ek pr.p0)-1¢ )

_S§k
=z El{]l{N<(l—s)bK(]P’91,IP’90)—1, sk <c)€ v

> e_C]P’l{N < (1—e)bK (P, Poy~—1 max sk < c}
n<(1—e)bK (P1,PP0)-1

> ¢ € []P’l{N < (1—g)bK (P, PP)~h

—]P’l{ max SﬁzC”.
n<(1—e)bK (P1,PP0)-1

ChoosingC < (14 ¢)(1— ¢)b, we then have

(1—e)b
8.7) Pl{N =K@, P90)}
' < ¢CPN < (1— £)bK (P, P) 1) 4 o1 (e, b).

Recall thatR; is defined in (4.13). Note that under the conditior & (P,
P%) < 0o, we have

Ksb Ksb i

2
Poo{N < Kop) = ZIP’OO{R*>B}<Z— (log B)

(K (P91, P%))2B "

By choosing a suitabl€, we have the first term of (8.8 ¢¢?, for somey, > 0,
and get the proof of (8.4).

Thus, all conditions of Theorem 3 are satisfied. The use of this theorem yields
(5.10) foralarger. O

PROOF OFLEMMA 7. Note that the parametér defined in (3.2) isB in
this case. Sincé3(w) = Bg(w) is independent of and [, g(w)dm(w) < oo,
dp defined in (3.7) is 0. By (8.1)—(8.3) developed in the proof of Theorem 6, we
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can apply Corollary 1, to obtain that &— oo,
E1(Np,p|Wo=w)

E,,., S2
(88) =—— ( +Sin, (P)

Ex&1(p) 2En1+Sm+(P)
+0(1).

Here the random variables in (8.8) are the corresponding terms of (2.15) divided
by g. We also haveE £1(p) — Exé1, Ew,S2, (p) > En,S2 . Eu Sm,(p) >

m4 my>

Ey, Sn, andA,(w) — A(w). By using Corollary 1 again, we have

—Ep,n— / A p(w) dm. (w) + Ap(zb>)

E1(N) |Wo = )

_ 1 ( Em+ Sl%l.{.
Ex gl ZEm+Sn1+

Hence, Lemma 7 is proved [

B, n— / Aw) dmy (w) + A(d))) +o(D).
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