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AN EFFICIENCY STUDY OF POLYNOMIAL EIGENVALUE
PROBLEM SOLVERS FOR QUANTUM DOT SIMULATIONS

Tsung-Ming Huang, Weichung Wang and Chang-Tse Lee

Abstract. Nano-scale quantum dot simulations result in large-scale polyno-
mial eigenvalue problems. It remains unclear how these problems can be
solved efficiently. We fill this gap in capability partially by proposing a poly-
nomial Jacobi-Davidson method framework, including several varied schemes
for solving the associated correction equations. We investigate the performance
of the proposed Jacobi-Davidson methods for solving the polynomial eigen-
value problems and several Krylov subspace methods for solving the linear
eigenvalue problems with the use of various linear solvers and precondition-
ing schemes. This study finds the most efficient scheme combinations for
different types of target problems.

1. INTRODUCTION

A standard matrix polynomial eigenvalue problem can be written as

(1) P (λ)u ≡
(

τ∑
i=0

λiAi

)
u = 0,

where (λ, u) is the corresponding eigenpair with λ ∈ C and u ∈ C
N , integer τ is

the degree of the matrix polynomial, and Ai ∈ RN×N are the coefficient matrices.
Solving large-scale polynomial eigenvalue problems has a long term history and
still remains an active research topic due to its computational challenges and wide
applications. Scientific and engineering studies that lead to polynomial eigenvalue
problems include nano-scale quantum mechanism of degree 1 [7], 3 [34], or 5 [15];
high speed railway vibration of degree 2 [3, 14]; and plasma physics of degree 3
[13].
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In this article, we focus on the polynomial eigenvalue problems arising in sim-
ulations of nano-scale quantum dots (QDs). In particular, we consider how the
Jacobi-Davidson methods and Krylov subspace methods may be used to solve these
problems efficiently. This study aims to do the following:

• derive a framework of the Jacobi-Davidson method for solving polynomial
eigenvalue problems;

• propose various schemes for solving the correction equation in the Jacobi-
Davidson method;

• provide a set of large-scale polynomial eigenvalue benchmark problems arising
in the numerical simulation of quantum dots; and

• to perform intensive numerical performance comparisons for the various schemes
against the benchmark problems.

The paper is organized as follows. We first introduce the model problems
arising in quantum dot simulations in Section 2. Several variants of Jacobi-Davidson
methods are discussed in Section 3. Several Krylov subspace methods for solving
linear eigenvalue problems are discussed in Section 4. Numerical experiments are
presented and analyzed in Section 5. We conclude the paper in Section 6.

2. MODEL PROBLEMS

Nano-scale semiconductor quantum dots are materials in which the carriers are
confined within the dots in all three dimensions. These carries consequently have
wavelike properties with discrete energy levels that are induced. Over the past few
years, numerous studies regarding nano-scale quantum dots have been conducted to
examine their physical properties [4, 10, 20, 25] and applications [2, 8, 9, 19, 24].
Other than theoretical and experimental methods, numerical simulations also play
important roles to investigate insights into a QD’s electronic and optical properties
[26, 28, 35].

We focus on a single particle conduction band model in this article. As shown
in Figure 1, which is a structure scheme of the model, a QD is embedded in a
matrix. The governing equation of this model can be described by the Schrödinger
equation in general

(2) −∇ · ( �2

2m(x)
∇u) + c(x)u = λu,

or, in cylindrical coordinates,

(3) −1
r

∂

∂r
(r

�2

2m(x)
∂ru) − 1

r
∂θ(

1
r

�2

2m(x)
∂θu) − ∂z(

�2

2m(x)
∂zu) + c(x)u = λu.
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Here, � is the reduced Plank constant, the eigenvalue λ is the total electron energy,
and the corresponding eigenvector u denotes the wave function. The variable m(x)
represents the electron effective mass, and c(x) is the confinement potential.

Fig. 1. Structure schema of a pyramidal and a cylindrical quantum dot. Each of the
quantum dots is embedded in a hetero-structure matrix.

In hetero-structures, both m(x) and c(x) are discontinuous at the interface. Par-
ticularly, in a constant effective mass model, m(x) and c(x) are piecewise constant
functions with respect to the space variable x:

m(x) =
{

m1 in the dot,
m2 in the matrix, c(x) =

{
c1 in the dot,
c2 in the matrix.

The Ben Daniel-Duke interface conditions associated with the discontinuity in m

are imposed as follows

(4)

u|D+
= u|D− ,

�2

2m2

∂u

∂n

∣∣∣∣
∂D+

=
�2

2m1

∂u

∂n

∣∣∣∣
∂D−

,

where D stands for the QD domain. The normal direction n with the subscripts
+ and − denotes the corresponding outward normal derivatives of the interface
defined for the matrix and dot regions, respectively. If the non-parabolicity of the
electron’s dispersion relation is taken into account [5], the effective mass model for
the interface conditions (4) becomes

(5)
1

m�(λ)
=

P 2
�

�2

(
2

λ + g� − c�
+

1
λ + g� − c� + δ�

)
,

where P�, g�, and δ� are the momentum, main energy gap, and spin-orbit splitting
in the �th region, respectively. The following parameters are used in our numerical
experiments: c1=0.000, g1=0.235, δ1=0.81, P1=0.2875, c2=0.350, g2=1.590, δ2 =
0.80, and P2 = 0.1993. Additionally, we apply homogeneous Dirichlet conditions
on the boundary of the quantum matrix.
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To simulate QDs fabricated in laboratories, various discretization schemes have
been developed for various QD geometries such as a cylinder [16, 18, 34], cone [23],
pyramid [6, 15, 27, 33], or irregular shape [17]. Among these QD geometries and
discretizations, we pick the following five settings and use the induced polynomial
eigenvalue problems as the test problems. We omit detailed derivations of the
discretizations and the resulting eigen-systems here as they can be found in the
corresponding references.

• Cylindrical QD with the constant effective mass model [18]:

(6) Pcc(λ)u ≡ (Acc
0 + λI)u,

where Acc
0 is unsymmetric.

• Cylindrical QD with the non-parabolic effective mass model [34]:

(7) Pcn(λ)u ≡
(

3∑
i=0

λiAcn
i

)
u.

• Pyramidal QD with the constant effective mass model [15]:

(8) Ppc(λ)u ≡ (Apc
0 − λI)u,

where Apc
0 is a symmetric positive definite matrix.

• Pyramidal QD with non-parabolic effective mass model [15]:

(9) Ppn(λ)u ≡
(

5∑
i=0

λiApn
i

)
u.

• Irregular QD with the constant effective mass model over the skewed coordi-
nate system [17]:

(10) Pic(λ)u ≡ (Aic
0 + λAic

1 )u,

where Aic
0 is symmetric positive definite matrix and Aic

1 is a diagonal matrix.
The above test problems have different degrees in the polynomial eigenvalue

problems and different distributions of matrix entry magnitudes. We use the eigen-
solvers proposed in Sections 3 and 4 to solve these problems, to investigate the
efficiency, and to justify the performance.

3. POLYNOMIAL JACOBI-DAVIDSON ALGORITHM

Jacobi-Davidson type methods are competitive numerical methods when interior
eigenvalues are of interest, especially for large-scale eigenvalue problems. Such
attractive properties mainly result from the fact that: (i) the coefficient matrices
are used implicitly in the matrix-vector multiplication forms; (ii) no inverse of
the matrix is needed even to compute interior eigenvalues; and (iii) the desired
eigenpairs are approximated iteratively by a gradually expanding subspace, and then
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corrector vectors can be approximately computed and preconditioned to achieve
efficiency. However, there is only sparse literature that addresses how variants of
Jacobi-Davidson methods perform on large-scale polynomial eigenvalue problems.

We describe the main idea of the Jacobi-Davidson method for the polynomial
eigenvalue problem as follows from the viewpoint of Taylor expansion. We see
that the following derivation is a straightforward generation of the standard linear
eigenvalue problem discussed in [29]. Suppose Vk is a k-dimensional subspace
that has an orthogonal unitary basis v1, v2, . . . , vk. Let (θk, uk) be a Ritz pair (an
approximate eigenpair) of P(λ) and (θk, sk) be an eigenpair of V ∗

k P(λ)Vks = 0,
where ‖sk‖2 = 1, uk = Vksk , and Vk = [v1, · · · , vk]. To expand the subspace Vk

successively, the Jacobi-Davidson method finds the orthogonal complement for the
current approximation uk . In other words, starting from the Ritz pair (θk, uk), we
intend to find a corrector t ⊥ uk such that

(11) P(λ)(uk + t) = 0.

Obviously, it is impractical to solve Eq. (11) directly as it is another polynomial
eigenvalue problem that is equivalent to the original target problem (1). Instead, we
may expand Eq. (11) and rewrite P(λ) in terms of θk by using a Taylor expansion
to obtain an approximation to the corrector t. First, we rewrite Eq. (11) as

P(λ)t = −P(λ)uk = −rk + (P(θk) −P(λ))uk,

where the residual vector

rk = P(θk)uk.

Furthermore, by assuming θk is close to λ, we may use Taylor’s Theorem to obtain

(P(θk) −P(λ))uk =
[
(θk − λ)P ′(θk) − 1

2
(θk − λ)2P ′′(ξk)

]
uk

= (θk − λ)pk − 1
2
(θk − λ)2P ′′(ξk)uk,

where ξk is between λ and θk and

pk = P ′(θk)uk ≡ d

dλ
P(λ)

∣∣∣∣
λ=θk

uk =

(
τ∑

i=1

iθi−1
k Ai

)
uk.

Consequently, Eq. (11) is equivalent to

P(λ)t = −rk + (θk − λ)pk − 1
2
(θk − λ)2P ′′(ξk)uk.(12)
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We can further manipulate the terms containing (θk − λ) to derive practical
computational schemes for finding t. First, by using the fact that rk ⊥ uk , or

u∗
krk = u∗

kP(θk)uk = s∗kV ∗
k P(θk)Vksk = 0,

we multiply
(
I − pku∗

k
u∗

kpk

)
on both sides of Eq. (12) to eliminate the term containing

(θk − λ) and to obtain(
I − pku

∗
k

u∗
kpk

)
P(λ)t = −rk − 1

2
(θk − λ)2

(
I − pku

∗
k

u∗
kpk

)
P ′′(ξk)uk.

Second, we neglect the second order term containing (θk − λ)2 on the right hand
side to obtain a linear (in terms of λ) approximation of P(λ)t satisfying(

I − pku
∗
k

u∗
kpk

)
P(λ)t = −rk and t ⊥ uk.(13)

Practically, we further apply the orthogonal projection (I − uku
∗
k) and approximate

P(λ) by P(θk) and then form the following correction equation(
I − pku

∗
k

u∗
kpk

)
P(θk)(I − uku

∗
k)t̃ = −rk and t̃ ⊥ uk.(14)

Based on the above discussions, a general polynomial Jacobi-Davidson method
designed to compute all the desired eigenvalues for the problem (1) is shown in
Algorithm 1.

Algorithm 1. Polynomial Jacobi-Davidson Algorithm for (
∑τ

i=0 λiAi)u = 0.

Input: Coefficient matrices Ai for i = 0, . . . , τ , the number of desired eigen-
values k and an initial orthonormal vector Vini.

Output: The desired eigenpairs (λj, uj) for j = 1, . . . , k.
1. Set V = [Vini], Vu = [ ], and Λ = ∅.
2. for j = 1 to k do
3. Compute Wi = AiV and Mi = V ∗Wi for i = 0, . . . , τ .
4. while (user defined stopping criteria are not satisfied)
5. Compute the eigenpairs (θ, s) of (

∑τ
i=0 θiMi)s = 0.

6. Select the desired eigenpair (θ, s) with ‖s‖2 = 1 and θ /∈ Λ.
7. Compute u = V s, p = P ′(θ)u, r = P(θ)u.
8. Solve the correction equation
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(
I − pu∗

u∗p

)
P(θ)(I − uu∗)t = −r

approximately for t ⊥ u .
9. Orthogonalize t against V ; set v = t/‖t‖2.

10. Compute wi = Aiv,

Mi =
[

Mi V ∗wi

v∗Wi v∗wi

]

for i = 0, . . . , τ .
11. Expand V = [V, v] and Wi = [Wi, wi] for i = 1, . . . , τ .
12. end while
13. Set λj = θ, uj = u, Λ = Λ ∪ {λj}.
14. Perform locking by orthogonalizing uj against Vu; Compute uj =

uj/‖uj‖2; Update Vu = [Vu, uj].
15. Choose an orthonormal matrix Vini ⊥ Vu; Set V = [Vu, Vini].
16. end for

Now, we focus on three schemes for approximately solving Eq. (14). This is an
essential step in the polynomial Jacobi-Davidson method that may affect the overall
performance significantly. We approximately solve Eq. (14) by a preconditioned
iterative method, e.g., GMRES with SSOR preconditioner. We call this precondi-
tioned iterative process corresponding to line 1 of Algorithm 1 as the “inner loop”
of the algorithm. On the other hand, we call the while-loop in lines 1 to 1 as the
“outer loop” of the algorithm.

Three schemes, SOneLS , STwoLS, and SOneStep, are proposed below to solve
Eq. (14) approximately. SOneLS solves one linear system by a preconditioned it-
eration method. STwoLS and SOneStep solve two linear systems by preconditioned
iterations, but SOneStep conducts only one step in the preconditioned iterations.

• Scheme SOneLS . In each step of the preconditioned iterations for solving
correction equation (14), we need to solve a linear system in a form such that

Mpz = y, z ⊥ uk(15)

where y is a certain given vector that is orthogonal to uk and

Mp ≡
(

I − pku∗
k

u∗
kpk

)
M (I − uku

∗
k)

with preconditioner M of P(θk). Under the requirement z ⊥ uk, the solution
of Eq. (15) is given by
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z = M−1y + ηkM−1pk with ηk = − u∗
kM−1y

u∗
kM−1pk

.(16)

It is clear that the vector M−1pk and the inner product u∗
kM−1pk need

to be computed only once in the first step of the preconditioned iteration.
Consequently, other iterative steps need only the preconditioning operations
in the form of M−1y.

• Scheme STwoLS. By (14) and t ⊥ uk, it follows that

P(θk)t =
u∗

kP(θk)t
u∗

kpk
pk − rk ≡ ηk(t)pk − rk.(17)

We can then solve the two linear systems

P(θk)z = −rk and P(θk)z = pk(18)

approximately by a preconditioned iterative method to obtain the approximate
solution z1 and z2, respectively. Then we compute

t̃ = z1 + ηkz2 for ηk = −u∗
kz1

u∗
kz2

.(19)

Here t̃ as an approximate solution to Eq. (17) that satisfies the requirement
t̃ ⊥ uk. In STwoLS , two linear systems (18) need to be solved approximately
by a preconditioned iteration method to obtain the approximated solution t̃.

• Scheme SOneStep. We may reduce the cost for computing t̃ that solves
Eq. (17) in the inner loop. Here we only conduct one preconditioned iteration.
Namely, t̃ is computed by

t̃ = −M−1rk + ηkM−1pk for ηk =
u∗

kM−1rk

u∗
kM−1pk

,(20)

when we have a suitable preconditioner M ≈ P(θk).

4. KRYLOV SUBSPACE METHODS

While the polynomial eigenvalue problems (6)-(10) can be solved by the Jacobi-
Davidson methods presented in Section 3, the linear eigenvalue problems (6), (8),
and (10) can also be solved by the the so-called Krylov subspace methods, such as the
Lanczos, Arnoldi, and Krylov-Schur methods. In this section, we briefly describe
how the Krylov subspace methods can be used to solve the standard eigenvalue
problem A0u = λu. Similar ideas can be generalized to general eigenvalue problems
A0u = λA1u by the A1-inner product.
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First, we define the Krylov decomposition [30] as follows. Let Vk+1 = [Vk, vk+1]
∈ R

N×(k+1) be an orthonormal matrix, where Vk ∈ R
N×k and vk+1 ∈ R

N×1. An
orthonormal Krylov decomposition of order k is a relation of the form

A0Vk = VkBk + vk+1b
T
k+1,(21)

where Bk ∈ Rk×k is a Rayleigh quotient R(A0; Vk) = V T
k A0Vk and bk+1 ∈ Rk×1.

Note that if A0 is symmetric, Bk is tridiagonal, and bk+1 = βkek, then (21) is a
Lanczos decomposition of order k. If Bk is upper Hessenberg, bk+1 = βkek, then
(21) is an Arnoldi decomposition of order k. Here βk ∈ R and ek ∈ R

k×1 is the
standard unit vector (kth column of identity matrix).

Consequently, the Ritz pairs associated with Uk can be computed as follows.
Let (θi, vi) be an eigenpair of Bk and let (θi, yi) = (θi, Ukvi) be the Ritz pair of
A. By (21), we have

‖Ayi − θiyi‖2 = ‖AUkvi − θiUkvi‖2 = ‖(UkBk + uk+1b
T
k+1)vi − θiUkvi‖2

= ‖Uk(Bkvi − θivi) + (bT
k+1vi)uk+1‖2 = |bT

k+1vi|.

As k increases, some of these Ritz pairs will approach the eigenpairs of A. That
is, |bT

k+1vi| → 0 for some i.
Theoretically, we can keep expanding the Krylov decomposition until the Ritz

eigenpairs converge to the desired eigenpairs. Practically, however, the expanding
process is limited to avoid loss of numerical orthogonality of Vk and to use a rea-
sonable amount of memory for storing Vk. A general idea of restarting is that, after
Vp has been computed, a new Krylov process is performed to compute a different
Krylov decomposition of order p with “better” initial vectors. For example, (i) an
“explicit restart” strategy [11, 12] reruns the Krylov decomposition by using the
approximate Schur vectors associated with the first not-yet-converged eigenvalue as
an initial vector. (ii) An “implicit restart” [21] combines the Krylov decomposition
process with the implicitly shifted QR algorithm. This implicit restart process is
more efficient and numerically stable than explicit restart. (iii) A “Krylov-Schur
method” [31, 32] that can be seen as an improvement on traditional Krylov subspace
methods. We sum up all the processes in Algorithm 2.

Algorithm 2. Restarting Krylov Subspace Algorithm for A 0u = λu.

Input: Coefficient matrix A0; initial orthonormal vector v1; number of desired
eigenpairs k; size of subspace for restarting p.

Output: The desired k eigenpairs of A0.
1. Generate the Krylov decomposition of order j (j ≥ k), by starting from v1:

A0Vj = VjBj + vj+1b
T
j+1.
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2. Compute the Ritz pairs of A0 from Bj and Vj.
3. while (the desired k eigenpairs of A0 are not convergent)
4. Extend the Krylov decomposition from order j to p:

AVp = VpBp + vp+1b
T
p+1.

5. Compute the Ritz pairs of A0 from Bp and Vp.
6. Reformat a new Krylov decomposition with order j by a restarting process.
7. end while

5. NUMERICAL RESULTS

We study how various Jacobi-Davidson and Krylov subspace methods perform
when solving the polynomial eigenvalue problems arising in quantum dot simula-
tions. The properties of the test problems are shown in Table 1. All of the test
problems are solved by the Jacobi-Davidson methods. Only problems of degree 1
(linear or generalized) problems are solved by the Krylov type methods. Note that,
as the eigenvector solutions of the cylindrical and irregular QDs are periodical in the
azimuthal direction, the 3D problems are transformed to a sequence of 2D problems
by the truncated Fourier series. Consequently, the discretization domain dimensions
of problems P11

2D, P23
2D, and P61

2D are over the two dimensional radial-longitude
planes. Except for the results shown on Figure 2, all of the numerical experiments
are conducted on an HP BL460c workstation composed of two Intel Dual-Core 5160
3.0 GHz CPUs and 32 GB main memory.

In Section 5.1 and 5.2, we study how the correction equation solution schemes
and the preconditioners affect the performance of the Jacobi-Davidson methods
presented in Algorithm 1. We implement the Jacobi-Davidson methods with Fortran
90. In Section 5.3, we investigate the performance of various Krylov subspace
methods. In Section 5.4, we make an overall comparison of all methods and conclude
the most efficient scheme combinations for each of the problems.

5.1. Correction Equation Solution Schemes

To compare the efficiency of the three schemes (SOneLS , STwoLS, and SOneStep)
for solving the correction equation (14), we use GMRES to solve the linear systems
in (14) and (18) with the SSOR (symmetric successive over-relaxation) precondi-
tioner M = (D + ωL)D−1(D + ωU). Here P(θk) = L + D + U and L, D, and
U are the strict lower triangular, diagonal, and strict upper triangular matrices, re-
spectively. The parameter ω is chosen from 0.8 to 1.95. The timing results for pro-
blems P11

2D, P23
2D, P31

3D, P55
3D, and P61

2D are shown in Figure 2. The CPU timing
results are computed by summing up the total cost for computing the smallest five
positive eigenvalues and their corresponding eigenvectors.
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Fig. 2. Timing results for eigenvalue problems with a matrix size larger than 1.2 million.
The numerical experiments are conducted on a workstation equipped with an Intel
1.6 GHz Itanium II CPU, 32-gigabyte main memory, and an HP Unix operating
system.
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Table 1. Test problem properties. The table shows the names of the eigenvalue prob-
lems, QD geometry, QD geometric symmetry, dimension of discretization
domains, QD effective mass, degree of the eigenvalue problems, properties
of the coefficient matrices, and coefficient matrix size of the eigenvalue
problems. The superscript and subscript of problem names denotes the
degree and the discretization domain dimension, respectively. Unsym. and
S.P.D. stands for unsymmetric and symmetric positive definite, respectively.

EVP P11
2D P23

2D P31
3D P41

3D P55
3D P61

2D

QD Geo. cylinder cylinder pyramid pyramid pyramid irregular
QD Geo. Sym. radial radial non-rad. non-rad. non-rad. radial

Disc. Dom. 2D 2D 3D 3D 3D 2D
QD Eff. Mass constant non-para. constant constant non-para. constant

Mtx. Degree (τ ) 1 3 1 1 5 1
Mtx. Prop. Unsym. Unsym. S.P.D. S.P.D. Sym. S.P.D.
Mtx. Size 1, 200, 000 1, 228, 150 5, 216, 783 77, 315 5, 216, 783 1, 228, 150

Remark. As mentioned in [29], the scheme involving (17) is not efficient for
solving linear eigenvalue problems. We have similar observations for higher order
polynomial eigenvalue problems and we believe the reasons behind this are similar
to the linear cases. Using the definition of residual rk = P(θk)uk, we can rewrite
(17) as

t = ηkP(θk)−1pk − uk.

Such choice is actually equivalent with t = P(θk)−1pk, as t is made orthogonal
to uk afterwards. Let t̃ be an approximated solution of P(θk)t = pk. The angle
between t̃ and uk may be small. Consequently, we do not expect that the subspace
expansion would be efficient. Our numerical experiments of the five test problems
verify this conjecture. The norm of residuals can only be reduced to 10−2.

5.2. Effects of Preconditioning

We have observed that SOneLS outperforms another two schemes while using the
preconditioner SSOR(ω). In this subsection, we further compare the performance of
preconditioners, including SSOR(ω), ILU(�) (incomplete LU factorization), ICC(�)
(incomplete Cholesky factorization), and Jacobi when using the the SOneLS scheme.
The numerical results for solving problems P11

2D, P23
2D, P31

3D, P55
3D, and P61

2D are
shown in Table 2. Note that we have scanned the parameter ω of SSOR(ω) from
0.8 to 1.98 and the fill-in level � of ILU(�) and ICC(�) from 0 to 12 for each of
the test problems. However, Table 2 presents only the particular parameters that
achieve better timing results. The table suggests the following observations.
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Table 2. The total Jacobi-Davidson iteration numbers (Itno) and CPU times in sec-
ond (Time) used for solving the test problems P11

2D, P23
2D, P31

3D, P41
3D,

P55
3D, and P61

2D by Algorithm 1, scheme SOneLS and different precondi-
tioners. The column “ω or �” shows the parameter ω in the preconditioner
SSOR(ω) or the fill-in level � in the preconditioners ILU(�) and ICC(�).
The timing results are computed by summing the five smallest positive
eigenvalues in each of the test problems

(a) 2D Problems
P11

2D P23
2D P61

2D

Precond. ω or � Itno Time ω or � Itno Time ω or � Itno Time
SSOR(ω) 1.80 285 1,706 1.25 367 1,440 1.85 458 3,897

1.85 256 1,536 1.30 292 1,077 1.90 392 3,304
1.90 232 1,388 1.35 395 1,734 1.95 388 3,258
1.95 1,213 11,206 1.40 377 1,584 1.98 530 4,548

ILU(�) 5 148 1,415 5 157 867 5 161 1,798
6 126 1,309 6 85 483 6 150 1,767
7 112 1,253 7 100 570 7 143 1,782
8 106 1,278 8 102 631 8 136 1,792

ICC(�) - - - - - - 0 446 3,148
Jacobi - 2,427 11,982 - 837 2,588 - 8,580 48,590

(b) 3D Problems
P31

3D P41
3D P55

3D

Precond. ω or � Itno Time ω or � Itno Time ω or � Itno Time
SSOR(ω) 1.80 86 1,905 1.55 50 11 1.80 98 4,087

1.85 82 1,818 1.60 48 11 1.85 98 3,831
1.90 93 2,090 1.65 51 12 1.90 101 4,028
1.95 114 2,659 1.70 50 12 1.95 97 4,036

ILU(�) 0 141 3,273 0 53 12 0 102 3,981
1 106 3,196 1 52 17 1 83 4,008
2 89 3,284 2 52 24 2 72 4,231

ICC(�) 0 143 2,990 0 54 12 0 130 4,662
1 101 2,627 1 51 14 1 99 4,394
2 85 2,887 2 50 20 2 94 5,093

Jacobi - 388 6,342 - 106 16 - 312 9,633

• For P11
2D, P23

2D, and P61
2D, the preconditioner ILU(6) or ILU(7) results in

the best timing results. But, for P31
3D and P55

3D, SSOR(1.85) achieves the
best timing results.

• For ILU and ICC, the best � for P112D, P23
2D, and P61

2D is either 6 or 7.
However, the best � for P31

3D and P55
3D is 0 or 1.

The above behaviors are mainly due to the bandwidths of the corresponding
coefficient matrices. In P11

2D, P23
2D, and P61

2D, the discretizations are associated
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with two-dimensional planes and thus have smaller bandwidths. In contrast, the
matrices associated with P31

3D and P55
3D have larger bandwidths due to the three-

dimensional discretization. Figure 3-(a), Figure 4, and Figure 3-(c) illustrate the
sparsity of the coefficient matrices associated with P11

2D, P23
2D, and P61

2D with
smaller matrix sizes, respectively. Figure 3-(b) and Figure 5 illustrate the sparsity
of the coefficient matrices associated with P31

3D and P55
3D with smaller matrix sizes,

respectively.

Fig. 3. Sparsity of the coefficient matrices Acc
0 , Apc

0 , and Aic
0 . (a) Acc

0 with matrix size
384, (b) Apc

0 with matrix size 245, and (c) Aic
0 with matrix size 114.

Fig. 4. Sparsity of the coefficient matrices for Pcn(λ)u = 0 with matrix size 500. (a)
Acn

0 and Acn
1 , (b) Acn

2 and Acn
3 .

Fig. 5. Sparsity of the coefficient matrices for Ppn(λ)u = 0 with matrix size 245. (a)
Apn

0 and Apn
1 , (b) Apn

2 and Apn
3 , (c) Apn

4 and Apn
5 .
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Table 3. Numerical results for solving P11
2D. The notation “*” means that the

method does not converge. Since the coefficient matrices are unsymmetric,
the Cholesky-based direct solver and ICC preconditioners are not used

(a) Explicit restarting
Direct GMRES

LU ILU(6) SSOR(1.85)
Rstno Itno Time Itno Time Itno Time

10 29 291 - - - -
15 12 251 - - - -
20 6 216 - - - -
25 3 186 4 8,690 - -
30 3 203 3 7,870 3 8,386
35 2 189 2 6,395 2 6,721
40 1 164 1 3,934 1 4,073
45 1 171 1 4,273 1 4,558
50 1 178 1 4,748 1 5,031

(b) Implicit restarting
Direct GMRES

LU ILU(6) SSOR(1.85)
Rstno Itno Time Itno Time Itno Time

10 11 165 14 5,251 * *
15 5 164 5 4,465 * *
20 3 166 3 4,469 * *
25 2 165 3 5,723 * *
30 2 176 2 5,162 * *
35 2 188 2 6,015 * *
40 1 166 1 3,903 * *
45 1 173 1 4,369 * *
50 1 180 1 4,830 * *

(c) Krylov Schur restarting
Direct GMRES

LU ILU(6) SSOR(1.85)
Rstno Itno Time Itno Time Itno Time

10 10 163 12 5,334 12 5,527
15 5 161 6 4,669 5 4,264
20 3 159 4 4,620 4 4,745
25 2 159 3 1,656 3 4,825
30 2 169 2 4,164 2 4,436
35 2 179 2 3,819 2 5,128
40 1 165 1 3,819 1 4,043
45 1 172 1 4,275 1 4,527
50 1 180 1 4,738 1 5,017
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Table 4. Numerical results for solving P41
3D. The notation “*” means that the

method does not converge.

(a) Explicit restarting
Direct GMRES

LU Cholesky ILU(2) SSOR(1.30) ICC(2)
Rstno Itno Time Itno Time Itno Time Itno Time Itno Time

10 61 415 68 4,520 147 581 49 143 69 183
15 26 376 18 4,046 27 191 1981 11,003 19 91
20 12 338 12 4,027 13 131 252 1,871 13 87
25 10 346 10 4,056 23 308 * * 378 3,444
30 8 344 8 4,040 7 113 8 87 7 76
35 6 335 18 4,700 6 114 6 79 6 77
40 4 320 4 3,913 9 199 17 260 8 117
45 5 341 5 4,026 15 377 439 7,599 17 285
50 5 349 5 4,087 115 3,160 10 194 68 1,264

(b) Implicit restarting
Direct GMRES

LU Cholesky ILU(2) SSOR(1.30) ICC(2)
Rstno Itno Time Itno Time Itno Time Itno Time Itno Time

10 17 290 19 3,782 20 47 20 33 20 31
15 7 290 8 3,773 9 46 8 30 9 31
20 5 290 5 3,773 5 43 5 30 5 29
25 3 287 4 3,786 4 47 4 32 4 31
30 3 292 3 3,779 3 45 3 32 3 31
35 2 287 3 3,804 3 52 3 36 3 35
40 2 291 2 3,786 2 43 2 30 2 29
45 2 294 2 3,973 2 49 2 34 2 34
50 2 298 2 3,809 2 55 2 39 2 38

(c) Krylov Schur restarting
Direct GMRES

LU Cholesky ILU(2) SSOR(1.55) ICC(2)
Rstno Itno Time Itno Time Itno Time Itno Time Itno Time

10 15 289 15 3,788 17 48 16 32 17 33
15 8 288 8 3,778 9 40 9 29 9 28
20 6 288 6 3,791 6 40 6 28 6 27
25 4 287 4 3,807 5 42 5 30 5 29
30 4 291 4 3,797 4 43 4 30 4 29
35 3 290 3 3,789 3 40 3 29 3 28
40 3 293 2 3,769 3 46 3 33 3 32
45 2 289 2 3,783 2 39 2 29 2 27
50 2 292 2 3,800 2 44 2 33 2 30
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Table 5. Numerical results for solving P61
2D. Results of explicit restarting are not

shown here as the method does not converge in most of the cases. The
results of Cholesky-based direct method cannot be completed in our com-
puter due to the out of memory errors. The results of GMRES with SSOR
are not shown here as the method does not converge. Note that the fill-ins
of the Cholesky factorizations in P61

2D cause out of memory storage errors
in our experiments. Therefore, no Cholesky results are listed here even
though the coefficient matrix is symmetric positive definite

(a) Implicit restarting
Direct GMRES

LU ILU(6) ICC(0)
Rstno Itno Time Itno Time Itno Time

10 19 298 22 5,553 22 15,165
15 6 275 7 4,281 7 11,924
20 4 284 5 4,832 5 13,244
25 3 288 3 4,339 3 11,965
30 2 279 3 5,230 3 14,836
35 2 296 2 4,423 2 12,474
40 2 312 2 5,100 2 14,623
45 1 273 2 5,730 2 16,847
50 1 282 1 3,564 1 10,143

(b) Krylov Schur restarting
Direct GMRES

LU ILU(6) ICC(0)
Rstno Itno Time Itno Time Itno Time

10 12 274 18 5,323 18 148,803
15 5 263 8 4,343 8 12,284
20 4 272 5 4,015 5 10,956
25 3 277 4 4,201 4 11,848
30 2 274 3 4,116 3 11,783
35 2 288 3 4,740 2 11,875
40 1 268 3 5,423 2 11,877
45 1 278 2 4,712 2 13,410
50 1 289 1 3,613 1 10,262

5.3. Performance of Krylov subspace methods

We also solve the linear eigenvalue problems P11
2D, P41

3D and P61
2D by the

explicit restarting Lanczos/ Arnoldi method (ER), implicit restarting the Lanc-
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zos/Arnoldi method (IR), and Krylov-Schur method (KS). Note that another linear
problem P31

3D is skipped as the matrix size is too large for the direct solvers in our
computers.

We use the ER and KS provided by the software package SLEPc (Scalable Li-
brary for Eigenvalue Problem Computations) [11, 12]. For IR, we use the ARPACK
[22] wrapper included in SLEPc. We use PETSc (Portable, Extensible Toolkit for
Scientific Computation) [1] to solve the linear system solvers and to perform the
preconditionings within ER, KS, and IR. In particular, to solve the associated linear
systems within these three methods, we consider (i) direct solvers based on LU or
Cholesky factorization and (ii) GMRES iterative solvers with preconditioners SSOR,
ILU, or ICC.

The results for computing the five smallest positive eigenvalues of P11
2D, P41

3D

and P61
2D are summarized in Tables 3, 4 and 5. In the tables, “Rstno”, “Itno”, and

“Time” stand for the restarting number p in Algorithm 2, the number of the while-
loop starting from line 2 to line 2 in Algorithm 2, and total CPU time in seconds
for computing five target eigenpairs, respectively. Note that we have scanned the
parameter ω in SSOR from 0.8 to 1.98 and the fill-in level parameter � of ILU
and ICC from 0 to 12 in our numerical experiments. The tables only present the
results with better timing results. We highlight some observations from the tables
as follows.

• KS outperforms ER and IR in almost all cases. In particular, KS and IR are
more efficient and numerically stable than ER. Furthermore, the performance
of KS is slightly better than that of IR.

• The bandwidths play an important role in determining efficiency of the linear
system solvers. In particular, for P112D and P61

2D, the Krylov subspace meth-
ods with direct linear solvers are better than the Krylov subspace methods
with iterative linear solvers. For P41

3D, the Krylov subspace methods with
iterative linear solvers perform better.

Such behavior is again due to the bandwidths of the coefficient matrices.
As the discretizations of these two problems involve only two-dimensional
planes, the corresponding bandwidths of matrices Acc

0 and Aic
0 in (6) and (10)

are small. Direct solvers remain efficient even when dense band matrices
are introduced after LU or Cholesky factorizations have been performed. In
contrast, the discretization of P41

3D involves all three dimensions and the
corresponding bandwidth is large. In such cases, direct solvers are not efficient
due to the fill-ins of LU or Cholesky factorizations. See Figure 3 for sparsity
examples Acc

0 , Apc
0 , and Aic

0 .

We conclude this subsection with the following remarks.
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Table 6. Numerical results for solving P31
3D by Krylov subspace methods “without”

shift-and-invert
Krylov Schur restarting Implicit restarting

Rstno Itno Time Itno Time
20 1052 19,055 449 9,646
25 409 11,430 250 7,956
30 305 11,734 198 8,645
35 268 13,771 118 6,770
40 183 12,055 95 7,132

Table 7. The most efficient scheme combinations for different test problems

3D 2D
Higher order EVP JD + SOneLS + SSOR JD + SOneLS + ILU

(P55
3D) (P23

2D)
Standard/General EVP JD + SOneLS + SSOR KS + LU-based Direct

(P31
3D, P41

3D) (P11
2D, P61

2D)

Table 8. Timing in seconds and the corresponding percentage (shown within paren-
theses) breakdown of the key components in the LU- and Cholesky-based
direct solvers for solving P41

3D

LU Cholesky
Time for Symbolic factorization 3 (1%) 2,378 (63%)
Time for numerical factorization 273 (90%) 1,257 (33%)

Total CPU time 304 3,773
Fill-in ratio 102% 309%

1. For the problems with symmetric positive definite coefficient matrices (e.g.
P31

3D and P61
2D), the eigenvalues are positive and the five smallest positive

eigenvalues can be computed “without” using shift-and-invert. This approach
involves matrix-vector multiplications and does not need to solve any linear
system. However, our numerical experiments suggest that such an approach
is not efficient.
In particular, if we do not perform shift-and-invert in the Krylov subspace
methods, the methods either converge slowly (P31

3D, as shown in Table 7) or
fail to convergence (P61

2D). Table 7 also suggests that the methods take much
more CPU time as compared to the Jacobi-Davidson methods shown Table 2.

2. Direct solvers with LU factorization outperforms Cholesky factorization, as
shown in Table 4. This is because a Cholesky factorization spends much
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more time in symbolic factorization and leads to a much larger fill-in ratio in
order to maintain the symmetry of the matrices. See Table 6 for a detailed
breakdown analysis for LU- and Cholesky-based direct solvers.

5.4. Overall Comparisons

Observing the results shown in Tables 2, 3, 4, 5, we can make an overall
comparison between the Jacobi-Davidson methods and the Krylov subspace methods
and conclude the best scheme combinations for the different types of problems in
Table 8. As discussed above, the bandwidth of the coefficient matrices is the key
component that affects the choice of schemes.

6. CONCLUSION

We consider degree 1, 3, and 5 eigenvalue problems arising in numerical sim-
ulations of nano-scale quantum dots. We have shown that a polynomial Jacobi-
Davidson method can solve all of these problems without linearizing the higher
degree problems. As the efficiency of the polynomial Jacobi-Davidson method
mainly relies on solving the correction equation, we have discussed three schemes
regarding how to compute the approximate solutions of the correction equations. We
have also conducted intensive numerical experiments by using the Jacobi-Davidson
and Krylov subspace methods with various linear solvers and preconditioners. The
numerical results suggest the most efficient scheme combinations for different types
of problems, which are shown in Table 8. We also find that the bandwidth of the
coefficient matrices is the key component that affects the choice of schemes.

It is possible to further improve the solver efficiencies by parallel computing.
We then need to find efficient preconditioners that are suitable to the target problems
and the particular parallel architectures of interest. The best scheme combinations
for different types of problems may also change consequently on parallel computers.
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