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DENSITY ESTIMATION FOR BIASED DATA1

BY SAM EFROMOVICH

The University of New Mexico

The concept of biased data is well known and its practical applications
range from social sciences and biology to economics and quality control.
These observations arise when a sampling procedure chooses an observation
with probability that depends on the value of the observation. This is
an interesting sampling procedure because it favors some observations
and neglects others. It is known that biasing does not change rates of
nonparametric density estimation, but no results are available about sharp
constants. This article presents asymptotic results on sharp minimax density
estimation. In particular, a coefficient of difficulty is introduced that shows
the relationship between sample sizes of direct and biased samples that imply
the same accuracy of estimation. The notion of the restricted local minimax,
where a low-frequency part of the estimated density is known, is introduced;
it sheds new light on the phenomenon of nonparametric superefficiency.
Results of a numerical study are presented.

1. Introduction. Assume that we wish to estimate the probability densityf

of a random variableX. If independent direct realizationsX1,X2, . . . ,Xn of X are
available, then optimal solutions of the problem are well known. See the discussion
in the books by Devroye and Györfi (1985), Silverman (1986) and Efromovich
(1999).

In practice it may happen that drawing a direct sample fromX is impossible.
Instead, an observationX = x may be included with a relative chance proportional
to a so-called biasing functionw(x). Then independently recorded biased
observationsY1, Y2, . . . , Yn have the density

g(y) = w(y)f (y)/µ(f ), whereµ(f ) = Ef {w(X)}.(1.1)

The distribution of a corresponding random variableY is called abiased
distribution and its densityg is given in (1.1). Given the biased sample
Y1, Y2, . . . , Yn and the biasing functionw, the problem is to estimate the
underlying densityf with minimal mean integrated squared error over a finite
interval of interest.

In what follows it is always assumed that the interval of interest is the unit
interval[0,1], 0< c1 < w(y) < c2 < ∞, andw(y) is Riemann integrable over the
unit interval.
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The following examples illustrate a few general practical settings that lead
to biased data sets. (a) Let a proportion 1− w(x) out of the natural frequency
of X be missing. Then the density of the observed data is (1.1). Many specific
biological examples can be found in the book by Buckland, Anderson, Burnham
and Laake (1993). (b)Visibility bias is a recognized problem in aerial survey
techniques for estimating, for instance, wildlife population density. Interesting
particular examples can be found in Cook and Martin (1974). (c) A sampling
procedure can specifically favor larger (or smaller) observations. Two classical
examples discussed in Cox (1969) are observing interevent times at some random
point in time and a quality control problem of estimating fiber length distribution.
(d) A rather general example is a damage model where an observationX may be
damaged by a destructive process depending onX; hence undamaged observations
are biased. The interested reader can find more practical examples in the review by
Patil and Rao (1977).

Let us also note that in some cases a biased sampling can be a reasonable
alternative to a direct sampling. As a particular example, consider a study
sponsored by the National Science Foundation (NSF) and conducted by the
University of New Mexico on vegetation in the Sevilleta National Wildlife Refuge.
This refuge lies 65 miles south of Albuquerque in Socorro County and includes a
desert. Of particular interest is a blue gramma (Bouteloua gracilis), which is a
native perennial that provides good grazing for wildlife and livestock; 1–2 in. tall,
it grows in tufts, sod or other types of clusters of different shapes. In particular, the
study is devoted to monitoring the distribution of the number of blades in a cluster,
and the monitoring is based on biannual manual counts. One of the possibilities
for performing the counting is to choose some areas and then count blades over
these areas. This approach is manageable (after all, we are talking about desert),
but experiments show that then the data are contaminated by large measurement
errors. Recall that measurement errors make the problem of density estimation ill-
posed and dramatically worsen accuracy of estimation [see Efromovich (1999),
Chapter 3]. Thus, instead of direct counting, the area is sampled by line transects.
This makes observations biased because a larger cluster has a larger probability
of being intersected; however, practically negligible measurement errors make the
problem dramatically simpler.

The fundamental result in the theory of biased data is from Cox (1969), where
the following estimator of the cumulative distribution function was suggested:

F̃ (x) = µ̂n−1
n∑

l=1

w−1(Yl)1(Yl ≤ x),(1.2)

where

µ̂ = 1

n−1 ∑n
l=1 w−1(Yl)

.(1.3)
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For biased data sets, the Cox estimator plays the same role as the empirical
distribution for direct data. An important theoretical property of the estimator
is that it is a nonparametric maximum likelihood estimator. Thus, according to
some general results, it is asymptotically efficient in terms of dispersion of a
corresponding limit process [see the discussion in Gill, Vardi and Wellner (1988)].
Cox (1969) also suggested the first consistent kernel density estimator motivated
by smoothing (1.2). Later many other density estimates, including rate optimal
ones, were suggested [see the discussion in Wu and Mao (1996)]. In particular,
it has been established that biasing does not affect minimax rates. Interesting
results on semiparametric density estimation and their applications for moderate
sample sizes were obtained by Sun and Woodroofe (1997) and Lee and Berger
(2001).

On the other hand, so far no research has been conducted on sharp optimal
estimation that, in particular, can shed light on Cox’s long-standing question
about how biasing affects density estimation. Moreover, according to Efromovich
(1999, 2001), the theory of sharp estimation allows a practitioner to construct and
explain the performance of data-driven estimators for small sample sizes.

This article is organized as follows. The next section presents the main
theoretical results. These results and their corollaries are discussed in Section 3.
Section 4 provides proofs.

2. Minimax estimation of differentiable densities. Let us begin by recalling
a known classical result for the case of direct observations. Suppose that a random
variableX is distributed according to a probability densityf (x), −∞ < x < ∞,
and the problem is to estimate it with a minimal mean integrated squared error over
the unit interval[0,1]. It is assumed thatf is m-times differentiable over[0,1] and
belongs to a corresponding Sobolev set

S(m,Q) =
{
f (x) :f (u) =

∞∑
j=0

θjϕj (u), u ∈ [0,1],
∞∑

j=1

(πj)2mθ2
j ≤ Q

}
.(2.1)

Here and in what follows,ϕ0(u) = 1, ϕj (u) = 21/2 cos(πju), j > 0,m is a positive
integer number andQ is a positive real number. Also define the corresponding
class of densitiesH(m,Q) = {f (x) : f (x) ≥ 0,−∞ < x < ∞,

∫ ∞
−∞ f (x) dx = 1,

f ∈ S(m,Q)}.
For this class of densities and the case ofn direct observationsX1,X2, . . . ,Xn,

it is known that

inf
f̌

sup
f ∈H(m,Q)

[If 1n]2m/(2m+1)Ef

{∫ 1

0

(
f̌ (x) − f (x)

)2
dx

}
≥ 1+ o(1),(2.2)

where the infimum is taken over all possible estimatesf̌ based on the data set and
the parametersm andQ, and

If 1 = Q−1/2m[π(m + 1)m−1(2m + 1)−1/2m]
/∫ 1

0
f (x) dx.(2.3)
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Moreover, there exist data-driven estimators that attain the lower bound (2.2)
[see the discussion in Efromovich (1999), Chapter 7]. Note that a typical case
considered in the literature is where[0,1] is the support and thus the denominator
in (2.3) is equal to 1.

The approach used is called global minimax because an estimated density can be
any Sobolev function. On the other hand, in practical applications an underlying
density is always fixed. To bridge these two settings, Golubev (1991) suggested
introducing a fixed densityf0, not necessarily a Sobolev one, and assuming that
all possible underlying densities are uniformly close to it on the unit interval.

Namely, let f0 be a density on(−∞,∞) that is continuous and bounded
below from zero on the interval[0,1]. No assumption aboutf0(x) for x

beyond the unit interval is made. Introduce a class of densitiesD(m,Q,f0, ρ) =
{f : ∫ ∞

−∞ f (x) dx = 1, f (x) ≥ 0, f (u) = f0(u) + t (u),0 ≤ u ≤ 1, t ∈ S(m,Q),
supx∈[0,1] |t (x)| < ρ}. Then the problem is to construct a minimax estimate for
this set.

Let us present a lower bound for the local minimax approach and the case of
biased data. In this case, observationsY1, . . . , Yn of a biased random variableY
are given, the densityg(y) of Y is defined in (1.1), and we recall that assumptions
about the given biasing densityw are formulated below (1.1). Define

If w = If 1/RCDB.(2.4)

Here RCDB is the relative coefficient of difficulty due to biasing:

RCDB=
∫ ∞
−∞

f (x)w(x) dx

∫ 1

0
f (x)w−1(x) dx

/∫ 1

0
f (x) dx.(2.5)

THEOREM 1. For any ρ > 0,

inf
f̌

sup
f ∈D(m,Q,f0,ρ)

[If wn]2m/(2m+1)Ef

{∫ 1

0

(
f̌ (x)−f (x)

)2
dx

}
≥ 1+o(1),(2.6)

where the infimum is taken over all possible estimates f̌ based on the biased data
set Y1, . . . , Yn, the density f0, the biasing function w and parameters m, Q and ρ.

Note that (2.6) yields a corresponding global lower bound by choosingf0 that is
constant on the unit interval. On the other hand, under the local minimax approach,
neither the setD is necessarily a subset of the Sobolev set nor doesf0 necessarily
belong to the Sobolev set.

Thus, it is absolutely natural to consider a local minimax setting wheref0 is
more dramatically related to a class of possible underlying densities. This goal is
achieved by the restricted minimax setting wheref0 belongs to the Sobolev set
and all possible underlying densitieshave the same low-frequency part asf0. In
what follows, we refer to suchf0 as the anchor density, and we need the following
property off0.
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ASSUMPTION A (On anchor density). The anchor densityf0(x) is known,
positive andm-fold differentiable on [0, 1],f0(u) = ∑∞

j=0 θ0jϕj (u), u ∈ [0,1],
and

∑∞
j=1(πj)2mθ2

0j = Q. Also, there exists a sequenceks → ∞, s → ∞, such

that
∑

j>ks
j2mθ2

0j > C1k
−C2
s for some positiveC1 andC2.

Let us comment on the two parts of the assumption made. The first part implies
that the anchor density is a particular density from the Sobolev set (2.1) studied
under the global minimax setting. Note that either the statistician may knowQ

and then choose a corresponding anchor density, or the statistician may choose an
anchor density and then calculateQ. The second part (the part about the existence
of ks ) assumes that the anchor density is not too smooth and thus it is a typical
density from the Sobolev set. For instance, let us check that the assumption about
ks holds whenever

∑
j>0 j2m+αθ2

0j = ∞ for someα > 0. Indeed, if no sequence
ks exists for a particularC2 = 1+ 2α, then

∑
j>k j2mθ2

0j < Ck−1−2α , C < ∞, for

all sufficiently largek. The last inequality impliesθ2
0j < Cj−2m−1−2α and thus we

get the inequality
∑

j>0 j2m+αθ2
0j < ∞ that contradicts the assumption made.

The second part of the assumption yields that there always exists an in-
creasing to infinity integer-valued sequenceJn such that−1 ≤ Jn < ln(n) and∑

j>Jn
j2mθ2

0j > C1(Jn + 2)−C2. From now on this sequence is assumed to be
fixed. Then we introduce the sequence of low-frequency parts off0,

f0Jn(u) =
Jn∑

j=0

θ0jϕj (u),(2.7)

and define the vanishing sequence

qn = 1−
∑Jn

j=1 j2mθ2
0j∑∞

j=1 j2mθ2
0j

.(2.8)

In what follows it is assumed that
∑b

j=a cj = 0 wheneverb < a.
Now we are in position to define the restricted density set:

H(m,Q,f0, Jn) =
{
f :f (u) = f0Jn(u) + ∑

j>Jn

θjϕj (u), u ∈ [0,1],
(2.9)

f ∈ S(m,Q),f (x) ≥ 0,

∫ ∞
−∞

f (x) dx = 1

}
.

It is easy to see that maxx∈[0,1] |f (x) − f0(x)| = o(1) uniformly over f ∈
H(m,Q,f0, Jn); thus the restricted approach is also local around the anchor
densityf0. Also, we may setJn = −1 and then the restricted approach becomes
global.
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THEOREM 2. Let Assumption A hold. Then

inf
f̌

sup
f ∈H(m,Q,f0,Jn)

[If wq−1/2m
n n]2m/(2m+1)Ef

{∫ 1

0

(
f̌ (x) − f (x)

)2
dx

}
(2.10)

≥ 1+ o(1),

where the infimum is taken over all possible estimates f̌ based on the biased data
set Y1, . . . , Yn, the anchor density f0, the biasing function w, the parameters m, Q

and the sequence Jn.

The lower bounds (2.6) and (2.10) are attained by the Efromovich–Pinsker
adaptive estimator, which is a blockwise shrinkage estimator defined as follows.
We divide the set of natural numbers into a sequence of nonoverlapping blocksGk,
k = 1,2, . . . . Then the estimate is

f̂ (x) =
K∑

k=1

[
1− d̂n−1

|Gk|−1 ∑
j∈Gk

θ̂2
j

]

(2.11)

× 1

(
|Gk|−1

∑
j∈Gk

θ̂2
j > (1+ tk)d̂n−1

) ∑
j∈Gk

θ̂jϕj (x),

where|Gk| denotes the cardinality ofGk , 1(·) is the indicator,

θ̂j = µ̂n−1
n∑

l=1

1(0≤ Yl ≤ 1)ϕj (Yl)w
−1(Yl)(2.12)

is the Cox sample mean estimate of Fourier coefficients and

d̂ = µ̂2n−1
n∑

l=1

1(0≤ Yl ≤ 1)w−2(Yl).(2.13)

A wide variety of blocks{Gk} and thresholds{tk} implies sharp minimaxity
[see the discussion in Efromovich (1985, 1999, 2000)]. As an example, we set
|Gk| = k2, tk = 1/ ln(k + 1) andK = �n1/9 ln(n)�.

THEOREM 3. The Efromovich–Pinsker estimator satisfies

sup
f ∈H(m,Q)

[
If wn

]2m/(2m+1)
Ef

{∫ 1

0

(
f̂ (u) − f (u)

)2
du

}
(2.14)

= 1+ o(1),

and if Assumption A holds, then

sup
f ∈H(m,Q,f0,Jn)

[
If wq−1/2m

n n
]2m/(2m+1)

Ef

{∫ 1

0

(
f̂ (u) − f (u)

)2
du

}
(2.15)

= 1+ o(1).
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3. Discussion.

3.1. The minimax approaches. It may be convenient to think about the
minimax approaches in terms of concepts of game theory. We may think that
nature (Player I) chooses a density that makes its estimation most difficult
for the statistician (Player II). Then the main difference between the three
minimax approaches introduced in Section 2 is in the information available to the
statistician. Under the global approach, the statistician knows that nature chooses a
density from a given Sobolev set. Under the local approach, the statistician knows
that nature chooses a density which is uniformly close to a given density.

Under the restricted approach the statistician knows dramatically more about
nature’s choice. The statistician has the same information as in the global game
and additionally knows the low-frequency part of nature’s choice. The latter also
makes the game local because an underlying density is uniformly close to its low-
frequency part. In other words, the restricted game is about estimating the high-
frequency part of an underlying Sobolev density.

A minimax data-driven estimator (i.e., the estimator based only on data and
the biasing function) should perform not worse than the statistician playing the
minimax game. Thus the restricted minimax game is more challenging for a
data-driven estimation. On the other hand, the restricted game is more rewarding
because the rate of mean integrated squared error convergence is always faster than
the global or local minimax raten−2m/(2m+1).

It has long been a tradition in the nonparametric literature to study global
and/or local minimax approaches. This explains the familiar slogan “. . . if we are
prepared to assume that the unknown density hasm derivatives, then . . . the optimal
mean integrated squared error is of ordern−2m/(2m+1) . . . .” The citation is from
Silverman [(1986), page 70]. The results of Section 2 show that this classical rate
is optimal only if data-driven estimates are compared with the statistician playing
global or local minimax games, that is, with the less informed statistician. Faster
rates can be obtained by matching the restricted minimax game.

Let us make one more remark about the minimax approaches. It is possible to
change the setting a bit and to assume that the underlying density is known beyond
the interval of interest. This makes the average value

∫ 1
0 f (x) dx known, but this

fact does not affect the asymptotics.

3.2. Practical implications of the minimax approaches. At first glance,
because restricted minimax implies faster asymptotic rates, there is no reason to
study global and local minimax approaches.

Interestingly, small data sets justify the study of these classical minimax
approaches. It was shown by Efromovich (1999) that, for small sample sizes (up
to several hundred), the problem of nonparametric density estimation is equivalent
to the problem of estimating a low-frequency part of the underlying density.
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The reader can check this assertion using the software in Efromovich [(1999),
Chapter 3]. As a result, the restricted minimax approach with nonnegativeJn is
not applicable for small sample sizes, because it assumes that a low-frequency part
of the underlying density is given. (This is also the reason behind the construction
of Jn that allows us to apply no restrictions on the underlying density for smalln.)

The situation changes for moderate and large sample sizes like the ones studied
in the wavelet literature. For these sample sizes, knowing or not knowing a low-
frequency part of the density has no significant effect on the estimation, and thus
the restricted minimax is absolutely appropriate. Again, the interested reader can
use the software to check this assertion.

We may conclude that each minimax approach has its own practical applica-
tions.

3.3. Restricted minimax and nonparametric superefficiency. The phenom-
enon of parametric superefficiency is well known. A famous example is the Hodges
superefficient estimator that, for normal observations, allows us to improve a sam-
ple mean estimator (efficient estimator) at any given point. This is an interesting
theoretical phenomenon; on the other hand, superefficient estimators are typically
not used, because the set of superefficiency has Lebesgue measure zero and estima-
tion at other points may worsen. See the discussion in Ibragimov and Khasminskii
[(1981), Section 2.13].

By contrast, it was shown in Brown, Low and Zhao (1997) that, in nonpara-
metric problems, every curve can be a point of superefficiency. Their main result,
“translated” into our density estimation setting, is that for anyf ∈ H(m,Q) there
exists an estimatořfn such that

n2m/(2m+1)Ef

{∫ 1

0

(
f̌n(x) − f (x)

)2
dx

}
= o(1).(3.1)

This result implies a better rate than the classicaln−2m/(2m+1). This explains
why Brown, Low and Zhao (1997) refer to (3.1) as the nonparametric supereffi-
ciency.

On the other hand, (3.1) is in agreement with the restricted minimax rates. Let
us also note that if an underlying density is parametric (it has a finite number
of nonzero Fourier coefficients), then the Efromovich–Pinsker estimator implies
the parametric raten−1 of the mean integrated squared error convergence [see
Efromovich (1985)]. This indicates the range of possible nonparametric rates.

3.4. Restricted minimax and oracles. An oracle is an estimator that is based
on both data and the underlying density. The oracle approach means a data-driven
estimation that mimics the oracle performance [see the discussion in Efromovich
(1999)]. The restricted minimax bridges classical minimax approaches (where
underlying densities belong to function spaces) and oracle approaches (where the
underlying density is given) by assuming that the underlying density belongs to a
function space and its low-frequency part is given.
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3.5. Average risk. One of the long-standing problems in the sharp estimation
literature is to find an estimate of the densityg(y) of direct observations
Y1, Y2, . . . , Yn that minimizes an average risk with the averaging functiona(y).
In other words, this estimate should minimize the average risk

AR = Eg

{∫ 1

0
a(y)

(
ĝ(y) − g(y)

)2
dy

}
.(3.2)

Let us assume that the averaging function satisfies 0< C∗ ≤ a(y) ≤ C∗ < ∞.
Then it is easy to see that if we define

w(y) = 1/
√

a(y),

f (y) = µ(f )w−1(y)g(y),(3.3)

f̂ (y) = µ(f )w−1(y)ĝ(y),

then

AR = µ−2(f )Ef

{∫ 1

0

(
f̂ (x) − f (x)

)2
dx

}
.(3.4)

Heref andg can be thought of as the underlying and the biased densities.
Particular examples of using this equivalence for finding sharp asymptotics are

presented in Efromovich (2004).

3.6. Naive estimation. Using a naive estimator̃fn(x) = g̃n(x)µ̂w−1(x) is a
popular and intuitively clear idea [see the discussion in Wu and Mao (1996) and
Wu (1997)]. Hereg̃n is an estimator of the densityg of biased observations
Y1, . . . , Yn. Section 2 implies that smoothness of the biasing function plays a
crucial role in the accuracy of the naive estimator. The naive estimator is rate
inadmissible whenever the biasing function is not as smooth as the underlying
densityf . On the other hand, specific examples where naive estimation is sharp
minimax can be found in Efromovich (2004). We may conclude that because
smoothness off is typically unknown, it is better to avoid the use of naive
estimation.

It is also important to note that smoothness of the biasing function does not
affect optimal estimation. Thus, even if the biased distribution is discontinuous
or not differentiable, the quality of sharp minimax estimation of the underlying
densityf is defined only by its own smoothness. The only functional ofw that
affects the estimation is the coefficient of difficulty due to biasing, discussed in the
next section.

3.7. Coefficient of difficulty. An interesting theoretical outcome of Section 2
is that, for a biased sample of sizen, the same precision of estimation is achievable
by a direct sample of sizen′ = n/RCDB, where RCDB is the relative coefficient



1146 S. EFROMOVICH

of difficulty due to biasing defined in (2.5). Recall that the notion of the coefficient
of difficulty was introduced in Efromovich (1999).

Thought-provoking examples in Cox (1969) indicate that biasing can always
improve or worsen the estimation. Translated into the nonparametric setting
considered, this would imply that biasing can always increase or decrease the
RCDB.

Let us present an example where RCDB is always greater than 1, that is, the
example where biasing always worsens the density estimation. According to the
Cauchy–Schwarz inequality,[∫ ∞

−∞
1(0≤ x ≤ 1)f (x) dx

]2

≤
∫ ∞
−∞

f (x)w(x) dx

∫ 1

0
f (x)w−1(x) dx(3.5)

with equality iff w(x) = c1(0 ≤ x ≤ 1), c > 0, almost sure with respect tof .
Thus, if [0,1] is the support ofX, then any biasing yields RCDB> 1, that is,
biasing always worsens the density estimation. Otherwise, RCDB≥ ∫ 1

0 f (x) dx

and, similarly to examples in Cox (1969), biasing can improve or worsen the
estimation.

This is a useful conclusion for practitioners because, as we shall see in
Section 3.9, the asymptotic RCDB can be used for the analysis of small data sets.

3.8. Versatility of the Efromovich–Pinsker estimator. It is well known that
many functionals of this estimator (including derivatives and integrals) are optimal
estimators of the corresponding functionals, that is, the estimator is versatile [see
the discussion in Efromovich (1999), Chapter 7]. It is possible to establish that the
same conclusion holds for the case of biased data; and results will be published
elsewhere.

3.9. Adaptive estimation: from asymptotic to small sample sizes. Asymptotic
results presented in Section 2 show that the Efromovich–Pinsker series estimator
is asymptotically minimax. This justifies the use of software developed in
Efromovich [(1999), Chapter 3] for small data sets. The software, which contains
both a generator of biased data sets and the adaptive estimator for small biased data
sets, is available over the Worldwide Web [see the instructions on how to download
and use it in Efromovich (1999), Appendix B or e-mail the author].

Using this software, let us shed light on the nature of a biased sampling and then
comment on the possibility of using the coefficient of difficulty RCDB for small
data sets.

Figure 1 presents a particular biased data set of sizen = 25 shown by letters Y.
The underlying densityf is the Normal density shown by the solid line and defined
in Efromovich [(1999), page 18]. The sample is biased by the biasing function
w(y) = 0.1+0.9y shown by the long-dashed line, that is, the data may be referred
to as length biased. The right-skewed data set clearly exhibits the effect of this
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FIG. 1. Analysis of biased data. The solid and long-dashed lines show the underlying Normal
density f and the biasing function w(y) = 0.1 + 0.9y, respectively. A simulated biased data set of
size n = 25 is shown by letters Y. The dotted line shows the estimate of f (the estimate based on Y’s
and the biasing function). The short-dashed line shows the estimate of g, that is, of the density of the
biased observations Y.

biasing. To exhibit the structure of the data set, the short-dashed line shows us
its estimated density [the adaptive estimate of Efromovich (1999) is used]. This
is what the statistician might see if the biased nature of the data were ignored or
unknown. Note how the skewed density of Y’s differs from the symmetric Normal
density.

The dotted line shows the suggested adaptive biased-data density estimate. By
taking into account the biasing, the estimate correctly restored the symmetric
about 0.5 shape of the underlying density. It also removed the heavy left tail of the
estimated density of Y’s created by the three smallest length-biased observations.

This particular simulation together with the discussion in the Section 3.7 raises
the following question. Suppose thatn′ is a sample size that implies a reasonable
estimation of an underlying density based on direct observations. Then what is the
corresponding sample sizen for a biased data set that implies a similar precision of
estimation in terms of mean integrated squared error? According to the asymptotic
results of Section 2,n′ times RCDB should be the answer, but can this asymptotic
rule be used for small sample sizes?
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Let us begin the discussion with a particular simulation and then complement it
with an intensive Monte Carlo study.

Figure 2 explains the problem explored. The underlying density is the monotone
one shown by the solid line and defined in Efromovich [(1999), page 18]. A direct
sample of sizen′ = 25 from this density is shown by X’s. Note that the sample
correctly represents the underlying density, and this also can be seen from the
estimate of the density shown by the short-dashed line.

A biased sample of sizen = 44 from the same density is shown by Y’s. The
utilized biasing function isw(y) = 1− 0.95y, and this implies RCDB= 1.74 and
the above-mentioned sample sizen = n′ × RCDB= 44. If the asymptotic theory
holds for these small sample sizes, then the density estimation based on 25 direct
and 44 biased data values should be similar in terms of mean integrated squared
error. For the particular samples the estimates for direct and biased samples are
shown by the short-dashed and dotted lines, respectively. The short-dashed line

FIG. 2. Analysis of biased and direct data. The solid and long-dashed lines show the underlying
monotone density f and the biasing function w(y) = 1 − 0.95y, respectively. The corresponding
RCDB = 1.74. A simulated direct data set of size n′ = 25 from the underlying monotone density
is shown by letters X. A biased data set of adjusted size n = n′ × RCDB= 44 is shown by letters Y.
The dotted line shows the biased-data density estimate (the estimate is based on Y’s and the biasing
function) and the short-dashed line shows the density estimate of X.
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better exhibits the underlying density, and it may look like the 1.74-fold increase
in the sample size is not large enough to compensate for the biasing. On the other
hand, let us recall that the samples are independent and another simulation may
change the outcome.

Let us repeat this particular simulation 500 times, calculate corresponding
integrated squared errors (ISEs) and then analyze them. The results are presented
in Figure 3. The top diagram shows by character 1 ISEs for direct data sets and
by 2 for biased data sets. Let us repeat that all samples are independent. Clearly a
majority of ISEs are relatively small but there is a thin right tail in their distribution.
Thus, we show densities of ISEs over two subintervals: ISEs that are at most 0.11
and larger ISEs. The value 0.11 is the mean (up to the rounded second digit) of

FIG. 3. Results of 500Monte Carlo simulations identical to the one shown in Figure 2. Characters
1 and 2 in the top diagram show ISEs of the estimates based on 25direct and 44biased observations,
respectively. The sample means are identical (up to the second digit) and equal to 0.11.The solid
and dotted lines in the bottom diagrams show the densities of ISEs for the direct and biased samples,
respectively. The two bottom diagrams show the densities for ISEs that are at most the sample mean
0.11and larger than the sample mean, respectively. From the totals of 500, there are 348 and 357
ISEs that are at most 0.11for the direct and biased samples, respectively.
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both sets of ISEs (here we have an ideal outcome in terms of the empirical mean
integrated squared errors).

The densities for these two groups of ISEs are shown in the middle and bottom
diagrams. As we see, the distributions are practically identical, and while there
is no asymptotic theory to support this outcome, it is an interesting empirical
observation.

Figure 4 shows an outcome of a similar study only with the underlying density
and the biasing function utilized in Figure 1. The main parameters are presented in
the caption, and here let us stress only the relatively small RCDB= 1.07. As we
see, the outcome is very similar. The sample means are a bit different (they are 0.09
and 0.10 for the direct and biased samples, resp.), but it is clear that the difference
is primarily due to the tails. Repeated simulations show that this is indeed the case.

The numerical study supports the possibility of using RCDB as a measure
of difficulty due to biasing. The interested reader can find a different numerical

FIG. 4. A numerical study similar to the one shown in Figure 3, only here the density and
the biasing function of Figure 1 are used. RCDB = 1.07, and this implies 25 direct and 27
biased observations. Mean ISEs are 0.09 and 0.10,respectively. From the totals of 500, there are
383and 362ISEs that are at most 0.11for the direct and biased samples, respectively.
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study, which implies a similar outcome for a wider variety of densities and biasing
functions, in Efromovich (2004).

4. Proofs. Recall thatϕ0(x) = 1,ϕj (x) = √
2cos(πjx), j ≥ 1, and�x� is the

rounded downx.

PROOF OFTHEOREM 1. This proof will be also used to verify Theorem 2,
and this explains some steps and comments not directly related to the proof.

We begin by dividing the unit interval intos subintervals where the biasing
functionw and the densityf0 are approximated by simple functions. This allows
us to obtain relatively simple lower minimax bounds for each subinterval.

Sets = 1+ �ln(ln(n + 20))� and define

Hs =
{
f :f (x) = f0(x) +

[
s−1∑
k=0

fk(x) −
s−1∑
k=0

∫ 1

0
fk(u) du

]
1(0 ≤ x ≤ 1),

fk(x) ∈ Hsk, f ≥ 0

}
.

Here the function classesHsk are defined as follows. Letφ(x) = φ(n, x) be a
sequence of flattop nonnegative kernels defined on a real line such that, for a
givenn, the kernel is zero beyond(0,1), it is m-fold continuously differentiable
on (−∞,∞), 0 ≤ φ(x) ≤ 1, φ(x) = 1 for 2(ln(n))−2 ≤ x ≤ 1 − 2(ln(n))−2 and
|φ(m)| ≤ C(ln(n))2m. For instance, such a kernel may be constructed using so-
called mollifiers discussed in Efromovich [(1999), Chapter 7]. Then setφsk(x) =
φ(sx − k). For thekth subinterval, 0≤ k ≤ s − 1, defineϕskj (x) = √

sϕj (sx − k),

f[k](x) = ∑J (k)
j=�J (k)/ ln(n)� νskjϕskj (x), f(k)(x) = f[k](x)φsk(x), J (k) = 2�[n(2m+

1)(m+1)s−2mQsk(2m(2π)2m)−1]1/(2m+1)�, Qsk = Q(1−1/s)(I−1
s Isk)

−1, Isk =
µ−1(f0)w(k/s)/f0(k/s), andI−1

s = ∑s−1
k=0(1/Isk). Then we define the subclasses

Hsk =
{
f :f (x) = f(k)(x),

J (k)∑
j=�J (k)/ ln(n)�

(πj)2mν2
skj ≤ s−2mQsk,

∣∣f[k](x)
∣∣2 ≤ s3 ln(n)J (k)n−1

}
.

Let us verify that, for sufficiently largen, this set of densities is a subset of the
studied classD.

First, the definition of the flattop kernel implies thatf − f0 is m-fold continu-
ously differentiable over[0,1]. Second, let us verify that forf ∈ Hs the difference
f − f0 belongs toS(m,Q). By the Leibniz rule,

∫ 1
0 [(f[k](x)φsk(x))(m)]2 dx =∫ 1

0 [∑m
l=0 Cm

l f
(m−l)
[k] (x)φ

(l)
sk (x)]2 dx, where Cm

l = m!/((m − l)!l!). Recall that
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max0≤l≤m

∫ 1
0 (φ

(l)
sk (x))2 dx < C(s(ln(n))2)2m and, for 0< l ≤ m,

∣∣f (m−l)
[k] (x)

∣∣2 =
∣∣∣∣∣

J (k)∑
j=�J (k)/ ln(n)�

νskjϕ
(m−l)
skj (x)

∣∣∣∣∣
2

≤ Cs2(m−l)+1

(
J (k)∑

j=�J (k)/ ln(n)�
j2mν2

skj

)(
J (k)∑

j=�J (k)/ ln(n)�
j−2l

)
(4.1)

= o(1)(J (k))−1/2,

where the Cauchy–Schwarz inequality was used in the middle line. Also,∫ 1

0

[
f

(m)
[k] (x)φsk(x)

]2
dx ≤

∫ (k+1)/s

k/s

(
f

(m)
[k] (x)

)2
dx ≤ Qsk,(4.2)

and recall that
∑s−1

k=0Qsk = Q(1− s−1). These results implyf −f0 ∈ S(m,Q(1−
s−2)) for f ∈ Hs and largen.

Now denote

f̂ = f0 + f̃ and δs =
s−1∑
k=0

∫ 1

0
f(k)(u) du,

and note that forf ∈ Hs and anyγ > 0,∫ (k+1)/s

k/s

(
f̂ (x) − f (x)

)2
dx

=
∫ (k+1)/s

k/s

(
f̃ (x) − f(k)(x) + δs

)2
dx

≥ (1− γ )

∫ (k+1)/s

k/s

(
f̃ (x) − f[k](x)

)2
dx

− γ −1
∫ (k+1)/s

k/s

[
f[k](x)

(
1− φsk(x)

) + δs

]2
dx

≥ (1− γ )

∫ (k+1)/s

k/s

(
f̃ (x) − f[k](x)

)2
dx + o(1)γ −1(ln(n))−1/2n−2m/(2m+1).

Setγ = s−1 and, using the above-obtained relationship, we get

sup
f ∈D(m,Q,f0,ρ)

E

{∫ 1

0

(
f̂ (x) − f (x)

)2
dx

}

≥ sup
f ∈Hs

E

{∫ 1

0

(
f̂ (x) − f (x)

)2
dx

}
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= sup
f ∈Hs

s−1∑
k=0

E

{∫ (k+1)/s

k/s

(
f̂ (x) − f (x)

)2
dx

}

≥ (1− s−1)

s−1∑
k=0

sup
f ∈Hsk

J (k)∑
j=�J (k)/ ln(n)�

E{(ν̃skj − νskj )
2} + o(1)n−2m/(2m+1)

= (1− s−1)

s−1∑
k=0

Rk + o(1)n−2m/(2m+1),

whereν̃skj = ∫ (k+1)/s
k/s f̃ (x)ϕskj (x) dx.

To estimateRk , following the proof of Theorem 1 in Efromovich (1989), we
make two additional steps. The first one is to verify that ifζskj are independent
normal random variables with zero mean and variance(1 − γ )ν2

skj , where here
γ = γn tends to zero as slowly as desired, then a stochastic processf ∗(x), defined
as the studiedf (x) but with ζskj in place ofνskj , satisfies the relationship

P
(
f ∗(x) ∈ H(m,Q)

) = 1+ o(1),(4.3)

and if additionallyν2
skj ≤ sn−1, then a similarly defined stochastic processf ∗[k]

satisfies

P

(
sup

x∈[0,1]
∣∣f ∗[k](x)

∣∣2 ≤ s3 ln(n)J (k)n−1
)

= 1+ o(1).(4.4)

The second step is to compute forf ∈ Hs the classical parametric Fisher
information

Iskj = Ef0

{[
∂ ln

(
f (Y )w(Y )/µ(f )

)/
∂νskj

]2}
.(4.5)

Relationship (4.3) follows from (A.18) in Pinsker (1980). Also, forν2
skj ≤ sn−1,

the inequality

J (k)∑
j=�J (k)/ ln(n)�

sup
x

[νskjϕskj (x)]2 ln(sJ (k)) ≤ Cs2n−1J (k) ln(n)

holds and this together with Theorem 6.2.2 in Kahane (1985) yields (4.4).
Now we are in a position to calculate the Fisher information (4.5). To simplify

notation, let us denoteνskj = θ and the corresponding density byfθ . Write

∂ ln(gθ (u))

∂θ
= ∂ ln(w(u)fθ(u)/µ(fθ))

∂θ

= f ′
θ (u)µ(fθ) − µ′(fθ)fθ (u)

fθ (u)µ(fθ)
.
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Heref ′
θ (u) = ∂fθ(u)/∂θ andµ′(fθ ) = ∂µ(fθ )/∂θ . This implies that

[
∂ ln(gθ (u))

∂θ

]2

gθ (u)

= w(u)[(f ′
θ (u))2µ2(fθ ) − 2µ(fθ)µ

′(fθ )fθ(u)f ′
θ (u) + (µ′(fθ )fθ (u))2]

µ3(fθ )fθ (u)

= w(u)µ−3(fθ)
[
µ2(fθ )(f

′
θ (u))2f −1

θ (u)
(4.6) − 2µ(fθ)µ

′(fθ )f
′
θ (u) + (µ′(fθ ))

2fθ(u)
]

= w(u)µ−1(fθ)(f
′
θ (u))2f −1

θ (u)

− 2µ−2(fθ)w(u)µ′(fθ)f
′
θ (u) + µ−3(fθ)w(u)(µ′(fθ))

2fθ (u)

= T1(u) + T2(u) + T3(u).

Recall thatφks(x) is supported on[k/s, (k + 1)/s] and we are estimating three
components of the Fisher information that correspond to the three terms on the
right-hand side of (4.6). Write

T1 =
∫ (k+1)/s

k/s
w(u)µ−1(f0)f

−1
0 (u)

(
1+ o(1)

)

×
[
ϕskj (u)φsk(u) −

∫ (k+1)/s

k/s
ϕskj (z)φsk(z) dz

]2

du.

To estimateT1 we use the the following three relationships. Write∫ (k+1)/s

k/s
[ϕskj (x)φsk(x)]2 dx = 1+

∫ (k+1)/s

k/s
ϕ2

skj (x)
(
φ2

sk(x) − 1
)
dx

and then, recalling thatφsk(x) is the special flattop kernel,∣∣∣∣
∫ (k+1)/s

k/s
ϕ2

skj (x)
(
φ2

sk(x) − 1
)
dx

∣∣∣∣ = o(1)(ln(n))−1.

Similarly,∣∣∣∣
∫ (k+1)/s

k/s
ϕskj (x)φsk(x) dx

∣∣∣∣ =
∣∣∣∣
∫ (k+1)/s

k/s
ϕskj (x)[φsk(x) − 1]dx

∣∣∣∣
(4.7)

= o(1)(ln(n))−1.

Also, using the assumptions about the biasing function and the anchor density,
we obtain that

T1 = µ−1(f0)w(k/s)f −1
0 (k/s)

(
1+ o(1)

) = Isk

(
1+ o(1)

)
.
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Using (4.7), the second componentT2 of the Fisher information can be
estimated as

T2 = −2µ−2(f0)µ
′(f0)

×
∫ 1

0
f0(u)

[
ϕskj (u)φsk(u) −

∫ (k+1)/s

k/s
ϕskj (z)φsk(z) dz

]
du

(
1+ o(1)

)
= o(1).

To estimateT3 we write

µ′(fθ) =
∫ 1

0
f ′

θ (u)w(u) du

=
∫ 1

0

[
ϕskj (u)φsk(u) −

∫ (k+1)/s

k/s
ϕskj (z)φsk(z) dz

]
w(u)du

= o(1).

This yieldsT3 = o(1). Combining these results, we obtain that

Iskj = µ−1(f0)[w(k/s)/f0(k/s)](1+ o(1)
) = Isk

(
1+ o(1)

)
.

Now we can straightforwardly follow the proof of Theorem 1 in Efromovich
(1989). This yields, fork ∈ {0,1, . . . , s − 1}, that

inf Rk ≥ (s−2mQsk)
1/(2m+1)(nIsk)

−2m/(2m+1)P
(
1+ o(1)

)
,

where the infimum is over all possible nonparametric estimates off considered in
the theorem, andP = (2m/2π(m + 1))2m/(2m+1)(2m + 1)1/(2m+1) is the Pinsker
constant. Thus,

inf
s−1∑
k=0

Rk ≥ PQ1/(2m+1)

[
s−1µ(f0)

s−1∑
k=0

f0(k/s)/w(k/s)

]2m/(2m+1)

× n−2m/(2m+1)
(
1+ o(1)

)

= PQ1/(2m+1)

[
µ(f0)

s−1∑
k=0

∫ (k+1)/s

k/s

(
f0(x)/w(x)

)
dx

]2m/(2m+1)

× n−2m/(2m+1)
(
1+ o(1)

)
= PQ1/(2m+1)

(
n−1µ(f0)

∫ 1

0

(
f0(x)/w(x)

)
dx

)2m/(2m+1)(
1+ o(1)

)
.

Theorem 1 is proved.�
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PROOF OF THEOREM 2. This proof follows along the lines of the proof of
Theorem 1. Necessary changes are as follows. First, a new classHs is introduced,

Hs =
{
f :f (x) = f0Jn(x)

+
[

s−1∑
k=0

fk(x) −
s−1∑
k=1

∫ 1

0
fk(u)

(
1+

Jn∑
i=1

ϕi(u)ϕi(x)

)
du

]
,(4.8)

x ∈ [0,1], fk ∈ Hsk, f (x) = f0(x), x /∈ [0,1], f ≥ 0

}
,

with no change inHsk except for usingqnQ in place ofQ. Note that according
to Assumption A the sequenceqn decreases at most logarithmically and thus
Jn = o(1)J (k). Thus this class is defined correctly.

Second, we verify that for largen the inclusionHs ⊂ H(m,Q,f0, Jn) holds.
Denote

θj =
∫ 1

0

(
f (u) − f0Jn(u)

)
ϕj (u) du, f ∈ Hs .

Note thatθj = 0, 1≤ j ≤ Jn, and thus the inclusion follows from the inequality∑
j>Jn

(πj)2mθ2
j ≤ qnQ, f ∈ Hs .(4.9)

To prove (4.9), denoteψ(u) = f (u) − f0Jn(u). Becauseψ(s)(0) = ψ(s)(1) =
0 for all odd s < m, using integration by parts implies [see Efromovich
(1999), Section 2.2]θ2

j = (πj)−2m[∫ 1
0 ψ(m)(u)ϕ̃j (u) du]2, whereϕ̃j (u) = ϕj (u)

for m even andϕ̃j (u) = √
2 sin(πjx) for m odd. This together with the Parseval

identity implies, for both odd and evenm, that

∑
j>Jn

(πj)2mθ2
j =

∫ 1

0

[
ψ(m)(u)

]2
du.

Then following along the lines of (4.1) and (4.2) we get that∫ 1

0

[
ψ(m)(u)

]2
du ≤ qnQ(1− s−2).

Inequality (4.9) is verified.
Finally note that in the estimation ofIskj , we get a new factor

[
ϕskj (u)φsk(u) −

∫ (k+1)/s

k/s
ϕskj (z)φsk(z)

(
1+

Jn∑
i=1

ϕi(z)ϕi(u)

)
dz

]2
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in place of [
ϕskj (u)φsk(u) −

∫ (k+1)/s

k/s
ϕskj (z)φsk(z) dz

]2

.

To evaluate this new factor, we write, similarly to (4.7),

∫ (k+1)/s

k/s
ϕskj (z)φsk(z)

(
1+

Jn∑
i=1

ϕi(z)ϕi(u)

)
dz

= o(1)/ ln(n) +
∫ (k+1)/s

k/s
ϕskj (z)

(
1+

Jn∑
i=1

ϕi(z)ϕi(u)

)
dz

= o(1)/ ln(n) +
Jn∑
i=1

ϕi(u)

∫ (k+1)/s

k/s
ϕskj (z)ϕi(z) dz.

Relationship (2.2.7) in Efromovich (1999) implies that∣∣∣∣
∫ (k+1)/s

k/s
ϕskj (z)ϕi(z) dz

∣∣∣∣ ≤ Cj−2i2.

This inequality allows us to conclude thatIskj = Isk(1+ o(1)), and then we finish
the proof following along the lines of the proof of Theorem 1.�

PROOF OF THEOREM 3. Here we are verifying the more complicated
assertion (2.15). The assertion (2.14) is verified similarly and its proof is skipped.

The method of establishing sharp optimality of the Efromovich–Pinsker
estimator is well developed and it consists of several steps. First of all, sharp
optimality of a pseudoestimate is established. This is the step that should be
verified for each particular problem. Then this estimate is mimicked by a so-
called linear oracle that always performs better than the estimate. This step is
easily verified. The third step is to show that the Efromovich–Pinsker blockwise
oracle sharply mimics the linear oracle. For the particular blocks and thresholds
considered in Section 2, this step is verified in Efromovich (1985) and it is well
known. Finally, it should be shown that the Efromovich–Pinsker estimator mimics
the Efromovich–Pinsker oracle. The validity of this step follows from Efromovich
(1985, 2000).

Thus in what follows we verify steps 1 and 2. Consider a pseudoestimate

f̃n(u) = f0,Jn(u) +
J ∗∑

j=Jn+1

[1− (j/J ∗)m]θ̂j ϕj (u),(4.10)

whereθ̂j is defined in (2.12) andJ ∗ is the rounded up[nd−1(f,w)(2m + 1) ×
(m + 1)qnQ(2m(2π)2m)−1]1/(2m+1), d(f,w) = µ(f )

∫ 1
0 f (u)w−1(u) du. Then,
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for f ∈ H(m,Q,f0, Jn),

Ef

{∫ 1

0

(
f̃n(u) − f (u)

)2
du

}

=
J ∗∑

j=Jn+1

Ef

{[(
1− (j/J ∗)m

)
θ̂j − θj

]2} + ∑
j>J ∗

θ2
j

=
J ∗∑

j=Jn+1

[(
1− (j/J ∗)m

)2
Ef {(θ̂j − θj )

2}(4.11)

− 2
(
1− (j/J ∗)m

)
(j/J ∗)mθj (E{θ̂j } − θj ) + (j/J ∗)2mθ2

j

]

+ ∑
j>J ∗

θ2
j .

Denoteθ̃j = n−1µ
∑n

l=1 1(0 ≤ Yl ≤ 1)w−1(Yl)ϕj (Yl), that is, θ̃j is the Cox
empirical estimatêθj with µ̂ replaced byµ. Then using the elementary identity

µ̂ − µ = µ2[(µ−1 − µ̂−1) − µ̂µ2(µ−1 − µ̂−1)2],
we get [in what followsµ = µ(f )]

Ef {θ̂j } = Ef {θ̃j + (µ̂ − µ)µ−1θ̃j }
= θj + µ−1Ef {(µ̂ − µ)θj + (µ̂ − µ)(θ̃j − θj )}(4.12)

= θj − µ3θjEf {µ̂(µ−1 − µ̂−1)2} + µ−1Ef {(µ̂ − µ)(θ̃j − θj )}.
Also

Ef {(θ̂j − θj )
2} = Ef {[(θ̃j − θj ) + (µ̂ − µ)µ−1θ̃j ]2}

= Ef {(θ̃j − θj )
2} + 2µ−1Ef {(θ̃j − θj )(µ̂ − µ)θ̃j }(4.13)

+ µ−2E{(µ̂ − µ)2θ̃2
j }.

Using trigonometric relationships (3.1.7) and (3.1.8) in Efromovich (1999), we
get

Ef {(θ̃j − θj )
2}

(4.14)

≤ n−1
[
d(f,w) + µ

∫ 1

0
f (u)w−1(u)2−1/2ϕ2j (u) du

]
,

Ef {(θ̃j − θj )(µ̂ − µ)θ̃j }
(4.15)

= θjEf {(θ̃j − θj )(µ̂ − µ)} + Ef {(θ̃j − θj )
2(µ̂ − µ)}
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and

Ef {(µ̂ − µ)2θ̃2
j } = θ2

j Ef {(µ̂ − µ)2} + Ef {(µ̂ − µ)2(θ̃2
j − θ2

j )}.(4.16)

Then using the Cauchy–Schwarz inequality,

Ef {(µ̂ − µ)4} < Cn−2, Ef {(θ̃j − θj )
4} < Cn−2,

we get

Ef {(θ̂j − θj )
2} ≤ n−1d(f,w) + n−1κj + cn−3/2,(4.17)

where
∑∞

j=1κ2
j < C.

Combining all these results in (4.11) we get

Ef

{∫ 1

0

(
f̃n(u) − f (u)

)2
}

≤
J ∗∑

j=Jn+1

(
1− (j/J ∗)m

)2
n−1 d(f,w)

(
1+ o(1)

)
(4.18)

+ Cn−1
J ∗∑

j=Jn+1

|θj | +
∑
j>Jn

(j/J ∗)2mθ2
j .

Note that
∑J ∗

j=Jn
|θj | = o(1) and(πJ ∗)−2m

∑
j>Jn

(πj)2mθ2
j ≤ (πJ ∗)−2mqnQ

wheneverf ∈ H(m,Q,f0, Jn). Finally, plugging inJ ∗ and elementary calcula-
tions imply

Ef

{∫ 1

0

(
f̃n(u) − f (u)

)2
}

≤ [If wq−1/2m
n n]−2m/(2m+1)

(
1+ o(1)

)
.(4.19)

The first step in the proof is done. Then similarly to Section 7.4.5 in Efromovich
(1999), we establish that the linear oracle

f1n(u) = f0Jn(u) +
n1/3∑

j=Jn+1

θ2
j (θ2

j + d̂n−1)−1θ̂j ϕj (u)(4.20)

dominates the pseudoestimate (4.10).
Finally note that the elementary relationship

Ef

{
Jn∑

j=0

(θ̂j − θj )
2

}
≤ C ln(n)n−1
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holds. This allows us to follow along the lines of Efromovich (1985, 2000) and to
verify the above-described last two steps in the proof.�
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