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FACIAL STRUCTURE OF CONVEX SETS IN BANACH SPACES
AND INTEGRAND REPRESENTATION OF CONVEX OPERATORS

Naoto Komuro

Abstract. Many types of convex operators which take values in some com-
plete lattices can be represented by convex integrands. We consider a certain
structure of faces of convex sets, and give a new proof of the representation
theorem which is applicable in infinite-dimensional cases. As an application
of such representations, we consider the conjugate duality of convex operators.

1. INTRODUCTION

Let (Ω, µ) be a measure space and let S(Ω) be the space of all measurable
functions f on Ω such that f(t) < ∞ (a.e.t ∈ Ω). Let X be a real Banach space.
A mapping F : X ⊃ D(F ) −→ S(Ω) is called a convex operator if D(F ) is a
convex set in X , and for each x, y ∈ D(F ) and 0 < α < 1,

F ((1 − α)x + αy)(t) ≤ (1 − α)F (x)(t) + αF (y)(t) (a.e.t ∈ Ω).

On the other hand, a function f : X ×Ω −→ R∪{∞} is called a convex integrand
if for almost all t in Ω the function f(·, t) is convex on X . The convex integrand
theory is well known and there are many applications. (See [7] for example.) We
say that a convex integrand f represents a convex operator F if

(1.1) f(x, t) =

{
F (x)(t) for a.e.t ∈ Ω, x ∈ D(F ),

∞, x /∈ D(F ).

In two of the author’s previous papers [3, 4], many applications of integrand
representations of convex operators were demonstrated. However, the existence of
integrand representation is nontrivial, and it is known only in some special cases.
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When X is the d-dimensional Euclidian space Rd, the represenstion theorem has
been proved in [3]. In this note, we apply the theory of the faces of convex sets,
and give a new method of the proof which has an advantage in extending the
reperesentation theorem to infinite-dimensional cases.

2. FACES OF CONVEX SETS

When x, y ∈ X are distinct points, then the set [x, y] = {(1−t)x+ty | 0 ≤ t ≤
1} is called the closed segment between x and y. Half open segments (x, y], [x, y)
and open segment (x, y) are defined analogously. Throughout this section, we fix a
nonempty closed convex set D in X . A convex subset C of D is called a face of
D if

(2.1)

{
x, y ∈ D

(x, y)∩ C �= ∅

}
implies [x, y] ⊂ C.

By F(D), we denote the set of all faces of D. For C ∈ F(D), dimC is
defined to be the dimension of aff C (the affine hull of C). It is clear that x ∈ D

is an extreme point of D if and only if {x} is a 0-dimensional face of D. For
preparation, we will state some fundamental properties of faces in the following
propositions whose proofs are given in [1].

Proposition 1. If Cλ ∈ F(D), (λ ∈ Λ), then ∩λ∈ΛCλ ∈ F(D), and also
there exists the smallest face of D containing ∪ λ∈ΛCλ. Hence (F(D),⊂) forms a
complete lattice.

Proposition 2. Let C1 be a face of D and suppose that C2 ⊂ C1. Then
C2 ∈ F(D) if and only if C2 ∈ F(C1).

For a convex set C in X , C̊ denotes the relative interior of C, which means the
interior of C with respect to the relative topology of aff C. In the case X = Rd,
every face of a convex set D is a closed set. Indeed, if x is a point of the closure
of a face C and x0 ∈ C̊ , the convexity of C yields [x0, x) ⊂ C̊ ⊂ C. Since C is a
face of D, x must be in C.

In the following four propositions, we assume that X = Rd.

Proposition 3. If C1, C2 ∈ F(D), and C1 � C2, then C1∩ C̊ 2 = ∅.

Proposition 4. Let x be a point of D and let C be a face of D. Then C is
the smallest face of D containing x if and only if x ∈ C̊ .
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Proposition 5. Let C1 be a face of D and let x be a relative boundary point
of C1. If C2 is the smallest face of D containing x, then C 2 is contained by the
relative boundary of C1.

From these propositons we obtain the following decomposition of a convex set
by its faces.

Proposition 6. For every closed convex set D in Rd, we can write

(2.2) D = ∪{C̊λ | Cλ ∈ F(D)},

where the union is disjoint.

In infinite-dimensional cases, a convex set D is said to have a face decomposition
if D can be written in the form (2, 2). A collection {Cλ}λ∈Λ ⊂ F(D) is said to be
proper if λ ∈ Λ and Cλ ⊂ Cµ ∈ F(D) imply that Cµ is also a member of {Cλ}λ∈Λ.
Now we define

A = {A =
⋃
λ∈Λ

C̊λ | {Cλ}λ∈Λ is proper}.

Since {D̊ } is proper and D̊ ∈ A, A is at least nonempty. It is easy to see that if
each Aλ (λ ∈ Λ) is a member of A, then so are

⋃
λ∈Λ

Aλ and
⋂

λ∈Λ

Aλ, and there-

fore (A,⊂) is a complete lattice.

Lemma 1. If A ∈ A, then A is a convex set.

Proof. We write A =
⋃

λ∈Λ

C̊λ and let x, y be arbitrary points of A. Then

there exist λ and µ such that x ∈ C̊λ and y ∈ C̊µ. Let z be an arbitrary point of
the open segment (x, y), and let Cν be the smallest face containing z. Since Cν is
a face, we have [x, y] ⊂ Cν . By Proposition 4, Cλ is the smallest face containing
x, and it follows that Cλ ⊂ Cν . Since the collection {Cλ}λ∈Λ is proper, we obtain
C
◦
ν ⊂ A. This means that z ∈ A, and thus A is convex.

3. REPRESENTATION OF CONVEX OPERATORS

In this section, we prove a representation theorem of convex operators. Let
D(F ) be a convex set in X and let F : D(F ) −→ S(Ω) be a convex operator.
Throughout this section, D denotes the closure of D(F ). First we state the main
theorem.
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Theorem 1. Let X be a separable Banach space, and let F : X ⊃ D(F ) −→
S(Ω) be a convex operator. Suppose that D(F ) has a face decompositon and F is
continuous with respect to the almost everywhere convergence, that is, x n −→ x in
X implies (F (xn))(t) −→ (F (x))(t) for almost every t ∈ Ω. Then F has at least
a representation. In other words, there exists a convex integrand f : X × Ω −→
R ∪ {∞} such that (1, 1) holds.

For D = D(F ), we define A as in the Section 2. For A ∈ A, a convex integrand
f : A × Ω −→ R ∪ {∞} is said to represent F on A, if

f(x, t) =

{
F (x)(t) for a.e.t ∈ Ω, x ∈ A ∩ D(F ),

∞, x ∈ A \ D(F ).

Definition. For a convex operator F , we define

Ã = {(A, f) | A ∈ A, and f represents F on A}.

Moreover, for (A1, f1), (A2, f2) ∈ Ã, we write (A1, f1) ≤ (A2, f2) when A1 ⊂ A2

and f2 is an extension of f1 to A2.

Lemma 2. (Ã,≤) is inductively ordered.

Proof. Let {(Aλ, fλ)}λ∈Λ be a totally ordered subset of Ã. Then A =
⋃

λ∈Λ

Aλ

is an element of A. Moreover we can define a convex integrand f on A × Ω
satisfying f = fλ on Aλ × Ω for every λ ∈ Λ. Clearly, (A, f) ∈ Ã and it is an
upper bound of {(Aλ, fλ)}λ∈Λ.

Lemma 3. For A ∈ A such that A �= D, we define SA = {C ∈ F(D) | C ∩
A = ∅}. Then (SA,⊂) is inductively ordered.

Proof. Let {Cλ}λ∈Λ be a totally ordered subset of SA. If we put C =
⋃

λ∈Λ

Cλ,

then C is a convex set and C ∩A �= ∅. Moreover, C ∈ F(D). Indeed, if we assume
(x, y)∩C �= ∅, then there exists λ ∈ Λ such that (x, y)∩Cλ �= ∅. Hence it follows
that [x, y] ⊂ Cλ ⊂ C. Thus C ∈ SA and it is an upper bound of {Cλ}λ∈Λ.

Lemma 4. Let A be an element of A, and assume that A �= D. Then there
exists C ∈ SA such that A ∪ C̊ ∈ A.

Proof. By Lemma 3 and Zorn’s lemma, SA has at least a maximal element
C. It is sufficient to show that A ∪ C̊ ∈ A. Put A =

⋃
λ∈Λ

C̊λ, and take C1 ∈ F(D)
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such that C1 ⊃ C. Since C is a maximal element of SA, we have C1 /∈ SA and
hence C1 ∩ A �= ∅. Therefore we can choose λ ∈ Λ such that C̊λ ∩ C1 �= ∅. It
follows from Proposition 3 that Cλ ⊂ C1 holds. Since the collection {Cλ}λ∈Λ is
proper, C̊1 ⊂ A ⊂ A ∪ C̊. This shows that the collection {Cλ}λ∈Λ ∪ {C} is also
proper, and A ∪ C̊ ∈ A.

Lemma 5. Ã is not empty. In other words, there exists A ∈ A such that F

has a representation f on A.

Proof. It is sufficient to show that F has a representation f on D̊. Let E be
a countable dense subset of D̊. We can assume that E is midpoint convex, that is,
x, y ∈ E implies (x + y)/2 ∈ E . Let B be the set of all rational numbers of the
form λ = n/2m ∈ [0, 1]. For each x, y ∈ E and λ ∈ B, λx + (1 − λ)y belongs to
E and by the convexity of F ,

(3.1) (F (λx + (1− λ)y))(t) ≤ λ(F (x))(t) + (1 − λ)(F (y))(t)

holds for all t ∈ Ω \Ω1(x, y, λ) where Ω1(x, y, λ)⊂ Ω has µ−measure zero. Take
the union of Ω1(x, y, λ) over all x, y ∈ E and λ ∈ B, and denote it by Ω2. Then
µ(Ω2) = 0 and (3, 1) holds on Ω \ Ω2 for all x, y ∈ E and λ ∈ B. Hence if we
define f(x, t) on E × Ω by f(x, t) = (F (x))(t) for x, y ∈ E and t ∈ Ω, then f

satisfies

(3.2) f(λx + (1− λ)y, t) ≤ λf(x, t) + (1 − λ)f(y, t)

for all x, y ∈ E, λ ∈ B, and t ∈ Ω \ Ω2. For every x ∈ D̊, t ∈ Ω \
Ω3(x), (µ(Ω3(x)) = 0), and ε > 0, there exists δ = δ(x, t, ε) > 0 such that
y ∈ D̊ and ‖x − y‖ < δ imply |(F (x))(t) − (F (y))(t)| < ε, by the continuity
conditon of F . Hence for each t ∈ Ω \ (Ω2 ∪ Ω3(x)),

|(F (x))(t)− f(y, t)| < ε

holds for all y ∈ E ∩ Vδ(x), where Vδ(x) denotes the δ-neighborhood of x. Hence
for each t ∈ Ω \ (Ω2 ∪ Ω3(x)), the function f(·, t) is bounded on E ∩ Vδ(x), and
by (3, 2), this implies the uniform continuity of f(·, t) on E ∩ Vδ(x). Thus we
can define f(x, t) on D̊ × Ω by the usual way of taking limit. Now f is obviously
a convex integrand on X × Ω by giving the value ∞ outside D̊. Again by the
continuity condition of F , we have, for each x ∈ D̊,

(F (x))(t) = lim
n→∞(F (xn))(t)

= lim
n→∞ f(xn, t)

= f(x, t),
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for almost every t ∈ Ω, where {xn} is a sequence of E converging to x. Thus f is
a representation of F on D̊ and this completes the proof.

Lemma 6. Suppose that (A, f) ∈ Ã and A �= D. Let C ∈ SA be a face such
that A∪ C̊ ∈ A as in Lemma 4. Then f has an extension f1 defined on (A∪ C̊)×Ω
such that (A ∪ C̊, f1) ∈ Ã.

Proof. Let E be a countable dense subset of C̊ . We can assume that E is
midpoint convex. Let B be the set defined in the proof of Lemma 5. For each
x, y ∈ E and λ ∈ B, λx + (1 − λ)y belongs to E and by the convexity of F ,

(3.3) (F (λx + (1 − λ)y))(t) ≤ λ(F (x))(t) + (1 − λ)(F (y))(t)

holds for all t ∈ Ω \Ω4(x, y, λ) where Ω4(x, y, λ)⊂ Ω has µ−measure zero. Next
for each x ∈ E , there exists a null set Ω5(x) such that

(3.4) (F (x))(t) ≥ sup
z∈A

lim
η→+0

f(x + η(z − x), t)

for all t ∈ Ω \ Ω5(x). Take the union of Ω4(x, y, λ) and Ω5(x) over all x, y ∈ E
and λ ∈ B, and denote them by Ω6 and Ω7 respectively. Then µ(Ω6) = µ(Ω7) = 0
and (3, 3), (3, 4) holds on Ω \ (Ω6 ∪ Ω7) for all x, y ∈ E and λ ∈ B. For x ∈ E
and t ∈ Ω \ (Ω6 ∪ Ω7), we define f0(x, t) = (F (x))(t). Then f0(·, t) is locally
bounded in E by the same reasoning as in the proof of Lemma 5. Hence f0(·, t)
can be extended continuously to C̊ . Moreover we define

f0(x, t) = sup
z∈A

lim
η→+0

f(x + η(z − x), t)

for every x ∈ C̊ and t ∈ Ω6 ∪ Ω7. Then the function

f1(x, t) =

{
f(x, t), (x, t) ∈ A × Ω,

f0(x, t), (x, t) ∈ C̊ × Ω

is obviously a convex integrand, and we can easily see that f1 is a representation
of F on A ∪ C̊.

Proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn’s lemma, Ã has at least
a maximal element (A0, f0). Moreover, Lemma 6 shows that A0 = D, and this
means that f0 represents F on D. Defining f0 = ∞ on Dc × Ω, we complete the
construction of a representation of F .

Corollary 1. Let X be a separable Banach space, and let F : X −→ S(Ω)
be a convex operator defined on the whole space X . Suppose that F is continuous
with respect to the almost everywhere convergence, then F has a representation.
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Proof. Since X is considered to have a face decomposition, this follows directly
from Theorem 1.

By Proposition 6, every convex set in the finite-dimensional space Rd has a
face decomposition. Since every convex function on such a set is continuous on the
interior of its domain, we have

Corollary 2. Every convex operator F : Rd ⊃ D(F ) −→ S(Ω) has at least a
representation.

4. NORMAL REPRESENTATION

A convex integrand f : Rd × Ω −→ R ∪ {∞} is said to be normal if f(·, t)
is lower semicontinuous for every t ∈ Ω and there exists a coutable family of
measurable functions ξn : Ω −→ Rd (n = 1, 2, · · · ) such that

(1) for each n, f(ξn(t), t) is measurable in t ∈ Ω,
(2) for each t ∈ Ω, {ξn(t)}∞n=1 is dense in D(f(·, t)),

where D(f(·, t)) = {x ∈ Rd | f(x, t) < ∞}. If a convex integrand f is normal,
then f(ξ(t), t) is measurable in t ∈ Ω whenever ξ : Ω −→ Rd is measurable. A
convex operator F is said to have a normal representation if there exists a normal
convex integrand which represents F . We will find some conditions under which a
convex operator has a normal representation. By the conjugate of a convex integrand
f , we mean the convex integrand f∗ : Rd × Ω −→ R ∪ {∞} defined by

f∗(ξ, t) = sup {〈x, ξ〉 − f(x, t)}.
x∈Rd

Also the biconjugate f∗∗ : Rd × Ω −→ R ∪ {∞} is given by

f∗∗(x, t) = sup {〈x, ξ〉 − f∗(ξ, t)}.
ξ∈Rd

If a convex integrand f is normal, then so are f∗ and f∗∗. We note that if a convex
integrand f represents a convex operator F then D(f(·, t)) does not depend on
t ∈ Ω .

Lemma 7. Let f : Rd × Ω −→ R ∪ {∞} be a representation of some convex
operator. Then f is normal if and only if f(·, t) is lower semicontinuous, in other
words, f∗∗ = f on Rd × Ω.

Proof. Let D = D(f(·, t)) and take a countable subset {an} of D. If we
put ξn(t) = an for all t ∈ Ω and n = 1, 2, · · · , then the family {ξn} satisfies the
definition of normality.
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Remark. If a convex integrand f satisfies
(1) for each x ∈ Rd, f(x, ·) is measurable, and
(2) D(·, t)) does not depend on t ∈ Ω,

the conclusion of Lemma 7 is also valid.
Let L(Rd, S(Ω)) denote the space of all linear mappings from Rd to S(Ω). We
identify L(Rd, S(Ω)) with the set S(Ω)d = {ξ = (ξ1, · · · , ξd) | ξi ∈ S(Ω), i =
1, · · · , d} by corresponding (ξ1, · · · , ξd) ∈ S(Ω)d to the mapping ϕ : Rd �
(x1, · · · , xd) −→ 〈x, ξ〉 = x1ξ1 + · · · + xdξd ∈ S(Ω). The conjugate operator
F ∗ : L(Rd, S(Ω)) ⊃ D(F ∗) −→ S(Ω) of F is defined by

F ∗(ξ) =
∨

x∈D(F∗)

(〈x, ξ〉 − F (x)),

where
∨

means the supremum in the space S(Ω), and D(F ∗) is the set of all
ξ ∈ S(Ω)d such that the supremum F ∗(ξ) exists. The biconjugate operator F∗∗

is defined on the space L(L(Rd, S(Ω)), S(Ω)) = L(S(Ω)d, S(Ω)), and we regard
S(Ω)d and Rd as the subspaces of this by corresponding η ∈ S(Ω)d and x ∈ Rd to
〈η, ·〉 and 〈x, ·〉 ∈ L(S(Ω)d, S(Ω)), respectively. For x ∈ Rd and η ∈ S(Ω), F ∗∗ is
defined by

F ∗∗(x) =
∨

ξ∈D(F∗)

(〈x, ξ〉 − F ∗(ξ)),

F ∗∗(η) =
∨

ξ∈D(F∗)

(〈η, ξ〉− F ∗(ξ)).

They are only defined on the domain D(F∗∗) where these suprema exist.

Theoem 2. Let F : Rd ⊃ D(F ) −→ S(Ω) be a convex operator and let
f : Rd × Ω −→ R ∪ {∞} be a representation of F . Then the convex integrand
f∗ and f ∗∗ are normal representations of F ∗ and F ∗∗ respectively. Moreover, for
ξ ∈ D(F ∗) and η ∈ D(F ∗∗),

(F ∗(ξ))(t) = f∗(ξ(t), t),

(F ∗∗(η))(t) = f∗∗(η(t), t)

hold for almost every t ∈ Ω.

This theorem follows from the following lemma.

Lemma 8. Let F : Rd ⊃ D(F ) −→ S(Ω) be a convex operator, and let
f : Rd × Ω −→ Rd ∪ {∞} be a representation of F . Let U be a convex subset
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of D(F ) and suppose that inf x∈U f(x, t) > −∞ for almost every t ∈ Ω. Then∧
x∈U F (x) ∈ S(Ω) exists and

(
∧
x∈U

F (x))(t) = inf
x∈U

f(x, t).

Proof. Let E be a countable dense set in U . Then we have

inf
x∈U

f(x, t) = inf
x∈E

f(x, t)

for a.e.t ∈ Ω. Hence infx∈U f(x, t) is measurable in t and

(
∧

x∈U

F (x))(t) ≤ (
∧
x∈E

F (x))(t)

= inf
x∈E

f(x, t)

= inf
x∈U

f(x, t)

≤ (
∧
x∈U

F (x))(t)

for a.e.t ∈ Ω, and the lemma is proved.

Proof of Theorem 2. By Lemma 8 we have

(F ∗(ξ))(t) =
∨

x∈D(F )

(〈x, ξ〉 − F (x))(t)

= sup
x∈D(F )

(〈x, ξ(t)〉 − f(x, t))

= f∗(ξ(t), t) (a.e.t ∈ Ω)

for every ξ ∈ D(F∗) ⊂ S(Ω)d. The latter statement can be obtained by analogy.
Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator F : Rd ⊃ D(F ) −→ S(Ω) satisfies

F ∗∗(x) = F (x)

for every x ∈ D(F ) if and only if F has a normal representation.

We note that the theorems in the Section 4 can be extended to infinite-dimensional
cases by a parallel argument under the hypothesis in Theorem 1.
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