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RELAXED EXTRAGRADIENT METHOD FOR FINDING A COMMON
ELEMENT OF SYSTEMS OF VARIATIONAL INEQUALITIES AND FIXED
POINT PROBLEMS

L.-C. Ceng and M.-M. Wong*

Abstract. In this paper, we investigate the problem of finding a common element
of the solution set of a general system of variational inequalities, the solution set of
a convex feasibility problem and the fixed point set of a strict pseudocontraction
in a real Hilbert space. Based on the well-known extragradient method, viscosity
approximation method and Mann iterative method, we propose and analyze a
new relaxed extragradient method for computing a common element. Under very
mild assumptions, we obtain a strong convergence theorem for three sequences
generated by the proposed method. Our proposed method is quite general and
flexible and includes the iterative methods considered in the earlier and recent
literature as special cases. Our results represent the modification, supplement,
extension and improvement of some corresponding results in the references.

1. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by (-, -)
and || - ||, respectively. Let C' be a nonempty closed convex subset of H and let Po
be the metric projection of H onto C. For a given nonlinear mapping A : C — H,
consider the following classical variational inequality of finding z* € C such that

(1.1) (Az*,x —2*) >0, Vaxel.
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The set of solutions of problem (1.1) is denoted by VI(A, C'). Variational inequality
theory has emerged as an important tool in the investigation of a wide class of obstacle,
unilateral, free, moving, equilibrium problems arising in several branches of pure and
applied sciences in a unified and general framework. For finding an element of Fix(.S)N
VI(A, C') under the assumption that a set C' C H is nonempty, closed and convex, a
mapping S : C' — C' is nonexpansive and a mapping A : C' — H is a-inverse strongly
monotone, Takahashi and Toyoda [15] introduced the following iterative algorithm:

xg = x € C chosen arbitrarily,
Tntl = Ty + (1 — o) SPo(zy, — MAzy,), Vn >0,

where {a,} is a sequence in (0, 1), and {\,} is a sequence in (0, 2«t). It was proven
in [15] that if Fix(S) N VI(A, C') # () then the sequence {x,} converges weakly to
some z € Fix(S) N VI(A, C). Recently, Nadezhkina and Takahashi [31] and Zeng
and Yao [40] proposed some so-called extragradient method motivated by the idea
of Korpelevich [32] for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of a variational inequality. Further,
these iterative methods were extended in [4] to develop a general iterative method for
finding a element of Fix(S) N VI(A, O).

Let By, By : C — H be two mappings. Consider the problem of finding (z*, y*) €
C x C such that

Vx € C,

(1.2) < )
Vx € C,

> 0,
(uaBox™ + y* —a*, x —y*) >0,
which is called a general system of variational inequalities, where p; > 0 and e > 0
are two constants. It was introduced and considered by Ceng, Wang and Yao [3]. In
particular, if By = By = A, then problem (1.2) reduces to the problem of finding
(z*,y*) € C x C such that

(mAy* + 2" —y*,x —2*) >0, Vredl,
(1.3)

(uoAx* +y* —a*,x —y*) >0, Vredl,
which was defined by Verma [20] (see also [33]) and it is called a new system of
variational inequalities. Further, if 2* = y* additionally, then problem (1.3) reduces to

the classical variational inequality (1.1). Recently, Ceng, Wang and Yao [3] transformed
problem (1.2) into a fixed point problem in the following way:

Lemma 1.1. [3]. For given &,y € C, (z,y) is a solution of problem (1.2) if and
only if T is a fixed point of the mapping G : C — C defined by

G(z) = Pe[Po(z — peBax) — jn BiPo(x — peBox)], Vx € C,
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where § = Po(ZT — po Ba).

In particular, if the mapping B; : C — H is fj-inverse strongly monotone for
j = 1,2, then the mapping G is nonexpansive provided p; € (0,25;) for j =1, 2.

Utilizing Lemma 1.1, they proposed and analyzed a relaxed extragradient method
for solving problem (1.2). Throughout this paper, the set of fixed points of the mapping
G is denoted by GSVI(B;, B2, C'). Based on the relaxed extragradient method and
viscosity approximation method, Yao, Liou and Kang [21] introduced and studied an
iterative algorithm for finding a common solution of problem (1.2) and the fixed-point
problem of a strictly pseudo-contractive mapping S : C — C. It is worth pointing
out that in their main result (that is, [21, Theorem 3.2]), the boundedness restriction
imposed on C' is much stronger.

Recently, many authors studied the following convex feasibility problem (for short,
CFP):

m
(1.4) finding an z € ﬂ K;,
i=1

where m > 1 is an integer and each K; is a nonempty closed convex subset of
H. There is a considerable investigation on the CFP in the setting of Hilbert spaces
which captures applications in various disciplines such as image restoration [5,10],
computer tomography [14] and radiation therapy treatment planning [6]. In this paper,
we shall consider the case when K; is the solution set of the variational inequality
(1.1). Furthermore, it is worth pointing out that related iterative methods for solving
fixed point problems, variational inequalities, equilibrium problems and optimization
problems can be found in [1, 3, 4, 6-9, 11-13, 15-31, 33, 35-40].

In 2007, Yao and Yao [17] introduced and considered a relaxed extragradient algo-
rithm for finding an element of Fix(S) N VI(A, C') and derived a strong convergence
result which improves liduk and Takahashi’s theorem [7].

Theorem 1.1. (see [17]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A : C — H be an a-inverse-strongly monotone mapping and let
S : C — C be a nonexpansive mapping such that Fix(S) N VI(A, C) # (. Suppose
that {x},{yn} are given by

x1 = u € C chosen arbitrarily,
(1.5) yn = Po(xn, — MAxy),
Tptl = QU + ﬂnxn + VnSPC(yn - /\nAyn>u n > 17
where {ap, }, {Bn}, {1} are three sequences in [0, 1] and {\,,} is a sequence in [0, 2a/].

If {an}, {Bn}, {1} and {\,} are chosen so that \,, € [a,b] for some a,b with 0 <
a<b<2oand
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(@) an+0Bn+1m=1, ¥n>1;

)

(0)

(¢) 0 <liminf, oo By < limsup, o Bn < 1,
)

c
(d) limpy—oo(Apt1 — An) =0,
then {x,} converges strongly to Prix(s)nvi(a,c)U-

limy, oo 0y =0, Y 07 oty = 00,

In 2008, Ceng, Wang and Yao [3] further considered the problem of finding a
common element of the solution set of the general system (1.2) of variational inequalities
and the fixed point set of a nonexpansive mapping by the following iterative algorithm:

x1 = u € C chosen arbitrarily,
(1.6) yn = Po(xn, — pBxy,),
Tnt1 = apt + By + ¥ SPo(Yn — Myrn), Yn>1,

where A, B : C' — H are two inverse-strongly monotone mappings and .S : C' — C'is a
nonexpansive mapping. They also obtained a strong convergence theorem of algorithm
(1.6).

Very recently, Cho and Kang [19] studied the convex feasibility problem (1.4)
(where K; = VI(A;, C) for i = 1,2, ...,m) by considering a finite family of inverse-
strongly monotone mappings {A4;}!”, : C' — H and a strict pseudocontraction, and
established a strong convergence theorem which extends the corresponding results in
(3,7, 11, 17].

Theorem 1.2. (see [19]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A; : C — H be a Q;-inverse-strongly monotone mapping for
each 1 < i < m, where m is some positive integer. Let S : C — C be a k-strict
pseudocontraction with a fixed point. Assume that 2 := N, VI(A;, C)NFix(S) # 0.
Let {x,} be a sequence generated in the following iterative algorithm:

x1 € C chosen arbitrarily,

m

(1'7> Yn = Qpu + (1 - an) Z[%Pc(ﬂfn - /\zAzxn”u
i=1
Tnt+1 = ann + (1 - Bn)[’)’nyn + (1 - 7n>Syn]u vn > 17

where {~, } is a sequence in [k, ), where 7y is some constant in (k, 1), w is a fixed point
in C, A1, Aa, ..., Ay, are real numbers such that \; € (0,2a;) and {a,}, {Bn}, {ni} C
(0,1) fori = 1,2, ...,m. Assume that the above control sequences satisfy the following
restrictions:

(@) XZymp =1, Vn>1;
(b) limy—oo iy =0t € (0,1) fori=1,2,....m
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(€) limy oo 0y = 0, Y00, 0 = 00,
(d) Bn <a <1, where a is a constant in (0, 1),

(e) limy— o0 (Ynt1 — Yn) = 0 and v, < b < 1, where b is a constant in (0,1).
Then the sequence {x,} defined by algorithm (1.7) converges strongly to T =
Pgu.

Motivated and inspired by the recent research work going on in this field, we
consider the problem of finding an element of 2 := N, VI(A;, C) N Fix(S) N
GSVI(By, By, C') where A; : C — H is a-inverse strongly monotone for i =
1,2,...m,B; :C — H is Bj-inverse strongly monotone for j = 1,2and S : C — C
is a k-strict pseudocontraction. Let ) : C — C be a p-contraction with p € [0, %)
Based on the well-known extragradient method, viscosity approximation method and
Mann iterative method, we introduce a new relaxed extragradient algorithm for finding
an element in {2, that is,

x1 € C, choosen arbitrarily,

Zn = PC[PC(xn - M2B2xn> - MIBIPC(xn - M2B2xn>]u
(1.8) mo
Yn = aann + (1 - an) Z[W;PC(Zn - AzAzZn”a
i=1
L Tnt+1 = Brn + (1 = Br)[¥nyn + (1 = ¥0)Syn], Yn > 1,

where {7, } C [, ) for some vy € (k,1), p; € (0, 2@) for j =1,2, \; € (0,2q;) and
{an}, {Bu}, {0} C (0,1) for i = 1,2, ...,m. It is proven that under very mild condi-
tions three sequences {z, }, {yn}, {zn} generated by algorithm (1.8) converge strongly
to the same point £ = PpQZ. Furthermore, (Z,y) is a solution of the general system
(1.2) of variational inequalities, where § = Po(Z — g BaZ). Our result represents the
modification, supplement, extension and improvement of the above Theorems 1.1 and
1.2 in the following aspects.

(i) our problem of finding an element of N, VI(A;,C)NFix(S)NGSVI(B;,B2,C)
is more general and more complex than the problem of finding an element of
Fix(S) N VI(A, C) in the above Theorem 1.1.

(ii) our problem of finding an element of N[, VI(A;,C)NFix(S)NGSVI(B;,Bz,C)
is also more general and more complex than the problem of finding an element
of NI, VI(4;, C)N Fix(S) in the above Theorem 1.2.

(iii) our algorithm (1.8) is very different from algorithm (1.5) in the above Theorem
1.1 and also very different from algorithm (1.7) in the above Theorem 1.2 because
algorithm (1.8) is closely related to the viscosity approximation method with the
p-contraction () : C — C and involves the Picard successive iteration for the
general system (1.2) of variational inequalities.
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(iv) the techniques of proving strong convergence in our result are very different from
those in the above theorems 1.1 and 1.2 because our techniques depend on the
norm inequality in Lemma 2.2 and the inverse-strong monotonicity of mappings
A;,Bj : C — H fori=1,2,...,mand j = 1,2, the demiclosedness principle
for strict pseudocontractions, and the transformation of the general system (1.2)
of variational inequalities into the fixed-point problem of the nonexpansive self-
mapping G : C' — C (see the above Lemma 1.1).

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - || and C be a
nonempty closed convex subset of H. We write — to indicate that the sequence {z,,}
converges strongly to = and — to indicate that the sequence {z,} converges weakly
to x. Moreover, we use w,,(x;,) to denote the weak w-limit set of the sequence {z,},
1.e.,

wy(xy) :={z : z,, = x for some subsequence {z,,} of {z,}}.

For every point x € H, there exists a unique nearest point in C, denoted by Pox,
such that

le = Peall < |l = yll, VaeC.

Ppc is called the metric projection of H onto C. We know that Po is a firmly nonex-
pansive mapping of H onto C'; that is, there holds the following relation

(Pcx — Poy,x —y) > |Pox — Poyl|?,  Vr,y € H.

Consequently, P is nonexpansive and monotone. It is also known that Po is charac-
terized by the following properties: Pox € C and

(2.1) (x — Pox, Pox —y) >0,
(2.2) lz = ylI* > |lo = Pox|® + |y — Pexl?,

for all x € H,y € C; see [34] for more details. Let A : C — H be a monotone
mapping. In the context of the variational inequality, this implies that

(2.3) xe VI(A,C) & x=Po(x— AAz) VYA >0.

Recall that a mapping S : C' — C' is called a strict pseudocontraction if there exists
a constant 0 < k < 1 such that

(2.4) 1Sz — Syll* < llz — yl* + k(I = S)z — (I = S)yll*, Va,yeC.
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In this case, we also say that S is a k-strict pseudocontraction. A mapping A : C' — H
is called a-inverse strongly monotone if there exists a constant o > 0 such that

(2.5) (Az — Ay, z —y) > ol Az — Ay|>, Va,y e C.

It is obvious that any a-inverse strongly monotone mapping is Lipschitz continuous.
Meantime, observe that (2.4) is equivalent to
o 1-k 2
(Sz—Sy,x—y) < llz =yl = == = )z — (I = Syl Vo,yeC,
It is easy to see that if S is a k-strictly pseudocontractive mapping, then I — S is lg—k-
inverse strongly monotone and hence ﬁ-Lipschitz continuous. Thus, S is Lipschitz
continuous with constant % We denote by Fix(.S) the set of fixed points of S. It is
clear that the class of strict pseudocontractions strictly includes the one of nonexpansive
mappings which are mappings S : C — C such that ||Sz — Sy|| < ||z — y|| for all
z,y € C.

In order to prove our main result in the next section, we need the following lemmas
and propositions.

Lemma 2.1. (see Bruck [2]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {T; : 1 < i < m} be a sequence of nonexpansive mappings on
C. Suppose NI" Fix(T;) is nonempty. Let {\;} be a sequence of positive numbers
with 3", X\i = 1. Then a mapping S on C' defined by

St = Z ATz, VYreCl
i=1

is well defined, nonexpansive and Fix(S) = N Fix(T;) holds.
The following lemma is an immediate consequence of an inner product.

Lemma 2.2. In a real Hilbert space H, there holds the inequality
=+ ol < lz)* +2{y, x +y), Vz,ye H.
Recall that S : C' — (' is called a quasi-strict pseudocontraction if the fixed point
set of S, Fix(5), is nonempty and if there exists a constant 0 < k < 1 such that
(2.6)  ||Sz—p|* < ||z —p||® + K|z — Sz||* for all z € C and p € Fix(S).

We also say that S is a k-quasi-strict pseudocontraction if condition (2.6) holds.

Proposition 2.1. (see [8, Proposition 2.1]). Assume C' is a nonempty closed convex
subset of a real Hilbert space H and let S : C' — C be a self-mapping on C.
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(i) If S is a k-strict pseudocontraction, then S satisfies the Lipschitz condition

1+k
1-k

(2.7) 1Sz — Syl < lz—yll, Va,yel.

(ii) If S is a k-strict pseudocontraction, then the mapping I — S is demiclosed (at
0). That is, if {x,,} is a sequence in C such that x,, = % and (I — S)z, — 0,
then (I — S)x =0, ie, T € Fix(9).

(iii) If S is a k-quasi-strict pseudocontraction, then the fixed point set Fix(S) of S
is closed and convex so that the projection Priy(s) is well defined.

The following lemma was proved by Suzuki [13].

Lemma 2.3. (see [13]). Let {z,} and {y,} be bounded sequences in a Ba-
nach space X and let {(3,} be a sequence in [0,1] with 0 < liminf, . 3, <
limsup,, o, Bn < 1. Suppose xn 11 = (1 — Bn)yn + Bnan for all integers n > 0 and
lim Supn—»oo(Hyn-H - ynH - Hxn—i—l - an) < 0. Then, 11mn—>oo Hyn - an = 0.

Lemma 2.4. (see [16]). Let {a,,} be a sequence of nonnegative numbers satisfying
the condition

An+1 < (1 - 5n>an + 5ngnu Vn > 07
where {6,,}, {on} are sequences of real numbers such that

(i) {60} C [0,1] and >",°; 6n = 00, or equivalently,

(1 —0p):= lim - (1—10;)=0;
j
n=0 " §=0

(ii) limsup,,_,o 00 < 0, or
(ii’) Y0 Onon is convergent.
Then lim,,_.oo a, = 0.

Lemma 2.5. (see Zhou [18]). Let C be a nonempty closed convex subset of a real
Hilbert space H and S : C — C be a k-strict pseudocontraction with a fixed point.
Define S, : C — C by S,z = ax+ (1 —a)Sz for each x € C. Then, as a € [k,1), S,
is nonexpansive such that Fix(S,) = Fix(S).

3. STRONG CONVERGENCE THEOREM
We are now in a position to state and prove our main result.

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Given an integer m > 1. Let A; : C — H be q;-inverse strongly monotone for
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i=1,2,...m and B; : C — H be Bj—inverse strongly monotone for 7 = 1,2. Let
S : C — C be a k-strict pseudocontraction such that 2 := ", VI(A;, C)NFix(S)N
GSVI(By,Bs, C) # 0. Let Q : C — C be a p-contraction with p € [0, %) For given
x1 € C arbitrarily, let the sequences {x,},{yn}, {zn} be generated iteratively by

Zn = PC[PC(xn - M2B2xn> - MIBIPC(xn - M2B2xn>]u
(3.1) Yn = nQun + (1 — an) 330 [, P (20 — XiAizn)],

Tpt1 = Bn®n + (1 = Bo)[ynyn + (1 = 1) Syn], Vn > 1,
where {v,} C [k, ) for some v € (k,1), pj € (O,QBj)forj =1,2, \; € (0,2q)
and {an}, {Bn}, {n4} € (0,1) for i =1,2,...,m, such that

() Xitymh=1,Yn>1;

(if) limy, oo nl =n* € (0,1) fori=1,2,....,m;

)

)
(iif) limy, oo 0y =0, D0,y = 00;
(iv) 0 < liminf, .~ By < limsup,_,. OBn < 1;
)

(v) limy,— 00 (Yn+1 — Yn) = 0 and limsup,,_, v, < 1.
Then the sequences {x,}, {yn}, {zn} converge strongly to the same point & =
PoQz. Furthermore, (Z,9) is a solution of the general system (1.2) of varia-
tional inequalities, where §j = Po (T — o Bo).

Proof. First, let us show that the mapping I — \; A; is nonexpansive for i =
1,2,...,m. Indeed, for all z,y € C, we have

11 = XAz — (I — XA )y?
= [l(z —y) — Ni(Aiw — Ay)|?
= lz =yl = 2\i{Ax — Ay, @ — y) + N[ A — Ay
< lz =yl = 2Md ]| Aiw — Awyl* + A7l Aix — Agyl|®
= [lz =yl = Xi(2a — X)) | A — Ayl
< [lz —ylI*.

This shows that I — \;A; is nonexpansive for i = 1, 2, ..., m.
We divide the rest of the proof into several steps.

Step 1. {z,,} is bounded.
Indeed, let 2* € 2. Then Sz* = z*, z* = Po(a* — \;jA;z*) fori = 1,2, ...,m,
and
x* = Po[Po(x® — paBaox™) — pu1 By Po(x™ — paBax™)].
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For simplicity, we write
y* = Po(x" — paBax™), Tp

m
= Po(xp — poBoxy) vy, = Po(zn, — NjA;z,) and u, = Z My, Uy
i=1

for each n > 1. Then y,, = 0, Qxy, + (1 — o)y, for each n > 1. Since B; : C — H
is Bj-inverse strongly monotone for j = 1,2 and 0 < p; < 243; for j = 1, 2, we know
that for all n > 1

[E s

= | Po[Po(wn — paBawn) — m B1Po(xn — pa Bawy)] — ||
= ||Po[Po(an — peBoan) — pnBiPo(zn — peBaay)]

—Po[Po(a* — paBax*) — p By Po (¢ — pa Baa™)]||?
< [Pe(zn — peBozn) — i BiPe(xn — paBawy)]

—[Po(z* — poBax*) — 1 B1 Po(z* — po Box*)]||?
= ||[[Po(an — p2Boan) — Po(a™ — poBoxz™)]

—p1[B1Po(xn — p2Boxy) — Bi Po(z* — paBox™)]||?
< ||Pe(2n — paBan) — Po(z™ — pa Boa™)||?

—111(261 — )| BiPo(wn — p2Bawn) — By Po(x* — pa Bya)||?
< |(zn — paBown) — (&* — p2Baa®)||* = p1 (261 — )| Briin — Buy*|”
= ||(zn — &*) = p2(Bown — Boa™)||* = p1(261 — )| Bt — Bay*|”
< |lwn—a* >~ p2(282— o) | Botn — Boa* =1 (2B1—pm1) | B E—Bay |

<l — 2.

(3.2)

Now, observe that
(3.3) llop — 2™l = |Pe( = Aidi)zn — Po(I = Midi)2™|| < |lzn — 27| < [l — 27|
for i = 1,2,...,m. Define a mapping S, : C — C by

Sy =x + (1 —vp)Sz, Vel

From Lemma 2.5, it is known that Fix(S) = Fix(S,, ) for each n > 1. It follows from
(3.1) that
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[€n 1 — 27|
< Bnllen — 2"l + (1 = Ba) (1S5, yn — 27|
m

< Bullzn — 2| + (1 = Ba)llonQan + (1 = an) Y mpyoy, — 2|
i=1

< Ballzn = 2|+ (1= B ol Qan — 2|+ (1 = )| D iy — ]
=1
(1= (1= Gl = " | + (1 = o) [ Qun — |

[1 = an(l = Bu)lllzn — 27| + an(l = Bn)(pllzn — 27| + [|Q2" — 27))
= [ =an(l = B) (1 = p)llzn — 27| + an (1 = Bn)|Q2" — 27|

<
<

Qr* — x*
< max{ ||z, — x|, %}
By induction, we can obtain
Qr* — x*
|Tni1 — 2| < max{||xq — 2, %}

This shows that the sequence {x,,} is bounded.

Step 2. lim, oo ||Tnt1 — zn|| = 0.
Indeed, note that
|2n+1 — ZnH2
= ||Po[Pe(zni1 — paBani1) — p1 BiPo(Tpi1 — paBaTni1)]
—Pc|Po(ay — paBatn) — p1 BiPo(zn — pi2 Bawn |||
< |[Pe(xnt1 — peBawny1) — 1 B1Po(tny1 — p2Batny1)]
—[Po(wn — pa Bawp) — p BiPe (= poBown )] |12
= |[Pe(@ns1 — p2Bowny1) — Pol(an — paBawn)]
—p1[B1Pc(#nt1 — p2Bawng1) — BiPe(an — pa Bawn )]||”
< ||Pe (1 — p2Bowni1) — Po(wn — paBowy )|
—111(261 — )| BrPo(n 11 — p2Batni1) — BiPo(an — paBaxy)|?
< ||Po(xni1 = p2Bowni1) — Po(y — p2Boay) |12
< (41 — p2Bonir) — (xn — paBowy) ||
= |(@ns1 — xn) — p2(Boxni1 — Bozy)|?
< wng1 — an2 - MZ(QBZ — p2)|| Ban i1 — B2an2
< ||Tn+1 _an2a

and hence

711

(3.4) l[vn 1=l =1 Pe(I = Xidi) znpr—Po (I =Xidi) znll < [|zns1—2n || <[|2ns1—an]
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for i =1, 2,...,m. On the other hand, we have
Ynt1 —Yn = (1 — ) (QTn1 —un) + (1 — 1) (Unt1 — Un) + 00 (QTpi1 — QTp).
It follows from (3.4) that

Hyn—I—l - yn”
< a1 —an||Qrpg1 —unll + (1= an 1) [[unt1 —un || + || Qrni1 — Qy|

m m
= |ans1 — anl| Qi1 — tnll + (1= 1)1 Y mhg1vnpn — D mhonl

i=1 i=1
o [|QTni1 — Q||
(3.5) <ant1 — anl||Qrpg1 — unl| + (1 — any1) Z%HH%H — |
(1= ani1) Y nhr = nbl 0]+ anllQen i1 — Qual|
i=1 m A A
< ‘an-f—l - an‘Han—f—l - unH + Hxn—I—l - an + MZ ‘77;14—1 - 77;1‘
i=1

+anHan+1 - anHu

where M is an appropriate constant such that
M = max{sup{||Pc(I — \jAi)zp|| :m > 1} : 1 <i < m}.
Note that

HSWn-o-lyn-H - S’YnynH < ‘7n+1 - FYn‘Hyn - SynH + Hyn—I—l - ynH,
which together with (3.5) yields that

1Sy 1¥mt1 = Syutnll = |1Znta = znll

<Vt = Yallyn = Synll + lns1 — yull = |01 — 24|

m
< nt1 = Yulllgn = Synll + loms1 — ol |Qni1 — wnll + M D |ty — 13|

i=1
+anHan+1 - anH
It follows from conditions (ii), (iii) and (v) that
lim sup([| Sy, Yn+1 = Sy, Ynll = 201 — 2al]) <0.

n—oo

From Lemma 2.3 it follows that

(3.6) lim Sy, yn — 2n|| = 0.
n—oo
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Since 41 — Tn = (1 — 8,)(S5,Yn — Tn), we deduce from (3.6) that

(3.7) lim ||zp41 — 2] = 0.
n—oo
Step 3. lim, . || B1Zn, — B1y*|| = limy, o || Bazy — Box™|| = limy, 00 || Ai2n —

A;z*|| =0 for i = 1,2, ...,m. Indeed, utilizing Lemma 2.5 we get from (3.2)

241 — 2"
< Bllzn — 2>+ (1= Ba) 1S540 — 2|7
< Bullwn — %)% + (1 = Bo)llanQn + (1 — an)un — 2|2
< Bllwn — 2*|* + (1 —ﬂn>anHan —a*|?

+(1 —an)(1 = fn) HZ?? w2
< Bullzn — 2" + (1—ﬂn)anHan—$ I
+(1 —an)(1 = fn) Z%Hv —a*|?
< Bullzn — 2" + (1—ﬂn)anHan—$ I
+(1—ap) (1= Bp) ZnnHzn —a* = N(Aiz, — A ||?
< Bullzn — 21 + (1—ﬂn)anHan—$ I
+(1—an)(1—0n) Z%(Hzn—x*HQ = Ni(285 =) || Ajzn — Ai”|?)
< Bullen — 22+ (1 Bo)an| @ — 2”7
+(1—an)(l—ﬁn)(Hzn—fE*HZ—Znfl/\i(Qai—/\i)HAizn—AifB*HQ)

=1
< Bullwn = 2** + (1 = Bn)an||Qan — |2
(1 = an)(1 = Bu)[llzn — 2** — n2(262 — p2) || Bawn — Boa™||?
m
1 (261 — )| B — Buy™|> = Y mihi(28—Ni) || Az — Aga ]

i=1
< Jlzn = 2 + an||Qzn

—2" | = (1 = @) (1 = Bo) [ (251 — )| Bizn — Buy*|?

H12(2P2 — pa) || Bawn — Boa™ I+ mi A28 — Ai) || Ajzn — Aiz™ |7,
=1

and hence
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(1) (1= Bn) [11(281 — ) || By — Bay®||* + 2282 — i2) | Bown — Box™ ||
m
+ > mh A28 — A Aiz — A
i=1
<l = &) = lznsn — 2™ + an || Quy — 2™
< ([ = 2| + zns1 = 2*|Dllen = Taga || + anl|Qen — 2%
Utilizing conditions (iii) and (iv), we see from (3.7) that
(3.9) lim |[|B1Z, — B1y*|| = lim ||Bax, — Bex™|| = lim ||A;z, — Aiz™|| =0
N—00 n—00 n—00
fori=1,2,....m.

Step 4. lim,, o ||Sxy — 24| = 0.
Indeed, observe that

lo, = &*|1* = [[Pe(I = Xidi)zn — Po(I = Midi)a”|?
< (I = NAy)zn — (I — NA)x* vl — o)
= %(H(I = Nidi)zn = (I = NA)a™|* + oy, — 27|
0 = Aedon — (1= XA = (v} = ) P)

1 * j * j *

gllzn —2 12+ llo, — 21> = Iz — vy, = Ai(Aizg — Asz®)|?)
1 ) o A

=5(lzn —a 12+ oy, = 2|1 = llz — 0plI?

+2Ni(Aizn — Aj™, 2y — Uﬁ) - /\ZZHAiZn - Aix*HQ>

<

for i =1, 2,...,m. Hence it follows that

v}, = 2*)1? <llzn — 2*|1> = [l20 — v} |1?
(3.10) +2X;(Aizy, — Az, 2, — v%) — /\?HAizn — Agz*||?

< lzn = 2*[* = llzn — op |1 + D'l Aizp — Aiz”|
for i = 1,2, ...,m, where I'! is an appropriate constant such that
I = sup{2A;||zn — v} || : 0 > 1}

for i =1, 2,...,m. In the meantime, we have

m
= zall® < D mhllor, = zall,
i=1
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which together with (3.10) yields that
m . .
> nllvn = 2|7
i=1
(3.11) < lzn = 217 = D mhllzn — ol + D mi T Aszn — Aia”|
i=1 i=1

m
< llzn = 12 = ln = zall® + D Tl Aizo — Al
i=1
On the other hand, observe that
1Zn — y*|I* = || Pe(@n — pa Bawn) — Po(z* — pa Bax™) |2
<A(zn — p2Boxyn) — (2 — p2Bex™), T, — y*)
1
I

= 5lllzn =" = pa(Bazo — Boa")|I* + || — "I

2
~ll(@n = 2%) = p2(Batn — Baa™) = (&0 — y)|]
1 * ~ * * * ~ *
< Slllon = 21 + 12 — "1 = [l (2 — &%) = pa(Bawn — Boz™) — (in — y")||"]
1

Sllzn = 2" + 20 — 3" [1* = lzn — &0 — (2" = ")
242y — & — (2" = y"), Bown — Bax™) — i3 || Bown — Boa*|’]
< %[Hxn R e T e e Cat Tl
+2pullzn — Tn — (27 — y") ||| Bazn — Box™|l],
that is,
(3.12) 1Zn = *11* < llwn — 2™ = llon — Tn — (2" = )|
+2pllwn — In — (27 — y")|[[| Bawn — Baz™||.

Further, similarly to the above argument, we derive

l2n —2*|1* = | Po(&n — 1 B1&n) — Pely™ — mBiy*) |

<A(@n —m1B1Zn) — (Y — 1 B1Y"), 20 — 27)

= S — o™ — 1 (Ba — Buy ) + lan — 2”1

(@ = y*) = i1 (Brin = Bry®) = (20 — )|
< g ln =571 4 o = 2712 = G — 20) — 1 (B — Biy®) + (" — )|
1 R A L o et o
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1 ~ * * ~ * *
< Sllzn =y I+ llzn — 21> = 120 — 20 + (&* = y)|I?
+2u1||Zn — 2 + (@ — y*) ||| BiZn — Bry*|],
that is,

(3.13) l2n = 2* (1> < 120 = y*[I* = 120 — 20 + (2" =y )|
+2p||Zn — 20 + (27 = y) |1 B1n — Bay”||.
Combining (3.12) with (3.13), we have
20 — 2|
T e e e LR S ]
F2p1 ([T — 20 + (" — y )| BLin — Bry||
+2p2)|n — En — (27 — y7) || Bozn — Baa™||.
In terms of (3.8), (3.11) and (3.14) we have
41 — 2|
< Bullen —a*[” + (1 - Bu)an]|Qen — "
+(1 = ) (1= Ba) > millvh, — 27|
< Bullen ' P+ (1= Bl Qe — a7
+(1 = an) (1= Ba)lllzn = 2% = lun — zal® + > TV Aizn — Asaz™]
< Bullen =o'+ (L= BanlQua— a2
+(1 = ) (1= B[z — 2|7
NP = En — 20 + (2" — )
F2p[|Zn — 20 + (2" = y)||[| Brin — B1y’||

—||zpn — &y — (2™ H2

+2p2 ||y — Tn — (2% — y*)[||| By, — Baz™||
m
~tn = 2nl? + DT Aszn — Ai*|l]
=1
m .
< o — 2|7 + anl|Qun — 2*|> + DT Aizn — Aiz™|
=1
21 |Zn = 20 + (2" = yO)||| B1Zn — Bry"||
+2p2 ||y — Tn — (2° — y")[|[| By — Baz™||
—(1 = an)(1 = Bp)lllzn — Tn — (2" — y*>H2
H|Zn — 20+ (@ = Y + [lun — 2]
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This in turn implies that

(1= an)(1 = B[l — Tn — (2% — y*>H2
H|Zn — 20+ (@ = Y + un — 2n]l”]

m
< = 2 = llwner = *|° + | Qo — | + YT Aizo — Aiar”||

i=1
+2p |0 — zn + (2" =y )1 Brn — Byl
+2p2 |0 — Zn — (27 — ")l Bewn — Bax™||
< (lzn = 2l + lzntr = 2" Dllzn — zp |
m .
+an||Qry — 2P + ) T|Aizg — A
i=1
+2p |0 — zn + (2" =y )1 Brn — Byl
+2pllwn — In — (27 — y")|[[| Bawn — Baz™||.
From (3.7), (3.9) and conditions (iii) and (iv), we derive
lim ||z, — 2, — (" —y")|| = lim ||Z, — 2z, + (2" — ¥")|| = lim [Ju, — 2,]| = 0.
n—oo n—oo n—oo
Thus, it is easy to see that
(3.15) lim ||z, — zn|| = lim |Ju, — 24| = 0.
n—oo n—oo

Note that

1550 = Znll < 155,20 = Syatnll + 1Sy, 9 — onl|
< [#n = ynll + 15y, yn — nll
< |lzn = 2nll + 120 — Yull + 195,90 — 2a|
< lzn = znll + 120 — unll + llun = ynll + (1S5, 90 — 2nl|

= |lzn = zall + lun — 20l + cn||QEr — unll + HS'Ynyn — Zn|.

So, it follows from (3.6), (3.15) and condition (iii) that

(3.16) lim ||z, — yn|| = lim ||Sy, 2, — 2| = 0.
n—oo n—oo
Since [|Sy, xn — zp|| = (1 — Vn)||Sxy — 25|, this together with condition (v) implies
that
lim [|Sx, — x| =0.
n—oo

Step 5. limsup,,_, . (QZT — Z, z, — T) < 0.
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Indeed, since {z,,} is bounded, there exists a subsequence {z,, } of {x,} such that

(3.17) limsup(Qz — z, xy, — ) = lim (QT — &, xy, — T).

n—00 1—00

Also, since H is reflexive and {x,,} is bounded, there exists a subsequence {z, }
J

of {x,,} which converges weakly to & € w,,(x,). Without loss of generality, we may
assume that x,,, — 2. Define a mapping F' : C — C by

Fz =Y n'Po(I - NAj)z, VreC,
=1

where 1’ = lim,, ., 7. By Lemma 2.1 we deduce that F' is nonexpansive such that
m m
Fix(F) = (| Fix(Po(I - Midi)) = [ VI(C, 4j).
i=1 i=1
Note that

20 — Fznll < |20 — tnll + [Jun — Fzu|
m

= un = zall + 1D maPol = Xidi)zn = Y 0'Pol = \idy)zl|

n:iL:l =1
< Nn = zall + Y Iniy = 0| Pe (I = AiAi)za
=1 m | |
< lun — zall + MZ 7 — 'l

=1

where M = max{sup{||Pc(I — \jA4;)zp| : » > 1} : 1 < i < m}. From condition (ii)
and (3.15) we get

(3.18) lim ||z, — Fz,| = 0.
n—oo

In the meantime, from (3.15) and z,,, — & we have z,, — &. By Proposition 2.1 (ii)

we obtain that & € Fix(F'). Moreover, in view of (3.16) and Proposition 2.1 (ii) we

also have & € Fix(.5). This immediately shows that & € 0", VI(4;, C') N Fix(S).
Next, let us show that & € GSVI(Bjy, Be, C). As a matter of fact, observe that

Hxn - G(ﬂfn)H = Hxn - PC[PC(xn - M2B2xn> - MIBIPC(xn - M2B2xn>]H
= [|zn — 2]l = 0 (n — o0)

due to (3.15), where G : C' — C is defined as that in Lemma 1.1. According to
Proposition 2.1 (ii) we conclude from z,,, — & that & € GSVI(Bj, Bg, C). Therefore,

&€ () VI(4;, C)NFix(S) N GSVI(By, By, C) = 1.
=1
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Consequently, from (2.1) and (3.17) it follows that

limsup(Qz — Z, zy, — ) = lim (QT — T, 2y, — T) = (QT — &, — ) < 0.
n—oo 1—00

Step 6. lim,, o ||z, — Z|| = 0.
Indeed, utilizing Lemma 2.2 we get from (3.1) and (3.2)
[
= [1Bu(zn = 2) + (1 = ) (Sy,9m — D)2
< Bullzy — EH2 + (1= Bu)llyn — *7_7H2
(3.19) < Bullzn —Z|* 4+ (1= 6,) 200 (Qxp — T, Y — T
< Bonn_EW'i‘(l_Bn>[2an<an_§37 Yn—1T
< Bonn_EW'i‘(l_Bn>[2an<an_§37 Yn—1T
= [1 = an(1 = Ba)llzn — 2% + 200 (1 = By

~—

Note that

= <an —Z,Tp — 3_3> + <an —Z,Yn _xn>

= <an_QE7mn_§3>+<Qa_3_a_37xn_a_3>+<an_a_37yn_xn>
< pllan — 2| +(QF — 7,20 — T) + [|Qup — Z|[|lyn — 2 -

(3.20)

Thus, combining (19) with (20), we have

[ERE
<1 = an (1= Bu)lllzn — EHZ + 20, (1 = Bn)[pllen — EHZ
HQZ —Z, 20 — T) + [|Qzn — Z|[[yn — 0]
= [1—an(1=5,)(1 = 2p)]||zn — 2|
+2a5(1 = ) [(QZ — T, 2n — @) + ||Qun — Z|[[yn — @all]
= - a1l = B~ 20)] e — 7> )
(1 - 2p)an(1 - ) 2 HQEZTon = x>1+_H2ix” — lllyn = 2all]
Note that lim inf,, o (1—/3,)(1—2p) > 0. It follows that Y > ; v, (1—5,)(1—2p) =
oo. It is clear that

o sup 2HQE = 720 = ) + Q= a1y~ walll _

N—00 1-2p
because lim sup,,_, ., (QZ —Z, z, —Z) < 0 and lim,,_, ||z, —yn|| = 0 (due to (3.16)).
Therefore, all conditions of Lemma 2.3 are satisfied. Consequently, we immediately
conclude that ||x,, — Z|| — 0 as n — oco. This completes the proof. |
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If Q@ = u a constant in C and S is nonexpansive, then Theorem 3.1 is reduced to
the following

Theorem 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Given an integer m > 1. Let A; : C' — H be Qi-inverse strongly monotone for
i=1,2,....m, and B; : C — H be Bj-inverse strongly monotone for j = 1,2. Let
S : C — C be a nonexpansive mapping such that 2 := 0", VI(4;, C) N Fix(S) N
GSVI(By, Bg, C) # 0. For fixed uw € C and given x1 € C arbitrarily, let the
sequences {xy},{yn}, {zn} be generated iteratively by

Zn = PC[PC(xn - M2B2xn> - MIBIPC(xn - M2B2xn>]u
m

(3.21) Yn = apu+ (1 — ap) Z[nfLPC(zn — Nidiz)],
i=1
Tnt1 = Pnn + (1= 5n)Syn, Yn>1,
where 115 € (0,203;) for j = 1,2, Ai € (0,2a;) and {an}, {Bn}, {ni} C (0,1) for
1=1,2,...,m, such that
(i> ZZZI 77% =1, Vn=>1
(if) lim, oo n, =0 € (0,1) fori=1,2,....,m;
(ifi) limy oo 0y = 0, D0 O = 00
(iv) 0 < liminf,, o By, < limsup,,_,. OBn < 1.
Then the sequences {x,}, {yn}, {zn} converge strongly to the same point & =
PoQz. Furthermore, (T,7y) is a solution of the general system (1.2) of varia-
tional inequalities, where §j = Po (T — o Bo).

Proof. Put Q = v and kK = 7, = 0 for each n > 1. Then, by Theorem 3.1 we
obtain the desired result. ]

Finally, we consider the common fixed point problem of a finite family of strict
pseudocontractions.

Theorem 3.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Given an integer m > 1. Let T; : C — C be a k;-strict pseudocontraction for
i=1,2,...m, and B; : C — H be Bj—inverse strongly monotone for 7 = 1,2. Let
S : C — C be a k-strict pseudocontraction such that 2 := N, Fix(T;) N Fix(S) N
GSVI(By, By, C) # 0. Let Q : C — C be a p-contraction with p € [0, 3). For given
x1 € C arbitrarily, let the sequences {x,},{yn}, {zn} be generated iteratively by
zn = Po|Po(zn — peBaxn) — 1 BiPo(zn — paBazn)),

m

(3.22) Yn = 0nQryn + (1 — ) Z%((l — Xi)zn + AiTizn),
i=1

Tn+l1l = ann + (1 - Bn)[’)’nyn + (1 - 7n>Syn]a Vn > 1,
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where {,} C [k, ) for some v € (k, 1), p; € (0, QBj)forj =1,2, X\ € (0,1 —k;)
and {on}, {8}, {ni} € (0,1) for i = 1,2, ...,m, such that

(i) lim, oo n, =0 € (0,1) fori=1,2,....m;

)

)
(ifi) limy oo 0y = 0, D02 O = 00,
(iv) 0 < liminf,, .~ By < limsup,_,. GBn < 1;
)

(v) limy,—00(Yn+1 — Yn) = 0 and lim sup,,_, o, v, < 1.
Then the sequences {x,}, {yn}, {zn} converge strongly to the same point & =

PoQz. Furthermore, (T,7y) is a solution of the general system (1.2) of varia-
tional inequalities, where §j = Po (T — o Bo).

Proof. In Theorem 3.1, put A;, =1 —T; fori =1,2,...,m. Then it is easy to see
1—k;

that A; is a;-inverse strongly monotone with a; = =5 for i = 1,2,...,m and that

Fix(T;) = VI(A;, C) for i = 1,2, ...,m. Note that \; € (0,2a;) = (0,1 — k;) and

Pc(Zn — /\zAzZn> = (1 — /\z>2n + NiTzn

fori =1,2,...,m. Thus, by Theorem 3.1 we obtain the desired result. This completes
the proof. -
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