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Positive Almost Periodic Solutions for an Epidemic Model with Saturated

Treatment

Gang Yang* and Luogen Yao

Abstract. This paper is concerned with a non-autonomous SIR epidemic model, which

involves almost periodic incidence rate and saturated treatment function. By using

the differential inequality technique and Lyapunov functional method, we obtain the

existence and global exponential stability of almost periodic solutions for the addressed

SIR model, which improve and supplement existing ones. Also, an example and its

numerical simulations are given to demonstrate our theoretical results.

1. Introduction

In the study of epidemic dynamics, the effects of a periodically varying environment are

important for the evolutionary theory, as the selective forces on systems in a fluctuating

environment differ from those in a stable environment. Hence, the effects of the periodic

environment on epidemic models have been the object of intensive analysis by numerous

authors, some of the results can be found in [1, 2, 4–6, 8, 10, 13] and the references are

therein. Recently, the following epidemic model with saturated treatment:

(1.1)



S′(t) = A(t)− d(t)S(t)− λ(t)S(t)I(t)

1 + β(t)I(t)
,

I ′(t) =
λ(t)S(t)I(t)

1 + β(t)I(t)
− [d(t) + ν(t) + µ(t)]I(t)− γ(t)I(t)

1 + α(t)I(t)
,

R′(t) = µ(t)I(t) +
γ(t)I(t)

1 + α(t)I(t)
− d(t)R(t),

was produced in [9], where S, I and R are the susceptible class, the infectious class and

the recovered class, respectively. Positive functions A, d, µ, ν are the recruitment rate
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of the population, the natural death rate of the population, the natural recovery rate of

the infective individuals and the disease-related death rate, respectively. While contact-

ing with infected individuals, the susceptible individuals become infected at a saturated

incidence rate λSI/(1 + βI). Through treatment, the infected individuals recover at a

saturated treatment function γI/(1 + αI). Assume that all the coefficient functions are

periodic, the author in [9] derived a criterion on the global exponential stability of positive

periodic solutions for this model.

On the other hand, if the various constituent components of the temporally nonuniform

environment are with incommensurable (nonintegral multiples) periods, then one has to

consider the environment to be almost periodic since there is no a priori reason to expect

the existence of periodic solutions. For this reason, the authors in [7] used continuous

theorem to establish some sufficient conditions for the existence and multiplicity of positive

almost periodic solutions of SIR model with saturated incidence rate and constant removal

rate. Unfortunately, we found that the mapping N of Lemma 3.4 in [7] is not guaranteed to

be L-compact. For more details, we refer to [11,12,18], where the authors declared that the

continuous theorem of coincidence degree is not suitable to solve almost periodic problem,

for the reason that almost periodic function family does not meet the compact condition

of coincidence degree theory. Therefore, the existence of almost periodic solutions for

(1.1) is incomplete to hold in [7]. Moreover, to the best of our knowledge, there are few

papers published on positive almost periodic solutions of epidemic model with saturated

treatment. Motivated by the above discussions, in this paper, we aim to employ a novel

argument to establish the existence and global exponential stability of positive of almost

periodic solutions for system (1.1).

For convenience, it will be assumed that A,d, β, α, ν, µ, γ : R → (0,+∞) and λ : R →
[0,+∞) are almost periodic functions. We denote by Rn (R = R1) the set of all n-

dimensional real vectors (real numbers). For any x = (x1, x2, . . . , xn) ∈ Rn, we let |x|
denote the absolute-value vector given by |x| = (|x1| , |x2| , . . . , |xn|) and define ‖x‖ =

maxi∈{1,2,...,n} |xi|. A matrix or vector A ≥ 0 means that all entries of A are greater than

or equal to zero. A > 0 can be defined similarly. For matrices or vectors A1 and A2,

A1 ≥ A2 (resp. A1 > A2) means that A1 −A2 ≥ 0 (resp. A1 −A2 > 0).

The initial conditions associated with (1.1) are defined as follows:

(1.2) S(t0) > 0, I(t0) > 0, R(t0) ≥ 0.

For the sake of simplicity of notations, for a bounded continuous function g defined on

R, we denote

g+ = sup
t∈R
|g(t)| , g− = inf

t∈R
|g(t)| .
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Throughout this paper, we make the following assumptions for (1.1):

(1.3) A− > 0, d− > 0, β− > 0, µ− > 0, β(t) ≤ α(t) for all t ∈ R.

The main purpose of this paper is to establish some sufficient conditions on the exis-

tence and exponential stability of almost periodic solutions for (1.1). To the best of our

knowledge, this has not been done before. The remaining of this paper is organized as

follows. In Section 2, we give some basic definitions and lemmas, which play an important

role in Section 3 to establish the existence of the almost periodic solutions of (1.1). Here

we also study the global exponential stability of almost periodic solutions. The paper con-

cludes with an example to illustrate the effectiveness of the obtained results by numerical

simulations.

2. Preliminary results

In this section, we shall first recall some basic definitions and lemmas which are used in

what follows.

Definition 2.1. [3, 14] Let u : R → R be continuous in t. u(t) is said to be almost

periodic on R if, for any ε > 0, the set T (u, ε) = {δ : |u(t+ δ)− u(t)| < ε for all t ∈ R}
is relatively dense, i.e., for any ε > 0, it is possible to find a real number l = l(ε) > 0,

for any interval with length l(ε), there exists a number δ = δ(ε) in this interval such that

|u(t+ δ)− u(t)| < ε for all t ∈ R.

Lemma 2.2. [9, Lemma 2.1] Every solution (S(t), I(t), R(t)) of (1.1) with initial value

conditions (1.2) is positive and bounded on (t0,+∞).

Lemma 2.3. [9, Lemma 2.2] Let

LS = sup
t∈R

A(t)

d(t)
≥ lS = inf

t∈R

A(t)

d(t) + λ(t)
β(t)

> 0,

lI = inf
t∈R

1

β(t)

λ(t) inf
t∈R

A(t)

d(t)+
λ(t)
β(t)

− γ(t)

d(t) + ν(t) + µ(t)
− 1

 > 0,

and (S(t), I(t), R(t)) be a solution of system (1.1) with initial values condition (1.2). Then,

lS ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ LS , lim inf
t→+∞

I(t) ≥ lI and lim inf
t→+∞

R(t) > 0.

Lemma 2.4. Assume that

sup
t∈R

{
−d(t) +

λ(t)LS

(1 + β(t)lI)(1 + β(t)lI)

}
< 0,(2.1)

sup
t∈R

{
− [d(t) + ν(t) + µ(t)] +

λ(t)

β(t)
+

λ(t)LS

(1 + β(t)lI)(1 + β(t)lI)

}
< 0,(2.2)
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and the assumptions of Lemma 2.3 hold. Moreover, assume that x(t) = (S(t), I(t), R(t))

is a solution of equation (1.1) with initial condition (1.2). Then, for any ε > 0, there

exists l = l(ε) > 0 such that every interval [τ, τ + l] contains at least one number δ for

which there exists N > 0 satisfying

|S(t+ δ)− S(t)| < ε, |I(t+ δ)− I(t)| < ε, |R(t+ δ)−R(t)| < ε for all t ≥ N.

Proof. Observe (2.1) and (2.2). Let

lim sup
t→+∞

I(t) = LI , lim sup
t→+∞

R(t) = LR and lim inf
t→+∞

R(t) = lR.

Without loss of generality, we assume that 0 < ε < min
{
lI , lS , lR

}
,

sup
t∈R

{
−d(t) +

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
< 0

and

sup
t∈R

{
−[d(t) + ν(t) + µ(t)] +

λ(t)

β(t)
+

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
< 0.

Consequently, we can choose two positive constants ζ and η such that

η < d−, sup
t∈R

{
ζ − d(t) +

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
< −η < 0,(2.3)

sup
t∈R

{
ζ − [d(t) + ν(t) + µ(t)] +

λ(t)

β(t)
+

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
< −η < 0.

(2.4)

From Lemmas 2.2 and 2.3, there exists t̂0 ≥ t0 such that

lS − ε ≤ S(t) ≤ LS + ε, lI − ε ≤ I(t) ≤ LI + ε, lR − ε ≤ R(t) ≤ LR + ε for all t ≥ t̂0.

For simplicity of notations, we denote

ε1(δ, t) = [A(t+ δ)−A(t)]− [d(t+ δ)− d(t)]S(t+ δ)

− I(t+ δ)S(t+ δ)

1 + β(t+ δ)I(t+ δ)
[λ(t+ δ)− λ(t)]

− λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t+ δ)I(t+ δ)
− I(t+ δ)

1 + β(t)I(t+ δ)

]
,

ε2(δ, t) = {[d(t)− d(t+ δ)] + [ν(t)− ν(t+ δ)] + [µ(t)− µ(t+ δ)]} I(t+ δ)

+
I(t+ δ)S(t+ δ)

1 + β(t+ δ)I(t+ δ)
[λ(t+ δ)− λ(t)]

+ λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t+ δ)I(t+ δ)
− I(t+ δ)

1 + β(t)I(t+ δ)

]
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− I(t+ δ)

1 + α(t+ δ)I(t+ δ)
[γ(t+ δ)− γ(t)]

− γ(t)

[
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
− I(t+ δ)

1 + α(t)I(t+ δ)

]
and

ε3(δ, t) = −[d(t+ δ)− d(t)]R(t+ δ) + [µ(t+ δ)− µ(t)]I(t+ δ)

+
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
[γ(t+ δ)− γ(t)]

+ γ(t)

[
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
− I(t+ δ)

1 + α(t)I(t+ δ)

]
.

From the theory of uniformly almost periodic family in [14], we know that for any

ε > 0, it is possible to find a real number l = l(ε) > 0, for any interval with length l(ε),

there exists a number δ = δ(ε) in this interval such that

|A(t+ δ)−A(t)| < ε, |d(t+ δ)− d(t)| < ε, |λ(t+ δ)− λ(t)| < ε, |β(t+ δ)− β(t)| < ε,

|ν(t+ δ)− ν(t)| < ε, |µ(t+ δ)− µ(t)| < ε, |α(t+ δ)− α(t)| < ε, |γ(t+ δ)− γ(t)| < ε.

Here, we choose ε is sufficiently small such that

(2.5) |εi(δ, t)| ≤
1

2 + 3 Λ
d−

ηε for all t ∈ R, i = 1, 2, 3,

and

Λ = sup
t∈R

[
µ(t) +

γ(t)

(1 + α(t)lI)(1 + α(t)lI)

]
.

Pick N0 ≥ max
{
t0 − δ, t̂0, t̂0 − δ

}
. For t ∈ R, denote

(x1(t), x2(t), x3(t)) = (S(t+ δ)− S(t), I(t+ δ)− I(t), R(t+ δ)−R(t)).

Then, for all t > N0, we get

x′1(t) = [A(t+ δ)−A(t)]− d(t)[S(t+ δ)− S(t)]− [d(t+ δ)− d(t)]S(t+ δ)

− I(t+ δ)S(t+ δ)

1 + β(t+ δ)I(t+ δ)
[λ(t+ δ)− λ(t)]

− λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t+ δ)I(t+ δ)
− I(t+ δ)

1 + β(t)I(t+ δ)

]
− λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t)I(t+ δ)
− I(t)

1 + β(t)I(t)

]
− λ(t)I(t)

1 + β(t)I(t)
[S(t+ δ)− S(t)]

= −d(t)[S(t+ δ)− S(t)]− λ(t)I(t)

1 + β(t)I(t)
[S(t+ δ)− S(t)](2.6)

− λ(t)S(t+ δ)

(1 + β(t)I(t))(1 + β(t)I(t+ δ))
[I(t+ δ)− I(t)]
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+ [A(t+ δ)−A(t)]− [d(t+ δ)− d(t)]S(t+ δ)

− I(t+ δ)S(t+ δ)

1 + β(t+ δ)I(t+ δ)
[λ(t+ δ)− λ(t)]

− λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t+ δ)I(t+ δ)
− I(t+ δ)

1 + β(t)I(t+ δ)

]
= −

[
d(t) +

λ(t)I(t)

1 + β(t)I(t)

]
x1(t)− λ(t)S(t+ δ)

(1 + β(t)I(t))(1 + β(t)I(t+ δ))
x2(t) + ε1(δ, t),

x′2(t) = −[d(t) + ν(t) + µ(t)][I(t+ δ)− I(t)]

− γ(t)

(1 + α(t)I(t))(1 + α(t)I(t+ δ))
[I(t+ δ)− I(t)] +

λ(t)I(t)

1 + β(t)I(t)
[S(t+ δ)− S(t)]

+ {[d(t)− d(t+ δ)] + [ν(t)− ν(t+ δ)] + [µ(t)− µ(t+ δ)]} I(t+ δ)

+
λ(t)S(t+ δ)

(1 + β(t)I(t+ δ))(1 + β(t)I(t))
[I(t+ δ)− I(t)]

+
I(t+ δ)S(t+ δ)

1 + β(t+ δ)I(t+ δ)
[λ(t+ δ)− λ(t)]

+ λ(t)S(t+ δ)

[
I(t+ δ)

1 + β(t+ δ)I(t+ δ)
− I(t+ δ)

1 + β(t)I(t+ δ)

]
− I(t+ δ)

1 + α(t+ δ)I(t+ δ)
[γ(t+ δ)− γ(t)]

− γ(t)

[
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
− I(t+ δ)

1 + α(t)I(t+ δ)

]
= −

{
[d(t) + ν(t) + µ(t)] +

γ(t)

(1 + α(t)I(t))(1 + α(t)I(t+ δ))

− λ(t)S(t+ δ)

(1 + β(t)I(t+ δ))(1 + β(t)I(t))

}
x2(t) +

λ(t)I(t)

1 + β(t)I(t)
x1(t) + ε2(δ, t)

(2.7)

and

x′3(t) = −d(t)x3(t) +

[
µ(t) +

γ(t)

(1 + α(t)I(t))(1 + α(t)I(t+ δ))

]
x2(t)

− [d(t+ δ)− d(t)]R(t+ δ) + [µ(t+ δ)− µ(t)]I(t+ δ)

+
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
[γ(t+ δ)− γ(t)]

+ γ(t)

[
I(t+ δ)

1 + α(t+ δ)I(t+ δ)
− I(t+ δ)

1 + α(t)I(t+ δ)

]
= −d(t)x3(t) +

[
µ(t) +

γ(t)

(1 + α(t)I(t))(1 + α(t)I(t+ δ))

]
x2(t) + ε3(δ, t).

(2.8)

We trivially extend (S(t), I(t), R(t)) to R by letting (S(t), I(t), R(t)) = (S(t0), I(t0), R(t0))

for t ∈ (−∞, t0]. Set u(t) = (x1(t), x2(t)) and

U(t) = sup
s∈(−∞,t]

{
eζs ‖u(s)‖

}
.

It is obvious that eζt ‖u(t)‖ ≤ U(t) and U(t) is non-decreasing. Calculating the upper left
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derivative of eζt |x1(t)| and eζt |x2(t)|, in view of (2.6) and (2.7), we have

D−
{
eζt |x1(t)|

}
≤ −

{[
d(t) +

λ(t)I(t)

1 + β(t)I(t)

]
− ζ
}
eζt |x1(t)|

+
λ(t)S(t+ δ)

(1 + β(t)I(t))(1 + β(t)I(t+ δ))
|x2(t)| eζt + eζt |ε1(δ, t)|

≤ −[d(t)− ζ]eζt |x1(t)|+ λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]
|x2(t)| eζt

+ eζt |ε1(δ, t)|

(2.9)

and

D−
{
eζt |x2(t)|

}
≤ −

{
[d(t) + ν(t) + µ(t)] +

γ(t)

(1 + α(t)I(t))(1 + α(t)I(t+ δ))

− λ(t)S(t+ δ)

(1 + β(t)I(t+ δ))(1 + β(t)I(t+ δ))
− ζ
}
eζt |x2(t)|

+
λ(t)I(t)

1 + β(t)I(t)
|x1(t)| eζt + eζt |ε2(δ, t)|

≤
{
ζ − [d(t) + ν(t) + µ(t)] +

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
eζt |x2(t)|

+
λ(t)

β(t)
|x1(t)| eζt + eζt |ε2(δ, t)| ,

(2.10)

where t > N0.

Now, we distinguish two cases to prove that

‖u(t)‖ ≤ 1

2 + 3 Λ
d−

ε for sufficiently large t.

Case 1: U(t) > eζt ‖u(t)‖ for all t ≥ N0. We claim that

U(t) ≡ U(N0) for all t ≥ N0.

Assume, by way of contradiction, that there exists t1 > N0 such that U(t1) > U(N0).

Since

eζt1 ‖u(t1)‖ < U(t1) and eζt ‖u(t)‖ ≤ U(N0) for all t ≤ N0,

there must exist ξ ∈ (N0, t1) such that eζξ ‖u(ξ)‖ = U(t1) ≥ U(ξ), which is a clear

contradiction of the fact that U(ξ) > eζξ ‖u(ξ)‖. This proves the claim. Then there exists

t2 > N0 such that

‖u(t)‖ ≤ e−ζtU(t) = e−ζtU(N0) <
1

2 + 3 Λ
d−

ε < ε for all t ≥ t2,

where t2 satisfies ε−1U(N0)(2 + 3 Λ
d− ) < eζt2 .
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Case 2: There is a t∗ ≥ N0 such that U(t∗) = eζt
∗ ‖u(t∗)‖.

If U(t∗) = eζt
∗ ‖u(t∗)‖ = eζt

∗ |x1(t∗)|, then (2.9) implies that

0 ≤ D−
{
eζt |x1(t)|

}∣∣∣
t=t∗

≤ −[d(t∗)− ζ] |x1(t∗)| eζt∗ +
λ(t∗)(LS + ε)

[1 + β(t∗)(lI − ε)][1 + β(t∗)(lI − ε)]
|x2(t∗)| eζt∗

+ |ε1(δ, t∗)| eζt∗

≤ sup
t∈R

{
−[d(t)− ζ] +

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
U(t∗) + eζt

∗ 1

2 + 3 Λ
d−

ηε

≤ −ηU(t∗) + eζt
∗ 1

2 + 3 Λ
d−

ηε

which yields

(2.11) eζt
∗ |x1(t∗)| = U(t∗) ≤ eζt∗ 1

2 + 3 Λ
d−

ε and ‖u(t∗)‖ ≤ 1

2 + 3 Λ
d−

ε.

On the other hand, if U(t∗) = eζt
∗ ‖u(t∗)‖ = eζt

∗ |x2(t∗)|, then (2.10) gives us

0 ≤ D−
{
eζt |x2(t)|

}∣∣∣
t=t∗

≤
{
ζ − [d(t∗) + ν(t∗) + µ(t∗)] +

λ(t∗)(LS + ε)

[1 + β(t∗)(lI − ε)][1 + β(t∗)(lI − ε)]

}
eζt

∗ |x2(t∗)|

+
λ(t∗)

β(t∗)
|x1(t∗)| eζt∗ + eζt

∗ |ε2(δ, t∗)|

≤ sup
t∈R

{
ζ − [d(t) + ν(t) + µ(t)] +

λ(t)

β(t)
+

λ(t)(LS + ε)

[1 + β(t)(lI − ε)][1 + β(t)(lI − ε)]

}
U(t∗)

+ eζt
∗ 1

2 + 3 Λ
d−

ηε

≤ −ηU(t∗) + eζt
∗ 1

2 + 3 Λ
d−

ηε,

which implies

(2.12) eζt
∗ |x2(t∗)| = U(t∗) ≤ eζt∗ 1

2 + 3 Λ
d−

ε and ‖u(t∗)‖ ≤ 1

2 + 3 Λ
d−

ε.

For any t > t∗, with the same approach as in deriving (2.11) and (2.12), we can show

(2.13) eζt ‖u(t)‖ ≤ 1

2 + 3 Λ
d−

εeζt and ‖u(t)‖ ≤ 1

2 + 3 Λ
d−

ε if U(t) = eζt ‖u(t)‖ .

On the other hand, if U(t) > eζt ‖u(t)‖ and t > t∗, then we can choose t∗ ≤ t̃ < t such

that

U(t̃) = eζt̃
∥∥u(t̃)

∥∥ and U(s) > eζs ‖u(s)‖ for all s ∈ (t̃, t].
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This, together with (2.13), leads to
∥∥u(t̃)

∥∥ ≤ (2 + 3 Λ
d−

)−1
ε. Using a similar argument to

that in the proof of Case 1, we can show that U(s) ≡ U(t̃) for all s ∈ (t̃, t], which implies

‖u(t)‖ < e−ζtU(t) = e−ζtU(t̃) =
∥∥u(t̃)

∥∥ e−ζ(t−t̃) < 1

2 + 3 Λ
d−

ε.

Therefore, there must exist t̃0 > max {N0, t
∗} such that ‖u(t)‖ ≤

(
2 + 3 Λ

d−

)−1
ε for all

t > t̃0.

Next, we show that |x3(t)| < ε for sufficiently large t. From (2.8), we have

|x3(t)| =
∣∣∣∣e− ∫ t

t̃0
d(θ) dθ

x3(t̃0) +

∫ t

t̃0

e−
∫ t
v d(θ) dθ

×
[
µ(v)x2(v) +

γ(v)x2(v)

(1 + α(v)I(v))(1 + α(v)I(v))
+ ε3(δ, v)

]
dv

∣∣∣∣
≤ et̃0d

− ∣∣x3(t̃0)
∣∣ e−d−t + e−d

−t

∫ t

t̃0

evd
−

sup
t∈R

[
µ(t) +

γ(t)

(1 + α(t)lI)(1 + α(t)lI)

]
dv

× 1

2 + 3 Λ
d−

ε+ e−d
−t

∫ t

t̃0

evd
− 1

2
ηε dv

≤ et̃0d
− ∣∣x3(t̃0)

∣∣ e−d−t +
Λ

d−
1

2 + 3 Λ
d−

ε+
1

d−
1

2
ηε

for all t ≥ t̃0, which implies that there exists N > t̃0 such that |x3(t)| < ε for all t > N .

In summary, for all t > N , we obtain

|x1(t)| = |S(t+ δ)− S(t)| < ε,

|x2(t)| = |I(t+ δ)− I(t)| < ε,

|x3(t)| = |R(t+ δ)−R(t)| < ε.

This ends the proof.

3. Main results

In this section, we establish sufficient conditions for the existence and global exponential

stability of almost periodic solutions of (1.1).

Theorem 3.1. Under the assumptions of Lemma 2.4, equation (1.1) has one positive

almost periodic solution (S∗(t), I∗(t), R∗(t)), which is globally exponentially stable.

Proof. Given a solution (S(t), I(t), R(t)) of equation (1.1) with initial conditions satisfying

S(t0) > 0, I(t0) > 0, R(t0) > 0.
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We also trivially extend (S(t), I(t), R(t)) to R as before. Set

ε̃1(k, t) = [A(t+ tk)−A(t)]− [d(t+ tk)− d(t)]S(t+ tk)

−
[
λ(t+ tk)S(t+ tk)I(t+ tk)

1 + β(t+ tk)I(t+ tk)
− λ(t)S(t+ tk)I(t+ tk)

1 + β(t)I(t+ tk)

]
,

ε̃2(k, t) = −{[d(t+ tk)− d(t)] + [ν(t+ tk)− ν(t)] + [µ(t+ tk)− µ(t)]} I(t+ tk)

+

[
λ(t+ tk)S(t+ tk)I(t+ tk)

1 + β(t+ tk)I(t+ tk)
− λ(t)S(t+ tk)I(t+ tk)

1 + β(t)I(t+ tk)

]
−
[

γ(t+ tk)I(t+ tk)

1 + α(t+ tk)I(t+ tk)
− γ(t)I(t+ tk)

1 + α(t)I(t+ tk)

]
and

ε̃3(k, t) = [µ(t+ tk)− µ(t)]I(t+ tk)− [d(t+ tk)− d(t)]R(t+ tk)

+

[
γ(t+ tk)I(t+ tk)

1 + α(t+ tk)I(t+ tk)
− γ(t)I(t+ tk)

1 + α(t)I(t+ tk)

]
,

where {tk} is any sequence of real numbers.

It follows from Lemma 2.2 and Lemma 2.3 that the solution (S(t), I(t), R(t)) is bounded

and positive, and there exist positive constants M and m such that

(m,m,m) ≤ (S(t), I(t), R(t)) ≤ (M,M,M) for all t ∈ R,

which implies that the right-hand side of (1.1) is also bounded and (S′(t), I ′(t), R′(t))

is a bounded function on [t0,+∞). Thus, since (S(t), I(t), R(t)) ≡ (S(t0), I(t0), R(t0))

for (−∞, t0], we see that (S(t), I(t), R(t)) is uniformly continuous on R. Then, from the

almost periodicity of A, d, λ, α, β, ν and µ, we can select a sequence tk →∞ such that

(3.1)

|A(t+ tk)−A(t)| < 1

k
, |d(t+ tk)− d(t)| < 1

k
, |λ(t+ tk)− λ(t)| < 1

k
,

|β(t+ tk)− β(t)| < 1

k
, |ν(t+ tk)− ν(t)| < 1

k
, |µ(t+ tk)− µ(t)| < 1

k
,

|α(t+ tk)− α(t)| < 1

k
, |γ(t+ tk)− γ(t)| < 1

k
, |ε̃i(k, t)| ≤

1

k
, i = 1, 2, 3,

for all t ∈ R. Since {(S(t+ tk), I(t+ tk), R(t+ tk))} is uniformly bounded and equicontin-

uous, by the Ascoli-Arzelà theorem and the diagonal selection principle, we can choose a

subsequence of {tk} (not relabelled) such that {(S(t+ tk), I(t+ tk), R(t+ tk))} uniformly

converges to a continuous function (S∗(t), I∗(t), R∗(t)) on any compact subset of R and

(m,m,m) ≤ (S∗(t), I∗(t), R∗(t)) ≤ (M,M,M) for all t ∈ R.

To complete the proof, we first prove that (S∗(t), I∗(t), R∗(t)) is a solution of (1.1). In
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fact, for any t ≥ t0 and 4t ∈ R, from (3.1), we have

S∗(t+4t)− S∗(t)

= lim
k→∞

[S(t+4t+ tk)− S(t+ tk)]

= lim
k→∞

∫ t+4t

t

[
A(s+ tk)− d(s+ tk)S(s+ tk)− λ(s+ tk)S(s+ tk)I(s+ tk)

1 + β(s+ tk)I(s+ tk)

]
ds

= lim
k→∞

∫ t+4t

t

[
A(s)− d(s)S(s+ tk)− λ(s)S(s+ tk)I(s+ tk)

1 + β(s)I(s+ tk)

]
ds

+ lim
k→∞

∫ t+4t

t

ε̃1(k, s) ds

=

∫ t+4t

t

[
A(s)− d(s)S∗(s)− λ(s)S∗(s)I∗(s)

1 + β(s)I∗(s)

]
ds,

(3.2)

I∗(t+4t)− I∗(t)

= lim
k→∞

[I(t+4t+ tk)− I(t+ tk)]

= lim
k→∞

∫ t+4t

t

[
λ(s+ tk)S(s+ tk)I(s+ tk)

1 + β(s+ tk)I(s+ tk)
− (d(s+ tk) + ν(s+ tk) + µ(s+ tk))I(s+ tk)

− γ(s+ tk)I(s+ tk)

1 + α(s+ tk)I(s+ tk)

]
ds

= lim
k→∞

∫ t+4t

t

[
λ(s)S(s+ tk)I(s+ tk)

1 + β(s)I(s+ tk)
− (d(s) + ν(s) + µ(s))I(s+ tk)

− γ(s)I(s+ tk)

1 + α(s)I(s+ tk)

]
ds+ lim

k→∞

∫ t+4t

t

ε̃2(k, s) ds

=

∫ t+4t

t

[
λ(s)S∗(s)I∗(s)

1 + β(s)I∗(s)
− (d(s) + ν(s) + µ(s))I∗(s)− γ(s)I∗(s)

1 + α(s)I∗(s)

]
ds

(3.3)

and

R∗3(t+4t)−R∗3(t)

= lim
k→∞

[R3(t+4t+ tk)−R3(t+ tk)]

= lim
k→∞

∫ t+4t

t

[
µ(s+ tk)I(s+ tk) +

γ(s+ tk)I(s+ tk)

1 + α(s+ tk)I(s+ tk)
− d(s+ tk)R(s+ tk)

]
ds

= lim
k→∞

∫ t+4t

t

[
µ(s)I(s+ tk) +

γ(s)I(s+ tk)

1 + α(s)I(s+ tk)
− d(s)R(s+ tk)

]
ds

+ lim
k→∞

∫ t+4t

t

ε̃3(k, s) ds

=

∫ t+4t

t

[
µ(s)I∗(s) +

γ(s)I∗(s)

1 + α(s)I∗(s)
− d(s)R∗(s)

]
ds,

(3.4)

where t+4t ≥ t0. Consequently, (3.2), (3.3) and (3.4) imply that

d

dt
S∗1(t) = A(t)− d(t)S∗(t)− λ(t)S∗(t)I∗(t)

1 + β(t)I∗(t)
,

d

dt
I∗(t) =

λ(t)S∗(t)I∗(t)

1 + β(t)I∗(t)
− (d(t) + ν(t) + µ(t))I∗(t)− γ(t)I∗(t)

1 + α(t)I∗(t)
,
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d

dt
R∗(t) = µ(t)I∗(t) +

γ(t)I∗(t)

1 + α(t)I∗(t)
− d(t)R∗(t).

In other words, (S∗(t), I∗(t), R∗(t)) is a solution of (1.1).

Next, we show that (S∗(t), I∗(t), R∗(t)) is almost periodic. From Lemma 2.4, for any

ε > 0, there exists l = l(ε) > 0 such that every interval [τ, τ + l] contains at least one

number δ for which there exists N > 0 satisfying

‖(S(t+ δ)− S(t), I(t+ δ)− I(t), R(t+ δ)−R(t))‖ < ε for all t > N.

Then, for any fixed s ∈ R, we can find a sufficiently large positive integer N1 > N such

that for any k > N1, s+ tk > N and

‖(S(s+ tk + δ)− S(s+ tk), I(s+ tk + δ)− I(s+ tk), R(s+ tk + δ)−R(s+ tk))‖ < ε.

Letting k →∞, we obtain

‖(|S∗(s+ δ)− S∗(s)| , |I∗(s+ δ)− I∗(s)| , |R∗(s+ δ)−R∗(s)|)‖ ≤ ε.

This tells us that (S∗(t), I∗(t), R∗(t)) is a positive almost periodic solution.

Finally, let (Ŝ(t), Î(t), R̂(t)) be a solution of system (1.1) with initial value conditions

(1.2). Then, arguing as in the proof of Lemma 2.3 in [9], we can show that there exist

T ≥ t0 and two positive constants σ and K such that

(3.5)
∣∣∣Ŝ(t)− S∗(t)

∣∣∣ ≤ Ke−σt, ∣∣∣Î(t)− I∗(t)
∣∣∣ ≤ Ke−σt for all t ≥ T .

Moreover, there exist two constants tR ≥ T and KR > 0 such that

(3.6)
∣∣∣R̂(t)−R∗(t)

∣∣∣ ≤ KRe
−σt for all t ≥ tR.

Hence, (3.5) and (3.6) entail Theorem 3.1. This completes the proof.

4. An example

In this section, we give an example to demonstrate the results obtained in the previous

sections.

Example 4.1. Consider the following SIR model with almost periodic incidence rate and

saturated treatment function:

(4.1)

S′(t) = 20− 0.02S(t)−
(2× 10−3 + 2× 10−4 sin(πt3 ) + 3× 10−4 sin t)S(t)I(t)

1 + 0.5I(t)
,

I ′(t) =
(2× 10−3 + 2× 10−4 sin(πt3 ) + 3× 10−4 sin t)S(t)I(t)

1 + 0.5I(t)
− 0.09I(t)− 0.05I(t)

1 + 0.5I(t)
,

R′(t) = 0.02I(t) +
0.05I(t)

1 + 0.5I(t)
− 0.02R(t).
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One can easily check that the assumptions of Lemma 2.4 are satisfied. Hence, from

Theorem 3.1, system (4.1) has exactly one positive almost periodic solution. Moreover, the

almost periodic solution is globally exponentially stable with the exponential convergent

rate σ = 0.001. The fact is verified by the numerical simulation in Figure 4.1.
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Figure 4.1: Numerical solutions of system (4.1) for initial values (S, I,R) ≡
(780, 25, 38), (810, 30, 39), (850, 40, 40), respectively, where t ∈ [0, 400].
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Remark 4.2. Since the almost periodic functions contain periodic functions, we can find

that all the results on periodic solutions of (1.1) in [9] are only special cases of Theorem 3.1.

Moreover, the global exponential stability of positive almost periodic solutions has not be

mentioned in [1, 2, 4–8, 10–13, 15–18]. This implies that all results in [1, 2, 4–13, 15–18]

and the references therein cannot be applied to prove the global exponential stability of

positive almost periodic solutions for (4.1). In particular, without using coincidence degree

theory, we employ a novel proof to establish some criteria to guarantee the existence and

stability of positive almost periodic solutions for non-autonomous SIR epidemic model

with saturated treatment. The method used in this paper provides a possible method to

study the almost periodic problem of other SIR epidemic models.
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