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A NOTE ON GOLDEN MEANS, NONLINEAR MATRIX EQUATIONS
AND STRUCTURED DOUBLING ALGORITHMS

Chun-Yueh Chiang, Eric King-Wah Chu and Wen-Wei Lin

Abstract. Several beautiful formulae for the solutions of some nonlinear
matrix equations were proposed by Yongdo Lim in 2007, in terms of the matrix
golden means. Numerically, these formulae will not be applicable when some
matrices involved are ill-conditioned. In this note, we propose to partially fill
in this gap of applicability with the structured doubling algorithm, under some
favourable conditions. We also discuss how some pre-processing or scaling
procedures can be applied to the matrix equations, to improve their condition.
More generally, we also explore the possibility of computing the matrix golden
mean using structured doubling algorithms. Some numerical examples will be
presented for illustrative purposes.

1. INTRODUCTION

In [16], Lim generalized the concept of the golden means of positive numbers
to the golden means of positive definite matrices and apply them to some algebraic
and differential Riccati equations. In particular, explicit formulae for the solutions
were given for the following matrix equations:

X2 ±X −A2 = 0(1)

BX−1B −X ± A = 0(2)

XA−1X ±X −B = 0(3)

where A > 0 (i.e., A is positive definite) and B ≥ 0 (i.e., B is semi-positive
definite). Note that (1) is a special case of (3) and, without lose of generality, we
need to consider only the solutions X+ with the “+” sign in (2) and (3). The
solutions X− to the equations with the “−” sign satisfy X− = X+ + A [16].
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Compare to the state-of-the-art iterative procedures for the solution of the more
general equations [2, 8, 9, 13, 17, 18], these golden mean formulae are beautiful
and attractive, at least theoretically so. In this note, we shall consider (2) and (3)
in the following form:

BX−1B −X − A = 0(4)

XA−1X + X − (B −A) = 0(5)

where 0 < A ≤ B (i.e., A > 0 and B − A ≥ 0). We shall refer to (4) as
the nonlinear matrix equation (NME) and (5) the continuous-time algebraic Riccati
equation (CARE).

In general, when A or B are ill-conditioned, A�B will be ill-conditioned to
compute. In particular, when A or B are ill-conditioned for (4) or when A and
B are large for (5), the solution in terms of the golden means will break down
numerically. In such cases, we shall show how the structured doubling algorithm
(SDA) [4, 17] may be applied effectively.

The plan for this note is as follows. In Section 2, Lim’s results in [16] on
the golden means are summarized and we give some new proofs. The possibility
of computing the golden mean A�B by doubling is discussed in Section 3. The
solutions of the “ill-conditioned” NME (4) and CARE (5) are respectively considered
in Sections 4 and 5. The SDA algorithms are developed for these ill-conditioned
cases and selected numerical examples are presented for illustrative purposes. The
possibility of solving the equations (in equivalent forms) by cyclic reduction is
considered briefly in Section 6 and some concluding remarks are made in Section 7.

Before we proceed, it is important to emphasize an obvious point – we are
proposing an alternative method for computing the golden mean in general and
solving (4) and (5) in particular, when the equations are “ill-conditioned” and com-
putations involving the golden mean break down numerically. There may well be
cases for which the golden mean yields “better” results than the SDA, or when
both approaches fail. Different methods rewrite the matrix equations into different
forms for which doubling can be applied, under different conditions. When these
conditions break down simultaneously, there is little anyone can do.

2. MATRIX GOLDEN MEANS

In this section, we quote some relevant basic results on the matrix golden means
from [16].

First of all, it is well known that every nonnegative number has a unique square
root. The analog for matrices is the following lemma [12].
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Lemma 2.1. For every n-square matrix A ≥ 0, there exist a unique B ≥ 0
such that

A = B2.

If A is positive definite, then B is also a positive definite matrix. Furthermore, B

can be written as a polynomial of A.

Such a matrix B ≥ 0 is called the square root of A and denoted by A1/2. Using
Lemma 2.1, we can prove the following Lemma:

Lemma 2.2. Let A and B be n× n complex matrices, then

(6) A∗A = B∗B

if and only if there exist some unitary matrix W such that

(7) A = WB.

Proof. If A = WB for some unitary matrix W , it is clearly that A∗A =
B∗W ∗WB = B∗B. Conversely, consider the singular value decomposition of A
and B:

A = UAΣAV ∗
A,

B = UBΣBV ∗
B,

where UA, VA, UB and VB are n × n unitary matrices and ΣA, ΣB ∈ R
n×n are

diagonal matrices with nonegative main-diagonal entries. The condition (6) implies
that

Σ2
A = V ∗Σ2

BV,

where V = V ∗
BVA is a unitary matrix, it follows from Lemma 2.1 that ΣA =

V ∗ΣBV . Thus,

A = UAΣAV ∗
A = UAV ∗

AVBΣBV ∗
B = WB,

where W ≡ UAV ∗
AVBU∗

B is unitary.

The geometric mean (gm)

(8) A�B ≡ A1/2(A−1/2BA−1/2)1/2A1/2

of positive definite matrices A and B has appeared in literature with various ap-
plications in matrix inequalities, inverse mean problems, semidefinite program-
ming, geometry, statistical shape analysis and symmetric matrix word equations;
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see [1, 3, 15, 16, 20] and the references therein. Note that A�B is the unique posi-
tive definite solution to the algebraic Riccati equation XA−1X = B (see Lemma 2.3
below). For the differential Riccati equation Ẋ = −XA−1X + B with X(0) > 0,
we have limt→∞ X(t) = A�B.

First some basic properties of the gm are listed in the following lemmas:

Lemma 2.3. (Riccati). Let A be positive definite and B be (semi-)positive
definite. Then the geometric mean A�B is a unique (semi-)positive definite solution
of the Riccati equation

(9) XA−1X = B.

Proof. We rewrite the Riccati equation (9) as (A−1/2X)∗(A−1/2X) = (B1/2)∗

B1/2, it follows from Lemma 2.2 that there exist an unitary matrix U such that
X = A1/2UB1/2. Since X is a Hermitian matrix, thus Y ≡ UB1/2A−1/2 =
A−1/2B1/2U∗ and X = A1/2Y A1/2. It is easy to see that

Y 2 = A−1/2B1/2U∗UB1/2A−1/2 = A−1/2BA−1/2

and we have Y = (A−1/2BA−1/2)1/2 ≥ 0. We finally show that X = A1/2Y A1/2 =
A�B ≥ 0. The uniqueness of the positive semi-definite solution of (9) can be ob-
tained from Lemma 2.1.

Proposition 2.1. The geometric mean has the following properties [16, Lemma
2.1]:

(i) A�B = B�A.
(ii) (A�B)−1 = A−1�B−1.
(iii) M(A�B)M� = (MAM�)�(MBM�) for any nonsingular matrix M .
(iv) 2(A−1 + B−1)−1 ≤ A�B ≤ 1

2 (A + B) for positive definite A, B.

The golden ratios 1
2 (1±√5) are the roots of the quadratic equation x2−x−1 = 0.

For a generalization, consider the more general quadratic equation

x2

a
∓ x− (b− a) = 0 , 0 < a ≤ b

with the positive real solutions 1
2

(
a±√4ab− 3a2

)
. For matrices, we consider the

Hermitian solution of the Riccati equation

(X − C)A−1(X − C) = B,
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where A > 0, B ≥ 0 and C is a Hermitian matrix.
For the continuous-time Riccati equation and nonlinear matrix equation, the

following two theorems give explicit formulae for their solutions. Similar results
can be found in [16, §3]:

Theorem 2.1. The CARE (5):

XA−1X + X − (B − A) = 0 , 0 < A ≤ B

has a unique positive definite solution

(10) XRic = A�̄B ≡ 1
2

[−A + A�(4B − 3A)] .

Proof. We only show the uniqueness of the positive semi-definite solution (10).
Suppose that X is a positive semi-definite solution of (5). Setting Y = A−1/2XA−1/2

and B̃ = A−1/2BA−1/2, we obtain the quadratic matrix equation

Y 2 + Y − (B̃ − 1) = 0.

With the help of (Y + 1
2I)2 = B̃− 3

4I and Lemma 2.1, we have X = A1/2Y A1/2 =
A�̄B.

Theorem 2.2. The nonlinear matrix equation with the plus sign (NME-P):

(11) BX−1B + X −A = 0 , A > 2B ≥ 0

has the maximum positive definite solution

(12) XNmep =
1
2

[A + (A− 2B)�(A + 2B)] .

The nonlinear matrix equation with the minus sign (NME-M):

(13) BX−1B −X + A = 0 , A > 0, B ≥ 0

has the unique positive definite solution

(14) XNmem =
1
2
[
A + A�(A + 4BA−1B)

]
.

Proof.

1. For the NME-P (11), assume that X is a positive definite solution. Let R be
X−1B, we noted that σ(R) = σ(X−1/2BX−1/2) and therefore the spectrum
of R are lies in the closed right half planes. Since A > 2B ≥ 0 and X < A,
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we have X = A − BX−1B < A − BA−1B = 3
4A. Let X̃ = X − 1

2A, we
rewrite (11) as [

B 0
1
2A −I

][
I

X̃

]
=
[

1
2A I

B 0

][
I

X̃

]
R,

then we have([
B 0
1
2A −I

]
,

[
1
2A I

B 0

])
∼
([

2B 0
1
2A + B −I

]
,

[
A 2I

1
2A + B I

])

∼
([

B − 1
2A I

1
2A + B −I

]
,

[
1
2A− B I
1
2A + B I

])

∼
([

I −( 1
2A−B)−1

−( 1
2A + B) I

]
,

[
−I −( 1

2A−B)−1

−( 1
2A + B) −I

])
.

Here, the notation “(A1, B1) ∼ (A2, B2)” indicates that there exist non-
singular matrices P and Q such that (A1, B1) = (PA2Q, PB2Q). Let

H ≡
[

0 −( 1
2A− B)−1

−( 1
2A + B) 0

]
, we obtain

(15) (H+ I)
[

I

X̃

]
(R̃− I) = (H− I)

[
I

X̃

]
(R̃ + I),

where R̃ = (R+I)−1(R−I). Rewrite (15) as a Riccati equation in the form
of (9):

X̃

(
1
2
A− B

)−1

X̃ =
1
2
A + B,

we get a positive definite solution XNmep = 1
2A + X̃ = 1

2 [A + (A− 2B)�(A
+2B)]. Since X

−1/2
NmepBX

−1/2
Nmep < 1

2A−1/2BA−1/2 < I , it follows from [7]
that X is the maximum positive definite solution of (11).

2. For the NME-M (13), let Y = A−1/2XA−1/2, B̃ = A−1/2BA−1/2. The
NME-M (13) becomes

Y − B̃Y −1B̃ = I.

Consider the matrix function f(Y ) ≡ I + B̃Y −1B̃ and we obtain

Y = f(Y ) = f(f(Y ))

= I + B̃(I + B̃Y −1B̃)−1B̃

= I + B̃(I − B̃Y −1(I + B̃2Y −1)−1B̃)B̃
(using the Sherman-Morrison-Woodbury formula)

= I + B̃2 − B̃2(Y + B̃2)−1B̃2.
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We get a matrix equation in the NME-P form. From (12), we have

Y + B̃2 =
1
2

[
I + 2B̃2 + I�(I + 4B̃2)

]
,

where B̃2 = A−1/2BA−1BA−1/2. Thus

XNmem =
1
2
A1/2

[
I + I�(I + 4A−1/2BA−1BA−1/2)

]
A1/2

=
1
2
[
A + A�(A + 4BA−1B)

]
.

From [8], the positive definite solution XNmem is the unique maximum posi-
tive definite solution of (13).

These results can be generalized further to the (matrix) golden means (GM)
(when 0 < A ≤ B):

(16) A�B ≡ 1
2

[A + A�(4B − 3A)] , A�̄B ≡ 1
2

[−A + A�(4B − 3A)]

Some basic properties of GMs are listed in the following lemma [16, Proposi-
tion 4.2]:

Lemma 2.4. Suppose that A and B are positive definite matrices with A ≤ B.
Then

(i) M(A�B)M�=(MAM�)�(MBM�) andM(A�̄B)M�=(MAM�)̄�(MBM�)
for any compatible nonsingular matrix M .

(ii) A�B = A�B if and only if A = B.
(iii) A�B = 1

2A1/2
[
I + (4A−1/2BA−1/2 − 3I)1/2

]
A1/2.

(iv) If A < B, then A�B = 1
2

{
A + (B − A)�

[
4A + A(B −A)−1A

]}
.

(v) (The harmonic-geometric golden mean inequality)

A ≤ 2(A−1 + B−1)−1 ≤ A�B ≤ A�B ≤ B

(vi) If B ≥ 3A (or B ≤ 3A), then A�B ≤ 1
2 (A + B) (or A�B ≥ 1

2(A + B)).
(vii) (A�B)�(A�̄B) = A�(B − A).
(viii) A�B = A�(B + A�̄B) and A�̄B = A�(B −A�B).

We shall see later that the alternative formulae in (iii) and (iv) are numerically
worse than (16). For other results on the gm and GM, please consult [16] and the
references therein.
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3. GOLDEN MEAN BY DOUBLING

The GMs in (16) requires the square-roots of various positive definite matrices.
The accuracy of this computation is governed by the following theorem:

Theorem 3.3. [10]. Let A ∈ R
n×n be a positive definite matrix, X = A1/2

and X be an approximation to a square root of A. then

(17) ‖X −X‖F ≤
 ‖X‖2F

min
1≤i,j≤n

|µi + µj |cn
u,

where c is a constant of order 1, u is machine unit roundoff, and {µ i} are the
eigenvalues of X .

Consequently, the square-root A1/2 will be numerically inaccurate and unstable
when A is ill-conditioned.

Another possibility is to apply the structured doubling algorithm [17], which
can be applied to the following standard symplectic forms (SSF) [4, 5, 17]:

(SSF-1):

M =
[

A 0
−H I

]
, L =

[
I G

0 A�

]
, H, G ≥ 0

(SSF-2):

M =
[
A 0
Q −I

]
, L =

[−P I
A� 0

]
, Q, Q− P ≥ 0

From Section 2 or [16], the GM A�B equals the solution X of the Riccati
equation

(18) XA−1X = B,

where A > 0 and B ≥ 0. We found two feasible ways to compute the GM using
doubling.

3.1. SSF1

From [17], the associated Hamiltonian matrix of (18) is

H ≡
[

0 A−1

B 0

]
.

With the Cayley transformation for some positive number γ , we obtain the matrix
pencil

(H− γI,H+ γI) =
([−γI A−1

B −γI

]
,

[
γI A−1

B γI

])
,
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note that the spectrum of (M, L) and (PMQ, PLQ) are identical for nonsingular
P and Q. Pivoting at the identity matrix at the (2,2)-position in the first matrix,
simple elementary row operations produce

(H− γI,H+ γI) ∼
([

1
γ A−1B − γI 0
− 1

γ B I

]
,

[
1
γ A−1B + γI 2A−1

− 1
γ B −I

])
.

Let C ≡ 1
γ A−1B +γI be a nonsingular matrix with σ(A−1B) ⊆ C

+. Multiply the
first row-block by C−1 and apply elementary pivoting at the identity matrix at the
(1,1)-position in the second matrix, we obtain

(H− γI,H+ γI) ∼
([

I − 2γC−1 0
− 1

γ B I

]
,

[
I 2C−1A−1

− 1
γ B −I

])

∼
([

I − 2γC−1 0
−2BC−1 I

]
,

[
I 2C−1A−1

0 I − 2γC−�

])
.

As BC−1 , C−1A−1 > 0, the final matrix pencil is in SSF1 form and the associated
SDA [17] can be applied for the solution of (18). However, this approach requires
the inversion of C which may lead to numerical difficulties. The preferred approach
can be formulated in terms of the SSF2 form.

3.2. SSF2

There are two possibilities in terms of the SSF2 form. Similar to Section 3.1, el-
ementary row/column operations are applied to obtain matrix pencils which preserve
the spectrum of the original pencil.

(a) Apply Cayley transformation for some positive number γ , we have

(H− γI,H+ γI)

=

([
−γI A−1

B −γI

]
,

[
γI A−1

B γI

])
∼
([
−γA I
1
γ B −I

]
,

[
γA I
1
γ B I

])

∼
([

1
γ B − γA 0

1
γ B −I

]
,

[
1
γ B + γA 2I

1
γ B I

])

∼
([1

2 ( 1
γ B − γA) 0

1
2 ( 1

γ B + γA) −I

]
,

[1
2 ( 1

γ B + γA) I

1
2 ( 1

γ B − γA) 0

])
.

The final matrix pencil is in SSF2 form and the associated SDA can be applied
for solving (18). From [17], the SDA requires the positivity of Q0 − P0 =



964 Chun-Yueh Chiang, Eric King-Wah Chu and Wen-Wei Lin

1
γ B + γA > 0, which is obvious. This is the preferred approach (denoted
by GMSDA) for the solution of (18) and the computation of GMs, because
of its nice numerical behaviour. The parameter γ is chosen to balance the
ill-condition of A and B in Q0 − P0 = 1

γ B + γA. When B (A) is more
ill-coniditoned, we increase (decrease) γ .

(b) The geometric mean satisfies

A�B ≡ A1/2(A−1/2BA−1/2)1/2A1/2 ≥ σmin(A−1/2B1/2)A

which is a unique (semi-) p.s.d. solution of the Riccati equation XA−1X =
B, i.e., X ≥ σmin(A−1/2B1/2)A. Assume that B > 0 and let X1 = X−aA,
with a > 0 to be determined. Rewrite (18) as

(19) X1A
−1X1 + 2aX1 = B − a2A

with

0 < a < σmin(A−1/2B1/2) = λ
1/2
min(A−1B) =

√
min
x �=0

x�Bx

x�Ax
.

The associated Hamiltonian matrix of (19) is

H1 ≡
[

aI A−1

B − a2A −aI

]
.

Apply Cayley transformation with γ = a, we have

(H− aI,H+ aI) =
([

0 A−1

B − a2A −2aI

]
,

[
2aI A−1

B − a2A 0

])

∼
([

0 I
1
2a(B − a2A) −I

]
,

[
2aA I

1
2a(B − a2A) 0

])
.

Let D ≡ 1
2a(B − a2A) > 0, then

(H−aI,H+aI)∼
([

0 I

D −I

]
,

[
2aA I

D 0

])
∼
([

D 0
D −I

]
,

[
D + 2aA I

D 0

])
.

We arrive at an SSF2 form, with Q0 − P0 = 2(D + aA) = 1
a(B + a2A) >

0. This approach requires the estimation of a and the inversion of A, so
the previous approach in (a) is preferred. Numerically, (a) and (b) behave
similarly.
Some numerical experiments have been conducted to illustrate the feasibil-
ity of computing GMs using using approach (a) in terms of the SSF2 form
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(denoted by SDA). In Example 3.1 below, SDA is compared the formulae in
(8), realized by the MATALB command sqrtm for square roots of matrices
(denoted by GM). Example 3.2 illustrates the fact that increasing a does not
affect the condition of A or the error in A−1, unlike the error in A1/2.

Example 3.1. Let A = B ≡ 1.e6 ∗ gallery(′randcorr′, 5), From Table 1, we
see that the absolute residual from SSF2 are smaller than those from GM by up to
4 digits.

Table 1. Results for Example 3.1.
SDA GM

Res 3.28e− 16 1.43e− 12
ITs 4 ∗

Example 3.2. Let A = 10agallery(′randcorr′, 5), B = sqrtm(A), Inverr ≡
‖A/A− I5‖ and Sqrtmerr ≡ ‖B ∗B−A‖. We list a comparison of absolute error
for the Inverr and Sqrtmerr as increasing power a in Table 2.

Table 2. Results for Example 3.2.
a Inverr Sqrtmerr cond(A)
0 2.2648e-016 2.1328e-015 3.8671e+001
2 2.8495e-015 3.5945e-013 4.0025e+002
4 3.3506e-016 2.2687e-011 1.1946e+001
6 6.3090e-016 2.2648e-009 1.7206e+001

From our numerical experience, the SDA is a feasible alternative to (18) (realized
by square roots of matrices) in computing GMs, especially for A with large elements.

4. NONLINEAR MATRIX EQUATIONS

See [2, 6, 7, 8, 9, 13, 17, 18] for details of nonlinear matrix equations, their
solution and applications.

Before pressing further, we want to know whether it is possible to improve the
condition of A before square-rooting it, thus reducing the stability problem for the
formulae (10), (12) and (14).

Let us consider the NME (4):

BX−1B −X ± A = 0

Pre- and post-multiply the equations with nonsingular Q� and Q respectively, we
obtain the equivalent equations

Q�BQ ·Q−1X−1Q−� ·Q�BQ −Q�XQ±Q�AQ = 0
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Some obvious choices include Q = B−1/2, Q = A−1/2 and the diagonal scaling
Q = diag{d1, · · · , dn} with di =

√∑n
k=1 a2

ik . For diagonal scaling, let Dn denotes
the set of nonsingular diagonal matrices. We list the following well known results.

Theorem 4.1. (Van der Sluis) [11] . Let A ∈ Rn×n be symmetric positive
definite and let D∗ = diag

{
a−1/2
ii

}
, then

κ2(D∗AD∗) ≤ n min
D∈Dn

(DAD).

Theorem 4.2. (Bauer) [11]. Let A ∈ R
n×n be nonsingular and suppose that

|A| |A−1| is irreducible. Then

min
D1,D2∈Dn

κ∞(D1AD2) = ρ(|A| |A−1|).

The minimum is attained for D 1 = diag(x)−1 and D2 = diag(|A−1x |), where
x > 0 is a right Perron vector.

Unfortunately, our numerical experiments show that the contribution of scaling
towards lessening the condition of A and B is unclear. Ill-condition sometimes
shifts or spreads out to other parts of the equation and does not help the overall
accuracy of the solution. More work need to be done on the scaling of NMEs.

We shall consider two cases when either A or B is ill-conditioned in (4). Scal-
ing may help when both matrices are ill-conditioned but both the SDA and GM
approaches will encounter difficulty for such as case.

4.1. Ill-conditioned B

For (4) in the form
X − BX−1B = A

where B is ill-conditioned, let

M =
[

B 0
−A I

]
, L =

[
0 I

B 0

]
.

It is easy to show that X is a solution to the NME (4) if and only if

M
[

I

X

]
= L

[
I

X

]
S,

where S = X−1B. After the doubling transformation, block Gaussian elimination,
and column permutation [17], we obtain
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[
B̂ 0

Â + P̂ −I

][
I

X + P̂

]
=
[

0 I

B̂ 0

] [
I

X + P̂

]
S2,

which involves the SSF-2 form, where B̂ = BA−1B, Â = A + BA−1B, and
P̂ = BA−1B. The SDA-2 in [17] can then be applied.

SDA1 Algorithm

Set A0 = BA−1B, B0 = B + 2A0, P0 = 0, P̂ = A0;
Compute until convergence

Ak+1 = Ak(Qk − Pk)−1Ak , Qk+1 = Qk − Ak+1, Pk+1 = Pk + Ak+1.
Output: X = Qk+1 − P̂ .

It requires about 7
6n3 flops for each iteration.

Example 4.1. Let A and B be random 20 × 20 positive definition matrices
of O(1). Construct B ← B − 0.999999 ∗ λmin(B) ∗ I and A ← 103 A so that
λmin(B) ∼= 0 and A = O(103). In GMSDA (approach (a) in Section 3.2), we
choose r = 1e3 such that the initial matrix Q0 − P0 of inner iteration SDA2 is
well condition, namely, Q0 − P0 = 1

γ B + γA ∼= A. From Table 3, we see that
the absolute residuals from SDA (SDA1 Algorithm) and GMSDA ((14) realized by
GMSDA as in approach (a) in Section 3.2) are smaller than those from GM ((14)
realized by the MATLAB command sqrtm for square roots of matrices) by up to
2 digits, and Res(SDA)/Res(GMSDA)= O(1).

Table 3. Results for Example 4.1.
SDA GM GMSDA

Res 6.24e− 15 1.07e− 13 4.43e− 15
ITs 4 ∗ 4 (inner)

4.2. Ill-conditioned A

For the NME (4) when A is ill-conditioned, rewrite it as

X = f(X) = A + BX−1B.

It was noted in [2] that if X solves (4), then it also obeys the Riccati equation

X = f(f(X)) = A + B(A + BX−1B)−1B = A + X(I + B−1AB−1X)−1.

The associated symplectic pencil is:

M =
[

I 0
−A I

]
, L =

[
I B−1AB−1

0 I

]
.
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in SSF-1 form and the corresponding SDA-1 algorithm can be applied [4, 17].

SDA2 Algorithm

Set A0 = In, H0 = A, G0 = B−1AB−1;
Compute until convergence

Ak+1 = Ak(In + GkHk)−1Ak, Gk+1 = Gk + AkGk(In + HkGk)−1Ak ,
Hk+1 = Hk + Ak(In + HkGk)−1HkAk .

Output: X = Hk+1.
It requires about 23

3 n3 flops for each iteration.

Example 4.2. Let A and B be random 20 × 20 positive definition matrices
with well condition, and construct A ← A − 0.999999 ∗ λmin(A) ∗ I so that
λmin(A) ∼= 0. In GMSDA, we choose r = 1e−3 such that the initial matrix Q0−P0

of inner iteration SDA2 is well condition, namely, Q0 − P0 = 1
γ B + γA ∼= B.

From Table 4, we see that the absolute residuals from SDA (SDA2 Algorithm)
are smaller than those from GM ((14) realized by sqrtm) by up to 6 digits, and
Res(SDA)/Res(GMSDA)= O(10−3).

Table 4. Results for Example 4.1.
SDA GM GMSDA

Res 2.33e− 11 8.79e− 5 1.19e− 8
ITs 24 ∗ 6 (inner)

5. CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION

The study of continuous-time algebraic Riccati equations is well-developed; see
[4, 5, 9, 14, 17] and the references therein. For our special case (5), we first try to
consider whether pre-conditioning or scaling can be helpful in the solution of the
ARE by GM.

For the CARE (5):

XA−1X + X − (B −A) = 0

pre- and post-multiply the equations with nonsingular Q� and Q respectively, we
obtain the equivalent equation

Q�XQ ·Q−1A−1Q−� ·Q�XQ + Q�XQ−Q�(B − A)Q = 0 .

Similar choices for Q as in Section 5 can be made. Again, we found experimentally
that scaling does not improve the GM method markedly.
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Now consider (5) where O(A) and O(B) are large, thus affecting the square-
roots when computing the GMs. Rewrite (5) as

−X(2A−1)X −X −X + 2(B − A) = 0 .

The associated Hamiltonian matrix is

H ≡
[

I 2A−1

2(B −A) −I

]
.

Apply Cayley transformation with γ = 1, we have

(H− I,H+ I) =

([
0 2A−1

2(B −A) −2I

]
,

[
2I 2A−1

2(B −A) 0

])

∼
([

0 A−1

(B − A) −I

]
,

[
I A−1

(B −A) 0

])
∼
([

0 I

(B −A) −I

]
,

[
A I

(B −A) 0

])

∼
([

(B −A) 0
(B −A) −I

]
,

[
B I

(B −A) 0

])
.

We arrive at an SSF-2 form and the SDA-2 algorithm [17] can be applied, as shown
in the following Algorithm.

SDA3 Algorithm

Set A0 = B −A, Q0 = B −A, P0 = −B;

Compute until convergence

Ak+1 = Ak(Qk − Pk)−1Ak, Qk+1 = Qk − Ak+1, Pk+1 = Pk + Ak+1.

Output: X = Qk+1.

It requires about 7
6n3 flops for each iteration.

Example 5.1. We choose DA = diag([106 rand(1, 5), rand(1, 5)), DB =
diag([rand(1, 10)]) and a nonsingular matrix U ∈ R

10×10. Construct A = UDAU−1

and B = A + UDBU−1. In GMSDA, we are given r = 1e − 3, and the initial
matrix Q0 − P0 of inner iteration SDA-2 is more better condition than A since
cond(Q0 − P0) =

λmax( 1
γ

B+γA)

λmin( 1
γ

B+γA)
∼= O(1). From Table , we see that the abso-

lute residuals from SDA (SDA3 Algorithm) are smaller than those from GM ((10)
realized by sqrtm) by up to 3 digits, and Res(SDA)/Res(GMSDA)= O(10−1).
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Table 5. Results for Example 5.1.

SDA GM GMSDA
Res 2.33e− 10 4.39e− 7 3.19e− 9
ITs 5 ∗ 6 (inner)

6. CYCLIC REDUCTION

In this section, we shall explore the possibility of solving (4) and (5) by cyclic
reduction (CR) [9, 18].

Consider the ARE (3) with X̃ ≡ A−1X (assuming that A is nonsingular), in
the form

X̃2 ± X̃ − A−1B = 0

This is not suitable for CR as A−1B is not symmetric. Assuming that B > 0 and
A is nonsingular, a more careful transformation will be

B−1/2XB−1/2 · B1/2A−1B1/2 ·B−1/2XB−1/2 ±B−1/2XB−1/2 − I = 0

producing
⇔ X̃Ã−1X̃ ± X̃ − I = 0

with X̃ ≡ B−1/2XB−1/2 and Ã ≡ B−1/2AB−1/2. With A > 0, another possibility
is

A−1/2XA−1/2 · A−1/2XA−1/2 ± A−1/2XA−1/2 − A−1/2BA−1/2 = 0

⇔ X̃2 ± X̃ − B̃ = 0

with X̃ ≡ A−1/2XA−1/2 and B̃ ≡ A−1/2BA−1/2.
For the NME (4):

BX−1B −X ±A = 0

it can be transformed, assuming B > 0, to

B1/2X−1B1/2 −B−1/2XB−1/2 ±B−1/2AB−1/2 = 0

⇔ X̃−1 − X̃ ± Ã = 0⇔ I − X̃2 ± ÃX̃ = 0

which is suitable to be treated by CR. Another possibility, assuming A > 0, is

A−1/2BA−1/2 ·A1/2X−1A1/2 · A−1/2BA−1/2 −A−1/2XA−1/2 ± I = 0

⇔ B̃X̃−1B̃ − X̃ ± I = 0

with X̃ ≡ A−1/2XA−1/2 and B̃ ≡ A−1/2BA−1/2.
Yet another possibility will be, for B > 0:
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B1/2X−1B1/2 · B1/2X−1B1/2 − I ±B−1/2AB−1/2 · B1/2X−1B1/2 = 0

or
Y 2 − I ± ÃY = 0

with Y ≡ B1/2X−1B1/2 and Ã ≡ B−1/2AB−1/2.
Consequently, we can apply CR to some of the equivalent matrix quadratics but

the transformations require well-conditioned A or B. As a result, CR will have
the same pitfalls as the GM formulae or SDA when the NMEs are ill-conditioned.
Also, we have previously applied CR to similar problems and found its efficiency and
accuracy similar to that of SDA. Consequently, we shall not pursuit the application
of CR further in this note.

7. CONCLUSIONS

We have proposed some structured doubling algorithms for the computation of
golden means and the solution of the nonlinear matrix equation (4) and the algebraic
Riccati equation (5). Under adverse conditions, the doubling algorithms perform
better than the matrix square root approach for the computation of matrix golden
means, or the golden-mean based formulae for the matrix equations (4) and (5).
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