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S-Noetherian Rings and Their Extensions

Jongwook Baeck, Gangyong Lee and Jung Wook Lim*

Abstract. Let R be an associative ring with identity, S a multiplicative subset of
R, and M a right R-module. Then M is called an S-Noetherian module if for each
submodule N of M, there exist an element s € S and a finitely generated submodule
F of M such that Ns C FF C N, and R is called a right S-Noetherian ring if Rp is an
S-Noetherian module. In this paper, we study some properties of right S-Noetherian
rings and S-Noetherian modules. Among other things, we study Ore extensions, skew-
Laurent polynomial ring extensions, and power series ring extensions of S-Noetherian

rings.

1. Introduction

Due to the importance of Noetherian rings, there were several attempts to generalize
the concept of Noetherian rings in order to extend the well-known results for Noetherian
rings. One of them is the notion of S-Noetherian rings. A study of S-Noetherian rings was
oriented in commutative algebra. In [3], Anderson, Kwak, and Zafrullah introduced the
concept of “almost finitely generated” to study Querré’s characterization of divisorial ideals
in integrally closed polynomial rings. Later, Anderson and Dumitrescu in [1] abstracted
this notion to any commutative ring and defined a general concept of Noetherian rings.
Let R be an associative ring with identity, S a (not necessarily saturated) multiplicative
subset of R, and M a unitary R-module. A commutative ring R is called an S-Noetherian
ring if each ideal of R is S-finite, i.e., for each ideal I of R, there exist an element s € .S
and a finitely generated ideal J of R such that Is C J C I. They defined an R-module M
to be S-finite if there exist an element s € S and a finitely generated R-submodule F' of M
such that Ms C F. Also, M is said to be S-Noetherian if each submodule of M is S-finite.
It is clear that if S is a multiplicative subset consisting of units of R, then an S-Noetherian
ring is Noetherian and an S-finite R-module is a finitely generated R-module. In [1], the

authors gave a number of S-variants of well-known results for Noetherian rings: S-versions
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of Cohen’s result, Eakin-Nagata theorem, and Hilbert basis theorem under some additional
conditions. In [11], Liu studied when the ring of generalized power series is S-Noetherian.
In [10], Lim and Oh completely classified when the composite ring extensions of the forms
D+ E[I'*] and D + [E"=] are S-Noetherian. In [9], the authors studied S-Noetherian
properties via the amalgamated algebra along an ideal. In [8], the local-global property
of S-Noetherian rings was investigated. For more details on commutative S-Noetherian
rings, the readers can refer to [1,8H11].

In this paper, we investigate to study S-Noetherian rings and S-Noetherian modules.
In Section [2| we introduce the notions of right S-Noetherian rings and S-Noetherian
modules over general rings (including noncommutative rings), and study some extensions
of right S-Noetherian rings. Among other things, we give an equivalent condition for
the trivial extension to be S-Noetherian. We show that R is a right S-Noetherian ring
and M is S-finite as a right R-module if and only if the trivial extension T'(R, M) is a
right T'(S, M )-Noetherian ring. In Section 3| we study Ore extensions, power series ring
extensions, and composite ring extensions of right S-Noetherian rings. More precisely,
we show that if R is a right S-Noetherian ring, S is a right o-anti-Archimedean subset
for an automorphism ¢ of R, and X is an indeterminate over R, then the Ore extension
R[X;0,0] is a right S-Noetherian ring. We also prove that if R is a right S-Noetherian
ring and S is a right anti-Archimedean subset of R consisting of regular elements, then
the power series ring R [X] is a right S-Noetherian ring.

As mentioned before, some properties of Noetherian rings hold in S-Noethrian rings.
But there are some properties of Noetherian rings which do not hold in S-Noetherian
rings. In this paper, we give some examples to show that Noetherian and S-Noetherian
rings have different algebraic structures.

Throughout this paper, all rings are (general) associative rings with identity, all mod-
ules are unitary right modules, and multiplicative subsets need not contain the identity

element of a based ring.

2. S-Noetherian rings and modules

In this section, we define right S-Noetherian rings and S-Noetherian modules, and study
some properties of them. To do this, we first give definitions of right S-Noetherian rings

and S-Noetherian modules.

Definition 2.1. Let R be an associative ring with identity and S a multiplicative subset
of R.

(1) A right (resp., left) ideal A of R is S-finite if there exist an element s € S and
a finitely generated right (resp., left) ideal F' of R such that As C F C A (resp.,
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SACFCA).

(2) R is a right (resp., left) S-Noetherian ring if every right (resp., left) ideal of R is
S-finite.

A ring R is an S-Noetherian ring if R is both left and right S-Noetherian.

Clearly, every right Noetherian ring is right S-Noetherian for any multiplicative subset
S. We provide examples of right S-Noetherian rings in Examples and For a
ring R and a positive integer n, Mat, (R) means the ring of n x n matrices over R and
Z,(R) = {rl, | r € R}, where I, is the n x n identity matrix of Mat, (R).

Example 2.2. (1) Every (commutative) Noetherian ring is right S-Noetherian for any
multiplicative subset S. In particular, every field and division ring are right S-Noetherian
for any multiplicative subset S.

(2) Let R be aright Noetherian ring and 7" a subring of Mat,,(R) containing Z,,(R) = R.
Then T is a right Noetherian ring [4, Proposition 1.7]; so T is a right S-Noetherian ring
for any multiplicative subset S of T'. In particular, Mat, (R) is a right S-Noetherian ring
for any multiplicative subset S of Mat,(R).

The next example shows that a right S-Noetherian ring need not be right Noetherian.
For a ring R and a positive integer n, UTM,,(R) means the ring of n x n upper triangular

matrices over R.

Example 2.3. (1) Let R = [[, cpZp, and R* = [[, .pZ, , where P is the set of
prime integers and Z; = Zy, \ {0}. Consider a nonzero element a in B, cpZp,. Then
S = aR* is a multiplicative subset of R. Hence R is right S-Noetherian, because As is
a finitely generated right ideal of R for all right ideals A of R and for all s € S. But
(Zp,,0,0,...) C (Zp,,Zp,,0,0,...) € --- is an infinite ascending chain of right ideals in R.
Thus R is not a right Noetherian ring.

(2) Let R = [[72{ UTM2(Z) be the infinite direct product of UTMjy(Z) and let T' =
[Io2, P*, where P* = (%" 0.) and Z* = Z\ {0}. Let 0 #a € @;° | P, where P = (29).
Then S = aT is a multiplicative subset of R. Hence R is right S-Noetherian, because it is
easy to show that As is contained in a finitely generated right ideal of R for all right ideals
A of R and for all s € S. But (UTM2(Z),0,0,...) € (UTM2(Z), UTM3(Z),0,0,...) C ---
is an infinite ascending chain of right ideals in R. Thus R is not a right Noetherian ring.

(3) Let D be a division ring, X = {X; | i € N} a set of indeterminates over D, and
R = D[X] /{X;X;|i# j) the factor ring of D [X] by the ideal (X;X; | i # j). Let X;
be the image of X; under R. Then <71> - <f1, YQ> C --- is an ascending chain of ideals
of R; so R is not a Noetherian ring. Fix an ¢ € N and set S = {an | n € N}. Then an

easy calculation shows that R is an S-Noetherian ring.
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The following result shows that for a multiplicative subset S, a right S-Noetherian

ring can be right Noetherian.

Proposition 2.4. Let S be a multiplicative set of right invertible elements of a ring R.
If R is a right S-Noetherian ring, then R is right Noetherian.

Proof. Let A be a right ideal of R. Since R is a right S-Noetherian ring, As C F C A for
some s € S and some finitely generated right ideal F of R. Since A = Ass™! C Fs™! C F,
A = F; so A is finitely generated. Thus R is a right Noetherian ring. O

Recall that a right (left) ideal A of a ring is nilpotent if there exists a positive integer
n such that A™ = (0); and a right (left) ideal of a ring is nil if each of its elements is
nilpotent. It is well known as Levitzki’s theorem that every nil one-sided ideal of a right
Noetherian ring is necessarily nilpotent. However, the next example shows that a nil

one-sided ideal of a right S-Noetherian ring need not be nilpotent.

Example 2.5. Let p be a prime integer, T = [[, Zyn, and R = (D2 | Zy», 17), where

17 = (1,1,1,...), a subring of T. Let s = (1,p,p,0,0,0,...) and S = {s,s% s*}. Then S

is a multiplicative subset of R.

(1) Let A be an ideal of R. Note that every element of As is of the form (a1, as, as, 0,0,
..); so there exists a finitely generated ideal F' of R such that As C F C A. Thus

R is an S-Noetherian ring.

(2) Let B =D, | pZyn be an ideal of R and b := (pb1,pbs, ..., pbx,0,0,...) € B. Then
k

(b)" = (0); so B is nil. But there is no positive integer m such that B™ = (0). Thus

B is not nilpotent.

The following example shows that every subring of a right S-Noetherian ring need not
be right S-Noetherian. We give an example of a right S-Noetherian ring which is not left
S-Noetherian. In addition, Example (3) illustrates that a ring R is right S7-Noetherian
but not right Se-Noetherian for distinct multiplicative subsets S; and So of R.

Example 2.6. (1) Let R = (% 8) and S = {(9%) | b€ Q} amultiplicative subset of R.
Since R is right Noetherian [4, Exercise 1A(a)], R is right S-Noetherian. Now, consider
T = (%%) as a subring of R and A = (8%) as a right ideal of T. Then for any s € S,
a right ideal B of T such that As C B C A must be A. Since Q is not finitely generated
as a right Z-module, A is not a finitely generated right ideal. Thus 7' is not a right
S-Noetherian ring.

(2) Let R = (% 8) and S = {(}8) | b€ Q} a multiplicative subset of R. Note that

R is right S-Noetherian as in (1). Consider a left ideal A = (% %Q) of R. Suppose to the
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contrary that A is S-finite. Then there exist an element s € S and a finitely generated
left ideal F' of R such that sA C ' C A. Note that sA = A; so A = F. However it is
impossible, because A is not a finitely generated left ideal of R. Hence A is not S-finite,
and thus R is not left S-Noetherian.

(3) Let R = (%%) and S1 = {(&9)|a €N} a multiplicative subset of R. Since
all right ideals of R are of the forms A, := (%7%) for all 0 < mn € Z and Ag :=
{(8 Z) | (q,2) € G, which is a subgroup of Q ® Z} [5, Example 2.23], we can easily check
that R is right S1-Noetherian. On the other hand, take Sy = {(8 ll’) | b€ @}, which is a

multiplicative subset of R. From (2), it is easy to see that R is not right Ss-Noetherian.

Proposition 2.7. Let S be a multiplicative subset of a ring R and Ay, ..., A, be S-finite
right ideals of R. Then A1+ -+ A, is S-finite.

Proof. Suppose that Ay, ..., A, are S-finite right ideals of R. Then for each k € {1,...,n},
there exist an element s; € S and a finitely generated right ideal Fj of R such that
Apsk C F, C A. Let s = s1---8,. Then foreach k € {1,...,n}, Ags C AgSkSkr1--Sn C
Fyski1---sp C F, C Ag; so we have

(A4 +A)SCFP+- -+ F, CA +---+ A,
Since F1 + --- + F, is a finitely generated right ideal of R, A; + --- + A, is S-finite. O

The next results show that the finite direct sum preserves S-Noetherian properties but

the infinite direct product does not.

Proposition 2.8. Let S1, ..., S, be multiplicative subsets of rings Ry, ..., Ry, respectively.

Then the following conditions are equivalent.
(1) For eachi € {1,...,n}, R; is a right S;-Noetherian ring.
(2) The direct sum [];_, R; is a right (I}—, Si)-Noetherian ring.

Example 2.9. Let R = [[>2, Z be the infinite direct product of Z, S = [[>2, {1} a
multiplicative subset of R, and A = @, | Z the direct sum of Z. Then A is a nonfinitely
generated right ideal of R and A(1,1,...) = A; so A is not S-finite. Thus R is not a right

S-Noetherian ring.
Now, we define a module theoretic analogue of the S-Noetherian property for rings.

Definition 2.10. Let R be a (not necessarily commutative) ring with identity, S a mul-
tiplicative subset of R, and M a right R-module.

(1) A submodule N of M is S-finite if there exist an element s € S and a finitely
generated submodule F' of M such that Ns C F C N.
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(2) M is S-Noetherian if every submodule of M is S-finite.

Remark 2.11. (1) Every submodule of an S-Noetherian module is S-Noetherian.
(2) If S; C Sy are multiplicative subsets of a ring, then any S;-Noetherian module is
So-Noetherian.

(3) A homomorphic image of an S-Noetherian module is S-Noetherian.

The next example shows that the converse of Remark 2) does not hold true, in

general.

Example 2.12. Let R and S be as in Example [2.3(1). Consider S; = {1z} and S = S1U
S, where 1z = (1,1,1,...). Then R is right Se-Noetherian but not right S;-Noetherian.

Proposition 2.13. Let S1 C So be multiplicative subsets of a ring R such that for any
s € So, there exists an element r € So satisfying sr € S1. If R is a right Sa-Noetherian
ring, then R is a right S1-Noetherian ring.

Proof. Let A be a right ideal of R. Since R is a right S3-Noetherian ring, we can find
s € So and a finitely generated right ideal F' of R such that As C FF C A. By the
assumption, sr € S for some r € Sy; so Asr C Fr C F' C A. Hence A is Sqi-finite. Thus
R is right S1-Noetherian. ]

Let R be a ring. It is well known that if 0 - M’ — M — M"” — 0 is a short exact
sequence of R-modules, then M is a Noetherian module if and only if so are M’ and
M" |2, Proposition 10.12]. It was also shown that if L and M/L are Noetherian as right
R-modules, then M is Noetherian as a right R-module [6, 1.20]; and a finitely generated
module over a right Noetherian ring is a Noetherian module |2, Proposition 10.19]. (Recall
that a Noetherian module is a module which satisfies the ascending chain condition on
submodules, or equivalently, every submodule is finitely generated.) We extend these

above results to S-Noetherian R-modules, where S is a multiplicative subset of R.

Lemma 2.14. Let R be a ring, S a multiplicative subset of R, and M a right R-module.

Then the following assertions hold.
(1) If M is S-Noetherian and N is a submodule of M, then M/N is S-Noetherian.

(2) If N is an S-Noetherian submodule of M such that M /N is S-Noetherian, then M

is S-Noetherian.

(3) For a short exact sequence of right R-modules 0 — M’ — M — M" — 0, M 1is
S-Noetherian if and only if M’ and M" are S-Noetherian.

(4) If R is a right S-Noetherian ring and M 1is finitely generated, then M is S-Noetherian.
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(5) If R is a right S-Noetherian ring and M is S-finite, then M is S-Noetherian.

(6) Let R C E be an extension of rings. If R is a right S-Noetherian ring and E is
S-finite as a right R-module, then E is a right S-Noetherian ring.

Proof. (1) Let L be a submodule of M containing N. Since M is S-Noetherian, there
exist an element s € S and a finitely generated submodule F' of L such that Ls C F; so
(L/N)s C (F+ N)/N C L/N. Since (F + N)/N is finitely generated, L/N is S-finite.
Thus M/N is S-Noetherian.

(2) Let L be a submodule of M. If L. C N, then there is nothing to prove, because
N is S-Noetherian. Suppose that L ¢ N. Since (L + N)/N = L/(LN N) and M/N is
S-Noetherian, L/(L N N) is S-finite; so there exist s € S and ¢y,...,¢, € L such that
(L/(LNN))s C (4+(LNN))R+- -+ (ly,+(LNN))R C L/(LNN). Let F} = {1 R+ - -+{, R.
Then (L/(LNN))s C (F1+(LNN))/(LNN) C L/(LNN). Also, since N is S-Noetherian,
there exist an element ¢t € .S and a finitely generated submodule F» of L N N such that
(LN N)t C F;,. Therefore we obtain

Lstg(F1—|—(LON))t:F1t+(LﬂN)t§F1+F2gL.

Note that F} + Fb is finitely generated. Thus L is S-finite, which shows that M is S-
Noetherian.

(3) Let ¢p: M’ — M and 1p: M — M" be R-module homomorphisms in the short exact
sequence 0 — M' — M — M" — 0.

(=) Suppose that M is S-Noetherian. Since M’ is isomorphic to a submodule ¢(M’)
of M, M is S-Noetherian by Remark [2.11](1). Also, since M" is isomorphic to M/ Ker (1)),
M" is S-Noetherian by (1).

(<) Suppose that M" and M" are S-Noetherian. Since M’ = Im(¢) = Ker(y)) and
M" = M/ Ker(¢), M is S-Noetherian by (2).

(4) Let M be a finitely generated module. We use the induction on the number of
generators of M. Assume that M = mR for some m € M and let N be a submodule of M.
Set A={r € R|mr e N}. Then A is a right ideal of R. Since R is right S-Noetherian,
As Ca1R+ -+ apR for some s € S and aq,...,a; € A. Let n € N be arbitrary. Then
n = mr for some r € A; sons € maiR+---+maiR. Hence Ns C maiR+---+maR C N,
which says that N is S-finite.

Next, assume that every right R-module generated by fewer than n of its elements
is S-Noetherian. Let my,...,m, be minimal generators of M. Then by the induction
hypothesis, m,R and miR + --- 4+ my_1 R are S-Noetherian. Consider a short exact

sequence

R+---+m _1R
0= muR —> M =mR+-+m,R L ——2 F ol
e T I T G R+ e R) (R
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of right modules, where ¢ is the natural inclusion and p is a surjective map given by

plmiry + -+ + mpry) = (mar1 + -+ + mp—17p-1) + (MR + -+ + mp_1R) N myR)
miRidmy R g
miR+-+mp_1R)N"mu R 18 o=

for all r,...,7, € R. By the induction hypothesis and (1), i
Noetherian. Thus by (3), M is S-Noetherian.

(5) Suppose that M is S-finite. Then there exist an element s € S and a finitely
generated submodule F' of M such that Ms C F. Note that by (4), F' is S-Noetherian.
Let N be a submodule of M. Since NsR is a submodule of F';, NsR is S-finite; so there
exist an element ¢t € .S and a finitely generated submodule P of NsR such that NsRt C P.
Therefore Nst C P C N. Hence N is S-finite, and thus M is S-Noetherian.

(6) Let A be a right ideal of E. Since E contains R, A is a submodule of E as
a right R-module. Note that by (5), F is S-Noetherian as a right R-module; so we
can find s € S and aq,...,a, € A such that As C a1 R+ -+ + a,R C A. Therefore
AsCa1E+ -+ apFF C A, because A is a right ideal of E. Hence A is S-finite. Thus F
is a right S-Noetherian ring. d

For a ring R and a positive integer n, we denote that the standard n x n matriz units
in Mat,,(R) are the matrices e;; for all 4, j = 1,...,n such that e;; has 1 for the (4, j)-entry

and 0 elsewhere.

Proposition 2.15. If R is a right S-Noetherian ring and n is a positive integer, then
Mat, (R) and UTM,,(R) are S-Noetherian as right R-modules.

Proof. Since Mat,,(R) (resp., UTM,(R)) is generated by {e;; | 1 <4,j < n} (resp., {e;; |
1 <i < j < n}) as aright R-module, Mat, (R) (resp., UTM,(R)) is finitely generated.
Thus the result is an immediate consequence of Lemma [2.14(4). O

For a multiplicative subset S of a ring R and a positive integer n, D, (S) means the

multiplicative set of n x n diagonal matrices with entries in S.

Proposition 2.16. Let R be a right S-Noetherian ring and n a positive integer. Then

the following assertions hold.
(1) UTM,,(R) is a right D,(S)-Noetherian ring.
(2) Mat,(R) is a right Dy (S)-Noetherian ring.

Proof. (1) Assume that R is a right S-Noetherian ring. Then by Proposition m
UTM,(R) is S-Noetherian as a right R-module; so by Remark [2.11[2), UTM,(R) is
D, (S)-Noetherian as a right Z,,(R)-module. Let A be a right ideal of UTM,,(R). Then A
is a right Z,, (R)-submodule of UTM,,(R); so there exist diag{s1, s2,...,s,} € Dyp(S) and
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My, ..., M, € UTM,,(R) such that Adiag{s1,s2,...,8,} € M1Z,(R)+---+ MyZ,(R) C
A, where

S1 0 0

0 S9 0
diag {s1,s2,...,8n} :=

0 O Sn

Therefore Adiag {s1, s2,...,sn} € Mj UTM,(R) + ---+ M UTM,,(R) C A. Hence A is
D, (S)-finite, and thus UTM,,(R) is a right D,,(S)-Noetherian ring.

(2) Suppose that R is a right S-Noetherian ring. Since Z,,(R) € UTM,(R), a simi-
lar argument as in the proof of (1) shows that Mat, (R) is D,(S)-Noetherian as a right
UTM,,(R)-module. Hence Mat,,(R) is D,,(S)-finite as a right UTM,,(R)-module. Thus by
Lemma [2.14[6), Mat,(R) is a right D,,(S)-Noetherian ring. O

For a multiplicative subset S of a ring R and a positive integer n, let

ap as az -+ Qp—1 27}
0 ar azx -+ apn—2 apn—1
0 0 ay -+ QAp—3 0Aap—-2
Vn(R) = A _ _ tai,...,anp € R
o 0 0 - a as
o 0 0 - 0 ay

and Z,(S) := {sI,, | s € S}. Then it is easy to see that Z,(S) is a multiplicative subset of
Vn(R).

Proposition 2.17. Let S be a multiplicative subset of a ring R and n a positive integer.

Then the following conditions are equivalent.
(1) R is a right S-Noetherian ring.
(2) Vn(R) is a right Z,,(S)-Noetherian ring.

Proof. (1) = (2): Note that V,(R) is generated by {Z?:_lk eiitk | k=0,...,n— 1} as
a right R-module. Since R is a right S-Noetherian ring, V,(R) is S-Noetherian by
Lemma [2.14f(4). Since R = Z,(R), Vu(R) is Z,(S)-Noetherian as a right Z,(R)-module.
Let A be a right ideal of V,,(R). Then A is a right Z,(R)-submodule of V,(R); so there
exist sI, € Z,(S) and M, ..., My € A such that Asl,, C M1Z,(R)+---+ MyZ,(R) C A.
Therefore Asl,, € MV, (R) + -+ + MgV,(R) € A. Hence A is Z,(S)-finite, and thus
Vin(R) is a right Z,,(S)-Noetherian ring.
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(2) = (1): Let A be a right ideal of R. Then V,(A) is a right ideal of V,(R). Since
Vn(R) is a right Z,,(S)-Noetherian ring, there exist an element sI,, € Z,,(S) and a finitely
generated right ideal F of V,(R) such that V,(A4)sI, C F C V,(A). Let F be the set
of (1,1)-entries of elements in F. Then F is a finitely generated right ideal of R and
As C F C A. Hence A is S-finite, and thus R is a right S-Noetherian ring. O

Let R be a ring, n a positive integer, and A € Mat,,(R). From [7, Section 1], let RA =
{rA|re R}andV = 2?2_11 eii+1- Note that V,(R) = RI,+RV+---+RV"; so the map
p: Vu(R) — R[X]/(X™) defined by p(aol, + a1V + -+ an V") = S ai X7 4 (X7
is a ring isomorphism. Thus by Remark (3) and Proposition we have

Corollary 2.18. Let S be a multiplicative subset of a ring R, n a positive integer, and
T ={s+ (X" |se€S}. Then R is a right S-Noetherian ring if and only if R[X]/(X™) is
a right T-Noetherian ring.

For a ring R and a positive integer n, let

a a2 a3 - Qaip
0 a a3 -+ a

Hn(R) = 0 0 a - agp|:a,a;€R
0O O 0O -+ a

Proposition 2.19. Let S be a multiplicative subset of a ring R and n a positive integer.

Then the following conditions are equivalent.
(1) R is a right S-Noetherian ring.
(2) Hn(R) is a right I,,(S)-Noetherian ring.

Proof. (1) = (2): Suppose that R is a right S-Noetherian ring. Then by Proposition [2.17]
Vn(R) is aright Z,,(S)-Noetherian ring. Since H,,(R) is generated as a right V, (R)-module
by I,, and e;j, where 1 < i < j < n. Thus by Lemma [2.146), H,(R) is a right Z,,(S)-
Noetherian ring.

(2) = (1): The proof is similar to that of (2) = (1) in Proposition O

Lemma 2.20. Let ¢: R — D be a ring homomorphism and S a multiplicative subset of
R. If R is a right S-Noetherian ring, then ¢(R) is a right ¢(S)-Noetherian ring.

For a ring R and an (R, R)-bimodule M, the trivial extension of R by M (or Nagata’s
idealization of M in R) is the ring T(R, M) := R & M with the usual addition and the

following multiplication:

(r1,m1)(rg,mg) = (rirg, rimg + myry)
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for all (r1,m1), (r2,m2) € T(R,M). It is easy to see that T'(R, M) is isomorphic to the
ring of matrices of the form (§'"'), where r € R and m € M; and if S is a multiplicative
subset of R, then T'(S,M) := {(s,m)|s €S and m € M} is a multiplicative subset of
T(R,M). Note that T(R, R) = Ha(R); so by Proposition R is a right S-Noetherian
ring if and only if the trivial extension T'(R, R) of R is a right T'(S,0)-Noetherian ring.

We generalize this result.

Proposition 2.21. Let S be a multiplicative subset of a ring R and M an (R, R)-bimodule.

Then the following assertions are equivalent.
(1) R is a right S-Noetherian ring and M is S-finite as a right R-module.
(2) T(R,M) is a right T(S,0)-Noetherian ring.
(3) T(R,M) is a right T(S, M)-Noetherian ring.

Proof. (1) = (2): Note that 7'(S,0) is a multiplicative subset of T'(R,0). Since M is
S-finite, there exist s € S and my,...,m; € M such that Ms C miR+ --- + myR; so
T(R,M)(s,0) C (1,0)T(R,0) 4+ (0,m1)T(R,0) + - -- + (0,my)T(R,0). Hence T(R, M) is
T(S,0)-finite as a right T'(R,0)-module. Note that T'(R,0) is a right 7(S,0)-Noetherian
ring; so by Lemma [2.14](5), T'(R, M) is T(S,0)-Noetherian as a right T(R,0)-module. Let
A be a right ideal of T(R, M). Then A is T'(S, 0)-finite as a right T'(R, 0)-module; so there
exist t € S and ay,...,a, € A such that A(t,0) C 1T (R,0)+---+a,T(R,0) C A. Hence
A(t,0) CaT(R,M)+---+a,T(R, M) C A, which indicates that A is T'(S,0)-finite. Thus
T(R,M) is a right T'(S,0)-Noetherian ring.

(2) = (3): This implication follows directly from Remark [2.11}(2).

(3) = (1): Suppose that T'(R, M) is a right T'(S, M )-Noetherian ring. Note that a
map ¢: T(R, M) — R given by ¢(r,m) = r for all (r,m) € T(R, M) is a ring epimorphism
and o(T'(S,M)) = S; so by Lemma R is a right S-Noetherian ring. Since 7'(0, M)
is a right ideal of T(R, M), there exist (s,m) € T(S,M) and my,...,m, € M such
that 7°(0, M)(s,m) € (0,m)T(R, M) + --- + (0,my)T(R,M) C T(0,M). Hence Ms C
miR+---+m,RC M, and thus M is S-finite as a right R-module. O

We end this section with some applications of Proposition [2.21]

Example 2.22. (1) Let S be any multiplicative subset of Z. Then Q is not S-finite as a
right Z-module. Thus by Proposition [2.21] T(Z, Q) is not a right 7°(S, Q)-Noetherian ring.
More precisely, consider a right ideal 7'(0,Q) of T'(Z,Q). Then for any (s,q) € T(S,Q),
a right ideal J of T(Z, Q) satisfying T'(0,Q)(s,q) C J C T'(0,Q) is only 7(0,Q), because
T(0,Q)(s,q) =T(0,Q). But 7(0,Q) is not finitely generated. Thus T'(Z, Q) is not a right
T'(S,Q)-Noetherian ring.
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(2) Let R be a right S-Noetherian ring, S a multiplicative subset of R, and n a positive
integer. Then by Proposition 2.16(1), UTM,(R) is a right D,,(S)-Noetherian ring. Also,
as in the proof of Proposition [2.16(2), Mat,(R) is D,(S)-finite as a right UTM,(R)-
module. Thus by Proposition [2.21} T(UTM,,(R), Mat,(R)) is a right T(D,(S), Mat,(R))-
Noetherian ring.

(3) Let R be a right S-Noetherian ring, S a multiplicative subset of R and n a positive
integer. Then by Proposition Vn(R) is a right Z,,(S)-Noetherian ring. Also, as in
the proof of Proposition Hn(R) is Z,,(S)-finite as a right V,,(R)-module. Thus by
Proposition 2.21 T(V,,(R), Hn(R)) is a right T(Z,,(S), Hn(R))-Noetherian ring.

3. Hilbert basis theorem

In this section, we study Ore extensions, power series ring extensions, and composite ring
extensions of right S-Noetherian rings. To do this, we recall some definitions. Let R be a
ring. Recall that for an endomorphism o of R, a (left) o-derivation on R is an additive
map §: R — R such that d(rs) = o(r)d(s)+d(r)s for all r, s € R. For a ring R with a ring
endomorphism o: R — R and a o-derivation §: R — R, the Ore extension R[X;0o,J] of
R is the ring obtained by giving the polynomial ring over R with the new multiplication
Xr=o0(r)X +0(r) for all » € R. If § = 0, then we write R[X; o] for R[X;0,0] and call
it the Ore extension of endomorphism type (or the skew polynomial ring). If o = I (the
identity function), then we write R[X;d] for R[X; Ig,d] and call it the Ore extension of
derivation type (or a differential operator ring).

A multiplicative subset S of a ring R is said to be a right o-anti- Archimedean subset
for an automorphism o of R if (1,5, (H;:ol U‘”“‘j(s)) RNS # () for every s € S. In
particular, if o = I, then we simply call S right anti-Archimedean, i.e., [~ s"RNS # 0
for every s € S. Clearly, every multiplicative set consisting of right invertible elements is

right o-anti-Archimedean for any automorphism o of R.

Theorem 3.1. Let S be a right o-anti-Archimedean subset for an automorphism o of a
ring R. If R is right S-Noetherian, then so is the Ore extension R[X;o,0].

Proof. Let A be a right ideal of R[X; 0, d] and A the right ideal of R consisting of zero and
the leading coefficients of polynomials in .4. We want to show that A is S-finite. Since R
is right S-Noetherian, there exist s € S and ay,...,a, € A such that As C Y " ; a;R C A.
For each i € {1,...,n}, choose an element f; € A with the leading coefficient a; and let d;
be the degree of f;. Set d = max{dy,...,d,}. Then we may assume that deg(f;) = d for
alli =1,...,n. Now, let B=AN(R+ RX +---+ RX%!). Note that by Lemma(4),
B is S-finite as a right R-submodule of R[X; o, d]; so there exist ¢t € S and hq,...,h, € B
such that Bt C )" hiR.
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Let f = Y'_gbjX7 € A be arbitrary. If £ < d, then f € B. Otherwise, £ > d.
Since by € A, bys = > | a;rip for some r1p,...,7m0 € R. Note that Xt = ol(r) Xt +
(Zf;(l) aiéagflfi(r» X1 4 ... 4 §%r) for any r € R. Hence we obtain

/—1
Xlos) = olo ()X + (Z aiao—“iaf(s)) Xk 5t s)
=0

-1
= sX'+ (Z Ui(SJ_i_l(S)) X 4807 (s).
i=0
Therefore we obtain

fa_ﬁ(s) = ngﬁa_g(s) + by Xe_la_z(s) 4+ 4 boa_é(s)
l
= bys X’ + (b(gZUZ(SU “(s) + b0 (s)> X ) i o (s).
=0

Let go = Y., fio~%4(ri)X*"9. Then fo~‘(s) — go has the degree less than £. Consider
the coefficient of (¢ — 1)-th degree term of fo~“(s) — go, say bgy € A. Since A is S-finite,
bers = > a;ryp for some rig,...,m1 € R Let g1 = >0, fio~(ri1) X179 Then
(fo=%(s) — go) o=*"1(s) — g1 has the degree less than ¢ — 1. Continuing this manner, we

have

£—d
f H 7Z+J Z 9 O.*Z+k+1(s) + Gi—aq + bf,f—d—‘rleil 4ot
Jj=0 Jj=0 k=j

for some by y_4+1 and ¢ € R. Hence ij 0 do—tti(s) e S| fiR[X;0,6] + B.
Now, since S is a right o-anti-Archimedean subset of R, there exists an element w €
Mot (H?:_& a*”ﬂ'(s)) RNS;so fwe ), fiR[X;0,0)+ B for all f € A. Therefore we

obtain

fwt € En:fiR[X;a, S + Em:hkR

=1 k=1

C Y fiRIX;0,0]+ > hiR[X;0,0).
=1

Since f is arbitrary chosen in A, we obtain

Awt C Z fiR[X;0,0] + Z hiR[X;0,0] C A.

=1 k=1

Hence A is right S-finite, and thus R[X; 0, 4] is a right S-Noetherian ring. O

By applying § = 0 or 0 = Ir to Theorem we obtain two corollaries.
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Corollary 3.2. Let S be a multiplicative subset of a ring R, 0 an automorphism of R,
and 0 a o-derivation on R. If R is a right S-Noetherian ring, then the following assertions
hold.

(1) If S is right o-anti-Archimedean for an automorphism o, then the skew polynomial

ring R[X ;0] is also right S-Noetherian.

(2) If S is right anti-Archimedean, then the differential operator ring R[X;0] is also
right S-Noetherian.

Corollary 3.3 (Hilbert basis theorem for right S-Noetherian rings). Let R be a ring and
S a right anti-Archimedean subset of R. If R is a right S-Noetherian ring, then so is the
polynomial ring R[X].

For an automorphism o of a ring R, the skew-Laurent polynomial ring R[X, X 1; 0]
consists of the polynomials in X and X' with coefficients in R written on the left,
subject to the relation X"r = ¢™(r)X" for all r € R and n € Z. If 0 = I, then we write
R[X, X~ 1] for R[X, X~ !;0] and is called the Laurent polynomial ring.

Proposition 3.4. Let S be a right o-anti-Archimedean subset for an automorphism o
of a ring R. If R is a right S-Noetherian ring, then the skew-Laurent polynomial ring
R[X, X1 0] is right S-Noetherian.

Proof. Let A be a right ideal of R[X, X~1:0]. We want to show that A is S-finite.

Step 1. Let Aj be the right ideal of R consisting of zero and the leading coefficients
of Laurent polynomials in A. Since R is right S-Noetherian, there exist s € S and
ai,...,an, € A such that A;s C " a;R C Ay. For each i € {1,...,n1}, choose an
element f; = ngp} aj X7 + a; X 4 ¢ A with the leading coefficient a;. Let p; be the
lowest degree of f; and d; be the highest degree of f;. Set d = max{dy,...,d,,} and let
B={g e Aldeg(g) < d}.

Let f =Y 0_,, ;X7 € Abe arbitrary. If £ < d, then f € B. Otherwise, £ > d. Since
cr € Ay, cps = S0 a;ry for some 11,...,1,, € R. Note that fo=‘(s) = ¢, X 07 (s) +
st e XMoo (s) = cps X4+ epo™ T (s)X™. Let h= Y"1 fio~%(r;) X%, Then
fo~t(s) — h has the degree less than ¢. Continuation of the process as above leads us to
fr € 370 fiR[X; 0] + B for some x € (1,5, (H;:Ol 0‘"+j(8)) RN S because S is right
o-anti-Archimedean. Thus Az C >, fiR[X; 0] + B.

Step 2. Let Ao be the right ideal of R consisting of zero and the coefficients of the
lowest degree terms in Laurent polynomials in B. Since R is right S-Noetherian, A, is
S-finite. Thus, Agt C > 72, b;R C Ay for some t € S and b1,...,b,, € Ay. For each
i € {1,...,n2}, choose an element g; = b; X" + ;I.i:kiﬂ B; X7 € B with the leading
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coefficient b;. Let k; be the lowest degree of g; and ¢; be the highest degree of g;. Set
k=min{ki,..., kn,}. Now let C = AN (RX* + .- + RX?).

Let g = Z;zm ¢; X’ € B be arbitrary with ¢ < d. If m > k, then g € C. Oth-
erwise, m < k. Since ¢y, € Az, et = Y12, bit; for some ti,...,t,, € R. Since
goT(t) = cn XM (E) 4 -+ X oTT(E) = et X 4 -+ o ()XY goT (t) —
SN2 gio ki) XMk = go™(t) — (bity + -+ + bnytn,)X™ + [upper terms] € B as
deg(g) < d and k § deg(g;) < d. Continuation of the process as above leads us to
gy € Y12 giR[X 0] 4 C for some y € (1,5 (H?:_OI J_"“‘j(s)) RN S as S is right
o-anti-Archimedean. Thus By C 3" g;R[X 0] +C.

Step 3. By Lemma [2 - ), C is S-finite as a right R-submodule of R[X, X ~!;0]; so
there exist z € S and hy, ..., hy, € C such that Cz C Y72, h;R[X, X 1 0].

In conclusion, from Step 1, Az C Y"", f;R[X; 0]+ B for some z € S. Also, by Step 2,
Azy €Y M fiR[X;oly + By € S0 fiR[X; 0] + Y2, g;iR[X Y 0] + C for some y € S.
In addition, from Step 3, for some z € S,

ni n2 n3
Axyz C©>  [iRIX, X o]+ ) giRIX, X o]+ > hRIX, X 0] C A,

i=1 =1 =1
which shows that A is S-finite. Thus R[X, X ~!; 0] is a right S-Noetherian ring. O
By applying o = Ig to Proposition we obtain

Corollary 3.5. Let S be a right anti-Archimedean subset of a ring R. If R is a right
S-Noetherian ring, then so is the Laurent polynomial ring R[X, X 1].

Recall that a ring R is right Ore if given a,b € R with b regular, there exist a1,b; € R
with b; regular such that ab; = ba;. Note that R is a right Ore ring if and only if the
classical right quotient ring of R exists.

We next study the power series ring extension of right S-Noetherian rings.

Theorem 3.6. Let R be a right Ore ring and S a right anti-Archimedean subset of R
consisting of reqular elements. If R is a right S-Noetherian ring, then so is the power

series ring R[X].

Proof. Let A be any right ideal of R[X] and A the right ideal of R consisting of zero
and the lowest degree coefficients of power series of A. Since R is right S-Noetherian,
As C 3" a;R for some s € S and ay,...,a, € A. For each i € {1,...,n}, choose
fi € A with the lowest degree term a; X%, where d; is the lowest degree of f;. Set
d =max{dy,...,d,} and let g = 322, b X* € A with by # 0.

Case 1: ¢ > d. Since by € A, bys = > | ajujp for some ujg,...,upo € R. Let
g =y i, fiuio X % . Then gs — go has the lowest degree greater than ¢. Suppose that
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we have go, ..., g, € iR[X]+- -+ fR[X] such that gs"™ — Y7 g;s"* has the lowest
degree greater than ¢ + r, say

r
gsr-i—l _ Zgisr—z _ CXZ-‘,-T—H NI
i=0

Since gs™ — 37 gis"" € A, cs € atR+ - 4 apR; s0 ¢s = Y1 ajuir41 for some
Ul ity -y Unrp1 € R Let gryr = Yo fittipn X174 Then gs™+2 — Z:;“& gis" Tt
has the lowest degree greater than £+r41. Since s is a regular element of R, we denote by
57! the inverse element of s in the right quotient ring S~'R[X]. By using the sequence
{9i};>0, we can deduce that

9= igjsf(j+l)

j=0
) i (i fiuinHj_di) s~ U+
= i Z fiuijs_(j-l-l)Xg_,_j_di‘

Since S is right anti-Archimedean, there exists an element w € ﬂ;i1 sSPRNS; so s~ Uty e

R for all nonnegative integers j. Hence we obtain

n o0
gw = Z fi Z wggs~ U X~ di
i=1 j=0

€ AiR[X]+---+ fRR[X].

Case 2: £ < d. For each i € {0,...,d}, let B; = {f(i) | f € AN R[X] X'}, where f(i)
denotes the coefficient of X? in f. Then By C By C --- C By is a chain of right ideals of
R. Since R is S-Noetherian, there exist an element ¢; € S and a finitely generated right
ideal Fj := bj1 R+ - -+ b;p, R such that B;t; C F; C B;. Therefore there exist h;1, ..., hin,;,
where h;; = b;; X" + [upper terms] with 1 < j < n;. Since by € By, byt; = Z;Lil bejvg; for

some Vg1, ..., Vm, € R. Let hy = Zyil hejvej. Then gt, — hy has the lowest degree greater
than ¢. By continuing the same process, we can get hyy1,...,hq. Let
d d d—i
h:gHtj—Z hthi—l—j
j=¢ i=0 j=1

Since h has the lowest degree greater than d, by Case 1, there exists an element w €

*  sPRN S such that
p=1

d

d d—i
g Htj w:Z hthi-l-j w + hw
: j=1

j=t i={
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d n; n
e hiRIX]+ ZfiR[[X]] .

i=0 j=1

Let t = [[% ¢ Since g is arbitrary chosen in A, At C % >ty hii RIXT +C,
where C = {f | f € AN R[X] X%!}. Therefore we obtain

d n;
Atw € > " hy R[X] + Cw

i=0 j=1

d n; n
<Y > hyR[X] +z;fiRﬂX]]

i=0 j=1

c A
Hence A is S-finite, and thus R [X] is a right S-Noetherian ring. O

Let R C E be an extension of rings, R+ XE[X] = {f € E[X]| f(0) € R} a composite
polynomial ring, and R+ XFE[X] = {f € E[X] | f(0) € R} a composite power series
ring. Then R X]C R+ XFE[X]C E[X]and R[X]C R+ XE[X]C E[X];s0if RC E,
then R+ X E[X] (resp., R+ X E [X]) provides algebraic properties of polynomial (resp.,
power series) type rings strictly between two polynomial rings (resp., power series rings).

We first give an equivalent condition for the ring R+ X F[X] to be right S-Noetherian

when S is a right anti-Archimedean subset of R.

Theorem 3.7. Let R C F be an extension of rings and S a right anti-Archimedean subset

of R. Then the following statements are equivalent.
(1) R+ XE[X] is a right S-Noetherian ring.
(2) R is a right S-Noetherian ring and E is S-finite as a right R-module.

Proof. (1) = (2): Let A be a right ideal of R. Then A + XFE[X] is a right ideal of
R + XFE[X]. Since R+ XFE[X] is a right S-Noetherian ring, we can find s € S and
fi,..oy fn € A+ XE[X] such that (A+XE[X])s C fi(R+XE[X])+---+ fu(R+ X E[X]).
Therefore As C f1(0)R+---+ fn(0)R C A. Note that f1(0)R+---+ f,(0)R is a finitely
generated right ideal of R; so A is S-finite. Thus R is a right S-Noetherian ring.

We next show that E is S-finite as a right R-module. Since X E[X] is a right ideal
of R+ XE[X], there exist t € S and ¢1,...,9m € E[X] such that (XE[X])t C Xg1(R +
XE[X])+ -+ Xgm(R+ XE[X]); so for any e € E, we have

(BX)t = Xglhl + - +Xgmhm
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for some hi,...,hy, € R+ XE[X]. Hence we have

et = gl(o)hl(o) + -+ gm(o)hm(o)
€ 91(0)R + -+ gm(O)R7

which indicates that Et C g1(0)R+ - - + gm(0)R C E. Note that g1(0)R+ -+ gn(0)R

is a finitely generated right R-submodule of F. Thus F is S-finite as a right R-module.
(2) = (1): Suppose that R is a right S-Noetherian ring and F is S-finite as a right R-

module. Then there exist s € S and eq,...,e, € E such that Es CetR+---+¢, R C F,

so we have

(E[X])s C e1R[X] + - + emR[X] C E[X].

Hence E[X] is S-finite as a right R[X]-module. Note that by Corollary[3.3] R[X] is a right
S-Noetherian ring; so by Lemma [2.14)(5), E[X] is S-Noetherian as a right R[X]-module.
Let N be a right (R+ X E[X])-submodule of E[X]. Then N is a right R[X]-submodule of
E[X]; so there exist t € S and f1,..., fn € N such that Nt C fiR[X]|+---+ f,R[X] C N.

Therefore we have
Nt C fi(R+ XE[X])+ -+ fu(R+ XE[X]) C N.

Hence N is S-finite as a right (R + X E[X])-module, which indicates that E[X] is S-
Noetherian as a right (R + X E[X])-module. Let A be a right ideal of R + XFE[X].
Then A is a right (R + X E[X])-submodule of E[X]. Since E[X] is S-Noetherian as a
right (R + XE[X])-module, we can find w € S and gi,...,9x € A such that Aw C
g1(R+ XE[X])+ -+ gx(R+ XE[X]) C A. Hence A is S-finite. Thus R+ XE[X] is a
right S-Noetherian ring. O

We next give a necessary and sufficient condition for the ring R + XFE [X] to be
right S-Noetherian when S is a right anti-Archimedean subset of R consisting of regular

elements.

Theorem 3.8. Let R be a right Ore ring, E a ring extension of R, and S a right anti-
Archimedean subset of R consisting of regular elements. Then R + XE[X] is a right
S-Noetherian ring if and only if R is a right S-Noetherian ring and E is S-finite as a
right R-module.

Proof. 1f we use Lemma [2.14[(5) and Theorem then the proof is similar to that of
Theorem [3.7] O

We are closing this article with some applications of composite ring extensions.
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Example 3.9. (1) Note that for any multiplicative subset S of Z, Q is not S-finite as a
(right) Z-module. Thus by Theorems [3.7] and neither Z + XQ[X] nor Z + XQ[X] is
a (right) S-Noetherian ring.

(2) Let R be a right S-Noetherian ring, S a right anti-Archimedean subset of R, and
n a positive integer. Then D, (S) is a right anti-Archimedean subset of UTM,(R), and
by Proposition [2.16[1), UTM,(R) is a right D,,(S5)-Noetherian ring. Also, as in the proof
of Proposition [2.16{2), Mat,(R) is D,(S)-finite as a right UTM,,(R)-module. Thus by
Theorem UTM,,(R) + X Mat,(R)[X] is a right D,,(S)-Noetherian ring. Furthermore,
if R is right Ore and S consists of regular elements of R, then D, (S) also consists of
regular elements of UTM,,(R); so by Theorem UTM,,(R) + X Mat, (R) [X] is a right
D, (S)-Noetherian ring.

(3) Let R be a right S-Noetherian ring, S a right anti-Archimedean subset of R,
and n a positive integer. Then Z,(S) is a right anti-Archimedean subset of V,(R), and
by Proposition Vo(R) is a right Z,,(S)-Noetherian ring. Also, as in the proof of
Proposition Hn(R) is Z,,(S)-finite as a right V,,(R)-module. Thus by Theorem (3.7
Vn(R) + XH,(R)[X] is a right Z,,(S)-Noetherian ring. Moreover, if R is right Ore and S
consists of regular elements of R, then Z,(S) also consists of regular elements of V,(R);
so by Theorem Viu(R) + XH,(R) [X] is a right Z,(S)-Noetherian ring.
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