The Annals of Statistics

2004, Vol. 32, No. 5, 2254-2304

DOI 10.1214/009053604000000021

© Institute of Mathematical Statistics, 2004

ASYMPTOTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD
ESTIMATOR IN AUTOREGRESSIVE MODELS
WITH MARKOV REGIME

By RANDAL Douc,! ERIC MOULINES! AND TOBIAS RYDEN?

Ecole Nationale Supérieure des TélécommunicafiBosle Nationale Supérieure
des Télécommunications and Lund University

An autoregressive process with Markov regime is an autoregressive
process for which the regression function at each time point is given by
a nonobservable Markov chain. In this paper we consider the asymptotic
properties of the maximum likelihood estimator in a possibly nonstationary
process of this kind for which the hidden state space is compact but not
necessarily finite. Consistency and asymptotic normality are shown to follow
from uniform exponential forgetting of theitial distribution for the hidden
Markov chain conditional on the observations.

1. Introduction. An autoregressive process with Markov regime, or Markov-
switching autoregression, is a bivariate prod€ss, Y;)}, where{ X} is a Markov
chain on a state spac and, conditional or{X;}, {Yx} is an inhomogeneous
s-order Markov chain on a state spafesuch that the conditional distribution
of ¥, only depends oiX,, and laggedr’s. The proces$X;}, usually referred to
as theregime is not observable and inference has to be carried out in terms of the
observable proceg¥}. In general we can write a model of this kind as

Y, = f@(vn—lv X en),

where {¢;} is an independent and identically distributed sequence of random
variables that we denote the innovation process étheare not the innovation
process in Wold's sense, howeve¥), £ (Y, Yi_1, ..., Yi—s+1) and{fp} is a
family of functions indexed by a finite-dimensional parametelOf particular
interest are the linear autoregressive models for which

s
fo(Yu_1, Xpn5ey) = Zai (Xn; )Yy +ep.
i=1
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These models were initially proposed by Hamilton (1989) in econometric
theory; the number of states of the Markov chain is in this context most often
assumed to be finite, each state being associated with a given state of the
economy [see Krolzig (1997), Kim and Nelson (1999) and references therein].
Linear autoregressive processes with Markov regime are also widely used in
several electrical engineering areas including tracking of maneuvering targets
[Bar-Shalom and Li (1993)], failure detection [Tugnait (1982)] and stochastic
adaptive control [Doucet, Logothetis and Krishnamurthy (2000)]; in such cases
the hidden state is most often assumed to be continuous. Nonlinear switching
autoregressive models have recently been proposed in quantitative finance to
model volatility of log-returns of international equity markets [see, e.g., Susmel
(2000) and Chib, Nardari and Shephard (2002)]. A simple example of such a model
(referred to as SWARCH for switching ARCH) is

Yy = fo (Vn—la Xn)en,

where once agaifiX;} is either a discrete or a continuous Markov chain. Another
important subclass of autoregressive models with Markov regime are the hidden
Markov models (HMMs), for which the conditional distribution &f, does

not depend on lagge#’s but only on X,,. HMMs are used in many different
areas, including speech recognition [Juang and Rabiner (1991)], neurophysiology
[Fredkin and Rice (1987)], biology [Churchill (1989)], econometrics [Chib,
Nardari and Shephard (2002)] and time series analysis [de Jong and Shephard
(1995) and Chan and Ledolter (1995)]. See also the monograph by MacDonald
and Zucchini (1997) and references therein.

Most works on maximum likelihood estimation in such models have focused on
numerical methods suitable for approximating the maximum likelihood estimator
(MLE). In sharp contrast, statistical issues regarding asymptotic properties of
the MLE for autoregressive models with Markov regime have been largely
ignored until recently. Baum and Petrie (1966) proved consistency and asymptotic
normality of the MLE for HMMs in the particular case where both the observed
and the latent variables take values is finite spaces. These results have recently been
extended in a series of papers by Leroux (1992), Bickel and Ritov (1996), Bickel,
Ritov and Rydén (1998) (henceforth referred to as BRR), Jensen and Petersen
(1999) (henceforth referred to as JP) and Bakry, Milhaud and Vandekerkhove
(1997). BRR followed the approach taken by Baum and Petrie (1966) and
generalized their results to the case where the hidden Markov ¢Kgjrtakes a
finite number of values, but the observations belong to a general space. JP extended
these results to HMMs with the regime taking values in a compact space, proving
asymptotic normality of the MLE and a local consistency theorem.

Around the same time, Le Gland and Mevel (2000) [see also Mevel (1997)]
independently developed a different technique to prove consistency and asymptotic
normality of the MLE for HMMs with finite hidden state space. Their work
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was later extended to HMMs with nonfinite hidden state space by Douc and
Matias (2001). This approach is based on the observation that the log likelihood
can be expressed as an additive function of an extended Markov chain. These
techniques, which are well adapted to study recursive estimators (that are updated
for each novel observation), typically require stronger assumptions than the
methods developed in BRR and JP.

None of the theoretical contributions mentioned so far allows for autoregression,
but are concerned with HMMs alone. For autoregressive processes with Markov
regime, the only theoretical result available up till now is consistency of the
MLE when the regime takes values in a finite set [Krishnamurthy and Rydén
(1998) and Francg and Roussignol (1998)]. In the present paper we examine
asymptotic properties of the MLE when the hidden Markov chain takes valuesin a
compact space, and we do allow for autoregression in the observable process. Our
results include consistency and asymptotic normality of the MLE under standard
regularity assumptions (Theorems 1 and 4) and consistency of the observed
information as an estimator of the Fisher information (Theorem 34fitheing the
MLE). These results generalize what is obtained in the above-mentioned papers to
a larger class of models, and we obtain them through a unified approach. We also
point out that the convergence theorem for the MLE is global, as opposed to the
local theorem of JP. Moreover, the nonstationary setting is treated in Section 7.

The likelihood that we will work with is the conditional likelihood given initial
observationsYg = (Yo, ..., Y_s+1) and the initial (but unobserved) stabfy.
Conditioning on initial observations in time series models goes back at least to
Mann and Wald (1943). In our case we, in addition, also condition the likelihood
on the unobserved initial state. The reason for doing so is that the stationary
distribution of {(Xy, Y%)}, and hence the true likelihood, is typically infeasible to
compute. Thug, denoting the number of factors in the likelihood—the “nominal”
sample size—is less than the actual sample size. Usings a generic symbol for
densities we can express the conditional log likelihood as

IOgPQ()’l,,)’nWO,xO)
(1) ZIOQ//PQ(XL,xn,yl,aanO,xO)M(dxl)M(dxn)

= |09/"'/ [TasGr-1.%0) [ ] g6 Gkla—1. xi)p(dx) - - - ju(dxn),
k=1 k=1

whereu and gy (-, ) are a reference measure and the transition density for the
hidden chain, respectively, ang (v«|Vr—1, xx) IS the conditional density ofy
giveny,_1 andxg. In the particular case wheiXy} is finite-valued, taking values
in{1,2,...,d} say, this log likelihood can be expressed as

2) log po (y1. - - - yalYo. x0) = log 1], ( [126Go(n |)7k—1)) 1,
k=1
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whereQy = {go (i, j)} is the transition probability matrix of the Markov chdiky },
Go(yly) =diag(ge (¥1y, i), 1y, is thexoth unit vector of lengtht, that is, ad x 1
vector in which all elements are zero except for elemgnthich is unity, andL is

ad x 1 vector of all ones. Itis clear that (2) is essentially a product of matrices and
is hence easily evaluated. It can be maximized @vessing standard numerical
optimization procedures or using the EM algorithm [see, e.g., Hamilton (1990)].
However, one should be aware that the log likelihood is typically multi-modal
and either approach may converge to a local maximum. WWKeghis continuous,
evaluation of the log likelihood (1) requires an integration overatimensional
space. This task is insurmountable for typical values @ind approximation meth-

ods are required. Two classes of such methods, particle filters and Monte Carlo EM
algorithms, as well as a numerical example using the latter, are briefly discussed
in Section 8.

An obvious variant to our approach is to replace the condition of a fixed
by assuming a fixed distribution forg. Such an assumption does not change
any of our results and no more than notational changes are needed in the proofs.
A further natural variant is to maximize (1) w.r&d.andthe unknowncg. We have
not included this approach in the present paper, primarily because score function
analysis would require assumptions on how the maximiziggaries with 9,
assumptions that would be difficult to verify in practice. We do remark, however,
that in a particular but important case, assuming a fixeid no less general than
is maximization ovekg. Suppose that the regim& } is finite-valued and that all
elementsy;; of the transition probability matrix) may be chosen independently.
The parameter vecter may then be writte® = ((¢;;), ). We also assume that
¥ can be further decomposed ds= («, (8;)), and that the functiong are
such thatgg (yk|Yk—1, xk) = h(yk|Y¥x—1; @, Bx,) for some family of densities.

In other words, allg’s belong to a single parametric class of densitiess a
parameter common to all regimes and this are the regime specific parameters.
For example, in the linear regression cgsenay be the regime specific regression
coefficients whilew may be a common innovation varianee—= Ee%. With this
general structure it is clear thatip is a fixed initial state, for any model with
a different initial state we can find an equivalent model with initial statdy
simply renumbering the states and then reordering;tfie and g;’s accordingly.
Therefore, wheneveris structured as above, assuming a fixgd no less general
than is maximization ovexg.

As mentioned above, from a practical point of view the novelty of the present
paper is that we extend the analysis of MLE asymptotics to wider class of models
using a unified approach. From a theoretical point of view the novelty is, foremost,
the geometrically decaying bound on the mixing rate of the conditional ckiif,
given in Corollary 1 and (20). This bound parallels results of BRR (page 1622) and
JP (page 521), but in contrast to those results our bound does not depend’@&n the
being conditioned upon; it is deterministic. Assumption (Al)(a) below, implying
that the hidden chain is uniformly geometrically ergodic, and more specifically
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that the whole state space is 1-small [see the comment after (Al)(a)], is crucial to
this property; if{ X} is m-small withm > 1 one can prove an analogous mixing
rate bound using similar ideas, but the bound will then depend oy }ieThe
deterministic nature of the bound is vital to our proofs that the conditional score
given the “infinite past” Ax - (0*) in Section 6.1] and the conditional Hessian
given the “infinite past” (cf. Propositions 4 and 5) have finite second and first
moments, respectively. The reason is that when the model contains autoregression,
the conditional distribution ofY;} given{X;} is governed by an inhomogeneous
autoregression rather than by independence; hence, in the proof of Lemma 10,
for example, we cannot condition on the regif®;} and exploit conditional
independence in order to turn a random mixing bound into a deterministic one
as was done in BRR (e.g., page 1625) and JP (e.g., page 525). We plan to look
into this more general case, but it lies outside the scope of the present paper.
Another feature of the present paper is that by refining the arguments of BRR
and JP we obtain almost sure convergence rather than convergence is probability
in Theorem 3.

The paper is organized as follows. Main assumptions are given and commented
in Section 2, together with common notation. Then in Section 3 we show that
the regime{Xy}, given the observations, is a nonhomogeneous Markov chain
whose transition kernels may be minorized using a fixed and common minorizing
constant. This leads to a deterministic bound for its mixing rate. In Section 4,
consistency of the MLE is considered under the additional assumptiofitjas
strict sense stationary; extensions to nonstationary processes through coupling are
carried out in Section 7. Conditions upon which the parameters are identifiable are
given in Section 5. Asymptotic normality of the estimator is studied in Section 6.
The proof is based on a central limit theorem and a locally uniform law of large
numbers for the conditional expectation of appropriately defined statistics. More
specifically, these statistics are additive and quadratic functionals of the complete
data. Section 8 contains a discussion of numerical methods for state space models
and a numerical example. Finally, the Appendix contains proofs not given in the
main text.

2. Notation and assumptions. We assume that the Markov chafi;}?°
is homogeneous and lies in a separable and compack setquipped with a
metrizable topology and the associated Bardiield B(X). We let Qy(x, A),
x € X, A e B(X), be the transition kernel of the chain; the paraméterhich
indexes the family of transition kernels as well as the regression functions for
the Y’s, see below, is the parameter that we want to estimate. Next we assume
that each measur@y (x, -) has a densityy (x, -) with respect to a commoaimite
dominating measurg on X. That is, for alld andx € X, Qg(x,-) < u. For
the sake of simplicity, it is assumed that{X) = 1; this assumption hints at
applications wheré is a totally bounded space.
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We also assume that the observable sequéngg® _, , takes values in a set
Y that is separable and metrizable by a complete metric. Furthermore, for each

n > 1and given{¥;}{_}_ andX,, Y, is conditionally independent ¢t };—* "%,

and{Xk}Z:é. We also assume that for ea&h), Y,_1 andé, this conditional law
has a densitgy (y|Y,_1, X,) with respect to some fixed-finite measure on the
Borelo-field B(Y).

The parameteé belongs to®, a compact subset @&”. The true parameter
value will be denoted by*, and when proving asymptotic normality of the MLE
we assume that* lies in the interior of®. Given the observationg ;1,...,Y,
of the proces$Y;}, we W|sh to estimaté* by the maximum Ilkellhood method.

The sequenc{sZk}k 0= £ (Xy, Yk)}k ° o is aMarkov chain o1% £ X x Y* with
transition kernelTy given by, for any bounded measurable functjoon Z,

H@f(X,ys,ys—l,---,)’l)
= /x y FE Y yse oo y2)qo(x, xNgo (Y Y5 - v y1, X pe(dx)v(dy').
X

We use in the sequel the canonical version of this Markov chain ang put®s.
For a probability measurg on Z we letlPy . be the law of{Z,} when the initial
distribution is¢; that is, Zg ~ ¢. Furthermorely . is the associated expectation.
Many conditional probabilities and e&ptations in this paper do not depend on
the initial distribution, and we stress shby then dropping thenitial probability
measure from the notation, so that; is replaced byPs, and so on.

Throughout this paper we will assume that the transition kdiipdias a unique
invariant distributionsy; this assumption is further commented on below. For a
stationary process we writ; andE, for Py.», andEy ,, respectively. We can
and will extend such a stationary procggs };>, to a stationary Markov chain
{Z}72 _ o With doubly infinite time and the same transition kernel.

Fori < j, putY’ (Yi,Yig1, ..., Y)) andY] 2 (Y:,Yit1, ..., Y}), respec-
tively. Similar notation will be used for other quantltles For any measurable func-
tion £ on (X, B(X), w), esssug £ inf{M > 0:u({M < |f|}) =0} and, if f is
nonnegative, essinf 2 sugM > 0:u({M > f}) = 0} (with obvious conventions
if those sets are empty). For the sake of simplicity, instead of writing esg sup
or essinff, we use the notation sypor inf f. For any two probability measures
w1 andup we define the total variation distang¢g1 — p2llTv = supy [11(A) —
p2(A)| and we also recall the identities spp 4 [wa(f) — u2(f)| = 21— palltv
and sup- sq [11(f) — u2(f)l = llna — pzllty. For any matrix or vector,
Al = >"1A;;l. Finally, we will use the lettep to denote densities w.r.t. the prob-
ability measure o (X x Y¥)®Z whose finite-dimensional distributions are given
by (u ® v)®" forall r > 1.

We now list our basic assumptions.

(A1) (a) O<o_ £infycpinfy vex go(x,x’) andoy £ supce SUR ex o (x,
x') < o0.



2260 R. DOUC, E. MOULINES AND T. RYDEN

(b) For all y' € Y andy € %¥*, 0 < infgeq [y g0 (¥'I¥, x)1u(dx) and
SURyco S 80 (V' IV, x)n(dx) < oo.

Assumption (Al)(a) implies that for all € X, Q(x, A) > o_u(A) wherep is a
probability measure, that is, the state spacef the Markov chaif{ X, } is 1-small
[Meyn and Tweedie (1993), page 106, with= 1]. Thus, for allé € ®, this chain

has a unique invariant measwg and is uniformly ergodic [Meyn and Tweedie
(1993), Theorem 16.0.2(v)]. When the state space is finite, (Al)(a) is equivalent to
saying that for allk, x’ € X, infycg go(x, x") > 0.

(A2) For all 6 € ©, the transition kernelly is positive Harris recurrent and
aperiodic with invariant distributiorny.

That the chain is positive means, essentially, that it is irreducible and has an
invariant distribution [Meyn and Tweedie (1993), page 230] and Harris recurrence
means that any nonnull set will be infinitely visited by the chain irrespective
of where it starts within the set [Meyn and Tweedie (1993), page 200]. This
assumption is rather weak; results on ergodicity for autoregressive processes
with Markov regime can be found in, for example, Francq and Zakoian (2001),
Holst, Lindgren, Holst and Thuvesholmen [(1994), page 495] and Yao and Attali
(2000). It implies that for any initial measuie[see Meyn and Tweedie (1993),
Theorem 13.3.3],

. ; B
(3) JNim (AT — 7o llTv =0,

so that the taib-field of {Z} is trivial [Lindvall (1992), Theorem I11.21.12]. Its
invarianto -field, which is no larger, is thus also trivial and heri@g} is ergodic
in the measure-theoretic sense of the word.

For the developments that follow, an additional assumption is needed.

(A3) by £ sup sug, ,, . g6(y1l¥o.x) < oo and Eg«(|logh_(Yo, Y1)|) < oo,
whereb_ (Yo, y1) = infg [y g0 (y11Y0, x) i (dx).

REMARK 1. In the sequel we consider conditional expectations of random
variables w.r.t. thes-algebra generated bgX” Y7 ) for somem < n. Such
expectations are defined up tdPa . -null set. For the derivations that follow, we
need to specify a version of these conditional expectations. $ineds defined
by the initial distributionz and the transition kerndlly, it is always possible to
express these conditional expectations in terms of these quantities and we always
implicitly choose this version of the conditional expectations.

3. Uniform forgetting of the conditional hidden Markov chain. By the
conditional hidden Markov chain we mean the procgsg} given a sequence
of Y’s. It will turn out that this process is a Markov chain, although nonhomo-
geneous, but still having a favorable mixing rate. Bounds on this mixing rate will
be instrumental in the forthcoming development.
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LEMMA 1. AssumgAl). Letm,n € Z withm <n and6 € ©. Under Py,
conditionally onY”, {Xy}r>n IS an inhomogeneous Markov chaend for all
k > m there exists a functiop, (y;_,, A) such that

(i) foranyA e 8(X),y;_, — ur(y;_,, A) is a Borel function
(i) foranyy;_ ., mi(yi_,,-) is a probability measure o8 (X). In addition
for all y?__ it holds thatu, (y?_,,-) < n and for all Y”

m?

- — o_
inf Po(Xy € AlXj—1=x,Yy) > —u(Yi_,, A).
xeX o4+

REMARK 2. Contrary to JP, this minorization condition involves a con-
stanto_ /o, which does not depend on the values{®f}. On the other hand,
the minorizing measurg (y;_,,-) does depend ogj_. whereas the minoriz-
ing measure is fixed in JP. Hence no assumption on the conditional density
of Y, given past observations and hidden state variables is needed, whereas
JP assumed a moment condition, in the special case of HMMs, for the ra-
tio sup, sup, g9 (y1x)/ge(ylx"). An explicit expression fonu(y;_j,-) is not
needed.

PROOF OFLEMMA 1. The proof is adapted from Del Moral and Guionnet
(2001) [see also Del Moral and Miclo (2000)]. The Markov property implies that,
form <k <n,

Py(Xi € AIX} 1Y) =Po(Xi € AlXp—1. Yi_y).

For k > n we havePy(X; € AIX% L, Y") = Qp(Xk—1, A). This shows that
{Xi}r=m conditional onY” is an inhomogeneous Markov chain. ko« n it holds
that

Po(Xy € AlXk-1, Y} 1)

=/ACIG(X1<—1,X)139(YZIX1<=x,Vk—1)M(dx)

-1
X (./x g6 (Xr—1, %) po (Y3 | X =x,Yk—1)M(dX)) .
where

Po(Y Xk = xx, Y1)
(4)

n n
=/ [T 90z x) [ g0 ¥ilYiz1. xp) @ (axi, ).
i=k+1 i=k

Sinceo_ < gy(x, x") < oy it readily follows that

- — o_
Po (X € AlXk—1,Y}_q) > o—uk(Yz_s, A)
+
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with
YA 2 [ FaCV X =2 Yiou@n) /[ o(¥iiXe = Vi),
Note that
/x Po(YR1Xk = xp, Y1) pu(dxy)

n n
= f [T goCriz1.x) [] g0 (¥il Vi1, x)u® " *D @xp)
i=k+1 =k

n
=02 4[] [ goil¥ica ()
i=k
is positive under (A1)(b). Fok > n we simply setu(Y;_,, A) = u(A). O

The a posteriori chain thus also admitsas a 1-small set. It is worthwhile to
note that, despite the chain being nonhomogeneous, the same minorizing constant
can be used for all kernels, irrespective of tfiethe chain is conditioned upon and
of the parameter value. Using standard results for uniformly minorized Markov
chains [see, e.g., Lindvall (1992), Sens 111.9-11], we thus have the following
result, which plays a key role in the sequel.

COROLLARY 1. AssumdAl). Letm,n e Z withm <n and_0 € ©. Then for
all k£ > m, all probability measureg.1 andu, on B(X) and all Y7,

H [ Bt e xn =, Vayuatn) = [ Faxe € X =, Vipiz(d)
X X TV

m
’

<p*”

wherep £ 1—0_/o,.

Note that whenn is positive, Py(Xi € | X = x,Y%) = Po(Xy € | Xy =
x, Y") does not depend upon the initial distribution.

4. Uniform convergenceof thelikelihood contrast function. Givenxg € X,
notice that

n
(5)  pe(Y1lYo, Xo=x0) =f [ ] a6 (k-1 x1) 86 Vel Y k-1, x0) £ ®" (dX1)
k=1
and define theonditionallog likelihood function

n
(6) 1,(6,x0) 210g py(Y4 Yo, Xo=1x0) = Y _ 10g po (Yi|Y§ . Xo = x0),
k=1
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where Pe(YkIVS_l, Xo = x0) = po(Y5IYo, X0 = xo)/Pe(Y]{_lIVO, Xo = x0).
With the notation introduced above, for> 1,

pe(YkIV]E)_l, Xo = xo)
(7) =// 20 (Yie|Y k-1, X)q0 (Xk—1, Xk)

X Pp(Xx—1 € dxg_1|Y§ 1, Xo = xo)u(dxp);

herePs(Xx—1 € |Y5 1, Xo = xo) is the filtering distribution of the unknown state
Xi—1 givenY{ and Xo = xo. Note that this distribution may be expressed as

8) Po(Xp-1€- Y5 Xo=x)= / Po(Xx—1 €151, Xo = x0)8, (dx0).

The discussion in the previous section hints that the influence of the initial point
Xp vanishes ag — oo.

The definition of the conditional log likelihood employed here differs from the
one usually adopted for HMMs. Extending to AR models with Markov regime the
definitions of BRR and JP for example, the log likelihood would be

9) 1,0) 2 > log pe (Ve Y5 ™),
k=1

where

ﬁe(Yleé‘l) =// 20 (Yi|Y k-1, X)q0 (Xk—1, Xk)
(10)
x Py (Xp—1 € dxr—a|Yg Hp(dxp).

HerePy(X;—1 € -[Y§ ™) is the filtering distribution of the unknown staé. 1
givenV’é‘1 under the statiorrgt probability P,. This filtering distribution may be
expressed as

(11) Po(Xx-1€-Yg H= / Py(Xi—1 €Y, Xo=x0)Pp(Xo € dxo Y )

and Corollary 1 shows that that the total variation distance between the filtering
probabilitiesPy (X;_1 € -[Y5 1) andPa(X;_1 € -[Y5 +, Xo = x0) tends to zero
exponentially fast ak — oo uniformly w.r.t. xo.

The definition of the log likelihoodn (9) is useful for HMMs but less
so for models with autoregression. Indeed, for many moc}'@lsmY’é‘l)
cannot be expressed in closed form, bally because the smothing pobability
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Py(Xo € -|V’5_1) depends upon the stationary distributiop of the complete
chain,

Ps(Xo € AIYE™

 Jame(dxolYo) [ TTECE qo (xi—1. x) go (il i—1, x)u®* D @x ™)
Jo wo(dxolY o) [ T =L o (xi—1, x0) g0 (Vi IYi_1, x;) u®E=D (@xE 1)

In many models for which the stationary density is not available in closed form, the
log likelihood (9) does not lead to a practical algorithm. This is our motivation for
considering the conditional form (6) of the log likelihood function. Nevertheless,
as we will see below, for any initial pointg, n=1(1,(8, x0) — 1,(9)) converges

to zero uniformly w.r.t. tod € ® as a consequence of the uniform forgetting of
the conditional Markov chain. Thus, by the continuity of the arg max functional,
é,,,xo, the maximum of,, (9, xo), andé,,, the maximum of,,(9), are asymptotically
equivalent.

REMARK 3. For& an arbitrary probability measure aB(X) it is possible to
consider

po.e(Yi[Y0) = / o (Y Vo, Xo = x0)&(dx0).

That is, instead of choosing an initial poikp = xg we set instead an arbitrary
initial distribution. There is in general little rationale for doing that, but the results
obtained below for a fixed initial conditiokip = xg immediately carry over to this
more general context. Typically sucttéhas a density w.r.fu so that there are a
densitypg,g(YﬂVo, Xo = x0) and an associated MLE.

The consistency proof for the MLE follows the classical scheme of Wald (1949),
which amounts to proving that there exists a deterministic asymptotic criterion
function /() such thatr =11, (6, xg) — 1(8) Py+-a.s. uniformly w.rt6 € ® and
that6* is a well-separated point of maximumi@#). It should be stressed that the
asymptotic criteriori(6) should of course not depend on the initial paifit = xo.

The first step of the proof thus consists in showing that the normalized log
likelihood functionn =11, (6, xo) converges té(9) uniformly w.r.t.6. This requires
a uniform (w.rt.6 € ® andxg € X) law of large numbers. We first show that
the difference between the conditional log likelihood functiig, xo) andl, (0)
stays within some deterministic bound, and hemc&(, (0, xo) — I,,(9)) tends to
zeroPy+-a.s. and inL1(Py+) [see Del Moral and Miclo (2001) for similar results].

LEMMA 2. AssuméAl) and(A2). Then for all xg € X,

esuglln(e, x0) =l (@) <1/1—p)?,  Pp-as.
e
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PrROOF Note that by Corollary 1, (8) and (11),
IPs(Xi—1 €Y " Xo=x0) = Py(Xx—1 € (Y5 v < oL
This implies that, fok > 1,

|po(YiIY§H Xo=1x0) — o (VY )|

= ‘// 20 (Yie|Y k—1, 1) g0 (xk—1, xi) 1 (dxy)

x (Bo(dxi—1Yg . Xo = x0) — Py (dx-1[Yg )

Lsup [ go (V| Vi1, %) g0 (k1. xi) e (dxr)

Xk—1

< p* o, / 20V Vi1, X)a(d).

In addition, by (7),

<p

o (Vi V5L, Xo = x0) > o f 20 (Vi Vi1, ¥)pa(d),

and the same inequality holds fgﬁp(YkW’é‘l). The inequality| logx — logy| <
|x — y|/(x A y) now shows that

k=1
Tk— - Tk P
[log po (Yl Y5, Xo = x0) ~ log po(YelYg )| < 7—.

A summation concludes the proofld

The next step consists in showing thatll,(6) can be approximated by
the sample mean of &y--stationary ergodic sequence of random variables
in L1(Pys). It is natural to approximate —11,(0) = n=*Y"¢_; log pe (Yx|Y§ )
by n—lzzzllogﬁg(Yle'ﬁgb, provided we can give meaning to the latter
conditional densities. This is the main purpose of the construction below. Let,
forx e X,

Ak () 2109 po (Ve YL, Xy = x),

_n’l 9
Ar.m(©) £log pe (YYD = log f po (ViYL X = x )Py (dx_p Y.

It follows from the definitions thak, (8) = >} _; Ax.0(9). In order to show that for
any k > 0 the sequence§\i », (0)}n=0 and{Ax ».x (@)} >0 converge uniformly
w.rt. 6 € ©®, Py+-a.s., we prove that they are uniform Cauchy sequences. This
property is implied by the following lemma.
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LEMMA 3. AssumgAl)—(A3).Then for allk > 1 andm,m’ > 0, Py+-a.s.,

(12)  SUP SUP [Agm.x(8) — Mg (0)] < p*FMI=1/(1— p),
0e®@x,x'eX

(13)  SUPSUP|Akm.x(0) — Mg ()] < pXT=1/(1— p),
fe®xeX

(14)  supsupsup|Ag.m.x(8)| < max(|logb.|, [log(o_b_(Yi—_1, Y))|).

0e®@m=>0xeX

The proof is similar to the proof of Lemma 2 (making use of the uniform ergodicity
of the conditional chain) and is given in the Appendix. By (142}, u.x(0)}m=0
is a uniform Cauchy sequence w.Ate ® Pyg«-a.s. and thug\ ,, » (6) converges
uniformly Py+-a.s. Equation (12) also implies that jim o A m.x(6) does not
depend orx. Denote byA; () this limit. Intuitively, we may think ofA; . (0)
as Iogﬁg(Yk|Yk_;g). Equation (14) shows thafAs ,,.x(0)}m>0 is uniformly
bounded inL1(Py+), and thus the limitA; »(0) is also in L1(Py+). Note that
{Ak.00(0)}is alPy«-stationary ergodic process.
Settingm = 0 in (12) and lettingn’ — oo shows thatPy:-a.s.,

SUP| A0, (0) — Aroo(®)] < p*1/(1 = p),

0e®
and (13) shows that sygy |Ar.0.(0) — Aro®)] < p*~1/(1 — p). These two
relations readily imply the following result.

COROLLARY 2. AssuméAl) and(A2). Then

Y suplAk0(@) — Ako(@)] <2/(1—p)%,  Ppe-as,
k:]_&e@

Corollary 2 shows that—1/,(9) can be approximated by the sample mean of a
stationary ergodic sequence, uniformly w.6te ©. Since Ag«(0) € Li(Py),

the ergodic theorem implies that '/, (6) — 1(8) £ Eg+[Ao,00(9)] Pp+-a.s. and

in L1(Py+). Combining this result with Lemma 2 yields the following.

PROPOSITIONL1. AssumégAl)—(A3). Then for allxg € X and6 € O,

nleoon—lzn(e, x0) =1(0),  Pp-as andinLi(Py-).

REMARK 4. The pointwise convergence of1i,(6, xo) has been established
for HMMs by Leroux (1992) and Le Gland and Mevel (2000) for a finite state
space and later for a compact state space by Douc and Matias (2001). In the papers
of Le Gland and Mevel (2000) and Douc and Matias (2001), the authors used
the geometric ergodicity of an extended Markov chain consisting of the hidden
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variable, the observed variable and the prediction filter density function. However,
this approach requires conditions stronger than the weak ergodicity condition (A2)
and the moment condition (A3).

The next step of the proof consists in showing i} is continuous w.r.t9. To
that purpose, first observe that, by (14) and the dominated convergence theorem,
foranyx € X andé € ©,

1(9) =Ep» [HJ‘L"OO Ao,m,xw)] = lim Eo+[Aomx(0)].

Since{Aog n.x(0)}m=0 is a uniform Cauchy sequentg--a.s. which is uniformly
bounded iINLY(Py+) (Eo+[SUR,~0SURcelAom.x(8)]] < o0), it suffices to show
that Ao, x(0) is continuous w.r.td. In fact, this is the whole point of using
Ao.m.x(0) instead ofAg ,, (0). We will need the following additional assumption:

(A4) Forallx,x" e X andall(y, y') € Y* x Y, 0 > gg(x, x") andd — go(y'|y, x)
are continuous.

LEMMA 4. Assumé&Al)—(A4).Thenforallf € ©,

im B[ sup 1808 ~ Bo(®)] | 0.

The proof is given in the Appendix. We may now state the central result of this
section, the uniform convergence of the normalized log likelihood,, (9, xo)

to /(6), which follows almost immediately from Corollary 2 and the ergodic
theorem.

PROPOSITION2. AssumdAl)—(A4). Then

lim supsup|nt,6,x0) —1(0)]=0,  Py-as.

=0 he@ xgeX

Again, the proof is in the Appendix.

5. Consistency of the maximum likelihood estimator. We will now prove
that under suitable assumptions the unique maximizérref(0) is 6%, the true
value of the parameter. L&/ be the trace oPy on {Y", 8(})®"}, that is, the
distribution of{Y}}. Consider the following assumption:

(A5) 6 =06*if and only if
(15) P} =P}..
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In other words, under this assumption the stationary laws of the observed process
associated with two different values of the parameter do not coincide unless the
parameters do. This is obviously the minimal assumption that we can impose.
When it comes to applying the results, it is sometimes more convenient to consider
the following alternative identifiabilt condition, which in certain circumstances
proves easier to verify.

(A5") 6 =0* ifand only if

E@*[Iog 71)_9*(Y€g0)

po(Y{IY0)

In fact we will see below that under (A1)-(A3), these two conditions are
equivalent. Of course neither of the identifiability assumptions stated above is
entirely satisfactory, because both conditions implicitly make use of the stationary
distribution of the complete chain, which typically is infeasible to compute.
Nevertheless, it does not seem sensible to expect much simpler identifiability
conditions based, say, oy andgy alone. The usefulness of (A5is revealed
when conditioning orY g, yieldingd = 6* if and only if

Do* (YllYo)‘ )]
2D

In this expression the inner expectation is a conditional Kullback—Leibler measure,
and hence nonnegative. If equality holds in (17), the inner conditional expectation

vanisheﬁgﬁo-a.s. This observation may in turn often be used to provestkad ™,

using, for example, identifiability of mixtures of the family to which the densities
go (1Y, x) belong. A particular example involving linear regressions with normal
disturbances and finite-valued regime is discussed in Krishnamurthy and Rydén
[(1998), page 302]. Slightly different identifiability conditions are employed in
Francq and Roussignol (1998).

Before proceeding to the equivalence of (A5) and ‘JASome preparatory
lemmas are needed. We will first show that the conditional density function
ﬁg(Yﬁﬁf) (i < j < k < ¢) converges to the unconditional density function
ﬁg(Yﬁ) when the gapk — j tends to infinity. This can be viewed as a kind of
¢-mixing condition expressed directly on the conditional and the unconditional
density functions, which is inherited from the ergodicity of the complete chain.

(16) } =0 forall p > 1.

(17) o [Eg* ( log forall p> 1.

LEMMA 5. AssumdAl)—(A3) and fixk < £. Then
lim sup|p9(Yk|Y) po(YH)|=0  inPy«-probability.

—) OOI<]

The proof is given in the Appendix.
The following lemma shows that (15) and (16) are equivalent.
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LEMMA 6. AssumdAl)—(A3). Then(15) holds if and only if(16) holds

PrROOFE It obviously suffices to show the “if” part, so suppose (16) holds. The
basic idea consists in inserting a gap in the range of variableg. #dr andm > 0,
write

por (YT |Vo>}
IZICER )
ﬁe*(YTWZiTvVO)} +E9*[Io ﬁe*(YZiano)]

Po(YTIYDET Yo) po(Y2 1Y 0)

0=E.9*|:|Og

= Eg*[log

The two terms on the right-hand side are expectations of Kullback—Leibler
divergence functions and thus nonnegative, which shows that

- p+m g — v
p9*<Ym+1|Yo>] =E9*[Io p9*<Yi’|Y_m>]

0> Eg*[log - — - —
po(YETT Y 0o) pe(YLIY )

— po-(YP =yl IY_,) _ —
:Ee*[/logl;e (Ypl ;’}“V ’”) po<(Y? =yf|Y_m)v®p(dyf)].
0 =Y1IV—m

Thus, for allm > 0,
Por (YOI o) = po (YT 1Y), Pgr-as.
By Lemma5,
|Pox (YY) — po (YD)
= lim | o+ (YPIY Z) — po(YTIY_,)| =0 inPy+-probability,

whencepg«(Y!) = pg(Y]) Pp+-a.s. The proof is complete

ProPOSITION3. Under(Al)-(A5),1(0) < 1(0*) andi(®) = 1(6*) if and only
if 6 =6%.

PrROOF By the dominated convergence theorem,
1(0) =E9*[mlignoolog ﬁe(YﬂVEm)]
(18) = lim Ep-[log pg(Y1Y2,,)]
= lim Eg-[Eg-[log po (Y1IY2,)1Y2,,1].
Hencel(6*) — [(0) is nonnegative as the limit of expectations of conditional

Kullback-Leibler divergence functions artf is a maximizer of the function
60— 1(9).
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Now assume(f) = [(6*). By Lemma 6 it suffices to prove that (16) holds. Note
that for anyk > 1 andm > 0,

k
Eg+[log po (Y41Y2,)1= > Eg+[log pp(Y1Y2,,_; D]
i=1

Hence, by (18),
I|m E@*“ngg(Y |Y w1 =kl(O),

andforp+s<k+1,

p@* (Yk|Y—m):|

= k(16" ~ 16)) = lim_Eor| log Po(YAVD,)

log —

> lim supEg-
p@(Yk p+1|Yk p» —m)

m—0o0

|: p@*(Yk p+1|Yk P ng)jl

_ s p—k
[Iogpe*(Y IYo,Yp e m)]

3
po (Y7 IYo,Yﬁ kem)

= lim supEy+

m—0o0

The proof is concluded by letting— oo and using Lemma 7.0

LEMMA 7. AssumégAl)—(A3).Thenforallp >1andallé € ©,

por (Y2 Yo, Yk — pox (YPIY,
[Iogp_e ( I}l_o___,?)]—E@*[lo p_e ( pll_o)]‘:
Po(Y71 Y0, Y po(Y11Y0)

lim sup|E,

k—>oom>k

The proof of this lemma is based on the mixing properties of the complete chain
(see Lemma 5) and is postponed to the Appendix.

We may now summarize our findings in the following theorem, which states the
strong consistency of the conditional MLE.

__ THEOREM 1. AssumgAl1)—(AS). Then for anyxg € X, lim;, én,xo = 6%,
Py«-a.s.

6. Asymptotic normality of the maximum likelihood estimator. Lemma 1
and Corollary 1 are the basic tools for generalizing the results of BRR and JP. The
pattern of the proof of asymptotic normality of the MLE is similar to that presented
in these contributions, with two major differences. First, the geometric upper
bounds are deterministic, which is a consequence of Lemma 1 and Corollary 1.
Second, in this paper, the MLE is the maximizer of the conditional log likelihood
1, (8, x0), wherexg is some fixed arbitrary point i, whereas in BRR and JP it is
the maximizer of the unconditional log likelihodg(6).
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Not surprisingly, the proof of asymptotic normality requires some additional
regularity assumptions. L&y and V92 be the gradient and the Hessian operator
with respect to the parameteér respectively. We will assume that there exists a
positive reals such that onG £ {0 € ©:]0 — 0*| < 8} the following conditions
hold:

(A6) For all x,x" € X and (y,y") € ¥* x Y, the functionsd — gy (x,x’) and
0 — go(y'ly, x") are twice continuously differentiable an.
(A7) (a) suRcgSup. . IIValogge(x,x")|| < oo and sup.ssup V2 x
logge (x, x")|| < oo.
(b) Eg+[supcq SUR [V loggs (Y1|Y0, x)[?] < oo and Eg:[supcq
sup, IV log go (Y1 Yo, 1)1 < oo.
(A8) (a) Forv®v-almostall(y, y’) in Y* x Y there exists a functiof; . : X —
RT in L1(w) such that sup.g go (V1Y x) < fy.y(x).
(b) Foru ® v-almost all(x,y) € X x Y*, there exist functiong“x{y Y —
RT and f2;: % — RT in L1(v) such that| Vo go ('Y, 01l < f5(/)
and||Vigo (I, )l < f24(y') forall 6 € G.

REMARK 5. The regularity requirements (existence of first and second
derivatives at all points, existence of integrable upper bounds) are reminiscent of
Cramér’s classical proof of asymptotic normality of the MLE. It is obvious that
these conditions could have been weakened using more sophisticated techniques.
We will nevertheless stick to the conventional proof.

REMARK 6. The conditions are weaker and more easily checked than those
used by JP, who assumed that the stationary density of the complete Markov chain
is twice differentiable w.r.t. t@, a condition which is difficult to check except
for very simple models. However, as seen below, by using proper conditioning
techniques it is possible to avoid such assumptions.

Asymptotic normality of the MLE is implied by:

(i) a central limit theorem (CLT) for the Fisher score function'/2v,i, (6*,
xg), and

(i) alocally uniform law of large numbers for the observed Fisher information
—n~1V21,(9, xo) for 6 in a neighborhood of*.

Along the lines of the proofs by BRR and JP, the key to the proof consists in
finding proper expressions for these two quantities. Exploiting the hierarchical
structure of the model, it turns out that it is practical to express the score function
and the observed Fisher information as functions of conditional expectations of the
complete score function and the complete Fisher information.
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6.1. A central limit theorem for the score functionThe Fisher identity [Louis
(1982)] generally states that for a model with missing data, the score function
equals the conditional expectation of the complete score given the observed data;
the complete score is the gradient of the complete log likelihood, that is, the
likelihood that includes the missing data in addition to the observed data. The
rationale for using this identity is that the log likelihood and score functions
themselves are typically rather involved [cf. (1)] while the complete log likelihood
and score are simpler. This is true in our case, in which the Markov ¢iaiyf_,
constitutes the missing data. The Fisher identity requires exchanging the gradient
operator with certain integrals, and is valid under (A7) and (A8). Hence, for any
X0 € X,

n
n~Y2V,1, (0%, x0) = n Y2y Vg log pe+ (Yi|Y§ . Xo = x0)
k=1

n
=123 A 0.4 0",
k=1
where for anyx € X and6 € O,

k
A0x(0) = EQ[ZW, z;._l)\vg, Xo =x}
i=1

k—1
- EQ[ZM, Zi_p[Y§ ™ Xo= x},
i=1
with the conventiory-?_ ¢; =0if b < a and
$0.Z_)=¢0.Zi-1.Z) = (0, XZH Yi—D), (Xi_, 1. Yi_11)
=¢(0, (Xi—1.Yi—1), (Xi. 1))
2 Vo log(qe(Xi—1, Xi)go (Yi|Yi—1, X;))

is the conditional score afX;, ¥;) given(X;_1, Y;_1).
We also let, form > 0,

k k—1
At (6) éEe[ > ¢(9,Z§_1)\Y’im} —Ee[ > ¢(9,Z§-_1)\Y’<_;}}.
i=—m+1 i=—m+1

Similar to what is done in BRR and JP we show tha&to (0*) can be
approximated inL.2(Py+) by aPy«-stationary martingale increment sequence and
apply a CLT for sums of stationary martingale increments.

The first step in the proof consists of showing that the initial peikdibes not
show up in the limit.
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LEMMA 8. AssuméAl), (A2) and (A6)—(A7). Then for all x € X,

2
=0.

n

n Y23 (Akox(0%) — Ag0(0%))
k=1

lim Eb*

n—oo

PROOE Write

n

> (Ak0x(0%) — Ak 0(6)

k=1

=" (Bo[¢(0*. Z{_IY§. Xo=x] — Ea=[¢(0*. Z_pIYE]).
k=1

Under the stated assumptiof«(sup, . cx ll¢(©*, (x, Yo), (x", YD)II?) < oo.
The proof now follows from Corollary 1, which implies that

IEg+[ (0%, ZK_IYE, Xo=x] — Eg« [ (6%, Z5_DIYE]
<2 sup (6%, (x, Yion), &, Y0) | 0* 2.

x,x'eX

g

We will now show that for anyk, {Ax.(0*)}m=>0 is @ Cauchy sequence
in L2(Pg+). Since

Ak (%) =Ep[p (0%, Z8_DIYE,]

k—1
+ > (Eorlp 0. Zi_)IYE, 1 —Eexlp (0%, ZI_pIY 1),
i=—m-+1

the differenceA ,, (6) — Agm (0) (assumiﬂgn/ >m > 0) i_nvoIves f(l_each_-m <
i <k terms of the form eitheEg«[¢ (0%, ZI_)IYX, 1 —Eo+[¢ (0", Zi_DIY* ]
or Eg«[p (0%, Zi_DIYX, 1 —Ee:[6(6*,Zi_)IY 1. By Corollary 1 and an argu-
ment used to prove Lemma 3 we obtain fer’ < —m < i < k that,Pg«-a.s.,
19 IEo+[¢(6*, Z;_IY* .1 — o[ (0*. Z}_pIYE, I

<2 sup (0", (x. Yi—n). (", )| o't L

x,x'eX

Note that this term is small when is far from —m, say,i > (k — m)/2.
Another kind of inequality is required to bounflEy«[¢ (6%, Z;_1)|Y’im] -
Eg«[¢(6*,Zi_)IY*, 1l This type of bound will follow from forgetting properties
of the reverse conditional hidden chain. Similar to Lemma 1, we have the following
result.
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LEMMA 9. AssumgAl) and (A2). Letm,n € Z withm,n > 0and6 € ©.
UnderPy, conditionally onY_m, the time-reversed proce$X,, i }o<k<n+m IS @n
mhomogeneous Markov chaiand for all 0 < k < n 4+ m there exists a function
Mk(y_m s+1» A) such that

(i) foranyA e £(DC) Y s+1 — ;lk(y’i;f_SH, A) is a Borel function
(ii) for anyy_m S+1, Mk(y_m_s+1, -) is a probability measure oB(X). In
addition, for all y",* 1, fix(y",X 1. ) < pandforallY”,,,

Po(Xn—t € AlXp—t+1, Y",) =Po(Xp— € Al Xn_t41, Y5

> T2 (YR L A).
0+

The proof is along the same lines as Lemma 1 and is omitted for brevity.
From this lemma, using an analogue of Corollary 1, it follows that-for <
i <k,
o[ (6%, Z;_DIYE,, 1 —Eo- [ (6%, Z;_p Yl

<2 sup |p(6*, (x,Yi_1), (", YD) | oF L.

x,x'eX

(20)

By a standard martingale theory result [see, e.g., Shiryaev (1996), page 510], un-
der assumption (A7Eg+[¢ (0%, Z!_)IYX,, 1 — Eg«[¢(0*,Z]_))IY* ], Pp=-a.s.
asm — oo. Hence inequalities (19) and (20) hold tri®;-a.s., when eithem
or m’ is replaced byx. Using (20) withm = oo shows that

k—1
> IEo+[p (0%, ZL_DIY* 1 —Eos[pp (0%, Z1 YD)
k—1 _ .
< Y 2 sup p(6%, (x, Yicn), . ¥) [N,

i=—oo X, X'€X
Under (A7) the right-hand side is ib?(Py+), and we may thus define

Ak.0o(0%) 2 Ege[p (0%, Z5K_DIY* ]

k—1
+ Y Eorlg 0%, Zi_)IVE 1~ Fpelp (0%, Z0_IYEL).

i=—00

In addition we h_ave the following 2-bound, showing thad, ,, (6*) converges
10 Ag.00(0%) in L2(Pg+) asm — oo.
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LEMMA 10. Assume(Al), (A2) and (A6)—(A7). Then for all k > 1 and
m >0,
(Eo= [l Ak (0F) — Aroo (@) 12)
1/2 j(k+m)/2-1

< 12(@{ sup ¢ (6%, (x. Yo). (x', m)llz])

x,x'eX

1-p

PROOF Using (19) and (20) and the Minkowski inequality, we find that apart
from the factor(Eq+[SUp, e 6 6%, (x.Yo), (&', YIO)IIPD Y2, Bo+l| Agm (6%) —
Ak.00(0%)»Y? is bounded by

k-1

—m
zpk+m—1+4 Z (pk—l—l/\pl+m—1)+2 Z pk—l—l
i=—m+1 i=—00
k+m—1 k—i—1 ome1 P!
<2 m— 4 —i— 4 i+m— 2
<2p + .Z o + Z. o0 + =,
—oo<i<(k—m)/2 (k—m)/2<i<o0
p(k+m)/2—1
<l1l2—.

Now define the filtrationF by i = o(Y;; —oc0 < i < k) for k € Z. By the
conditional dominated convergence theorem,

k=1
E@*[ > (Ee*[qs(e*,iﬁ_ln?ﬁoo]—E@*W(e*,ZLpWE;iJ)WE;&} =0,

i=—00

Eo[p 0%, ZF_ DIV =Ep[Eoelp 0%, ZF_DIVFL, X1l YA 2] =0,

_oo!
S0 that{A; o (0%)}72_, is an (F,Py+)-adapted stationary, ergodic and square
integrable martingale increment sequence. The CLT for sums of such sequences
[see, e.g., Durrett (1996), page 418] shows that

n
nY23 " Ak oo (@) — N(0,1(6%),  Poe-weakly,
k=1
where I (9%) & Eg*[Ao,oo(e*)Ao,oo(e*)T] is the asymptotic Fisher information
matrix, defined as the covariance matrix of the asymptotic score function.
Lemma 10 implies that
" 2
n~ Y23 (Ak0(0%) — Akeo(0)| =0,
k=1
and hence:~Y2Y7_; Ax0(*), and by Lemma 8 alse Y237 _; A0, (6%),
have the same limiting distribution und@g-. We summarize our findings in the
following result.

(21) lim_Ep-
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THEOREM 2. AssuméAl), (A2) and (A6)—(A8). Then for anyxg € X,

n~Y2Vy1, (6%, x0) = N(0,1(6%)),  Pg:-weakly

6.2. Law of large numbers for the observed Fisher informatiomhe second
part of the proof consists of showing a locally uniform law of large numbers
for the observed Fisher information; for all possibly random sequef#gs
such tha®; — 6%, ]P’g*—a.s.,—n_lvezln(é;l“,xo) convergesPy+-a.s., to the Fisher
information matrix até*. Similar to what was done in the previous section
and following the ideas developed in BRR, the proof amounts to showing that
—n~1V21, (67, x0) may be approximated by the sample mean of an ergodic
stationary process. To do that it is convenient, just as for the score function, to
express the observed Fisher information in terms of the Hessian of the complete
log likelihood. This can be done by using the so-called Louis missing information
principle [Louis (1982)], valid under (A7) and (A8), which shows that

VZlog pa(Y4|Yo, Xo = x0)

(22) :Eg[Z@(@,Zﬁ_l)‘V”,Xo:xo}
i=1

n
+ val |:Z¢(9, Zﬁ-_l)’Y’é, Xo= x0i|,

i=1
where
00.Zi_)=¢0,Zi-1.Z) = (6, (XZH Yic1), X1, Yi_ 1)
= (0, (Xi—1, Y1), (Xi, )
2 v2log(qe(Xi—1, X1)ge (Yi|Yi_1, X)).

As above we may write these quantities as telescoping sums:

n
EQ[ZW, Zi_p|Y5, Xo= XO}
i=1

n k
= (E{Z«p(@iiﬁ_p\% Xo =XO}

k=1 i=1

k-1
—Eq [ > 9. Zi_p|Y5 Xo= XOD

i=1
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and
n
var [qu(@,fj_l)‘vn, Xo= xo:|

i=1

n k
= Z (varg [Zme,iﬁ_p\% Xo= xo}

k=1 i=1

k—1
—van [Z b, z;_l)]Y’g,—l, Xo= xOD.

i=1

It turns out (see Lemma 13) that As~> oo the initial condition onXg becomes
irrelevant. Therefore it is sensible to define, for 1 andm > 0,

k
Akm(6) =E9[ > 0®.Zi p|Y* m}

i=—m+1
(23)
—Ee[ > w(G,Zé_l)\Y"_ﬁ},
i=—m+1
k —_— —
Fk,m<9>=v—are[ > ¢<0,z;_1>]Yﬁm}
i=—m+1
(24)

k—1
—V_al'9|: 3 ¢(9,Z§_1)‘V’1—n}]
i=—m+1

Proposmons 4 and 5 show thaty ,(#) and I'x ,(0) both have limits as
m — 00, Pg:-a.s., and inL1(Pp+). Let Ag () and Iy« (0) denote these
limits. It follows from the definitions above that\; «}72; and {T'x )72, are
Py«-stationary and ergodic, and the limit of the observed Fisher information will
be —Eg+[A0,00(6%) + T0,00(6)].

PropPoOsSITION4. AssumgAl)—(A3). Let G be a compact subset @&, let
g >0andlety:® x X7 x Y4 — R be a Borel function such that for alff € X
andy? € Y9, (0, x1,y?) is continuous w.t.  on G and

Eg*[sup sup |¢(9,X£{,YC{)|} < 0.
GEGX?_GX‘]

Then for eact € G, Ay, (0), as defined in(23), convergesng*-as and in
L1(Py+) to Ak 0(0) asm — oo. In addition, the functiond +— EQ*[AO (@] Is
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continuous orG and for allxg € X andd € G,

lim lim sup

n
nEy [ D 90.Z; .o Xo= xo}
i=1

- E@*[Ao,oow)]‘ -0, Pp-as

PROPOSITIONS. AssumgAl)—(A3). Let G be a compact subset o, let
g >0andletg:© x X7 x Y9 — R be a Borel function such that for atfl e X
andy? e Y9, ¢(0,x1,y?) is continuous w.t. 6 on G and

E)*[sup sup |¢(9,X£{,Y({)|2] < 00.

0€G x{ x4

Then for eacty € G, I'yn(0), as defined in(24), convergegfg*-a.s. and in
LY(Pp+) to [k.00(6) asm — oo. In addition, the functionf +— Eg+[I"g 0 (0)] IS
continuous orG and, for all xg € X andé € G,

lim lim sup
§—0Qn—>0o0 w/_elss

n
n~tvary, [Zme’, zj_qH) Y&, Xo= xo}
i=1
- E@*[ro,oow)]’ =0, DPp-as

Note that in Propositions 4 and 5 the functiopsand ¢ take values inR.
Adaptations to vector- and matrix-valued functions are straightforward.

For all xg € X the Fisher information identity implies, under the stated
assumptions, that

n Eg[Voln 0, x0) Vola (6, x0)" [Y o, Xo = xo]
= —n"Eg[ V4l (6, x0)| Yo, Xo = xol,
and Propositions 4 and 5 together with theuis missing information principle
show that the limits im: of these two quantities both coincide with the Fisher

information at6*. We conclude the discussion in this section by stating the main
result.

THEOREM3. AssuméAl)—(A3)and(A6)—(A8)and let{s,} be anypossibly
stochasti¢c sequence in® such that6; — 0* Py«-a.s. Then for all xo € X
—n~1V2L,(67, x0) — 1(6%), Pp+-as.

The following theorem is a standard consequence of Theorems 2 and 3 (see,
e.g., BRR).
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THEOREM 4. AssumdAl)—(A8) and thatl (6%) is positive definiteThen for
all xpe X

nY2(0, 0 — 0%) > N(0,1(0")71),  Ppe-weakly

7. Extensions to nonstationary AR models with Markov regime. In
Sections 4 and 6 the assumption of stationarity}at plays a crucial role. In this
section we shall extend the consistency and asymptotic normality of the MLE to
the case where this process is not stationary. Hence we assume that the process
we observe, denoted bV?Z}Eio’ and the associated hidden chain, denoted by
{X}}2°,, are governed by the transition kernigy- and with (Xg, Y) having
distribution¢. This initial distribution & unknown to us and in generak mo-+.

As before we le{(Xy, Yi)};2 o denote a corresponding stationary process.

We observe that since these processes are positive Harris recurrent and aperiodic
[this is (A2)] we can construct them on a common probability space in a way that
there exists an a.s. finite random tirfie the coupling time, such that, = Z/
for n > T [Thorisson (2000), pagB69]. The associated gpability measure is
denoted byP,,,. ;. Hence, to be precis€y,. g (T < 00) =

Definel/, (6, xo) = log pe ([Y ]”|Y/ , X( = xo) and Ieten xo 0€ the maximizer of
this functlonwrt9 Put

Dy (6, x0) = 1,(8, x0) — 1,(8, x0)

n
=" (log ps (YIIY'1E™2, X = x0) — log ps (Ve Y52, Xo = x0)).
k=1

The following lemma ensures thad, (0, xo) is bounded,P, . g;-a.s., which

implies that the difference betweé;’n,xO andé,,,x0 converges to zerdy,, g;-a.s.
(see Theorem 5).

LEMMA 11. Assume(Al) and (A2). Then for all ¢ and all xg € X,
SUR,>0SURyco | Dn (8, x0)| < 00, Prugi-as.

PROOE Write
sup|D, (8, xo)|
0ec®

<Zsup| log pe (Y/IIY'1571, X4 = x0) — l0g pa (Yi| Y52, Xo = x0)|
k 1960

T
<y (sup| log pe (Y/IIY'1571, X4 = x0)|
k=1 6e®

(25) +95UGF)J| log pe (Y| Y51, Xo =xo)|>
€
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by supllog py (F{[Y'I§ . Xp = x0
k=T+19€©

—log pe(YkIVS_l, Xo = x0)|.

Since
/ 26 (Yel Vi1, ) (dx) < po (il Y51, Xo = x0)

<0s [ g (lVems, D)
(see the proof of Lemma 2), the first sum on the right-hand side is Bpjtgy; -a.s.
by (Al).
For the second sum, note that forak «,
po(YelYE ™2, Xo = x0)
= [[ [ g0 i¥ims,m0a0 (ot v Paxealo, Vi
x Py (dx; Y5, Xo = xo),

and similarly fgrpg(Y,g[V/]’(‘,_l, X{, = xo). Using the fact that fon > T, Z,, = Z|,
and thusY, =Y/, and Corollary 1, we have for atl> T,

| po (Yl IY'172, X6 = x0) — po (V| Y5 ™2, Xo = x0)|
<o 1o, / 20 (Yi|Yi—1, x)pu(dx),
and hence
) llog pe (V{IIY' 1572, X4 = x0) — log po (Vi |52, Xo = x0)]
(26) k=T—1 /01 _ .
<p /(1= p);

compare the proof of Lemma 2. Thus the second sum on the right-hand side of (25)
is also finiteP,, g -a.s. [

We now can prove the consistency of the MLE for a nonstationary process.

THEOREM 5. Assume (Al)-(A5). Then for all ¢ and any xp € X,

Ilmn_wo@”0 0%, Pr e -as.
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PROOF.  Sincef), . is the maximizer ob — n~1,(6, xo),

16 ) > 10%) — 1(6%) + n~1,(6%, x0)

n,xo

—n" Y, (0%, x0) + n 7}, (0%, x0) —n 5, (B . x0)

n,xo’
+ n_lln (é\r/l,xo’ XO) - n_lln (é\r/l,xo’ XO) + l(é\r/l,xo)

> 1(6*) — 2 supln 1, (8, x0) — 1(6)] — 2 supln~ D, (6, x0).
0e® 0e®
The right-hand side of this inequality tendg/t6*), IP;,. g -a.s., by Proposition 2
and Lemma 11. The proof now follows from Proposition 3, continuityl @
(Lemma 4) and compactness®f [

To show tha¥2(9, . — 6, x,) = 0, Pr,.e¢-a.s. and thus tha, - andd, v,
are asymptotically normal with the same covariance matrix, we need to show some
kind of continuity of the functio® — D, (0, xo).

LEMMA 12. AssuméAl)—(A5). Then

M [ Dy (0, y» X0) = D (0 xo- ¥0)| =0, Py @c-aS.
PROOF Lete > 0. By (26) there exists a random integ€rwhich is finite
Pz, @c-a.s. and satisfies

o0

>~ sup|log pe(V{I1Y'Ig ™) —log ps (Yk|Yg D <&, Prec-as.
k=N+19€©

Thus,Pr,.g-a.s. foralln > N,
|Dn (ér/l,xov xO) — D, (én,xw x0)|

< 26+ |1y (61,00 %0) = Iy (B, 01 X0) | + [N (6 1> X0) — In (Bix0- 0) |-

Under the given assumptioms— [}, (0, xo) and6 — Iy (6, xo) arePy, g -a.s.
continuous (see the proof of Lemma 4) and the proof is complete upon observing
that6, x, andé,, , both converge to*, P, ¢ -a.s., and that was arbitrary. [J

THEOREM6. Assumé&Al)—(A8)and that/ (6*) is positive definiteThen for
all ¢ and anyxg € X,

nt26, . —6%) = N0, 106",  Py,.ec-weakly

n,xqQ

PROOF. It is sufficient to prove that, £ \/ﬁ(én,xo — é,’l,xo) — 0,Pyr.gc-a.s.

x0) = 1}, (6. xo X0), Which

A

Sinced, ., is the maximizer o — 1/,(6, xo), 1,6,

n,xo’
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implies that

Dy (85 - %0) — D (B x92 X0) = Ln (B xo- X0) — In (B 5 X0)
= —2n" el V2L, (1 MO+(1 12)6n.x0)En

for some O< 1, < 1. By a straightforward adaptation of Theorem 3 to the present
case with two processes,

n= V2L, (6,0 o+ (L= 1)0n x) = 1(6%), Pryeoc-a.S.

Since 1(6*) is positive definite there exist3/ > 0 such that on a set with
P~ o -Probability one and for sufficiently large,

D, (é\;fl’xOﬁ xO) — D, (én,xo, xO) = M|8n|2'

The proof is complete by applying Lemma 12Z.]
8. Numerical approximations.

8.1. Two Monte Carlo numerical methodsAs mentioned in the Introduction,
when the state space diX;} is continuous the log likelihood needs to be
approximated by some numerical method. Here we list two classes of methods that
have been proposed and successfully used in many practical problems, but point
out that there are other ones as well, for example, importance sampling [Geyer and
Thompson (1992) and Geyer (1994)].

Particle filters. These methods depart from the representation

.50 = log [ g0V, 5P (Xi € a5 Xo =0
k=1

and replace the predictive distributid® (X dxle’(g‘l, Xo = xp) by a patrticle
approximation. More precisely, the approximating distribution is the empirical
distribution of the locations ofV particles at timek. There are many variants

to how the locations of the particles are updated, and under general assumptions
the particle approximation converges to the true predictive distribution at rate
N~1Y2 whenN grows. The approximate log likelihood may be maximized using
any standard numerical optimization algorithm. Further reading is found in the
collection Doucet, de Freitas and Gordon (2001); see in particular the survey
paper Hirzeler and Kiinsch (2001). Other references are Kiinsch (2001) and Pitt
(2002). Particle filter methods have been proved to perform well in a wide range
of problems, as illustrated in the above references.
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Monte Carlo EM algorithms. The EM algorithm is an iterative algorithm
for computing the MLE (or at least a local maximum of the log likelihood)
in problems with missing data. Its key components are the computation of the
function Q (9, 0") = Egllog pe (X3, Y2IYE, Xo = x0)|Y, Xo = xo] (the E-step)
and the maximization of this function w.rf/ (the M-step). These two steps
constitute the update from a current estimati® a new one. Obviously the EM
user is required to compute conditional expectations of function€; afiven Y
and Xo = xo. If the state space is continuous this task is typically infeasible, but
the conditional expectations can be replaced by sample averages siraulated
realizations ofX} under the same conditions. These methods are called Monte
Carlo EM (MCEM) algorithms, or stochastic EM (SEM) algorithms. A recent
survey is found in Booth, Hobert and Jank (2001), and general versions of the
algorithm are described in Tanner (1996) and Nielsen (2000). If the numloér
simulated replications is allowed to increase with each iteration, the algorithm can
be made to converge [Fort and Moulines (2003)]. MCEM methods are successfully
used in many areas; see the above-mentioned survey paper.

Having said that, we stress that the distinction between particle filter and
MCEM methods is not sharp. In fact, the functign, 6’) of the EM algorithm
can, in principle, be computed recursively in which opens up for particle
approximations of this functional [Cappé (2001)]. Hence, the approximation and
maximization of the log likelihood rather splits into two other subproblems to
be considered. First, the optimization scheme: (i) EM type, which is particularly
appropriate if the complete data is from an exponential or curved exponential
family of distributions, or (ii) a standard numerical optimization algorithm such
as a quasi-Newton or conjugate gradient method. Second, the approach to
approximate conditional expectations: (i) forward in time using particle filters
or (ii) conditional on the whole set of data using more traditional MCMC
simulation.

8.2. Asymptotics of approximate estimatord.heorems 1 and 4 give the
asymptotic properties of the MLE, but, as noted above, neither the (conditional)
likelihood nor the MLE is computable unless the state space is finite. An important
question is thus if an approximate computation of the MLE or likelihood is
sufficient to retain the asymptotics. Of course,é;’,l‘,x0 is an estimator such
that 6, v, — bn.xog = 0p(n~Y/?) (with P = Py:), then b, ,, is consistent and
n'2(6, ., — 0*) has the same distributional limit a8/2(9, ., — 6*). This simple
observation applies to methods that directly approximate the MLE, for example,
MCEM. The following theorem gives a corresponding result when the likelihood
is approximated.

THEOREM 7. Assume thab, ,, is an estimator satisfying, (9, .,, xo) >
SURco ln (0, x0) — R, and that the assumptions of Theorehold. Then the
following are true
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(i) If R, =op(n) (With P =TPy+), thend, ,, is consistent
(i) If R, = Op(L),thenn/2(6, ,,—6%) = Op(1), thatis the sequencg, ,}
is n1/2-consistent undePy-.
(iiiy If R, = op(1), thenn/2(f, , — 6*) — N (0, 1(6*)1), Py:-weakly as
n — oQ.

REMARK 7. The remainder term does not dependipthat is, it is uniform
in® e ®. 1f n~1R, — 0,Py+-a.s. in (i), we obtain strong consistency.

PROOF OFTHEOREM 7. We start with (i). Sincén(én,xo, X0) > SURyce ln (0,
xo0) — R, > 1,(6%, xg0) — R,, we have

1(6%) = 1(Bn.xo)
> 1(0%) —10%) +n M, (0%, x0) — 0 (B xg» X0) + 1 (On.xo) —n 'Ry
> 1(0™) — 2 supln 1,6, x0) — 1(0)] — n"R,.
0e®
If R, =o0p(n), using Poposition 2,1(5n,x0) —1(6*) = 0p(1). Standard compact-
ness arguments going back to Wald (1949) and Proposition 3 complete the proof
of (i).
We now turn to (ii) and (iii). Recall thaén,x0 maximized,, (6, xo). By a Taylor
expansion of, (6, xo) aroundé,,,xo, there exists a poir, on the line segment
betweerd, ., andd,. , such that

R, > 1, (én,xov xO) — Iy (én,xo’ xO) = 8; (_n_lv.gzln (énv xO))En,

where g, = n/2(0 x, — uxo). Sinced, ., converges t* in probability, so
does®,. Hence there is a positive sequen@g} tending to zero such that
Py« (|6, — 0*| > 8,,) — 0. Thus, for any > 0,

Pos (Il —n~1V21,(0,, x0) — 1 (0] > ¢)
<Pp(|0, — 6% > 8) +ﬁ9*( sup | —n"1V2L,(0, x0) — 1(0%)] > c).
|0 —0%| <6,

The first term on the right-hand side tends to zermas oo, and so does the
second one by Theorem 3. Sink@™*) is assumed positive definite, there exists an
M > 0 such that

Ry > (M +o0p(D)le, %

Thus, ifR, = Op(1), theng, = Op (1), and if R, = 0p(1), theng, = op(1). The
proofs of (i) and (iii) are now complete using’?(6, ., — %) = e, +1nY2(6, 1o —
0*) and the result of Theorem 4[]
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Obviously, if I, is an approximation of the true log likelihoot (both
conditional onxg) such that|l, (8, xo) — 1,8, x0)| < (1/2)R, for all 6 € O,
and 6, xo IS the corresponding maximizer, thén(d, x0»X0) = 1,6, x0» X0) —

(1/2)R, >, (en,xo,xo) (1/2R, = I, (en,xo,xo) — R,, that is, the principal
condition of the theorem is fulfilled. We thus see that what is required is to
approximate the true log likelihood uniformly, and that with increased accuracy of
the approximation follows improved properties of the resulting approximate MLE.
Uniform convergence on compacts holds in our case, becju8exg) is
continuous ind, implied by the combination of so-called epiconvergence and
hypoconvergence of an approximationg, xo) [see Geyer (1994), page 273].
Moreover, Geyer also proved that both of these modes of convergence can
be obtained by an importance sampling approach, in which the unobserved
states are simulated using MCMC under a fixed reference parameter [Geyer
(1994), Theorem 2]. Of course, to obtain the required rate of convergence of the
approximation, with increasing an increasing number of importance samples
must be taken.

Approximation of the log likelihood using particle filters is described, for
instance, in the above-mentioned paper by Pitt (2002), who also devised a method
to smooth the approximation to a continuous function; this method works for
univariate state variables only, however. At present we know of no formal proofs
that particle filters approximate the true log likelihood uniformly, but strongly
conjecture that they do under general assumptions.

8.3. A numerical example.We now turn to a specific numerical example, in
which we shall employ an MCEM algorithm. Localization and tracking of narrow
band moving sources by a passive array is one of the fundamental problems in
radar, communication and sonar [see Ng, Larocque and Reilly (2001), Orton and
Fitzgerald (2002) and references therein]. This problem can be stated as follows.
Consider a uniform linear array af sensors receiving a narrowband signal from
a far-field source with unknown time-varying direction of arrival (DOA). Under
the classical narrowband array processing model the received signal &t tinge
d x 1 array observation vectadf., can be expressed as

(27) Wi = Wi—1 + 1,
(28) Yi = Ska(Wy) + &,

wherea(w) = [1e'? - .- /@D T s thed x 1 steering vectarsS; is the source
waveform,n; is the state noise ang is the measurement noise. It is assumed that
() {nx} arei.i.d. zero mean Gaussian with variam,?e(ii) {Sx} arei.i.d. zero mean
one-dimensional complex circular Gaussian, thdEi, = 0 andIE|Sk|2 = osz and

(iii) {er} are i.i.d. zero mead-dimensional complex circular Gaussian, that is,
Eer =0 andEsks,ﬁ’ = aezld, wherex! is the conjugate transpose (or Hermite
transpose) of andl, is thed x d identity matrix. This is a hidden Markov model,
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or state space model as there is no autoregression in'shgV/e wish to estimate
the parameted = ((’n’ 7z, 8) from the observed dats, ..., Y,.

Conditionally on the hidden variabWy, Yy is a Gaussmn complex vector with
densitygg (yr| W), where

go(y|w) = expl—y? =7 w)y}

74 dets (w)
with

T (w) =KV Y Wy = w] = o2a(w)a(w)? + o21,.
It is easily checked that
2

— 5 _agw)aw) + iId
agz(das2 + %2) o2

&

> (w) = -

and
loggs (y|w) = —dlogm —log (62@~V(do? + 62))

L yHy+—U‘2 la(w)?y|2.
%2 062(das2 + 062)
Furthermore, withy denoting the transition density ¢W;},
1 1
AN A 2 2
|Ogr.9(w,w)_logr6nz(w,w)_—Elog(Znan) 202(w —w)“.

n

The above model is equivalent to an HMM on a compact state space. Indeed,
identify the interval[0, 27r) with the unit circle, which is a compact set, and put
Xy = Wrymod 2. It is then clear thatX,} is a Markov chain ori0, 27), with
transition density]%z (x,x)=>72_ o2 (x, x" + 27 ¢). The output density stays
the same, that is, the conditional densitypfgiven X, = x is go(y|x). It is easily
verified that the HMM{ (X, Y)} satisfies the regularity conditions in the previous
sections.

Let® andd’ denote two (potentially) different parameter values. The EM algo-
rithm involves iterative maximization of the functia (6, 6") = Es[log pe (X7,
Y'11Xo=x0)|Y], Xo = xo]. Specifically, if6,, is the result of thepth iteration, then
0,41 is the maximizer (i0’) of Q(6,,0"), that is,6,1 = argmax, Q(0,,0").

For the present model, pgt0) =3 "7_; Eolla(X)H Yi|2IY?, Xo = xol. It is then
straightforward to verify that the maximizer of the M-step of the EM algorithm is
the triple (62, 62, 62) given by

(29) &2 = argmay E9p|:z|09qv(Xk—1, Xo|Y1, Xo=Xoi|,
k=1

(30) 52— BOy) — 71 1Vkl?
ST ndd—-1
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2 i 2= BOy)/d
€ n(d-—1) ’

The conditional expectatiof(9) cannot be explicitly computed, let alone the
expectation required to compu&%. We note that we could also employ the
representation witiWw;} to simplify the implementation of this part of the M-step
and the MCMC algorithm below, as there is then a sufficient statistic for the
re-estimation ofan2 as well, but this approach gives us less satisfying numerical
results. We also note that although(x, x") is not available in closed form, it is
straightforward to approximate it by a truncated suer%:Sx, x' 4+ 2n¢) decays
rapidly as|¢| — oo.

In the MCEM approach, the conditional expectations above are replaced by
sample means over a number of realizations’pfconditional onY’] andXo = xo,
obtained by Monte Carlo simulation. At each iteratipnwve draw a sample of
sizem,, of an R"-valued Markov chainX“},-o with stationary distribution
Py, (X7 € -|YT, Xo = x0). Many different solutions are available at this stage; in
the simulations below, we use a random scan Metropolis—Hasting algorithm with
transition kernel fromX ¢~ = 3 to X(® = 2’ defined in the following way:

(31)

1. Choose atime indexuniformly on{1, ..., n}.

2. Simulatex;” ~ gg, (Xi-1, -).

3. Sett’ = (these ardR”-valued) and update thiéh component of’, that is,x;,
to x/" with probability

g6, (Xi—1, XN qe, (X}, Xi+1) g6, (Yi|X]) . 90 (Xi-1, %)

1A ~ = — — ~ —
qo,(Xi—-1, X1)q0, (%i, Xi+1)80, Yil%i) — qo,(Fi-1, X])

6 (X7, Xi+1)ge, (Yil%])
q0,(Xi, Xi+1)80,(YilX;)

If i = n, this acceptance probé#ity is modified to

=1

q6,(Xi-1, %) ge, (Yi|X]) " q0,(Xi-1, %) N 8o, (Yilx])

In n = - = = A
qo,(%i-1, %) g, (Yil%i) ~ qo,(Xi-1, X]) 8o, (Yil%;)

To guarantee convergence of the algorithm, the number of samplesshould
either be increased at each iteration or be selected in a data-driven manner at each
iteration [see Booth and Hobert (1999) or Booth, Hobert and Jank (2001)]. For
simplicity we did not implement such mechanisms but rather used a fixed large
number of iterations at each step of the algorithm.

We simulated a single sample of size= 200 from the model (27)—(28)
with d = 4 and with the true value of the parameter= (anz, 02,02) being
6* = (0.25,0.64,0.36). At each step of the MCEM procedure we generated a
sample of size 40,000 by the random scan Metropolis—Hasting algorithm, after a
burn-in of 20,000 iterations. The acceptance rate of the algorithm was about 40%.
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The re-estimation Ozfr,]2 as in (29) was carried out by numerical optimization, and,
in order to save computation time, of the total of 40,000 replications only every
400th was used for the corresponding sample average (i.e., 1,000 replications).
The stationary distribution dfX;} is the uniform distribution ofi0, 2), whence

we fixed the initial stateg to its meanr. We remark that in this particular case the
stationary distribution does not dependémwhence it could have been employed

in the algorithm. We started the MCEM algorithm from the true parameters as
well as from four randomly chosénitial points for which eacty2-parameter was
drawn independently from a uniform distribution ¢@ 1). For each of the five
initial points we ran the algorithm for 50 iterations. Figure 1 shows the trajectories
for each initid point and paramater. Obviously, irresgctive of the initial point

the algorithm quickly finds the same approximation to the MLE, although the
trajectories do not converge as the sample sizén the algorithm stays bounded.
The trajectories fo&n2 fluctuate a little more since, as described above, only 1,000
replications were used for its re-estimation.

0 5 10 15 20 25 30 35 40 45 50
number of iterations

FiG. 1. Convergence of the MCEM algorithifirajectories of the three parameterg, o2 ando?
for five runs of the MCEM algorithpstarting from five different initial points
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Next we estimated the observed information, that is, the negative Hessian of the
log likelihood. We departed from the missing information principle (22) and again
replaced the expectations involved by sample means over simulated replications
of X4 givenY] andXg = xo obtained in the same way as above. Our approxima-
tion to the MLE,§ say, used for these computations was taken as the sample mean
of the last 25 values of the trajectory obtained for the second randomly chosen
starting point mentioned above; it was= (0.2793 0.5756 0.3466). After run-
ning the Metropolis—Hasting algorithm for a burn-in of 100,000 iterations we used
another 200,000 iterations for the sample means. The resulting approximation of
the observed information and its inverse were

2032 —3.908 5610
[=]-3908 4491 1777,
5610 1777 4169

4941 Q070 —0.070
j~1—10"%| 0070 2266 —0.098
—0.070 —0.098 Q245

The corresponding approximate 95% confidence intervalg@i&16 0.4171),
(0.4823 0.6689 and (0.3159 0.3773 for o2, o2 ando?, respectively, and we

see that they all cover the respective true values. We see that the variations in
the MCEM estimates in Figure 1 are considerably smaller than the widths of the
confidence intervals, which indicates that the MLE is well approximated and hence
that the inverse observed information matrix is a good estimate of the covariance
matrix of the approximate MLE as well. Obviously the widest interval is that
for (’nz’ which is not surprising, as this parameter is associated with the hidden
state alone and hence, loosely speaking, “less observable” than the other ones.
A simultaneous test foHy:0 = 6* can be carried out by computing the test
statisticy2 = (9 — 6*)T I (6 — 6*), which approximately has g2 distribution with

3 degrees of freedom under the null hypothesis. We foufe= 3.065 and the
corresponding-value is 0.38. The null hypothesis could thus not be rejected.

APPENDIX
A.1l. Proofsof technical lemmas.
PROOF OFLEMMA 3. Assumen’ > m. Note that
PoYelY S E Xy =) = po (Vi Y0, Xy = x)

=/// 80 (YelY k-1, x)q0 (-1, X)L (dxg)

x Py (dxp—11 X = x_p. Y, D8, (dx_)
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- / / 20 (Vi Vo1, 2000 (o1, X (dxe)

X F& (dxp—-1|X—m = x—pm, V]ijnl)ﬁé (dx—pm |Vk_;11/, X = x/)-

Hence, by Corollary 1,

(32) 5o Vel Y1 Xy = x) — po (el Y50, X = 1))

< oo, [ g0 (Vs ).
Similarly we have

PIYE L X, =x)

—m

(33) =// 20 (Vi Yi—1, x1) g0 (xx—1, xi) i (dxi)Po (dxg—1 Y1, X = x)

> g / 20 (Ve Vi1, ) (d).

The proof of (12) is concluded as in Lemma 2, and (13) follows by setiiing m
and integrating w.r.tP (dx_,,|Y*, ) in (32) and (33). To prove (14), notice that,
by (33),

o b_(Yi, Yi_1) < po(MIYS L X =x) < by O

—m

PROOF OFLEMMA 4. We will first prove that for any fixed € X and anym,
Ao,m.x(0) is continuous w.r.t9. We have

Po (Y9m+1|v—m7 X_m=x)

ﬁ@(YO|V:17X—m=x)= - — —
" Po(Y Yoy X =)

where, forj € {—1, 0},

PoY . 11 s Xy =)

J
(34) = [aotvmsn T aotricax

i=—m+2

J .
x ] seilYic1, xpu®mt@x’, o).
i=—m+1

Thus ﬁg(Yf_mHW_m,X_m = x) is continuous w.r.t.6 by continuity of gy

and gy and the bounded convergence theorem; the integrand is bounded by
(o4b )™/, Since {Aog,..x(0)} converges uniformly w.rtd € ®, Py-a.s.,

Ao, (0) is continuous w.r.1 e ®, Py+-a.s., and the proof follows using Lemma 3
and the dominated convergence theorem.
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PROOF OFPROPOSITION2. By Lemma 2 it is sufficient to prove that

lim supsup|n =21, (6) — 1(6)| =0, Py+-a.s.

n—>oo fe®

Furthermore, sinc® is compact, we only need to prove that for@ak ©,

limsuplimsup sup |n‘1l,,(9/)—l(0)|:0, Pyp+-a.s.

§—0 n—>00 |p/—p|<s
Decompose the difference as

limsuplimsup sup |n"%,0") —1(6)]

-0 n—>00 |9/—6|<8

= limsuplimsup sup |n",(0") —n"11,(0)|

§—>0 n—o0 |9—9|<$

<A+ B+C,

where

n
A=limsuplimsup sup n™1> A 0(0) — Age(@),
§—0 n—>00 |9/—9|<$§ =1

n
B =limsuplimsup sup n™ "> |Ag (@) — Agoc (O,
§—0 n—>0 |§/—0|<§ k=1

C=limsupn ™" |Ar0o(0) — A0(0)].

The termsA and C are zero by Corollary 2, and by the ergodic theorem and
Lemma 4,

n
B <limsuplimsupn )" sup [Ag (8 — Ag,o0(0)]
§—>0 n—oo k=110"—0]<8

—limsupEy:| SUp |80 (8") ~ Ao (@)
5—0 1676 <5

=0, Fg*—a.s. O

PRoOOF oFLEMMA 5. We will show that for alk > 0,

(35) $U§|ﬁ9 (YO0 ) — pa(YEH| =0, Pee-as. ak — oo.

By stationarity, this implies the statement of the lemma.
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First recall that; = (x;, ys, ..., y1) and note that

S
Fo(2s19%)) = f f [T @6 Cej—1. %086 (1. 9 -0 Pa (doly® e~ (dxs ™)
j=1

s K
SU+// [Taoxj—1.x) [ 8o (yjlxj. 1)
j=2 j=1

x P (dxoly° Hu® Y (dxs™h

= U+h9(ZS)7

say, wherey (z5) implicitly depends oryp, but not oni, and integrates to unity (it
is a density w.r.tiu ® v). Furthermore,

1o (YT 2 — Ba(YEHY)
< / / Bo (YA 2 )52y, dzgg) — 7o (dzg)]
x po(zs1Y %) (1 ® D) (dzs)

<blo, f N2z, ) — 7 lrvhe (25) (1 ® D)(dzy);

the bound orpg (Y5 |z;_1) follows as in (34). Now (35) is a result of the above,
(3) and dominated convergence.]

Let, for 0< k <m,
Uem(®) 210gpa(YVIY0,YZX),  U®) 2logpa(YF Vo).

PROOF OFLEMMA 7. Itis enough to show that, for alle ®,

(36) lim Eg- [ Sup|Uy.m (0) — U(0)|] =0.
k—o00 m>k
Put
Aem=po(Y2 Y Th), A=pa(YP L)),
Bim = po(YolYZH), B=ps(Yo).
Then
) - - ) - Arm A
5o (Y0, Y4 ) = pa(Y2 (Vo) = \ Cen _ E’
(37) -

_ BlAtw — Al + AlBiy — B]
- BBy i '
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By conditioning on(X_, Y _) [cf. (34)] and utilizing (A1)(b), it follows that

0
BZGi/ I1 /ge(YilYi—l,---,Y—s+1,y—s,---,yi—s,x)

(38) i=—s+1

x w(dx)Pg(Y _y €dy_g) > 0, Pyp+-a.s.

Hence, by Lemma 5, withPy+-probability arbitrarily close to 1Bim(w) IS
uniformly bounded away from zero fon > k and k sufficiently large, and
Lemma 5 and (37) show that

lim sup|pe(YJ1Y0, Y=X) — pe(Y[[Y0)| =0  inPp«-probability.

k—>oomzk
Using the inequalitylogx —logy| < |x — y|/(x A y) and (38) once again, we find
that

lim sup|Ui..(0) —U(@)|=0  inPg«-probability,

k—)oomzk

and (36) follows using dominated convergence provided

Ee*[supsupwk,m(en] < 00.
k m>k

This expectation is indeed finite sinpg(Y} Yo, YZ£,) is bounded from below by
o T b_(Yi—1, Yy) and from above bya.b)? [cf. (34)], and the logarithms of
these bounds are ib!(Py+). O

A.2. Proof of Proposition 4. We preface the proof with several lemmas. For
convenience, Proposition 4 will be proved fpe 1. Adaptations to generalare
obvious.

Define fork > 1,m > 0 andx € X,

k
Ak,m,x(e)éEO[ Z (p(G,Zl-)Yk_m,X_m:x:|

i=—m+1

—m

. k—1
—E9|: Y 9.7

i=—m—+1

Y1 X_ = xi|.

Along the same lines asin Lemma 9,farn >0andO<k <n+m —1,
Po(Xn—k € AIX] 40, Yo Xy = X)

_ — O_ _ —5_
=Py (Xn—k € AlXn—t41, Y55 Xy = x) > G—uk(Y’imk, X_m=x,A),
+
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where ;ik(V’i;f,X_m = x,-) is a probability measure. The result above in
particular implies that

(39) IPe(Xi€-IYL,, X =x)=Po(X; €-[Y,1, Xy =x)ll1v < p" 771,
LEMMA 13. Under the assumptions of Propositidrthere exists a random
variable K € L1(Py+) such thatfor all k > 1 and0<m </,

(40)  sSUpSUP|Akmx(®) — Arm (@) < K (kv m)?p*+™/2 Py.-as,
xeX 0eG

(41)  SUPSUP|Ag mx(0) — A x(O)] < K (kv m)?p*T™/2 Ppe-as,
xeX 0eG

PROOF The proof is along the same lines as the proof of Lemma 10, using
(39). Putfl¢; lloc =SUP.cx SUR G l@ (@, x, Y;)|. Combining the relations

[Eolp @, ZDIYE,,, X =x1 = Eale@, Z)IY* 1| < 2¢i o™,

_m?
Eolp®, ZDIYX,,, X—m = x1 = Eale@, Z) YL X = x|

—i—1
< 2|lgillocp* 71,

Eole©, Z)IYX,,1 — Bolo©, Z) Y51 < 2llgilloop 72,
we obtain

|Akm,x (0) — Ak, (0)]
k

<4 Y il A pF
i=—m+1

k
. k1
<4 max gl . (P AP
—m<i<k PE—t

k . 1 —1—i i+m
54Z<|z|v1>zmnwinoo( Yoo Ty Y p+)

i=—m i<(k—m—1)/2 i>(k—m—1)/2
5 00 p(k+m—1)/2
<8(kvm ——— gilloco——,
<8k vm)® Y G D2 el

I=—00
which proves the first part of the lemma.
For the second part we also use the bound

[Eolp @, ZDIYX,,, X = x1 = Eale0, Z)|YX, . X_w =x]|

—m> —m

. ’
< 2|lg;illocp" T
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to obtain
|Ak,m,x(9) — Ak,m’,x(9)|
k . | . |
<4 Y il ™ AP +2 3 gilleep®
i=—m+1 i=—m'+1

Here the first term on the right-hand side is bounded as above. Siik&<
(k —m)/2—i fori <—m, the second term can be bounded as

—m —m
2 3 lgilleop' T <2002 FT giaop® T
i=—m'+1 im—m'+1
2y —i/2—-1
<2p%™M2 N lgylloop ™
i=—m'+1

o0
< 2p%FmM/2 N gy [l plV/2

i=—00

and the proof is complete.[]

By Lemma 13, for allx € X andk > 1, {Ax_u.x(0)}m>0 converges uniformly
w.rt. 0 € G Py+-a.s. and inL1(Py«) to a random variable that we denote by
Ak.0(0); by (40) this limit does not depend on Lemma 13 also immediately
implies that

n
nt Zesugmk,o(e) — Akoo(@®)] =0,  Pge-a.s.and inL1(Py+).
k=1v€

LEMMA 14. Underthe assumptions of Propositiérfor all x € X andm > 0
the functiord - Ao, (0) is Pg+-a.s. continuous orG. In addition for all 6 € G
and all x € X,

lim E@*[ sup |A0,m,x(9/) - AO,m,x (9)|i| =0.
§—0 |9/—9|§8

PROOF Note that| Ag ;. (0)] < ZZ?:_mH ll¢i lloo- Thus, under the assump-
tions of Proposition 4Aq, ,» (6) is uniformly bounded w.r.t9 by a random vari-
able inL1(Py+). It hence suffices to show that ferm <i <0,

lim sup [Egle®, Z)IY2,, X_m=x]

—Eole®.Z)IY2, . X_n=x]|=0,  Pp-as.

—m?
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Write
Eole®, ZDIY?,, X =x]

—m?

(42)
- /rp(e,x,-, Yi) o (X; = xiIY0, . X = x)p(dxy)

and note that for alk;, ¢(0, x;, Y;) is continuous w.r.té and that this factor is
bounded byj|¢; | < co. Moreover,

po(Xi = x;, ng+1lv—m7 X pm=x)
Po(Y2 1Y . X =x)

Herepy (Y9m+1|7_m, X_,, = x) is continuous w.r.® (see the proof of Lemma 4),
and using (34) we find that this density is bounded from below by

po(Xi=x 1Y%, X ,=x)=

—m?

0
o' T1 [ eotiVisxou@m =0
i=—m+1

uniformly w.r.t. 6. In a similar fashionpg(X; = x,-,ngHW_m, X_,=x)Iis
continuous ir and bounded from above lgy b, )™. We conclude thapy (X; =

xi|Y _m, X_m = x) is continuous ird and bounded from above uniformly w.i6t.
Hence the integrand in (42) is continuougiand bounded from above uniformly
w.r.t. 6. Dominated convergence shows that the left-hand side of (42) is continuous
in 6 and the proof is complete.[]

By Lemma 13A¢,,.x (9) is a uniform Cauchy sequence w.at@*-a.s. and in
L1(Py+), and by Lemma 140 . (0) is continuous w.r.td on G Pg=-a.s. and in
L(Py+) for eachm. Hence it follows thatAg . (9) is continuous w.r.td on G
Py+-a.s. and inL1(Py+), that is, for eacld € G,

(43) lim sup |Ag.00o(®) — Ag.eo(@)] =0, Py+-a.s. and inL1(Pg+).
8—>0|9/—9‘§5

REMARK 8. Itis important to stress at this point that the result alumes not
implythatAog_, (0) is continuous w.r.t9 because, contrary to JP, we do not assume
any kind of regularity condition for the stationary distribution as a functiof.of
Nevertheless, we have proved above that, (9) is continuous.

We may now prove a locally uniform law of large numbers.

LEMMA 15. Under the assumptions of Propositidnfor all 6 € G,

n
. . 1 / i _ .
(!E)nOnll_)moo /sup n E Ak.0o(0") — Ep+[A0,00(0)]] =0, Py+-a.s.
0'-01<6| k=1
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PROOF Write

n
sup [nt > Akoo(0) — EQ*[AO,OO(Q)]‘
o'-0i=s| =1
n
< sup ”_1Z(Ak,oo(9/)—Ak,oo(9))’
o'-oi=s| k=1

+

Y Akoo(®) — E@*[Ao,oow)]‘
k=1

<n7tY" sup [Akeo(®) — Akoo(®)]
k=110"—0]<6

_.l_

Y Apoo() — E@*[Ao,oo(en‘.
k=1

Asn — oo, the first term on the right-hand side tends to
E;*[ sup |Agee(8") — Ao,oo<0>|], Pp<-as.,
16'—6]<8
an expression which, by (43), vanishes wider- 0. The second term vanishes
Py«-a.s. ast — oo by the ergodic theorem. This completes the proafl

We have now at hand all the necessary elements to prove Proposition 4.

PROOF OF PROPOSITION 4. Convergence ofA; ,(0) and continuity of
E@*[AO’OO(Q)] have been proved above, so it remains to show the last part of the
proposition.

Note that

n n
Eo [ Y 00,2, )|Y5 Xo= XO} =Y Akox®).
i=1 k=1

Letting m’ — oo in Lemma 13 we find thatAx 0. (0) — Ak.c0(0)| < Kk?p*/?
Py«-a.s. and hence it is sufficient to prove that

lim lim sup
§—>0Qn—>00 |6'—6|<8

n
0" Aoo(8) — Ee*[Ao,oo(en‘ -0, Pp-as.
k=1

This, however, is Lemma 15.00



2298 R. DOUC, E. MOULINES AND T. RYDEN

A.3. Proof of Proposition 5. The proof of Proposition 5 closely follows the
proof of Proposition 4. Only the main adaptations from the proof are presented.
We gather in the following lemma some of the required bounds for the conditional
covariance. In the proof of Proposition 5 we will consider for convenigne€l,
and we letpg ; = ¢(6, Z;) and||¢i|loc = SURy G SUR e 19 (6, X, Y.

LEMMA 16. Under the assumptions of Propositidnfor all m’ > m > 0, all
—m<i,j<n,all8eGandallx € X,

[COVa (6,75 0,11 < 20" N1 lloo 19 oo

OV [6,i+ D0, /1Y s X—m = x1| < 20" NI 100 1) 1] o

[COVB [ 0,1, Do, j1Y" s X = X1 — TOW% [ g, ¢, 1Y, ]|
<6lilocllpjllocw™ ",

OV ., do, 1Y, ] — COW%l b, bo, ;1Y 51| < Bllgi lloo I low ™,

[CO% [ a.i, Po. 1Y s X = x] — CO [ g0, o IY"TL, Xy = x]

<6dillocllglloop” 7.

All these relations stem from Corollary 1, Lemma 9, (39) and observations such
as, fori < j,
Po(X; € A, X; € BIY",,, Xy = X)
—Py(X; € AIY" ., X_y = X)Pp(X; € BIY",,, X = X)|
=Po(X; € AIY",,, X_p = x)
x [Po(X; € BIY",,, Xi € A, X_py=x) —Po(X; € BIY",,, X_jy = x)|

<p/

Details of the proof are omitted for brevity.
Forx € X define

k
Thmx (60) = V_af9|: Yo eilYE, Xw = x}

i=—m+1

—m

Yk-1 X _m= xi|.

k-1
— Val [ > o

i=—m+1

We again follow the pattern of proof consisting of showing that for aemd
x € X, the sequencly ;. x (0)}m>0 is @ uniform (w.r.t.9 € G) Cauchy sequence
that converges to a limit which does not depend:.on
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LEMMA 17. Under the assumptions of Propositiérthere exists a random
variable K € L1(Py+) such thatfor all k > 1 and0<m </,

(44)  supSUP|Tk . (6) — Tim(0)] < K (m + k)3 p*tm/4, Py+-as,
xeX0eG

(45) SUPSUP| Tk m.x(0) — Drm 2 (0)] < K (m + k)3p*+m/8 Py.-as.
xeX 0eG

PROOF Let, fora <b, Sg = Zf’:a ¢9.; (the dependence ehis implicit). The
differencel’ .« (6) — I'x.» () may be decomposed as+ 2B + C, where

A=vap[s* L YE X, =x]-vap[stL YL X, =]

m+1 m+1

— Va5 1Y, 1+ vansh L YR L,

B =cTovp[S*,1 1, bkl Y5, X =x] — cov9rs_;}+1, bo.k1Y"E 1,
C =Val g x|Y~,,. X =x] — Vallger|Y",,1.
By applying Lemma 16, it follows that
Al <2 > (2x 6p" T Adx 20771 A2 x BpF T
—-m+1<i<j<k-1

x Nilloc i llco-

—m+1 l / <k—
The Cauchy-—Schwarz inequality yields

k 2
max 9illooll® oo S( > ||¢>i||oo>

—m+1<i .
i=—m

k

k
(46) < Y (lilvD? Z O )2||¢l||

i=—m

< (m*+ k% Z ———ll¢ill3-

(IIVl)

where the last sum is ib1(Py+). Furthermore, fon > 0,

Yoo ap A =2 Y T (0" AplTh

O<i<j=n O<i<n/2i<j<n—i
<2 ) ( Yoo+ Y p""")
O<i<n/2 \i<j<(n+i)/2 (n+i)/2<j<n—i
f Z p(n i)/2
'00<l<n/2
4pn/4

=S A= pa_ 3
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This shows thatA| is bounded by an expression as in the first part of the lemma.
Similarly we have

k-1

IBl<6 Y (p" Apth Lamax 19 lloclielloc-
i=—m-+1 -

For the maximum we can use the bound (46), and for the sum we note that, for
n>0,

an/Z

n
Z(Ioi/\pni Z pnz+ Z ,0._
i=0

0<i<n/2 n/2<i<n 1- '0

Thus|B]| is bounded by an expression as in the first part of the lemma.

For C we havelC| < 6p"+m||¢>k||§o, and the proof of the first part of the lemma
is complete.

The differencely , (0) — Tk x(0) Mmay be decomposed as+ 2B + C +
D + 2E + 2F, where

A=vaiy[$, Y5, X =x]—Vap[s L, Y5 X =x]

m—+

—var S L IYE L Xy = x] Va6 Y X = x],
B =tovp[S*,1 1, ol YE . X =x1 —COWG[SE, L 1L do il Y™, X = x],
C =Vai(po. Y~ ,,. Xom =x1—Vah[ggk|Y~,,,. X_p =x],
D =vaiy[S 1 [YX 0 Xy = x1 = VABIS 4 IS0 X = ],
E=tov[s5, . 877 V5 X = x]

— TV S 1 ST IV X = 1,

S

F= COV@[S m'+1° ¢9,k|vk_mh X—m’ = x]-

Here|A|, |B] and|C| can be bounded as above, using variants of the bounds in
Lemma 16.

Before proceeding, we note that fér> 1, m > 0 andi < 0, the following
implications hold:

ifj<k+i-1)/2, then(|j| —1)/2< @k +i—3)/4—,
ift(k+i—1/2<j<k-—1, then(lj| —1/4<j+ (—k—3i+1)/4,

ifi <—m, then|i|/8 < (k —2i —m)/8,

ifi <—m, then 3i|/4 < (k —m)/4 —i.
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Using these inequalities, we can bouyiiy| as

IDI<2 > (6 A2x 207 9illsolid)lloo

—-m'+1<i<j<-m

—m
_2 _2i—
< 12pkFm=2/8 N pU=2Em B
i=—m'+1

x( oo pBEHTIA 60

i<j<(k+i—1)/2

+ > pf'+<—k—3f+1>/4||¢>,-||oo)

(k+i—1)/2<j<—m

(o8} o8}
<12p@ =28 37 pl1Bgilloe 30 PV oo

i=—00 j=—00

By the assumptions, the right-hand side has the required form.
Similarly,

—m k—1

El< Y. > 60 A2x 207 gilloollllo

i=—m'+1j=—m+1

—m
<@pltm=2/8 %7 plETmIB gyl
i=—m'+1

e
A 7]

X
(—m+l<j<(k+i—l)/2

(k+i—1)/2<j<k—1

o0 o0
<6p*tm=2/8 3 plilBg e Y IV g) 1
i=—00 j=—00
and

—m

IFl< Y 20 lilloolldlloo

i=—m'+1

—m
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—00 —00
< 2p%Fm/A N 3 gilloe Y P12 o
. =

1=—00

The proof is complete.

Thus{Tx m.x(0)}m=0 is @ uniform (w.r.t.9 € G) Cauchy sequendgy:-a.s. and
in LY(P+), and{Ty m.x (6)}m>0 COnverges as: — oo uniformly w.r.t.6 Py«-a.s.
and in L(Pg+) to a random variabl& - (8) € L1(Ps+) which does not depend
onx thanks to (44). By construction,

n n
vary [ > 9, Zi_ﬁl)‘Y", Xo= xo} =Y Tr0x0).

k=1 k=1
and the proof of Proposition 5 follows along the same lines as that of Proposition 4.
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